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Abstract

Anderson and Csima [1] defined a jump operator, the bounded jump, with re-
spect to bounded Turing (or weak truth table) reducibility. They showed that the
bounded jump is closely related to the Ershov hierarchy and that it satisfies an
analogue of Shoenfield jump inversion. We show that there are high bounded low
sets and low bounded high sets. Thus, the information coded in the bounded jump
is quite different from that of the standard jump. We also consider whether the
analogue of the Jump Theorem holds for the bounded jump: do we have A≤bT B
if and only if Ab ≤1 Bb? We show the forward direction holds but not the reverse.
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1 Introduction
There are many models of computation based on restrictions of Turing reducibility
≤T . Here we consider bounded Turing reducibility (also known as weak truth table
reducibility). For two subsets A,B of natural numbers, A is bounded Turing reducible
to B, written A≤bT B, if A≤T B and there is a computable function g : ω→ω such that
determining A(n) requires only consulting the first g(n) digits of B. In [1], Anderson
and Csima defined an analogue of the standard jump tailored to work with ≤bT . They
called this operator the bounded jump (see Definition 1) and denoted the bounded jump
of a set A by Ab. They explored the properties of the bounded jump and compared
it to other potential jump operators for weaker forms of computation. In particular,
the bounded jump is strictly increasing and order preserving on the bounded Turing
degrees, just as the standard jump is on the Turing degrees. They also showed that the
bounded jump hierarchy is closely connected to the Ershov hierarchy of α-c.e. sets (see
Theorem 1.2). Here we compare bounded low and bounded high sets to their standard
jump counterparts. Recall that a set is low (respectively high) if the set’s standard
jump has the minimum (respectively maximum) possible complexity. We can similarly
define bounded low and bounded high sets. We show in Theorems 2.1 and 2.5 that
there are low bounded high sets and high bounded low sets. Hence, the amount of
information coded into the bounded jump does not help us understand the complexity
of the standard jump, and vice versa.

It is natural to ask which classical results hold for the bounded Turing degrees,
possibly when using the bounded jump. Anderson [2], building on work of Mohrherr
[10], proved the analogue of Friedberg’s jump inversion in the truth table degrees: for
all X ≥tt /0′, there exists a set A such that A′ ≡tt X ≡tt A⊕ /0′. Moreover, the same proof
gives the result in the bounded Turing degrees. However, Csima, Downey, and Ng
[5] showed that Schoenfield (and hence Sacks) jump inversion fails when the standard
jump is used. Anderson and Csima obtained the analogue with the bounded jump:
given a set B such that /0b ≤bT B≤bT ( /0b)b, there is a set A≤bT /0b such that Ab ≡bT B.
They leave unanswered whether A can be taken to be computably enumerable, i.e.,
whether the analogue of Sacks jump inversion holds. In §3, we consider the classical
Jump Theorem, which states that for any sets A and B, we have A≤T B⇔ A′ ≤1 B′. We
wish to determine whether the analogue of the Jump Theorem holds for the bounded
jump; do we have A≤bT B⇔ Ab ≤1 Bb? We find that the forward direction holds, but
the converse does not.

1.1 Notation and Definitions
For notation and background not described below, see Cooper [4] and Soare [13] [12].
All sets considered are subsets of ω . We let ϕ0,ϕ1,ϕ2, ... be an effective enumeration
of the partial computable functions and Φ0,Φ1,Φ2, ... be an effective enumeration of
the Turing functionals. We assume our enumerations are acceptable.

We let /0′ = {x | ϕx(x) ↓}, and for an arbitrary set A, let A′ = {x | ΦA
x (x) ↓}. In the

case that the enumeration {ϕn}n∈ω is such that ϕn = Φ /0
n, there is no confusion with the

two definitions of /0′. But under any enumeration, the two definitions are 1-equivalent.
For a set A, we let A �� x = {n ∈ A | n ≤ x}. We follow an expression with a stage
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number in brackets (i.e. [s]) to indicate the stage number applies to everything in the
expression that is indexed by stage.

For sets A and B we write that A ≤bT B, and say A is bounded Turing reducible to
B, if there exist i and j such that ϕ j is total and for all x, we have A(x) = Φ

B��ϕ j(x)
i (x) ↓.

Definition 1. Given a set A, the bounded jump of A, is

Ab = {x ∈ ω | (∃i≤ x)[ϕi(x)↓ ∧ Φ
A��ϕi(x)
x (x)↓]}.

We let Anb denote the n-th bounded jump.
We remark that there are several other potential definitions for a bounded jump. In

particular in §3, we mention another possibility Ab0 , which satisfies Ab0 ≡tt Ab but in
general does not satisfy Ab0 ≡1 Ab. We choose to use Ab as the bounded jump because
of its connection with the Ershov hierarchy shown in Theorem 1.2, and because we
believe that a jump operator should be as 1-complete as possible. For example, consider
the class C = {X | X ≤bT (0′)b0} (the class C is the same for any likely bounded jump
operator used in place of b0). We show in [1] that for any X ∈ C we have X ≤1 (0′)b,
but a similar fact does not hold for b0 (or other likely bounded jump operators). See
[1] for other definitions and further discussion.

We list a few basic properties of the bounded jump.

Lemma 1.1 (Anderson & Csima [1]). For all sets A, we have A ≤1 Ab ≤1 A′ and
Ab ≡T A⊕ /0′. Moreover, /0b ≡1 /0′.

As mentioned earlier, a set is low (high) with respect to a given jump operator if
its jump encodes the least (most) possible information. A set A is low if A′ ≤T /0′ and
is bounded low if Ab ≤bT /0b. A set A ≤T /0′ is high if A′ ≥T /0′′, and a set A ≤bT /0b is
bounded high if Ab ≥bT /02b.

We briefly review the α-c.e. sets so that we can state Anderson and Csima’s result
connecting the bounded jump hierarchy and the Ershov hierarchy. Fix a canonical,
computable coding of the ordinals less than ωω . Since we do not use ordinals above
ωω in this paper, the details of the coding are not significant. We say a function on an
ordinal α is (partial) computable if the corresponding function on codes for the ordinal
α is (partial) computable.

For α ≥ω , we say that a set A is α-c.e. if there is a partial computable ψ : ω×α→
{0,1} such that for every n ∈ ω , there exists a β < α where ψ(n,β ) ↓ and A(n) =
ψ(n,γ) where γ is least such that ψ(n,γ) ↓ [9]. We remark that a set A is ω-c.e. if
and only if there are computable functions f : ω ×ω → {0,1} and g : ω → ω such
that A(n) = lims→∞ f (n,s) and |{s | f (n,s+ 1) 6= f (n,s)}| ≤ g(n). Thus, the above
definition of α-c.e. generalizes the common usage of the term “ω-c.e.” Note that this
definition differs slightly from the definitions in [3].

The following theorem generalizes the classical result that A ≤bT /0′ iff A is ω-c.e.
Though this was not made clear in [1], the theorem assumes a notation of ωn for which
we can computably work with the Cantor normal forms of all ordinals less than ωn.
(In particular, such a notation allows us to computably view ωn as the lexicographical
order on n-tuples from ω .)
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Theorem 1.2 (Anderson & Csima [1]). For any set X and n≥ 2,

X ≤bT /0nb ⇐⇒ X is ω
n-c.e. ⇐⇒ X ≤1 /0nb.

This theorem cannot hold for all notations, as by [7], every ∆0
2 set is ω2-c.e. for some

notation of ω2.

2 Comparing jump classes

2.1 Bounded Low
The next example shows that bounded low sets can code substantial information in the
Turing degrees. We will need the following definitions and result (see [12]). Given
functions f and g, the function f dominates g if f (n) ≥ g(n) for all but finitely many
n; the function f is called dominant if f dominates every total computable function.
Martin proved that A satisfies /0′′ ≤T A′ iff there is a dominant function f ≤T A. Given
an infinite set X = {a0 < a1 < a2 < .. .}, the principal function of X is defined such
that pX (n) = an.

Theorem 2.1. There exists a c.e. bounded low set that is high.

Proof. To ensure that A is high, we build A so that pĀ is dominant by satisfying for all
i ∈ ω:

Ri: If ϕi is total, then pĀ dominates ϕi, i.e., (∃m)(∀l ≥ m)[pĀ(l)≥ ϕi(l)].

Next note that A is bounded low iff Ab ≤bT /0′ iff Ab is ω-c.e. Requirements Ri will
demand that we enumerate many elements in A. The requirement Qx imposes restraint
on all requirements Ri for i≥ x so that we can ensure Ab is ω-c.e.

Qx: If ϕn,s(x) ↓ with n ≤ x, then all requirements Ri for i ≥ x are restrained from
enumerating any y≤ ϕn(x) into A after stage s.

In fact, the computable function g(x) = 2(x+1)2 will bound the number of changes in
the natural approximation of Ab(x).

Finally, we ensure that A is coinfinite by satisfying for all e ∈ ω:

Ne: |Ā| ≥ e.

At each stage s, we have a c.e. approximation As of A and a current approximation
of Ās = {a0,s < a1,s < a2,s < .. .}. To satisfy Ne, no requirement Ri for i ≥ e may
enumerate any element al,s into A with l ≤ e at stage s. For ϕi associated with Ri, we
assume, without loss of generality, for all z,s ∈ ω that if ϕi(z+ 1)[s] converges then
ϕi(z)[s] converges.

At stage s = 0, let A0 = /0 and a j,0 = j for all j ∈ ω .
At stage s+1, we first calculate the restraints imposed by requirements Qx and Ne

for each requirement Ri.
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Let r(x,s) = maxn≤x ϕn(x)[s]. Let

ri,s = max
x≤i
{r(x,s),ai,s}= max

n≤x≤i
{ϕn(x)[s],ai,s}. (1)

Note that r(x,s)≤ r(x+1,s), ri,s ≤ ri,s+1, and ri,s ≤ ri+1,s for all x, i,s ∈ ω . We allow
requirement Ri to enumerate any element greater than ri,s into A.

We check whether any Ri may act while obeying the restraints. We ask whether

(∃i≤ s)(∃x≤ s)[x > ri,s & ϕi(x)[s] ↓> ax,s]. (2)

If so, let 〈i,x〉 be the least pair satisfying (2). We act for Ri to guarantee that
pĀ(x)≥ ϕi(x). Let l be the least number such that al,s ≥maxm,y≤s{ϕm(y)[s]} ≥ ϕi(x).
We enumerate ax,s,ax+1,s, . . . ,al−1,s into As+1 ⊇ As so that ax,s+1 = al,s ≥ ϕi(x). This
action ends stage s+1. This completes our description of the construction.

Lemma 2.2. For all x,e, i∈ω , the limits lims→∞ r(x,s), lims→∞ ae,s = ae, and lims→∞ ri,s =
ri all exist. Hence, Ne is satisfied for all e ∈ ω , so A is coinfinite.

Proof. Given x ∈ ω , there is a stage s0 by which any ϕn(x), with n≤ x, converges if it
ever will. Hence, lims→∞ r(x,s) exists.

Given e ∈ ω , suppose for all j < e, lims→∞ a j,s = a j is defined. We show that
lims→∞ ae,s = ae is defined. Let s0 be a stage such that, for all j < e and later stages
s′ ≥ s0, we have a j,s′ = a j. Hence, no elements below ae,s0 are enumerated into A after
stage s0. Note that if requirement Ri acts on behalf of a given pair 〈i,x〉 as in (2),
requirement Ri never satisfies (2) for pair 〈i,x〉 again. Thus, there is a stage s1 ≥ s0
by which any ϕi(e), with i ≤ e, converges if it ever will and after which no Ri acts on
behalf of 〈i,x〉 for x≤ e.

We claim lims→∞ ae,s = ae,s1 . If not, at a later stage s′ ≥ s1, some Ri′ must have
enumerated ax,s′ into A for some x ≤ e. Since a j,s = a j,s1 = a j,s0 for all j < e and
s ≥ s0, we must have that x = e. Then, e > ri′,s′ and ϕi′(e)[s′] ↓> ae,s′ . By definition,
ri,s ≥ ai,s ≥ i for all i and s, so i′ < e. By construction, Ri′ would act at stage s′ for
the pair 〈i′,e〉, contradicting our choice of s1. Hence, ae,s = ae,s1 for all s ≥ s1, so
lims→∞ ae,s exists.

Since ri,s = maxx≤i{r(x,s),ai,s} and both lims→∞ r(x,s) and lims→∞ ai,s = ai exist,
lims→∞ ri,s = ri exists.

Lemma 2.3. The requirement Ri is satisfied for all i ∈ ω . Thus, pĀ is a dominant
function, so A is high.

Proof. Suppose ϕi is total. Let ri = lims→∞ ri,s and al = lims→∞ al,s. We show that pĀ
dominates ϕi. Take l > ri. Let s0 be a stage such that ri,s = ri and al,s = al for all s≥ s0.
Since al,s never changes after stage s0, we have that Ri never acts for 〈i, l〉 after stage
s0. Thus, ϕi(l)≤ al = pĀ(l) since l > ri.

Lemma 2.4. The set Ab is ω-c.e.

5



Proof. We show that

Ab = {x ∈ ω | (∃n≤ x)[ΦA��ϕn(x)↓
x (x) ↓]} (3)

is ω-c.e. by showing that its (computable) natural approximation

f (x,s) =
{

1 if (∃n≤ x)[ΦA��ϕn(x)↓
x [s](x) ↓]

0 else

satisfies:

1. lims→∞ f (x,s) = Ab(x) and

2. f (x,s) 6= f (x,s+1) for at most g(x) = 2(x+1)2 many stages s.

Suppose f (x,s) = 1, i.e., there is some n ≤ x such that Φ
A��ϕn(x)↓
x [s](x) ↓. By con-

struction, the only requirements that may enumerate elements below ϕn(x) into A after
stage s are Ri for i < x. Hence, only these x-many requirements may injure the compu-
tation Φ

A��ϕn(x)↓
x [s](x) ↓, potentially causing f (x, t) to equal 0 for some t > s. We show

that each of these x-many requirements may injure a computation Φ
A��ϕn(x)↓
x (x) on a

given use ϕn(x) with n≤ x at most once.
Suppose requirement Rk for k < x enumerates elements below ϕn(x) into A at stage

s′ > s while acting for the pair 〈k,y〉. By construction, Rk enumerates ay,s′ , . . . ,al−1,s′

into A where ay,s′ < ϕn(x) and l is the least value such that

al,s′ ≥ max
m,z≤s′

{ϕm(z)[s′]}. (4)

So, we have that ay,s′+1 = al,s′ ≥ ϕn(x)[s′].
We assumed for all i,z,s ∈ ω that if ϕi(z+1)[s] converges then ϕi(z)[s] converges.

It is also easy to see that the restraint ri,s on Ri is nondecreasing in s. Moreover, at
any given stage of the construction, the least pair 〈i,z〉 satisfying (2) receives attention.
These observations imply that if requirement Ri acts on behalf of the pairs 〈i,z〉 and
〈i,z′〉 with z < z′ at stages s and s′ respectively, then s < s′. Since requirement Rk acts
at stage s′ > s for the pair 〈k,y〉, requirement Rk will never act for a pair 〈k,y′〉 where
y′ < y after stage s′. If Rk acts at a later stage t > s′ for a pair 〈k,y′′〉 where y < y′′, the
requirement will only enumerate elements a into A such that

a≥ ay′′,t ≥ ay′′,s′+1 > ay,s′+1 ≥ ϕn(x)[s′]. (5)

Therefore, a single requirement Rk with k < x can injure a given use ϕn(x) for the
computation Φ

A��ϕn(x)↓
x (x) at most once.

There are (x+1)-many ϕn for n≤ x that may compute a use ϕn(x) for the compu-
tation Φ

A��ϕn(x)↓
x (x). Thus, f (x,s) 6= f (x,s+ 1) for at most g(x) = 2(x+1)2 stages s,

since for each of the (x+ 1)-many potential uses, there are x-many requirements that
may injure that use at most once (after the first convergence with that use), and each
injury may lead to two changes in f (x,s) (divergence followed by reconvergence).
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2.2 Bounded high
We show a set’s bounded jump may be maximally complex while its standard jump
codes the minimum amount.

Theorem 2.5. There exists a low set A≤bT /0′ that is bounded high.

This result also gives an example of a low set that is not bounded low as well as an
example of an incomplete bounded high set.

Proof. We construct an ω-c.e. set A (and hence A ≤bT /0′) that satisfies A′ ≤T /0′ and
Ab≥bT /02b = ( /0b)b. To guarantee that A is ω-c.e., we give a computable approximation
A[s] of A so that A(n)[s] changes at most n times. We satisfy the standard requirements
to guarantee that A is low.

Ne:
(
∃∞s

)[
ΦA

e (e)[s] ↓
]
=⇒ ΦA

e (e) ↓.

To meet Ne, we define the restraint function r(e,s) = maxt≤s u(e, t), where u(e,s) is
the use of the computation ΦA

e (e)[s] if it converges and 0 otherwise. At any stage in the
construction, we do not allow any Pi for i≥ e to change A(x) for any x < r(e,s).

To show that Ab ≥bT /02b, we produce an effective procedure Ψ and a computable
function f so that Ψ computes whether n ∈ /02b using only the oracle Ab �� f (n). We
break this task into the following positive requirements, one for each n ∈ ω .

Pn: ΨAb�� f (n)(n) ↓= /02b(n).

We take advantage of the fact that /02b is ω2-c.e. by Theorem 1.2 to satisfy these re-
quirements. Since /02b is ω2-c.e., there is a partial computable approximation function
ψ : ω×ω2→{0,1} for /02b. For a fixed n, at each stage s, the function ψ determines an
ordinal βn,s < ω2 that witnesses an approximation /02b(n)[s] to /02b(n). The sequence
{βn,s}s∈ω decreases finitely often, with /02b(n)[s] changing only at ordinal decreases
and giving a correct guess after the last decrease. To fix notation, say βn,s has the form
ω · ln,s + kn,s, where ln,s,kn,s ∈ ω .

We begin with a brief overview of how we encode /02b(n) into Ab �� f (n). We
code /02b(n) into a dedicated block of indices, called the Ab-block of indices for Pn.
We change the coding only when there is a decrease in βn,s, which itself results in a
decrease in the limit term ln,s or the finite term kn,s. Our coding procedure will treat a
decrease in the limit term ln,s differently from a decrease only in the finite term.

Each time the limit term ln,s in βn,s decreases, we will encode /02b(n)[s] into a new
subblock of the block dedicated to Pn. We know at stage 0 that we will need at most
ln,0 such subblocks. Moreover, we will see that we can determine the size and location
of these subblocks at the start of the construction so that we can obtain the computable
bound f (n) in Pn. When ln,s decreases to l := ln,s+1, we get an upper bound (specif-
ically kn,s+1) on the number of times /02b(n)[s] can change while the limit term of the
witnessing ordinal equals l. We ensure that the reduction from Ab[s] on the fixed sub-
block depends on the membership in A of a (dynamically allocated) value cn,s, which is
greater than this upper bound and other restraints. This choice will allow us to change
Ab[s] to match the approximation /02b(n)[s] while maintaining that A is ω-computably
enumerable.
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We now turn to the details of the construction. To make the notation above precise,
we set βn,s to be the least β < ω2 such that ψ(n,β )[s] ↓ if such a β exists. If not,
we let βn,s be the first ordinal less than ω2 (when dovetailing computations) for which
we see ψ(n,βn) ↓. Then, the function (n,s)→ βn,s is computable. Since βn,s < ω2,
βn,s = ω · ln,s + kn,s for some ln,s,kn,s ∈ ω where ln,s and kn,s are computable from the
notation for βn,s. We write /02b(n)[s] = ψ(n,βn,s). Without loss of generality, we may
assume that /02b(n)[s] changes whenever βn,s decreases.

In order to construct the reduction Ψ from Ab to /02b, we will need to control whether
or not infinitely many elements reside in Ab. To that end, we fix computable injective
functions g and h such that for all x ∈ ω we control Φg(x) and ϕh(x) where h(x)< g(x).
The procedure Ψ will only use the membership of (finitely many) indices g(〈n, l,y〉)
in Ab to compute /02b(n). As mentioned above, we call this collection of indices the
Ab-block of indices for Pn, and it is is made up of disjoint subblocks of indices indexed
by l ≤ ln,0. We call the lth such subblock the location l subblock of the Ab-block for Pn.
Recall that we use this subblock to code /02b(n) into Ab when ln,s = l. The location l
subblock for Pn consists of

1. A single index, called the location index, used to indicate whether we ever
stopped coding in this subblock, i.e., whether ln,s < l at some stage s.

2. A collection of indices, called the coding indices, used to code /02b(n) if l =
lims ln,s; and

3. A collection of indices, one for each coding index, called the injury accounting
indices, used to change the decoding functional Ψ when Pn is injured. We give
a computable function q(n) in Lemma 2.7 and prove there that reserving q(n)
many coding indices and q(n) many injury indices suffices for the construction.

We can (uniformly in n and l ≤ ln,0) computably assign 1+ 2q(n) indices of the
form g(〈n, l,y〉) to the location l subblock for Pn. Given this assignment of indices, one
can find a computable function f : ω→ω such that f (n) is larger than all indices in the
Ab-block for Pn. Note that the Ab-block of indices for Pn remains constant throughout
the construction and that the Ab-blocks for Pn and Pm with n 6= m are disjoint.

At each stage s, we let Ab[s] � Pn be the restriction of the characteristic function
of Ab[s] to the Ab-block for Pn. During the construction, we let vn,s denote the stage s
coding index for /02b(n) in the location ln,s subblock of the Ab-block for Pn. As men-
tioned above, the coding of /02b(n)[s] into vn,s will depend only on whether a (dynamic)
index cn,s is a member of A. We let A[s] � Pn denote the restriction of the characteristic
function of A[s] to {cn,s}.

During the construction, when we say “define Ψ(Ab[s]�Pn)(n) to halt” (respectively
“define Φ

(A[s]�Pn)
j (x) = y”), we mean that the computation holds for all oracles that

agree with the stage s approximation of the Ab-block for Pn (respectively the stage s
approximation of A at cn,s).

In addition to coding /02b(n)[s] into vn,s, we will also enumerate other indices into
Ab during the construction. To enumerate some index g(x) other than vn,s into Ab, we
will simply let ϕh(x)(g(x)) ↓= 0 and let ΦX

g(x)(g(x)) ↓ for all oracles X .
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2.2.1 Initializing Pn

We describe how we initialize for Pn at stage s. This module encodes /02b(n)[s] into Ab

at location index vn,s in the ln,s-subblock for Pn. First, let cn,s be a fresh element larger
than kn,s (where βn,s = ω · ln,s + kn,s), maxe≤s r(e,s), and all previously used elements
in A.

The module depends on whether Pn has been initialized previously. If it has, we
take action to destroy our previous encoding of /02b(n)[s−1] and choose the new coding
location. We consider whether ln,s = ln,s−1. If ln,s < ln,s−1, we set vn,s to be the first
coding index in the location ln,s subblock for Pn. We guarantee that the reduction
ΨAb�Pn consults the ln,s subblock by enumerating into Ab the location index of each
location l subblock for Pn where l > ln,s.

Now suppose ln,s = ln,s−1. We will see that we only initialize Pn in this case when
Pn is injured. Hence, we enumerate into Ab the next unused injury accounting index
in the location ln,s subblock for Pn, and we let vn,s be the next unused coding index in
this subblock. Regardless of whether ln,s = ln,s−1, these actions destroy any previously
defined computation Ψ(Ab[s−1]�Pn)(n) ↓. (If stage s is the first stage at which we initialize
Pn, we have no such computations to destroy.)

In all cases, we encode /02b(n)[s] into Ab at the coding index vn,s in the location ln,s
subblock for Pn. We enumerate vn,s into Ab if and only if /02b(n)[s] = 1. We accomplish
this enumeration by picking z so that g(z) = vn,s, setting ϕh(z) equal to the constant

function cn,s, and defining Φ
(A[s]�Pn)
vn,s to halt on all inputs. Finally, we define the reduc-

tion Ψ, when given an oracle agreeing with (Ab[s] � Pn), to output the value of Ab[s] at
vn,s on input n. Thus,

Ψ
(Ab[s]�Pn)(n) = (Ab[s] � Pn)(vn,s).

So, Ψ
(Ab[s]�Pn)(n) = /02b(n)[s].

2.2.2 The construction

At stage 0, we initialize P0 for the first time and set A(n)[0] = 0 for all n ∈ ω . At stage
s+1, we suppose the following statements hold for all n≤ s.

1. Ψ(Ab[s]�Pn)(n) := (Ab[s] � Pn)(vn,s) = /02b(n)[s].

2. If vn,s ∈ Ab[s], then ϕ jn,s = cn,s provides the required oracle bound and cn,s 6∈ A[s].
Moreover, the computation witnessing vn,s ∈ Ab[s] only asks about the member-
ship of cn,s in A.

3. cn,s > maxe≤n r(e,s).

At stage s+ 1, we consider whether we need to take action for Pn for each n ≤ s
(in order of priority). First, if restraint impedes Pn from acting (specifically if cn,s ≤
maxe≤n r(e,s + 1)), we consider Pn injured, and we initialize Pn at stage s + 1. If
not, we check whether the approximation of /02b(n) changed. If the approximation

9



remains the same, we do nothing beyond updating all values, e.g., setting vn,s+1 = vn,s,
(Ab[s+1] � Pn) = (Ab[s] � Pn), etc. Now suppose that the approximation changed, so

βn,s+1 = ω · ln,s+1 + kn,s+1 < βn,s = ω · ln,s + kn,s.

Our action depends on whether ln,s+1 = ln,s. If ln,s+1 < ln,s, we initialize Pn. Oth-
erwise ln,s+1 = ln,s so kn,s+1 < kn,s. We continue working with the coding indices
vn,s+1 := vn,s and cn,s+1 := cn,s. We encode /02b(n)[s+1] into location vn,s+1 of Ab[s+1]
and ensure that the reduction Ψ, given an oracle agreeing with (Ab[s+1] � Pn), outputs
the value encoded at vn,s on input n.

By our inductive hypotheses, if vn,s+1 ∈Ab[s], then /02b(n)[s] = 1 and /02b(n)[s+1] = 0.
Furthermore, cn,s+1 6∈ A[s]. We change the approximation of A so that cn,s+1 ∈ A[s+1].
This action destroys the computation Φ

(A[s]�Pn)
vn,s+1 (vn,s+1) ↓, so vn,s+1 6∈ Ab[s + 1]. Fi-

nally, we define Ψ(Ab[s+1]�Pn)(n) = (Ab[s+1] � Pn)(vn,s+1) (if it is not already). Then,
Ψ(Ab[s+1]�Pn)(n) = 0 = /02b(n)[s+1].

By our inductive hypotheses, if vn,s+1 6∈Ab[s], then /02b(n)[s] = 0 and /02b(n)[s+1] =
1. If cn,s+1 6∈ A[s], we have not changed the approximation of A at cn,s+1 since Pn was
last initialized. In this case, we let A[s+ 1] = A[s], and we enumerate vn,s+1 into Ab

at stage s + 1 in the same manner as before. Finally, we define Ψ(Ab[s+1]�Pn)(n) =
(Ab[s + 1] � Pn)(vn,s+1). Otherwise, cn,s ∈ A[s], and we have changed the approx-
imation of A at cn,s+1 since Pn was last initialized. We change the approximation
of A so that cn,s+1 6∈ A[s+ 1]. This action reinstates the previously defined compu-
tations Φ

(A[s+1]�Pn)
vn,s+1 (vn,s+1) ↓ and Ψ(Ab[s+1]�Pn)(n) = (Ab[s+ 1] � Pn)(vn,s+1). Regard-

less of whether cn,s ∈ A[s], we have Ψ(Ab[s+1]�Pn)(n) = 1 = /02b(n)[s+ 1] in the case
vn,s+1 6∈ Ab[s].

The final step of stage s+1 is to initialize Ps+1. This completes the construction.

2.2.3 Verification

As usual, we say requirement Ne is injured at stage s+1 whenever some Pn with n < e
enacts a change A[s](x) 6= A[s+1](x) for some x < r(e,s). We say Pn acts at stage s+1
if Pn is injured at that stage or /02b(n)[s+1] 6= /02b(n)[s].

Lemma 2.6. For all e ∈ω , requirement Ne is met (and is injured at most finitely often)
and r(e) = lims r(e,s) exists.

Proof. We prove the lemma for Ne by induction. By the inductive hypothesis, there
is a stage s such that for all t ≥ s and n < e, requirement Nn is not injured at stage
t and r(n) = r(n, t) = r(n,s). Since ψ is an approximation function for the ω2-c.e.
set /02b, there is a stage s′ > s such that /02b(e)[s′] = /02b(e)[t] for all t ≥ s′ and n < e.
By construction and choice of s′, no Pn with n < e acts after stage s′. (Note that
cn,s′ > max j≤n r( j) since s′ > s.) Hence, Ne is never injured after stage s′. Suppose
ΦA

e (e)[t
′] ↓ at some stage t ′ > s′. Then r(e, t) = r(e, t ′) for all t ≥ t ′ so A[t] never

changes below r(e, t ′) and ΦA
e (e) ↓.
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Lemma 2.7. There is a computable function q(e) such that, for all i ∈ ω , requirement
Pe is injured at most q(e) many times. Each requirement Pe acts finitely often and is
eventually satisfied. Moreover, A is ω-c.e.

Proof. We inductively give a computable upper bound w(e) on the number of times
the restraint r(e,s) increases as well as a computable upper bound d(e) on the number
of times Pe redefines the dynamic index ce,s. By construction, Pe is injured at most
∑

e
n=0 w(n) many times, so we set q(e) to be this sum.

We now define w(e) and d(e). Since N0 is never injured once it sets a restraint,
we set w(0) = 1. For any e ∈ ω , requirement Pe changes the index ce,s only when
le,s changes or when injured by some higher priority Nn. Thus, we set d(e) = le +
∑

e
n=0 w(n). Finally, we consider when r(e,s) can increase. Any Pn with n < e can

injure Ne by changing the approximation of whether cn,s ∈ A. The restraint r(e,s)
can increase before and after each such injury. Consider a fixed collection of indices
{cn,s}n<e. By construction, the approximation of A below max{cn,s}n<e only changes
on these indices. There are 2e many configurations of the values of A at these indices.
Since r(e,s) is increasing, Ne is injured at most 2e many times, for each fixed collection
of indices {cn,s}n<e. Hence, w(e) := 2e+1

∏
e
n=0 d(n) serves as the desired upper bound.

This completes the definitions of q(e),d(e), and w(e) and the proof of the first claim.
Now suppose all Pn with n< e act finitely often and are eventually satisfied. Choose

some s such that no Pn with n < e nor Nn with n ≤ e ever acts after stage s, r(n,s) =
limt→∞ r(n, t) for all n≤ e, and Pe is not injured after stage s. We may further choose s
large enough so that /02b(e)[s] = /02b(e)[t] for all t ≥ s. By the choice of s, we also have
that ve,s, ce,s, and αb

e,s never change after stage s. Moreover, Ψ
αb

e,s(e) := αb
e,s(ve,s) =

/02b(e)[s], which equals /02b(e). Thus, ΨAb�� f (e)(e) ↓= /02b(e). (Recall that f (e) is larger
than any element in the Ab block for Pe.)

Finally, observe that we always redefine cn,s whenever ln,s changes and choose cn,s
larger than kn,s (where βn,s = ω · ln,s + kn,s). For a fixed index cn,s, we redefine the
approximation of whether cn,s ∈ A[s] only when βn,s, and hence kn,s, decrease. Thus,
A(cn,s)[s] changes at most kn,s < cn,s times. So, A is ω-c.e.

3 The Jump Theorem
The Jump Theorem states in part that for any sets A and B we have A≤T B⇔ A′ ≤1 B′.
In Theorem 3.1, we prove the forward direction of the bounded jump analogue of the
Jump Theorem. In particular, for all sets A and B, we have A≤bT B implies Ab ≤1 Bb.
We give a counterexample to the converse in Theorem 3.2. Anderson and Csima [1]
showed the forward direction holds for the b0 jump, which is defined, for any set A, as

Ab0 = {〈e, i, j〉 ∈ ω | ϕi( j)↓ ∧ Φ
A��ϕi( j)
e ( j)↓}.

The converse to that result is also false. It follows from work by Downey and Greenberg
[6] that there are sets A and B such that Ab0 ≤1 Bb0 but A 6≤bT B. (Note that Downey and
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Greenberg use the notation A† for a jump operator they define that satisfies A† ≡1 Ab0 .)
The results for the bounded jump and the b0 jump do not follow from one another;
although Ab0 ≤1 Ab and Ab ≤tt Ab0 , we do not in general have Ab ≡1 Ab0 (see [1]). It
remains an open question whether one can construct c.e. examples for Downey and
Greenberg’s result.

Theorem 3.1. Let A and B be sets such that A≤bT B. Then Ab ≤1 Bb.

Proof. Let Γ and g witness that A ≤bT B. Let j be an injective computable function
defined by ϕ j(x,i)(z)= g(ϕi(x)) (z is a dummy variable). Let f be a computable injective
function defined by

Φ
Y
f (x)(z)↓ ⇔

(
∃i≤ x

)[
ϕi(x)↓ ∧ Φ

ΓY ��g(ϕi(x))��ϕi(x)
x (x)↓

]
.

By the padding lemma, we may assume f (x) ≥ j(x, i) for all x and all i ≤ x. We will
show that x ∈ Ab⇔ f (x) ∈ Bb to prove the theorem.

For the forward direction we apply definitions and substitute n = j(x, i).

x ∈ Ab⇔
(
∃i≤ x

)[
ϕi(x)↓ ∧ Φ

A��ϕi(x)
x (x)↓

]
⇔(

∃i≤ x
)[

ϕi(x)↓ ∧ Φ
(ΓB��g(ϕi(x)))��ϕi(x)
x (x)↓

]
⇔Φ

B��g(ϕi(x))
f (x) ( f (x))↓⇔

ϕ j(x,i)( f (x))↓ ∧ Φ
B��ϕ j(x,i)( f (x))
f (x) ( f (x))↓ ⇒(

∃n≤ f (x)
)[

ϕn( f (x))↓ ∧ Φ
B��ϕn( f (x))
f (x) ( f (x))↓

]
⇔ f (x) ∈ Bb

For the backwards direction, we ignore the original witness that f (x) ∈ Bb and
apply the use principle.

f (x) ∈ Bb⇔
(
∃m≤ f (x)

)[
ϕm( f (x))↓ ∧ Φ

B��ϕm( f (x))
f (x) ( f (x))↓

]
⇔

(
∃m≤ f (x)

)[
ϕm( f (x))↓ ∧

(
∃i≤ x

)[
ϕi(x)↓ ∧ Φ

(Γ(B��ϕm( f (x)))��g(ϕi(x)))��ϕi(x)
x (x)↓

]]
⇒(

∃i≤ x
)[

ϕi(x)↓ ∧ Φ
(ΓB��g(ϕi(x)))��ϕi(x)
x (x)↓

]
⇔(

∃i≤ x
)[

ϕi(x)↓ ∧ Φ
A��ϕi(x)
x (x)↓

]
⇔ x ∈ Ab

Thus, f witnesses Ab ≤1 Bb.

Theorem 3.2. There are c.e. sets A and B such that Ab ≤1 Bb and A 6≤bT B.

Proof. Let g and h be injective computable functions such that for all x and all k ≤ 6x

we will control Φg(x) and ϕh(x,k) and we have h(x,k)< g(x).
We construct c.e. sets A and B that satisfy the following requirements:

R〈e,i〉 :
(
∃x

)[
A(x) 6= Φ

B��ϕi(x)
e (x) ∨ ϕi(x)↑ ∨ Φ

B��ϕi(x)
e (x)↑

]
Qn : n ∈ Ab↔ g(n) ∈ Bb
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It is clear that these requirements suffice to prove the theorem. We build the sets
A and B via a finite injury construction where the requirements are given priority R0,
Q0, R1, Q1, R2, Q2, . . .. We will use a movable marker xe,i that eventually settles on
the witness for R〈e,i〉. We use the indices kn ≤ 6n for bookkeeping, and z represents a
dummy variable throughout the construction. We will assume the convention that for
any stage s and any c,d if ϕc(d)[s]↓= t then t,c,d ≤ s.

To satisfy R〈e,i〉, we will wait until we see ϕi(xe,i)↓ and Φ
B��ϕi(xe,i)
e (xe,i)↓= 0 (if this

never happens, we are done). We then enumerate xe,i into A and attempt to preserve the
now incorrect computation by fixing xe,i and B �� ϕi(xe,i). If this restraint is injured by
a stronger requirement, we choose a new xe,i and start over.

To satisfy Qn, we will wait until we see n enter our current estimate for Ab. We
then define ϕh(n,kn)(z) to be a fresh large number (the same number for all z) and set

Φ
B��ϕh(n,kn)(z)
g(n) (z) to converge for all z so that g(n) is now in Bb. We try to fix enough of A

and B to preserve the statements n∈ Ab and g(n)∈ Bb. If either statement is injured, we
enumerate ϕh(n,kn)(z) into B so that our earlier declaration that g(n) is in Bb no longer
applies. We then increment kn by one and start over.

We note that the computable function g is not allowed to have any errors. Hence, we
may be required to void declarations placing g(n) into Bb by enumerating new elements
into B, even if doing so injures stronger requirements. To prevent such injuries, we act
preemptively. As soon as we see ϕi(xe,i) converge (but before we place any restraint on
B for R〈e,i〉), we immediately void any active declarations from weaker requirements.
To simplify the construction, whenever we act for a requirement, we will injure all
weaker requirements, regardless of whether such an injury appears necessary. For
brevity, we call this process the injury procedure, and we describe it at the end of
the construction.

We start with xe,i as the least number in the 〈e, i〉 column and all kn = 0. We set
A(0) = 0 and B(0) = 1 and never change those values (this ensures our declarations for
Bb do not change Ab). No other elements begin in A and B.

At each stage s we perform the following procedures:

Preemptive injury of R〈e,i〉 : If some convergence ϕi(xe,i)[s]↓ has just occurred, then
we carry out the injury procedure.

Diagonalization for R〈e,i〉 : If we observe that Φ
B��ϕi(xe,i)
e (xe,i)[s]↓= 0 holds, then we

enumerate xe,i into A and execute the injury procedure.

Qn Strategy : If n ∈ Ab[s] and Qn has not acted (since its last injury), we first run the
injury procedure. We then set ϕh(n,kn)(z) (for all z) to be the least unused number

greater than s, and we declare that Φ
B��ϕh(n,kn)(z)
g(n) (z)↓ for all z.

We describe the injury procedure on all requirements weaker than the one under
consideration:

• For all weaker R〈e,i〉 requirements with xe,i ≤ s, we assign a new unused value
greater than s to xe,i.
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• For all weaker Qn requirements, if ϕh(n,kn)(z) has been defined, we enumerate
ϕh(n,kn)(z) into B and increment kn by one.

This completes the construction. It is clear that A and B are c.e. The usual argument
that the nth requirement in a standard finite injury argument acts at most 2n times can
be routinely altered to show that every Qn acts at most 6n many times (we multiply by
an additional 3n since the requirement R〈e,i〉 between Qm and Qm+1 may act twice).
Hence, we have sufficiently many possible values for kn to run the construction.

We show R〈e,i〉 is satisfied, as is Qn. Suppose that s0 is the last stage at which
any requirement of higher priority than R〈e,i〉 acts or is injured. Let xe,i now denote
the final value of the marker xe,i, that is, its value at stage s0. If ϕi(xe,i) diverges or

Φ
B��ϕi(xe,i)
e (xe,i) either diverges or equals one, then we are done as xe,i 6∈ A. Otherwise,

we preemptively injure R〈e,i〉 at some stage s > s0 and diagonalize on behalf of R〈e,i〉 at
some stage t > s. At stage s, the construction ensures that ϕh(n,kn)(z) > ϕi(xe,i) for all
Qn of lower priority than R〈e,i〉. As a result, for all s1 > s we have Bs1 �� ϕi(xe,i) = B ��
ϕi(xe,i). Thus,

Φ
B��ϕi(xe,i)
e (xe,i) = Φ

Bt��ϕi(xe,i)
e (xe,i) = 0 6= 1 = A(xe,i)

so R〈e,i〉 is satisfied.
Suppose that s0 is the last stage at which any requirement of higher priority than

Qn acts or is injured, so kn and h(n,kn) are fixed for all s > s0. By construction, Φ
B��s0
g(n) ↑

so g(n) /∈ Bb[s0]. We show n ∈ Ab⇔ g(n) ∈ Bb. We consider two cases. First, suppose
that Qn never acts at any stage s> s0. Then, n 6∈Ab[s] for any s> s0, so n /∈Ab. Also, no
new convergence declarations are made about Φσ

g(n) for any string σ ∈ 2<ω in Bb after
stage s0 (and all strings σ for which there are existing convergence declarations are
incomparable with Bs0). All lower priority Qm requirements satisfy ϕh(m,km)(z) > s0,
so B �� s0[s0] = B �� s0. Thus, g(n) /∈ Bb.

Second, suppose that Qn acts at some stage s > s0. Then, n ∈ Ab[s] and g(n) ∈
Bb[s]. At stage s, the injury procedure ensures that xe,i > s for all lower priority R〈e,i〉
requirements and ϕh(m,km)(z) > s for all lower priority Qm requirements. Hence, A ��
s [s] = A �� s and B �� s [s] = B �� s. Thus, n ∈ Ab and g(n) ∈ Bb.

We conclude n ∈ Ab⇔ g(n) ∈ Bb so Qn is satisfied, completing our proof.

4 Questions
Here we provided examples of extreme kinds of bounded low and bounded high sets.
It is natural to ask what other kinds of examples exist. We constructed a c.e. high
bounded low set in Theorem 2.1, but we only constructed an ω-c.e. low bounded high
set in Theorem 2.5. We conjecture that there is no c.e. example of a low set that is
bounded high.

Question 4.1. Does there exist a c.e. set that is both low and bounded high?

A set A ≤T /0′ is called superlow if A′ ≤tt /0′ and superhigh if A′ ≥tt /0′′. Mohrherr
[11] constructed an example of an incomplete superhigh set. We have a low set that
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is bounded high, which is clearly bounded high and not high. Similarly, we have an
example of a bounded low set that is not low.

Question 4.2. Does there exist a bounded low set that is low but not superlow? Does
there exists a high and bounded high set that is not superhigh?

Observe that any superlow set is bounded low since Ab ≤1 A′. However, we can
ask:

Question 4.3. Does there exist a superhigh set that is not bounded high?

Recall that A is bounded low iff Ab is ω-c.e. Could we provide a better characteri-
zation?

Question 4.4. Provide characterizations of bounded low and bounded high sets.

It is also natural to consider these questions for other restricted computation jump
operators, such as Gerla’s operator [8], which is discussed in [1].
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