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Abstract

From web browsing to bank transactions, to data analysis and robot automation, just about
any task necessitates or benefits from the use of software. Ensuring a piece of software to
be effective requires profiling the program’s behavior to evaluate its performance, debugging
the program to fix incorrect behaviors, and examining the program to detect security flaws.
These tasks are made possible by instrumentation—the method of inserting code into a
program to collect data about its behavior. Dynamic binary instrumentation (DBI) enables
programmers to understand and reason about program behavior by inserting code into a
binary during run time to collect relevant data, and is more flexible than static or source-
code instrumentation, but incurs run-time overhead. This thesis attempts to extend the
preexisting characterization of the tradeoffs between dynamic binary translation (DBT) and
dynamic probe injection (DPI), two popular DBI approaches, using Pin and LiteInst as
sample frameworks. It also describes extensions to the LiteInst framework that enable it
to instrument function exits correctly. This evaluation involved using the two frameworks
to instrument a set of SPEC CPU 2006 benchmarks for counting function entries alone,
counting both function entries and exits, or dynamically generating a call graph. On these
instrumentation tasks, Pin performed close to native binary time while LiteInst performed
significantly slower. Exceptions to this observation, and analysis of the probe types used by
LiteInst, suggest that LiteInst incurs significant overhead when executing a large number of
probes.
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1 Introduction

In software development, programmers often want to examine program behavior for infor-
mation such as potential bugs, security vulnerabilities, and performance bottlenecks. This
can be achieved by adding more code into the program to measure aspects of its run-time
behavior – a process known as instrumentation. Depending on usage and preference, in-
strumentation can be done on the source code or binary executable level, and statically or
during run time.

Source code instrumentation can be useful for manipulating programs directly to evaluate
expected program behaviors, but is unportable across source languages, inefficient when
massive amounts of code are present to examine, and impossible when the source code is
not available. Binary instrumentation addresses these issues, but is less accessible when
reasoning about high-level semantics, and thus requires a robust framework to abstract the
reasoning away in this type of situations.

Static binary instrumentation allows programmers to determine their instrumentation
tools, identify locations for instrumentation, and insert instrumentations before running the
program, and is therefore relatively easy and robust. It is, however, not as flexible as dynamic

binary instrumentation (DBI), which is the method of dynamically adding code to a binary
to understand its run time behavior. DBI enables programmers to examine the run-time
behavior of binaries, and to which they can adapt instrumentations, but DBI’s dynamic
nature can result in poor performance. Therefore, optimizing DBI performance can benefit
the programming experience.

There are two common approaches to DBI. Dynamic binary translation (DBT), used by
frameworks like Intel Pin [23], involves copying the target binary in segments and instru-
menting the copies during runtime. Dynamic probe injection (DPI), used by frameworks
like LiteInst [14], manipulates the target binary in memory to insert probes that lead exe-
cution to the instrumentation. Although prior literature has evaluated the performance of
DBT frameworks and, at times, compared the two approaches for specific purposes (such as
instrumenting kernels [26]), more work is needed to characterize their performance with a
broader scope in mind.

1.1 Problem Statement

DBI incurs performance overhead from carrying out much of its work during run time. In-
sight for optimizing this technique can be gained from comparing its two main approaches,
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DBT and DPI. DBT enables one to instrument any part of a binary, but can incur extra
performance overhead from copying the binary. DPI bypasses copying overhead by instru-
menting the binary directly, but can incur extra performance overhead from preserving
target program behavior while inserting probes, as well as costs from context-switching and
redirections of execution by the probes.

Prior work has evaluated several DBI frameworks. The most direct evaluation of DBI
approaches to date evaluated only DBT frameworks (specifically Pin, DynamoRIO, and Val-
grind) [27]. Application-specific evaluations are scattered across papers targeting specific
use cases; for example, the idea that DBT offers better performance than the traditional
DPI usage for instrumenting operating systems served to introduce the JIFL (“JIT Instru-
mentation Framework for Linux”) prototype [26]. Part of the reason for this gap in the
literature may be that these frameworks were designed with different purposes in mind.
DBT frameworks tend to be used to create heavyweight tools, which carry out complicated
analyses that requires dense instrumentation at a fine granularity of code.1 DPI frameworks
support lightweight tools such as profilers, which carry out simpler analyses and simpler data
management [25]. Since these two types of DBI frameworks were designed with different
workloads and goals in mind, it is likely that they are optimized for their respective goals
while still supporting (but perhaps not optimized for) other use cases.

This thesis seeks to evaluate Pin ([23], a DBT framework) and LiteInst ([14], a DPI
framework) on a specific set of analysis tasks and benchmarks. While Pin is able to support
a variety of instrumentation granularities, such as at beginnings and ends of procedures (pro-
cedure boundary) and basic blocks (basic block boundary), LiteInst is able to instrument
only procedure boundaries at the moment, with partial support for other levels of granu-
larities. This limits the analysis tasks to those that consider only procedure boundaries;
future work can focus on instrumentation of other granularities for analysis tasks that are
more complex. Nonetheless, results from this evaluation can help to guide further explo-
ration of the kind of usage that would best benefit from the two DBI approaches, and hint
at areas where further optimization can be made. In addition, they may offer insights into
future development of a hybrid approach that could combine the fast startup of DPI with
the flexibility of DBT.

1.2 Contributions

In this thesis, I make the following contributions.
1Valgrind [25] is explicitly designed for this usage.
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• I extended the LiteInst framework to effectively support procedure boundary instru-
mentation (instrumenting at the beginning and end of a procedure).

• I built tools with LiteInst and Pin to evaluate the two frameworks. For each framework,
I built a procedure counter to count the number of entries for each procedure during
an execution; an entry-exit counter, which performs the same task as the procedure
counter while also counting number of exits for each procedure; and a call graph
generator, which generates a call graph dynamically.

• I analyzed the performance of the tools on two timing metrics: total elapsed time (from
when the instrumentation is started up and begins, to the tear-down phase when mem-
ory is freed after the instrumented binary has finished running) and isolated run time of
the instrumented binary (in-between the start-up and tear-down). My experimental re-
sults showed that for most benchmarks, Pin added little overhead to the target binary,
while LiteInst added little overhead to the target binary when simply instrumenting
their procedure entries, but contributed significantly more overhead when instrument-
ing procedure exits in addition to entries. For the two slowest benchmarks, however,
both Pin and LiteInst performed almost just as well as the native binary for all three
pairs of tools.

• I characterized sources of performance overheads in LiteInst by analyzing the probes
it executed during run time. An analysis on the probe types used by LiteInst showed
that LiteInst’s significant overhead on the other benchmarks may be due to the large
number of executed probes.

1.3 Outline

This work is presented as follows.

• Chapter 2 gives an overview of the background behind instrumentation, with a focus
on DBI, Pin, and LiteInst.

• Chapter 3 examines the complexity behind instrumenting procedure exits with DPI,
and describes my extension to the LiteInst framework for accurate procedure exit
instrumentation.

• Chapter 4 describes the analysis tools implemented as subjects of the evaluation.

• Chapter 5 describes the evaluation and results.
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• Chapter 6 proposes directions for future work.

• Chapter 7 concludes this thesis.
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2 Background

2.1 Instrumentation

Suppose that, for debugging purposes, a programmer would like to determine where a func-
tion call was made in a program execution. Having a call graph, in which vertices are
functions and direct edges point from one function to a function they call, would be helpful
in this situation. To construct such a graph, the programmer could manually simulate the
execution with expected input values—but this is tedious, fallible, and difficult to generalize
to all programs. They could go through every single function in the source code and write
a print statement at the beginning of each one, to print out the name of each function as
they are being called—but manual and mundane labor is still required. Is there a method
that would enable them to understand the program behavior in an accurate and efficient
manner?

This is a common question to encounter in the software engineering process. Even after
a piece of software has been written, ensuring it to be effective, secure, and correct requires
profiling the program’s behavior to evaluate its performance, debugging the program to fix
incorrect behaviors, and examining the program to detect security flaws. These tasks, and
others that demand understanding and reasoning about how the program will run, can be
made possible by instrumentation—the method of inserting code into a program to collect
data about its behavior. Multiple approaches to instrumentation exist to help programmers
avoid menial tasks such as those presented above. For the purpose of minimizing confu-
sion, this thesis will refer to any functions appearing in the target program (which is to be
instrumented) as “procedures” from now on, and continue to refer to functions in the in-
strumentation frameworks and tools as “functions,” even though the two terms are typically
used interchangeably.

2.2 Some Approaches to Instrumentation

2.2.1 Source Code Instrumentation

The programmer can choose to instrument the source code, the binary, or both. Source code
instrumentation (static or dynamic) is used for many languages and for various purposes,
such as security verifications for C [22], query-based instrumentation for C++ [19], and
concurrent program behavior analyses for Java [8]. There are also frameworks that aim
to handle multiple languages, such as GEMS [16], which has language-specific parsers to
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parse the program into a common model, instrument it, and then pretty-print it back to the
original language.

Source code instrumentation is particularly useful in cases such as expectation testing [1],
in which the tester instruments the software to compare its executed behavior with expected
behavior under specific scenarios. For other use cases, however, it has several disadvantages.
Its language-specificity and source requirement make library instrumentation particularly
difficult, as libraries contain a large amount of code that may also be written in multiple
languages. For programs whose sources are unavailable, such as untrusted software, source
code instrumentation is entirely impossible. In these cases, a more appropriate approach is
binary instrumentation.

2.2.2 Static Binary Instrumentation

In binary instrumentation, instrumentation is done to the binary executable rather than the
source code. Although binary instrumentation has the complication of being architecture-
specific, it bypasses the source code requirement, and handles complex libraries with relative
ease. One can choose to instrument the program statically or dynamically. Prior work
related to static binary instrumentation (SBI) includes ATOM [28], an early implementation
based solely on the now defunct Alpha platform; MIL [15], a language that enables the
collection of program behavior information for SBI; PEBIL [21], or “PMaC’s Efficient Binary
Instrumentation Toolkit for Linux”; and PSI [30], a platform that specifically targets security
instrumentation.

The static aspect of SBI offers several advantages over dynamic techniques. Instru-
menting the program is easier and more robust due to SBI’s static nature; and because
the instrumentation is completed before run time, this same instrumentation can be used
for multiple program executions without having to instrument during every execution, thus
eliminating some run-time overhead from the instrumentation process. For counting basic
block in executions, PEBIL outperformed several dynamic binary instrumentation frame-
works in terms of execution time [21], namely Valgrind [25], DynamoRIO [9, 10], Pin [23],
and Dyninst [11] (in decreasing order of run-time overhead). For instrumentation that aids
program analyses for security purposes, PSI is able to achieve less overhead than dynamic
binary instrumentation frameworks for real-world applications [30]. In addition, PSI retains
qualities that are necessary for secure instrumentation but difficult to find in traditional
SBI frameworks, namely completeness (all executed code can be instrumented) and non-
bypassability (the instrumented code cannot bypass or subvert instrumentation)—qualities
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that had historically made dynamic binary instrumentation frameworks the favorable choice
for secure instrumentation [30].

Despite its advantages in some aspects, SBI lacks the the run-time flexibility that dynamic
methods have. The binary must be compiled after static instrumentation, and so it must
be compiled multiple times if different instrumentations are needed, which is inconvenient.
Therefore, dynamic binary instrumentation (DBI) can be desirable in certain use cases, as
described in the next section.

2.3 Dynamic Binary Instrumentation

DBI instruments programs during run-time, and thus allows changes to be made dynamically,
including toggling between instrumenting or ignoring certain parts of the code. It has been
used for purposes such as malware defense [2], classical virtualization of the x86 ISA [4],
and demand-driven structural testing [24]. There are currently two main approaches to
DBI: dynamic binary translation (DBT, also known as the JIT-based approach to DBI) and
dynamic probe injection (DPI, or the probe-based approach).

2.4 Dynamic Binary Translation

In general, DBT incrementally recompiles and executes code, by copying the compiled code,
instrumenting the copies, and then executing the instrumented copy. A JIT compiler incre-
mentally finds code to copy, and the instrumented copies are linked together to form the
execution path. Frameworks such as Pin [23], DynamoRIO [9], and Valgrind [25] are among
those that utilize this approach. DBT enables one to instrument any part of a program with
relative ease, since the JIT compiler will ultimately recompile (in increments) a copy of the
entire program, during which it will ensure that the instrumentation functions fit into the
copies. The compiler can also optimize the instrumentation functions during the recompi-
lation process, such as inlining them into the copies. However, DBT may incur overhead in
the process of creating and managing the copies. Pin is particularly popular and has been
the target of extensions such as the timing-sensitive Dime* [5].

2.4.1 Intel Pin

Intel Pin, or simply “Pin,” is a DBT framework that supports run-time instrumentation for
Linux [23]. Since its academic publication in 2005, Pin has been cited 1,027 times (according
to the ACM Digital Library [3]), sometimes as a reference point for performance evaluation
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of new DBT frameworks. It is also under consistent development by the Intel Corporation.
For these reasons, Pin seemed to be a great choice for evaluation.

To use Pin, the programmer writes instrumentation tools, or “Pintools,” that specify
where and how the program will be instrumented. For example, if the programmer wants
to count the number of times procedure foo() is called, they should to define a function
forFoo() in the tool. In this forFoo(), the programmer should utilize Pin’s API to specify
that the instrumentation function, incrementFooCounter(), will be called at the beginning
of foo(). Then, the programmer should register forFoo() with Pin in the main() function
of the Pintool, so that Pin can instrument the program.

Pin and Pintools work together to instrument the target program. While Pin carries
out the JIT-compilation and instrumentation, it loads the Pintool for directions on the
instrumentation. The program is instrumented one trace at a time, where a “trace” is a
series of instructions that would be executed sequentially, until termination by one of the
following:

• An unconditional control transfer: branch (direct and indirect jump instructions), call,
or return.

• A pre-defined number of conditional control transfers, such as the JE instruction
(“jump if equal to”) in x86.

• A pre-defined number of instructions, which have been included in the trace without
encountering the above two conditions.

The instrumentation process is as follows.

• Before executing the target program’s first instruction, Pin generates a copy of the
program’s starting trace that, when executed, will return control to Pin after branching.

• Pin transfers control to the copy it created, which is now executing.

• After the copy has exited execution and returned control to Pin, Pin generates a copy
for the next trace, instruments it, and executes the copy.

• The cycle continues: as more code is discovered, Pin makes a copy of the trace and
instruments the copy while also making sure that the copy will return control to Pin
after the trace ends.
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• The instrumented copies are stored in a code cache so that they can be reused for
similar traces in the future.

With the help of the instrumentation paradigm above (summarized in a high-level manner
in Figure 1), Pin offers some advantages over other DBT frameworks, including optimizations
to the JIT compilation process (through register reallocation, code inlining, liveness analysis,
and instruction scheduling).

Figure 1: High-level diagram of Intel Pin, a framework for dynamic binary trans-

lation (DBT). The original binary is represented by a control-flow graph. The in-

teresting code (in purple) is the target code for instrumentation. The JIT compiler

arrow points past the block it has just discovered in the original target binary. Blocks

with dark outlines are associated with the block that is currently being copied (left),

instrumented (middle), and stored in the code cache (bottom right).

Nonetheless, because Pin still copies the original binary as DBT frameworks do, it may
retain some overhead in managing these copies and instrumenting them rather than the
original code. Although a side-by-side comparison of pre- and post-instrumented binary
with Pin could be helpful for further analyzing the instrumentation process and potential
overhead of the copying process, it is not presented in this thesis because post-instrumented
copies of a binary are not accessible through Pin’s API (to the best of my knowledge).
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2.5 Dynamic Probe Injection

On the other hand, the DPI approach edits the code directly in memory while it is running.
It replaces instructions that one would like to instrument with probes, usually jump or trap
instructions, that lead program execution to the instrumentation code. “Probe sites” refer
to the locations in the code where target instructions for instrumentation reside. Once the
instrumentation code (such as an increment routine for counting number of procedures)
for a particular probe has been executed, control flow returns to the instruction after the
probe.2 Frameworks that use DPI include LiteInst [14]; Dyninst [11] and Vulcan [29], which
are two frameworks that support both SBI and DBI; and DTrace [12], which relies on trap
instructions to emulate the behavior of the instrumented targets.

The choice to insert code directly into the binary, rather than a copy, has its trade-offs. It
may shorten the setup time by bypassing the copying step, but can suffer from a limited set
of possible probe sites. Since probes may be longer than the instructions they aim to replace,
their insertion can overwrite neighboring instructions in addition to the target instructions.
In a variable-length ISA, such as x86, each probe site would require a customized probe to
take into account the target instruction’s size. Some DPI paradigms choose to use probes
constructed from trap instructions rather than other control flow instructions, like jump
instructions. These can incur performance overhead, as the kernel must respond to the trap,
and then save context before directing control back to the trap signal handler in user space.
Transfers between kernel and user space have high cost.

2.5.1 LiteInst

LiteInst [14], which is currently available only for x86-64, is a framework that follows the
DPI approach by implementing the instruction punning algorithm (see Figure 2). It replaces
target instructions with probes, which lead the execution to segments of code called trampo-
lines. Trampolines save the context before calling instrumentation functions and executing
replaced instructions.

LiteInst is an appropriate DPI framework for evaluation because it is one of the newest
advances for this DBI approach (having been published in June 2017). It enables probes
to be inserted virtually anywhere (through the instruction punning algorithm and various
contingency plans, as described in the next section), and—at the time of writing—had not

2It should be noted that since most modern operating systems forbid changes to code-containing pages
of the memory by setting their permissions as no-modify by default, DPI frameworks must change virtual
memory mapping permissions in order to manipulate binaries in memory.
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yet been evaluated against Pin through timing measurements.

Figure 2: High-level diagram of LiteInst, a framework for dynamic probe injection

(DPI). The original binary is represented by a control-flow graph on the left, and

the block with dark outline is currently being executed. The interesting instruction

(in purple) is the target instruction, displaced from the original binary.

For example, consider a target procedure check_legal() from the sjeng benchmark of
SPEC CPU2006 benchmark suite [20], which is shown in Listing 1. Entry and exit in-
strumentation (instrumentation for the beginning and end of a procedure) is inserted into
this procedure, and the results are shown in Listing 2.3 The beginning two instructions of
check_legal() in the original binary (Listing 1) have been replaced by a jmpq instruction in
the instrumented version (Listing 2). This jmpq instruction jumps to the trampoline at ad-
dress 0x62465cb8 for the entry instrumentation function. The retq instruction at the end of
the original procedure is replaced with an illegal instruction at line <+5510>, which raises a
SIGILL. LiteInst has a special handler that receives this SIGILL and then directs execution
to the trampoline. The next section describes LiteInst’s usage and illegal instruction probes
in more detail.

3sjeng is a program that plays chess, and its variants, against a human player or input file using artificial
intelligence techniques.

2 BACKGROUND 11



check_legal() :

0x405cad <+0>: push %rbp

0x405cae <+1>: mov %rsp,%rbp

0x405cb1 <+4>: sub $0x20,%rsp

// . . .

0x407233 <+5510>: retq

Listing 1: Beginning and end

of check_legal() in the original

sjeng binary.

check_legal() :

0x405cad <+0>: jmpq 0x62465cb8

0x405cb2 <+5>: sub $0x20,%esp

// . . .

0x407233 <+5510>: < i l l ega l instruction>

Listing 2: Beginning and end

of check_legal() after

instrumentation.

2.5.1.1 Instruction Punning & Alternatives

LiteInst attempts to address the probe suitability issue with the instruction punning algo-
rithm [14]. This algorithm uses jump instructions as probes, and the probes lead execution
to corresponding trampolines. Each jump probe has 5 bytes: 1 byte for the opcode of (rela-
tive) jmp, and 4 bytes to encode the jump offset that leads to a trampoline. Each probe is
inserted at the head of an instruction in the original binary.

Probes should not affect the target binary other than the instructions being instrumented,
which are the target instructions replaced by the probes. This is indeed the case if the
replaced instructions are longer than the probes (by having 5 or more bytes), since execution
can return from the instrumentation function to anywhere following the probes (Figure 3).
In this ideal scenario, the probe jump target can be any mappable address for the trampoline.
However, if the replaced bytes belong to more than just the target instruction (in other words,
the probe cannot avoid replacing more than just the target instruction), the probe may affect
neighbor instructions, resulting in unexpected behavior (Figure 4a). The instruction punning
algorithm addresses this issue by tailoring the probe jump offset to resemble the bytes of the
neighbor instructions as closely as reasonable (like a “pun”), thereby minimizing unnecessary
changes to the original program (Figure 4b).

Instruction punning is not always enough. In the worst case scenario, all 5 bytes replaced
by a probe may belong to different 1-byte instructions (Figure 5a). Attempting to form a
probe from these 5 bytes will be problematic if the constructed jump target is not a mappable
address. LiteInst accounts for this scenario by inserting the 1-byte opcode of int3 trap or
some illegal instruction into any of the bytes where the jump target would be. A special
signal handler is used to continue execution after receiving SIGTRAP or SIGILL from the
1-byte backup probe. This helps expand the possible set of valid trampoline addresses.
Figure 6a is a pictorial depiction of the execution path triggered by the 1-byte probe.
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(a) The composition of a

jump probe in LiteInst.

(b) The target instruction (in purple) is successfully replaced by the jump probe

(in red), and execution will be directed to the trampoline and then return to the

next instruction in the original binary (the first mov instruction), as indicated

by the arrows.

(c) Similar to (b), the 5-byte jump probe (red) replaces part of the 6-byte target

instruction (purple). Arrows depict the rest of the control flow.

Figure 3: An example of successful instrumentation by jump probes.
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(a) The target instruction (in purple) and the head of the next instruction are

replaced by the jump probe (in red).

(b) A probe that contains the same byte at its end as the head of the next

instruction (0x8b in this case, in black text and highlighted in red) is used.

Figure 4: An example of Instruction Punning.
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(a) A scenario in which only one pun (black text highlighted in red) is available

for the jump probe (in red).

(b) LiteInst addresses the problem in (a) by backtracking, in which it finds a

location upstream to place the probe instead.

(c) In addition to the upstream probe, a 1-byte trap or illegal probe (red “XX”)

must be placed at the head of the actual target instruction.

Figure 5: An example of backtracking.
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Another issue for instruction punning arises from instrumenting instructions at the end
of a basic block. For example, procedures tend to exit with a retq at the end, which is
only 1 byte and ends a basic block (Figure 5a). To instrument this retq using the standard
paradigm in LiteInst would require a 5-byte probe to lie across the basic block boundary,
starting at where retq resides. This can have unexpected complications. Single-byte int3

or illegal instruction probes can solve this, but the signals they trigger are costly. In this
case, LiteInst “backtracks” along the instruction stream, to find a more suitable probe site
somewhere upstream in the same basic block, relying on the assumption that all instructions
of a basic block are executed if any instruction in it is (Figure 5b). This is referred to as
“backtracking.” The ideal new probe site would be located at a 5-byte instruction, or on a
set of bytes that can be punned for valid trampoline addresses. In either case, there may be
branches in the program that reaches the retq by skipping over the new probe. Thus, the
new probe site cannot overlap with this retq, and retq will be replaced by a trap leading to
the same trampoline as the new probe (Figure 5c). This arrangement is more efficient than
not backtracking and only replacing retq with the signal-inducing probe, because it redirects
some of the branched traffic to the new jump probe, and jumps cost less than signals. A code
example can be found in Listing 5 of Section 3, where mov $0x0, %eax at <+5504> (which
is 5 bytes) and retq at <+5510> have been replaced by a jump and an illegal instruction,
respectively. In the event of a failed backtracking, LiteInst resorts to trap-based probes (int3

or one of the 1-byte illegal instructions) that pass signals to LiteInst’s special signal handler,
which directs execution to the trampoline elsewhere.

Because the jump offsets in the probes must lead execution to valid memory locations
(which may also require additional memory allocation and consequently must be mappable),
probe insertion incurs the most performance cost from searching for puns that lead to valid
jump addresses. Several scenarios may alleviate or contribute to this overhead:

• For a probe that is relatively unconstrained by the punning aspect (because it replaces
very few instructions, perhaps just one), the search space for an optimal offset can be
large.

• For a probe that has few pun choices (such as one that replaces 5 1-byte instructions,
which yields only one possible standard pun offset), LiteInst may have to resort to an
alternative, potentially more expensive probe, such as a trap or illegal instruction.

• To optimize for space, the searching algorithm attempts to group trampolines into
previously allocated trampoline pages.
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• Special precautions, including probe site relocation (through backtracking) and trap
instructions, are needed for probe sites that may require their probes to lie across basic
block boundaries, as this can corrupt instruction decoding during the rewrite process
otherwise.

Interactions between these scenarios can have interesting effects on LiteInst’s perfor-
mance. While LiteInst has been evaluated on some benchmarks [14], more exploration of its
performance can be done by comparing it to DBT frameworks such as Pin.
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3 Accurate Procedure Exit Instrumentation for Lite-

Inst

In DPI, the direct manipulation of binary executables poses an important challenge in cus-
tomizing and handling the probes to ensure the correct changes to control flow. Even though
the instrumentation is dynamic, the process of identifying probe sites is static, and thus com-
plexities exist.

In the simple scenario of instrumenting procedure entries and exits (when procedure
invocations begin and end, respectively, during run time), most entry instrumentations are
relatively simple, since most procedures have some sort of prologue before the body. The
framework just has to replace the first instruction of each procedure with a jump instruction
to the trampoline. Even instrumenting cases where the beginning basic block is part of a
loop is relatively straightforward.

On the other hand, exit instrumentation is more complex, because there are several
ways for a procedure to end. This chapter will describe the complexity in designing accurate
procedure exit instrumentation, and discuss LiteInst’s partial implementation in this domain,
extended by this thesis. This chapter first discusses procedure returns in Section 3.1, then
jump calls in Section 3.2, and lastly halts and exit() in Section 3.3.

3.1 Returns (retq)

Procedures most commonly exit by returning to where they were called (specifically, the
instruction right after the call instruction that called them) with retq instructions. The
simplest case studies are procedures that contain only one retq, at its end. For example,
LiteInst can easily identify the retq byte at increment<+20> (Listing 3) as a probe site
for exit instrumentation.

One problem that is universal to all instrumentation of retq instructions arises when the
standard probe occupies more than 1 byte, since retq is only 1 byte long. To avoid replacing
or otherwise affecting instructions next to this retq, special care is needed to instrument
such probe sites. As described in Section 2.5.1.1, LiteInst addresses this issue by either
backtracking to find a more suitable probe site and replacing retq with a int3 or an illegal
instruction, or simply perform the latter without the backtracking.
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increment() :

0x400636 <+0>: push %rbp

0x400637 <+1>: mov %rsp,%rbp

0x40063a <+4>: mov %edi , -0x14(%rbp)

0x40063d <+7>: mov -0x14(%rbp),%eax

0x400640 <+10>: add $0x1,%eax

0x400643 <+13>: mov %eax, -0x4(%rbp)

0x400646 <+16>: mov -0x4(%rbp),%eax

0x400649 <+19>: pop %rbp

0x40064a <+20>: retq

Listing 3: The procedure increment(), which increments its argument and returns

the new value.

3.1.1 Returns, Branching, and Shared Trampolines

Some procedures have multiple return instructions, by splitting off into branches and return-
ing at the end of one branch. Their exits are also easy to identify (by looking for the retq

opcode), and a DPI framework should replace all retq instructions with exit instrumentation
probes.

For procedures whose branches split and then join together before returning, exit instru-
mentation can be more difficult. If the control-flow join point is too close to the retq, such
that the basic block in-between is too small, there may not be enough space between the
join point and retq to fit in the exit probe. In these cases, the instrumentation framework
must take care to ensure that both the join point and the return are eventually executed the
right number of times.

3.1.2 LiteInst Mechanism and Extension

In LiteInst, one example of a small return basic block, as a result of a close branch join
point, is in check_legal() (Listings 4 and 5). These two listings show a more comprehensive
prologue and epilogue of the procedure than Listing 2 does. Recall that due to the size of
retq, LiteInst backtracks to instrument this exit, which results in the jmp probe at <+5504>
as well as the illegal instruction at <+5510> (as described in Section 2.5.1.1).

Based on these two listings, there are two paths to reach the exit of the procedure. Path
A goes through the instruction at <+5504>, and path B skips that instruction by taking
the jump from <+5502> to <+5509>. The probe for path A is the jmpq instruction at
<+5504>, while the probe for path B is the illegal instruction at the end. It is straightfor-
ward for the framework to assign a unique trampoline for each possible path of exit—in this
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case, one for path A and one for path B.
When taking path A, execution jumps to the trampoline at address 0x8000073e (List-

ing 6), which should execute the instruction replaced by the probe (mov $0x0,%eax), ex-
ecute the leaveq that had been skipped over in the original binary, switch context, call the
exit instrumentation function, restore context, and then return on behalf of check_legal().
When taking path B, the illegal instruction will be executed, thus passing a SIGILL to
LiteInst’s signal handler, which then dispatches to the appropriate trampoline. This tram-
poline should switch context, call the exit instrumentation function, restore context, and
then return on behalf of check_legal().

Note that there is overlap between the two trampolines described in the prior paragraph,
with the only difference being that path A’s trampoline must execute mov $0x0,%eax

and the skipped leaveq. Therefore, this is an opportunity for optimization by having the
exit probes of both paths share the same trampoline (Listing 6), where path A’s jump
probe would enter the trampoline at the mov $0x0,%eax instruction, and path B’s illegal
instruction probe would enter at the instruction right after leaveq (since leaveq would have
been executed already before the trampoline is reached in path B). Figures 6b and 6c are
pictorial depictions of path A and path B, respectively.

The LiteInst implementation had largely employed this optimization, but did not account
for all instances of procedure exits. Listing 6 shows the trampoline for when check_legal()

exits. Instead of jumping to the instruction right after leaveq (address 0x80000744), path
B’s illegal instruction probe would jump to the retq at the bottom (address 0x800007b0)
instead. This prevented the exit instrumentation function from being called (in code starting
at 0x80000782). Consequently, for every time check_legal exits in sjeng through path B,
LiteInst skips one count of exit. For a program made up of many procedures, or procedures
that are called often, this problem can result in many missed procedure exits. Vetting the
logic and isolating this issue was a lengthy and complicated process.

I extended the framework to ensure the correct behavior in this scenario by having the
signal handler dispatch to the instruction right after the leaveq in the trampoline, at address
0x80000744. This ensures that everything after leaveq will be executed, including the exit
instrumentation function. Figure 6c depicts the original issue and my fix.

3.2 Jumps (jmp)

In addition to returns, procedures can exit through jump instructions (jmp) due to tail-call
optimizations. A procedure can jump to another procedure as its last step, and thus simul-
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check_legal() :

0x405cad <+0>: push %rbp

0x405cae <+1>: mov %rsp,%rbp

0x405cb1 <+4>: sub $0x20,%rsp

// . . .

// spl its into two paths :

0x405e7f <+466>: jne 0x40722d <check_legal+5504>

// . . .

0x40722b <+5502>: jmp 0x407232 <check_legal+5509>

0x40722d <+5504>: mov $0x0,%eax

0x407232 <+5509>: leaveq

0x407233 <+5510>: retq

Listing 4: Beginning and end

of check_legal() in the original

sjeng binary, with a close join

point from two control flow paths

shown.

check_legal() :

0x405cad <+0>: jmpq 0x62465cb8

0x405cb2 <+5>: sub $0x20,%esp

// . . .

// spl its into two paths :

0x405e7f <+466>: jne 0x40722d <check_legal+5504>

// . . .

0x40722b <+5502>: jmp 0x407232 <check_legal+5509>

0x40722d <+5504>: jmpq 0x8000073e

0x407232 <+5509>: leaveq

0x407233 <+5510>: < i l l ega l instruction>

Listing 5: Beginning and end

of check_legal() after

instrumentation, with a close

join point from two control flow

paths shown.

taneously exits while calling the next procedure (hence the term “tail call”—the procedure
makes a call at the tail of its execution). This thesis will refer to such tail calls as “jump
calls.” Jump calls more complex to instrument jump instructions can vary across several
dimensions, and serve various purposes that do not all terminate the procedure. Namely,
whether a jump is conditional or unconditional, and whether it is absolute or relative, can
be ignored when other dimensions of the jump instructions are considered.

Within the category of relative jumps, there are short, near, and far jumps, based on
the number of bytes in the relative offset, which determines the range of possible jump
distances. Short jumps can reach a few bytes away, near jumps can reach anywhere within
the same segment, and far jumps can reach across segments. These distinctions can hint at
whether the jump target is inside or outside of the current procedure, and are thus useful
for identifying jump calls.

Another notable distinction is between direct and indirect jumps. Direct jumps have
jump targets encoded inside the instruction, whereas indirect jumps find their jump targets
at run time in registers or parts of the memory. It is easy to discern the jump target of
direct jumps, but not so for indirect jumps.

For example, register-indirect jumps (such as jmpq *%rax at <+3167> of Listing 7),
whose jump targets are stored in registers before the instruction is executed, are tricky to
work with, because their jump targets are not always within or outside of the procedure.
In other words, register-indirect jumps (and indirect jumps in general) are not always tail
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trampoline of exiting retq in check_legal() :

// from the original binary :

0x8000073e: mov $0x0,%eax // replaced by jump probe

0x80000743: leaveq // the instruction preceding the original ‘ ‘ retq ’ ’

// save register context

0x80000744: xchg %ax,%ax

0x80000746: pushfq

0x80000747: push %rsi

. . . // push %rdi , %rax , %rbx , %rcx , %rdx , %r8 , %r9 , %r10 , %r11 , %r12 , %r13 , %r14 , %r15

// set up arguments to the instrumentation function

0x8000075d: movabs $0x7b,%rdi

0x80000767: movabs $0x4d,%rs i

0x80000771 : mov $0x0,%dx

0x80000775: mov $0x1,%r10b

0x80000778: movabs $0x0,%r8

// cal l the exit instrumentation function defined by the analysis tool

0x80000782: movabs $0x407233,%r9 // address of the original ‘ ‘ retq ’ ’

0x8000078c: movabs $0x7ffff7ac7a5d,%rax // address of exit instrumentation function

0x80000796: rex .W callq *%rax // cal l exit instrumentation function

// restore register context

. . . // pop %r15 , %r14 , %r13 , %r12 , %r11 , %r10 , %r9 , %r8 , %rdx , %rcx , %rbx , %rax , %rdi

0x800007ae: pop %rsi

0x800007af : popfq

// from the original binary : when check_legal() returns

0x800007b0: retq

Listing 6: The trampoline code that leads to the exit instrumentation function

after the signal handler handles SIGILL (in <+5510> of Listing 5).
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(a) Control flow of signal handling in LiteInst.

(b) Control flow of path A (which starts from <+5495> and jumps to

<+5504>). Target instruction is in purple. Probes are in red, and the in-

structions they replaced are crossed out.

(c) Control flow of path B (which starts at <+5495> and continue through

<+5497>). Red “X” marks the path that LiteInst originally implemented, and

smiley face marks the path that I implemented.

Figure 6: LiteInst and signal handling.
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calls, and vice versa. Jump targets stored in registers are determined at run time, thus it
is not always possible to decide statically whether a jump instruction of this type will jump
to somewhere outside the procedure. The jump target should be checked dynamically to
determine whether it is a tail call.

3.2.1 LiteInst Mechanism and Extension

To identify tail calls, LiteInst adheres to the following steps on jump instructions. If the
instruction is a far jump, then it is automatically treated as a tail call. If it is relative,
then LiteInst examines the jump target to determine whether its jump target resides outside
the procedure boundary; if so, then it is treated as a tail call. (The framework treats all
conditional jumps as relative jumps.)

LiteInst treated all register-indirect jumps as tail calls, by assuming that register-indirect
jump targets always land outside the procedure. This led to jmpq *%rax at <+3159> of
Listing 7 being instrumented with an exit probe, even though the original jump target could
have been elsewhere within the function. Therefore, the exit instrumentation function was
being called multiple times for a single call to the function, resulting in multiple exits counted
for each count of entry.

Consequently, the LiteInst entry-exit counter implemented in this thesis, which counts
the number of entries and exits for every procedure (see Section 4.2), produced surprising
results. It is expected that procedures exit if and only if they entered (in other words,
had been invoked); while some procedures did follow this pattern, some had noticeable
mismatches, with significantly fewer or more entries than exits in the produced results.

The correct mechanism for a register-indirect jump instruction should be to replace it
with a probe, as the original LiteInst had done, but check in the trampoline (or a special
handler) whether the jump target is inside or outside the function. I temporarily mitigated
this issue by essentially treating instructions like jmpq *%rax as a relative jump, in which
the jump target decides whether the instruction simply signifies the end of a basic block (by
jumping to elsewhere in the function), or is a jump call. This extension is not valid for all
possible programs; however, to the best of my knowledge, tail call optimizations generate
direct (not indirect) jumps, and all register-indirect jumps have targets inside the procedure
in practice. This is confirmed for SPEC CPU2006 benchmarks with the LiteInst entry-
exit counter when it ceased to produce mismatches with the mitigation, but a fully valid
extension should implement a run-time check.
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check_legal() :

// . . .

0x4068f4 <+3143>: mov $0x1,%eax

0x4068f9 <+3148>: cmp $0xb,%eax

0x4068fc <+3151>: ja 0x406e9b <check_legal+4590>

0x406902 <+3157>: mov %eax,%eax

0x406904 <+3159>: mov 0x423568(,%rax,8),%rax

0x40690c <+3167>: jmpq *%rax

0x40690e <+3169>: mov -0x1c(%rbp),%eax

0x406911 <+3172>: movslq %eax,%rdx

// . . .

Listing 7: The original binary

of check_legal().

The jmpq *%rax at <+3167>

jumps to somewhere else inside

the function.

check_legal() :

// . . .

0x4068f4 <+3143>: mov $0x1,%eax

0x4068f9 <+3148>: cmp $0xb,%eax

0x4068fc <+3151>: ja 0x406e9b <check_legal+4590>

0x406902 <+3157>: mov %eax,%eax

0x406904 <+3159>: jmpq 0x80000913

0x406909 <+3164>: xor $0xe0620042,%eax

0x40690e <+3169>: mov -0x1c(%rbp),%eax

0x406911 <+3172>: movslq %eax,%rdx

// . . .

Listing 8: check_legal() after

instrumentation. An erroneous

exit probe at <+3159>

replaces original instructions at

<+3159> and <+3167>.

3.3 Halts (hlt) and exit()

Lastly, a procedure may terminate with the entire program execution, through the halt (hlt)
instruction or a call to the C library function exit().

Considerations for inserting probes for halts should have some similarities with those for
returns, since they are both 1-byte instructions (see Section 3.1). However, unlike returns,
every invoked procedure exits when a halt instruction is executed. Thus, logically, exit
instrumentations should take care to treat returns and halts with similar but separate logic.
LiteInst currently treats both equally as returns.

For a framework that does not instrument shared library functions, such as LiteInst,
exit() will not be treated as a procedure exit in itself, and will not be instrumented. In
addition, since exit() does not return, its caller will not be considered as having exited (thus
LiteInst will not count it as an exit).
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4 Tools for Analysis

To evaluate the impact of Pin and LiteInst on programmer experience, namely in the domain
of performance as defined by elapsed time, I created three tools per framework that perform
tasks a typical programmer may desire for evaluation.

4.1 Dynamic Procedure Entry Counter

I edited a sample Pintool and a sample LiteInst profiler tool from the source distributions to
count (dynamically) the number of total procedures invoked and the number of invocations
(entries) per procedure in a given program execution. Henceforth, they will be referred to
as “procedure counters.”

4.1.1 Implementation

In both Pin and LiteInst, procedure counters instrument only procedure entries, never ex-
its. The tools insert a probe for the entry instrumentation function at the beginning of
every procedure, and this instrumentation function increments a counter corresponding to
the procedure upon the procedure’s invocation. Note that there is a difference between “not
instrumenting procedure exits” and “instrumenting procedure exits with empty instrumen-
tation functions”: the former is less costly since it does not need to insert code at the end
of procedures, which also avoids the cost of directing execution to trampolines and coming
back. (It can also be especially costly to instrument procedure exits, since they might require
the more expensive trap or illegal instruction probes.)

In LiteInst, the procedure counter uses one array to keep track of all procedure entry
tallies. The integer ID of a procedure is its index into the array, since this is the most
intuitive procedure identifier that is available to instrumentation functions. (String names
of procedures are not readily available to instrumentation functions.) The procedure counter
defines an entry instrumentation function, and specifies ProbePlacement::ENTRY for all
procedures. It then associates probes with the entry instrumentation function, to instruct
LiteInst to replace the first instructions of each procedure in the symbol table with probes
leading to the entry instrumentation function. No exit instrumentation probes are placed.
The number of procedures called is equal to the number of nonzero tallies in the array.

Pin’s procedure counter uses a linked list, in which each node is a struct representing a
single procedure. A linked list is used rather than an array because this list does not have
access to the number of procedures for allocating an array, but can access specific fields of
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// keeps track of a l l entry ta l l i e s

int counts_array [num_procedures ] ; // init ia l ized to 0

uponEntryInLiteInst(Procedure invoked_procedure) {

// invoked_procedure is a struct , ID is an integer

counts_array [ invoked_procedure .ID]++;

}

Listing 9: Pseudocode for entry instrumentation functions in the procedure

counters, following LiteInst’s implementation.

structs. LiteInst cannot use a linked list because it would need to look up the procedure
every time a procedure is invoked, which is O(n) with linked lists, but know the total number
of procedures beforehand, from the symbol table. This difference should not have noticeable
impact on performance, since neither framework’s procedure tool is traversing their data
structures, but simply changing one part of it. Each struct has a field for the entry tally, and
the API function RTN_InsertCall() will update this field with the incrementing function
if the function is specified along with the field address and IPOINT_BEFORE to specify
entry (rather than exit) instrumentation.

Listing 9 shows the pseudocode for entry instrumentation functions, specifically for Lite-
Inst (but the concept is the same for Pin).

4.2 Dynamic Procedure Entry and Exit Counter

I extended the procedure counters to tally each procedure’s entries and exits in a given
program. For sake of simplicity, they will be referred to as “entry-exit counters.” Intuitively,
entry-exit counters should complete roughly twice the amount of work as procedure counters
do, but it remains to be seen whether this intuition translates to measured results.4

4.2.1 Implementation

LiteInst’s entry-exit counter behaves similarly to LiteInst’s procedure counter, except with
another array for exit tallies, another instrumentation function for procedure exits, and the
setting of ProbePlacement::BOUNDARY to instruct LiteInst to instrument both ends of
procedures. Procedure exits are counted in the same manner as procedure entries, with

4Procedures usually exit every time they are invoked, which make the entry-exit counter seemingly un-
helpful. However, in practice, some procedures do not end up exiting due to complications with the dynamic
linking process or other reasons.
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// keeps track of a l l entry or exit ta l l i e s

int entries_array [num_procedures] , exits_array [num_procedures ] ; // init ia l ized to 0

uponEntryInLiteInst(Procedure invoked_procedure) {

// invoked_procedure is a struct , ID is an integer

entries_array [ invoked_procedure .ID]++;

}

uponExitInLiteInst(Procedure invoked_procedure) {

exits_array [ invoked_procedure .ID]++;

}

Listing 10: Pseudocode for entry and exit instrumentation functions in the entry-

exit counters, following LiteInst’s implementation.

exits of every procedure (which may be a return, halt, or an jump to somewhere outside the
procedure, as discussed in Chapter 3 replaced by a probe).

Pin’s entry-exit counter is also similar to Pin’s procedure counter, except each procedure
struct has an additional field for the exit tally, and the instrumentation function contains
one more call to RTN_InsertCall() with IPOINT_AFTER to increment the exit tally field
when its procedure exits.

Listing 10 shows pseudocode for instrumentation functions in the entry-exit counters,
specifically of the logic used in the LiteInst implementation (but is still translatable to Pin).

4.3 Dynamic Call Graph Generator

I created a Pintool and LiteInst tool to instrument entries and exits of all procedures in a
program’s symbols table, where entry and exit instrumentations work together to collect a
graph of all procedure calls to other procedures. The resulting call graph does not store any
information other than how many times one procedure has called another.

Dynamic call graphs capture the call tree of a specific program execution, allowing the
programmer to understand the program control flow at function granularity. They can
be used for program optimization [7, 18] and malware detection [17]. Dynamic call graph
generation can be optimized [6] and improved to store contextual information [13]. In this
thesis, the Pintool and LiteInst tool generate basic dynamic call graphs, which are sufficient
for their evaluation.
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stack<int> procedures_stack ; // keeps track of invoked procedures that have not exited , in order of invocation

map<pair<int , int > , int> call_graph_map; // keeps track of ta l l i e s of caller - callee pairs in this execution

uponEntry(Procedure invoked_procedure) {

// invoked_procedure is a struct , ID is an integer

i f ( ! procedures_stack .empty() ) {

caller_ID = procedures_stack . top() .ID;

callee_ID = invoked_procedure .ID;

pair = <caller_ID , callee_ID>;

i f ( pair in call_graph_map ) { call_graph_map. get(pair)++; }

else { call_graph_map. insert (pair , 1) ; }

}

procedures_stack .push(invoked_procedure .ID) ;

}

uponExit(Procedure exiting_procedure) {

assert ( exiting_procedure .ID == procedures_stack . top() .ID ) ; // should be the most recently invoked

procedure

procedures_stack .pop() ;

}

Listing 11: Pseudocode for entry and exit instrumentation functions in the call

graph generators.

4.3.1 Implementation

The LiteInst dynamic call graph generator represents a call graph as a map, with a key being
a pair of procedures, and a value being the number of times this relationship has occurred.
The pair of procedures in a key consists of a caller and a callee. A stack is used to keep track
of the latest procedure invoked (represented by its ID). Upon invocation of a procedure, each
entry instrumentation increments the value of the corresponding caller-callee pair, where the
callee is the most recently invoked procedure, and the caller is the procedure on the top of
the stack. The entry instrumentation function then pushes the callee procedure onto the
stack. Each exit instrumentation pops off the top of the stack, which has the same ID as
the exiting procedure.

The Pintool for dynamic call graph generator also uses a map and a stack for accumulating
the context-insensitive call graph. The instrumentation function calls RTN_InsertCall()

with IPOINT_BEFORE and a function similar to LiteInst version’s entry instrumentation
function, and RTN_InsertCall() again with IPOINT_AFTER and a function similar to
LiteInst version’s exit instrumentation function.

Listing 11 shows pseudocode for instrumentation functions in the call graph generators.
Figure 7 portrays what happens when the call graph generator is used on a hypothetical
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void B() {

C() ; // doesn ’ t cal l any procedures

}

void A() {

B() ; // cal ls C()

D() ; // doesn ’ t cal l any procedures

}

Figure 7: Behavior of the call graph generators on the execution of a hypothetical

program.

program. In this program, A calls B, which calls C and exits, then B exits, then A calls D
which then exits, then A itself exits. Every time a procedure calls another, the stack grows,
and the pair of caller and callee procedures is inserted into the call graph as one edge. (The
procedures are the nodes.) For example, when A calls B, B is pushed onto the stack, and
the pair of <A,B> with a count of one (to indicate only one edge so far) is inserted into the
map. When B exits, it is popped off the stack. The same pattern applies to the other steps.
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5 Evaluation

A goal of this work is to determine the overheads in performance time of Pin and LiteInst,
and to understand the source of these overheads. All tools created with these frameworks
(three per each, as described in Chapter 4) were cross-validated with their counterparts from
the other framework, then timed for performance.

5.1 Experimental Setup

All experiments were conducted on a machine with 2×18-core Intel Xeon E5-2695 v4 CPUs
with a total of 256GB of RAM across two NUMA nodes. The CPUs’ performance mode
was selected, and their simultaneous multithreading disabled. The machine runs the Ubuntu
17.10 distribution with Linux kernel version 4.13.0.

The frameworks were measured for instrumenting at the procedure boundary granularity,
with tasks such as tallying number of procedures. This was the granularity evaluated for
LiteInst in the original paper.

Phases of program execution was measured as follows. The program starts with start-up
in which the framework and tool prepare to instrument the binary. The program continues
with running the instrumented binary, which makes up most of the overall time. After
the instrumented binary finishes execution, the framework and the tool free up memory in
the tear-down phase. Start-up and tear-down phases also constitute the setup phase of a
program execution.

Measurements consist of the following.

• Total elapsed run time of the program, including the instrumentation process and the
execution of the instrumented binary, was measured and normalized by elapsed run
time of the uninstrumented binary. This information can reflect the slowdown to be
expected when a programmer is using the corresponding framework.

• For LiteInst procedure counter and entry-exit counter, the different types of probes
executed during run time were categorized, to better understand LiteInst overhead.

Elapsed run time of the instrumented binary (which is roughly the total amount of time
minus the setup duration), normalized by elapsed run time of the uninstrumented binary,
was also measured in order to indicate the efficiency of the instrumentation. However, this
data is excluded from presentation, because for all evaluated benchmarks I found that the
raw run time of the instrumented binary is within a few milliseconds of the corresponding
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raw total elapsed time, such that the trends of the instrumented binary results mirror those
of the total elapsed time.

Data was acquired from 10 trials of each experimental configuration and then averaged.
All binaries were compiled with -O0 because it is the highest level of gcc optimization
that is compatible with LiteInst. The binaries did not differ in their execution behavior
between trials, which allowed validation executions (Section 5.2) and probe categorization
trials (Section 5.3.2) to be ran once instead of multiple times.

Below are the benchmarks ran with the tools; all are single-threaded benchmarks from the
SPEC CPU2006 suite [20], and are designed to simulate real-world computation workloads:

• astar: finds path in a given binary map with three different algorithms.

• bzip2: compresses input files.

• h264ref: compresses videos.

• lbm: simulates behavior of fluids in 3D with the “Lattice Boltzmann Method.”

• libquantum: simulates a quantum computer factoring input numbers.

• mcf: juggles the scheduling multiple public transportation vehicles.

• sjeng: plays chess and its variants against a player or list of inputs, using various
Artificial Intelligence techniques.

5.2 Validation

In order to compare Pin and LiteInst performance in a fair manner, I implemented the same
algorithms with comparable data structures for each pair of equivalent Pintool and LiteInst
tools, and compared the output of each pair of tools against each other. Each tool was ran
once to produce output for this purpose. (Note that results of a tool on a benchmark did
not differ between executions, therefore it was sufficient to run each execution with output
once for validation.) Since the output process itself has overhead, which is not essential to
the behavior of the tools, I modified the tools to suppress output during timing trials.

Ideally, equivalent tools should produce identical output. In reality, equivalent tools
often produced small number of discrepancies in their output on the benchmarks I tested.
Manual examination was conducted for each benchmark with discrepancies to determine
the root cause; while different benchmarks had different discrepancies, separate executions

5 EVALUATION 32



of the same tools on the same benchmarks had consistent discrepancies. Usually, these
discrepancies were in the small number (<5) of entries or exits for a few (<10), rarely-called
library functions (like _start()). Most benchmarks have upwards of 1 billion procedure
entries (except for lbm, which has about 6000 procedure entries per execution), so these
discrepancies would not be significant in affecting performance. Benchmarks with these or
other kinds of negligible discrepancies (such as from name-mangling, or design differences
that are tangential to the underlying DBI approach) were considered eligible for timing
experiments.

As described in Sections 3.1.2 and 3.2.1, the original LiteInst framework caused some
procedures to have significantly different number of entries than their exits, which corrupted
the stack and the accuracy of the call graph generator. After implementing the extensions
described in those same sections, LiteInst’s call graph generator produced results equivalent
to its Pin counterpart.

5.3 Results

5.3.1 Total Elapsed Run Time

The following (Table 1) shows the run time of each benchmark without instrumentation,
averaged over 10 trials.

Native Run Times of Benchmarks
Benchmark Average Total Elapsed Standard Deviation Standard Deviation

Time (Seconds) (Seconds) (Percentage of Total Time)
astar 104.0 0.6 0.6%
bzip2 65.6 0.3 0.4%
h264ref 45.7 0.1 0.1%
lbm 613.3 1.5 0.2%
libquantum 918.8 0.9 0.1%
mcf 413.2 6.2 1.5%
sjeng 7.5 0.0 0.0%

Figures 9, 10, and 11 show the elapsed times of procedure counters, entry-exit counters,
and call graph generators, respectively, on the benchmarks (normalized with average run
time of the uninstrumented benchmarks). Figure 8 presents the three sets of data together
on a log2 scale, for comparison between different tools.
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Figure 8: Elapsed times of instrumented benchmarks under all tools, averaged over

10 trials each and normalized with the uninstrumented binary average run time. The

y-axis is in log2 scale. Error bars show standard deviation.

In general, the Pin and LiteInst procedure counters were almost as fast as the uninstru-
mented binary (Figure 9). Pin took less than 2× the native run time, and LiteInst was
slightly slower, taking at most 2.6× the native run time on average.

As mentioned in Section 4.2, we should expect to see that the total elapsed run time
of entry-exit counter on each benchmark is double that of the procedure counter, since
the former instruments both ends of each procedure whereas the latter instruments only
the beginning of procedures. Based on the results of Figure 9, Pin’s and LiteInst’s entry-
exit counters should be 4× and 5.2× as slow as the native binary at most, respectively.
However, this was not the case (Figure 10). Pin’s entry-exit counter run time was still close
to the native binary run time, with no more than 2× overhead. Meanwhile, LiteInst also
performed almost as well as native binaries for libquantum and lbm (two benchmarks with the
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Figure 9: Elapsed times of instrumented binary benchmarks under the procedure

counter, averaged over 10 trials each and normalized with the uninstrumented binary

average run time. The y-axis is in linear scale. Error bars show standard deviation.

slowest uninstrumented run times, according to Table 1). However, for the other benchmarks,
LiteInst took up to 30× the amount of run time that the uninstrumented binary took.

With the call-graph generator tool, Pin introduced about 1-9× overhead into the binaries
(Figure 11). This is reasonable considering that the call graph algorithm was not optimized.
LiteInst again performed well for lbm and libquantum, but introduced significant over-
head to the faster benchmark, taking up to 80× the amount of native binary run time to
instrument and run these benchmarks.

5.3.2 Probe Categorization

In general, LiteInst appeared to incur more overhead than Pin and the native binary, except
for the two slowest benchmarks. The stark contrast between LiteInst’s procedure counter
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Figure 10: Elapsed times of instrumented binary benchmarks under the entry-exit

counter, averaged over 10 trials each and normalized with the uninstrumented binary

average run time. The y-axis is in linear scale. Error bars show standard deviation.

and entry-exit counter performances suggest that the latter does not simply carry out 2×
as much work as the former. To discern the source of this extra work during run time,
I measured the number of executed probes in each benchmark instrumented by these two
LiteInst tools. Note that this measurement does not account for probes that were inserted
statically but never executed.

Figure 12 shows the different types of probes used for the LiteInst procedure counter and
entry-exit counter. (The LiteInst call graph generator was verified to use the same types or
probes and with the same distribution as the entry-exit counter, which makes sense because
they both instrument both ends of procedure boundaries.) LiteInst’s procedure counter
used only standard jump probes, while its entry-exit counter used both jump and illegal
instruction probes. The two benchmarks with the least overhead (see Figures 8, 9, and 10),
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Figure 11: Elapsed times of instrumented binary benchmarks under the call graph

generator, averaged over 10 trials each and normalized with the uninstrumented bi-

nary average run time. The y-axis is in linear scale. Error bars show standard

deviation.

lbm and libquantum, were the only two benchmarks that did not have illegal instructions
probes from the entry-exit counter.

For the LiteInst procedure counter and entry-exit counter, average number of executed
probes per second was also calculated for each type of probes in each benchmark (Figure 13).
As expected, the entry-exit counter used an average of twice as many probes per second (and
overall) as the procedure counter for all benchmarks. lbm and libquantum had significantly
fewer probes than the other benchmarks, for both tools; and astar had the most probes per
second, for both tools.
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Figure 12: Breakdown of executed probes in LiteInst’s procedure counter and entry-

exit counter for all benchmarks. The y-axis is in linear scale.

5.4 Discussion

Overall, Pin and LiteInst seem to incur different amounts of overhead on the instrumentation
tasks in this evaluation. Pin generally performs close to native binary run time (except
for the call graph generator (which uses an unoptimized algorithm that the LiteInst call
graph generator also uses). Meanwhile, LiteInst seemed to perform almost as well as Pin
when instrumenting only procedure entries, but was significantly slower for most benchmarks
when exit instrumentation was introduced. In addition, the LiteInst entry-exit counter
performed significantly more than twice as slow as the LiteInst procedure counter, even
though the former should theoretically perform about twice the amount of work (by inserting
and executing twice the amount of probes) than the latter does.

The breakdown of executed probe types showed that while the LiteInst procedure counter
used only jump probes for all benchmarks, the LiteInst entry-exit counter used jump as well
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Figure 13: Breakdown of executed probes per second in LiteInst’s procedure counter

and entry-exit counter for all benchmarks. Note that the y-axis is in linear scale,

and the unit is 10 million.

as illegal instruction probes for most benchmarks. Since illegal instruction probes are more
expensive than jump probes, the former may have been responsible for the extra overhead of
LiteInst’s entry-exit counter. As the only difference between the two tools is whether exits
are instrumented, this contrast in probe breakdown also suggests that the illegal instructions
were all used for instrumenting return instructions or other forms of procedure exits.

Interestingly, LiteInst’s performance was comparable and, in most cases, even faster than
Pin across two benchmarks (lbm and libquantum) for all three tools, and both frameworks
performed around native binary run time. These two benchmarks also had the longest
uninstrumented run time, and lbm had significantly fewer procedure entries (about 6000)
than all other benchmarks (upwards of 1 billion). These results seem to suggest that LiteInst
may have a faster startup time than Pin, and that this performance advantage is reversed
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when too many probes are executed during run time.
The breakdown of executed probe types revealed that lbm and libquantum had few, if

any, expensive illegal instruction probes with the LiteInst procedure counter or entry-exit
counter, while the rest were cheap jump probes. All other benchmarks used some illegal
instruction probes in addition to the jump probes. This difference in probe type breakdown
supports the inference that the expensive probes contributed to LiteInst’s overhead on the
latter group of benchmarks.

However, the benchmark with the highest percentage of illegal instruction probes used
by the LiteInst entry-exit counter was bzip2, which had moderate slowdown for LiteInst
compared to the other benchmarks. astar had the second-lowest percentage of trap-based
probes, but the highest overhead with LiteInst’s procedure counter and call graph generator.
Thus, expensive probe usage cannot be the only explanation for LiteInst’s overhead.

According to the breakdown of executed probe types per second, lbm and libquantum

had significantly fewer probes per second than all other benchmarks. On the other hand,
astar had the most probes per second out of all benchmarks. Therefore, LiteInst seemed to
perform very well on target programs with sparse instrumentations, and less well on those
with dense instrumentations.

The above observations suggest the following characterizations for Pin and LiteInst. Pin
may incur a fixed cost for setup, but can optimize the instrumentation functions during
instrumentation such that overhead increases slowly with increasing number of instrumenta-
tions. On the other hand, LiteInst may have a smaller setup cost, but its overhead increases
at a faster rate in response to increasing number of instrumentations or executed probes.
The mechanism of probes themselves, especially expensive ones like the illegal instructions
probes, contribute to this overhead.

It should be noted that this evaluation tested only one type of instrumentation workload,
in which all procedures of a target program were instrumented. Other instrumentation
workloads may yield additional insights. For example, LiteInst may perform better at rapidly
toggling (activating or deactivating probes during run time) for hot code than Pin, since
LiteInst seems to do well when handling a relatively fixed number of probes, while Pin may
perform better at toggling for code that is not executed as often, which covers a bigger area
of code. While LiteInst has been evaluated on rapid toggling [14], future work can focus on
further evaluation of toggling in LiteInst with respect to Pin.
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6 Future Work

The results of this evaluation suggest that LiteInst is suited for lightweight usage, while Pin
is useful for heavyweight analyses. However, it should be noted that Pin is more mature
than LiteInst: the former has been under the development of the Intel Corporation since
before 2005 [23], while LiteInst is developed in an academic setting, and was only formally
presented in 2017 [14]. As indicated by its authors [14], LiteInst can still benefit from
optimizations from which Pin is already benefiting, such as the inlining of instrumentation
functions in the trampoline to avoid costs for saving and restoring the full context.

Further work should be done to quantify the causes of difference in performance between
LiteInst and Pin. Specifically, the results of this evaluation suggest that Pin has a higher
setup cost than LiteInst, and that LiteInst performs well under a threshold number of in-
strumentation sites. Future work should aim to substantiate these claims, by measuring the
setup times of the two frameworks (which was not part of this evaluation, because Pin’s
API does not allow it at the moment), evaluating the frameworks on more benchmarks, and
identifying the threshold number or the program behavior that determines it. Evaluating
rapidly toggling during run time in both Pin and LiteInst may be helpful for this purpose.

Section 3.2.1 mentions that, in order for LiteInst to correctly identify whether a register-
indirect jump instruction is a tail call, LiteInst must verify the address of the jump instruction
during run time (as opposed to statically). Extending LiteInst such that it treats all register-
indirect jump instructions as internal control flow changes did mitigate issues of mismatching
entries and exits; however, dynamic address checks will provide both theoretical backing
and practical accuracy. The cost of such address checks may also contribute to LiteInst’s
overhead.

Lastly, it may be interesting to explore a potentially more efficient approach that combines
both DBT and DPI. Such a hybrid could start instrumentation with a DPI approach, to take
advantage of its fast startup. It can also use the DPI approach for hot code. Once the number
of instrumentation sites exceed a threshold, this hybrid can switch to a DBT approach.
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7 Conclusion

This thesis aimed to better understand the tradeoffs of the two DBI approaches exemplified
by Pin and LiteInst. For this purpose, I extended the LiteInst framework and compared its
performance on procedure counting, procedure entry and exit counting, and dynamic call
graph generation against Pin. Evaluation of these three tasks on a set of SPEC CPU 2006
benchmarks found that, in general, Pin performed close to uninstrumented binary run time,
while LiteInst took significantly more time. However, LiteInst performed as well as Pin for
benchmarks that required less probes, especially expensive probes. Therefore, LiteInst may
do well for lightweight tools, while Pin may better for heavyweight ones. Future work should
involve further optimizing and extending procedure boundary instrumentation support for
LiteInst, as well as conducting more measurements to support or contradict the outcome
of this evaluation. Exploration of a hybrid approach that combines the two frameworks or
approaches could also yield interesting results.
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