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Abstract

Multithreading is a powerful model of parallel and concurrent programming. However, the presence

of shared data leaves multithreaded programs vulnerable to concurrency errors such as data races,

where two threads access and modify the same data concurrently and without synchronization. Data

races lead to unpredictable program behavior and can be a source of data corruption. This work im-

proves the precision of lockset-based dynamic data race detection without compromising soundness.

Typically, lockset-based algorithms are sound but extremely imprecise. The algorithms presented

in this work improve the precision of such algorithms by including thread-tracking information.

Thread tracking helps detect patterns of intermittent thread-locality of shared data and eliminate

false errors while still reporting all true errors. Experimental results show that thread-local analysis

preserves soundness and improves precision of lockset-based data race detection by an average of

82%, with run-time slowdowns of less than 17%.
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Chapter 1

Introduction

This work presents a series of Thread-Aware Lockset algorithms that improve the precision of lockset-

based dynamic data race detection while maintaining soundness. Data race detection is crucial in

parallel and multithreaded computing, where the presence of shared data leaves programs vulnerable

to a variety concurrency errors.

Concurrent and parallel programming lie at the core of modern computing, since they make possi-

ble the efficient processing of large amounts of data simultaneously. A common model of parallel

computing is multithreading. Single-threaded program execution follows a sequential order in which

each instruction is executed only after the completion of the instruction that immediately precedes

it. In contrast, the multithreaded programming model allows machines to execute different threads

simultaneously by interleaving the sequences of code from each thread throughout the program

execution.

In the multithreaded model, each thread has its own private registers and stack, but all threads

share the same heap. This means that it is possible for more than one thread to have access to the

same memory location. Thus, performance is improved by allowing tasks over the same shared data

to be split between different threads. However, it can cause problems if the same memory location

is accessed and modified by different threads at the same time, and can lead to incorrect, and

unpredictable, program behavior and concurrency errors such as data races. Since different program

executions might lead to different interleavings of the threads, reproducing the exact interleaving

that leads to erroneous behavior is often time-consuming, as there is no way to guarantee what order

threads will execute their code.

Therefore, debugging multithreaded programs cannot be accomplished in the usual style of single-

thread debugging, which relies heavily on reproducibility. Special tools need to be developed to

allow for the efficient debugging of multithreaded software.

1



2 Chapter 1. Introduction

1.1 Problem

1.1.1 Performance, Soundness and Precision

When evaluating data race detection algorithms, the most common considerations are concerned

with the tool’s performance, precision, and soundness.

Precision refers to the absence of false alarms; a precise tool would report no false alarms, meaning

that any condition flagged as a data race is actually a data race. Soundness refers to the tool’s ability

to detect all data races; a sound tool is one that guarantees to report all data races in a program.

While in theory it would be ideal to have a data race detection tool that is both precise and sound,

the checks required to ensure both properties significantly can slow down program performance in

practice.

1.1.2 Problem Statement

Due to the ubiquitous presence of multithreaded programming, there exist a variety of tools to detect

and report data races. However, such tools have a number of limitations. One of the most common

types of dynamic data race detection involves the computation of guarding locksets for each memory

location. This approach relies on verifying that all accesses to a location are consistently guarded by

at least one mutual exclusion lock. Lockset-based tools are sound, but very imprecise, since they fail

to detect any other type of synchronization mechanisms in the program. Other tools that achieve

perfect precision and soundness involve complicated computations and tracking large amounts of

data.

In practice, a lot of data in multithreaded programs is thread-local, which means it is only accessed

by one thread. Thread-local data does not need to be protected by any locks, since memory accesses

by the same thread are free of data races by definition. Lockset-based data race detection tools

report false alarms on such data, since they lack the information to determine if data is shared

or not. While there exist thread-local filtering tools, they have a number of shortcomings. Since

they are in the form of prefix filters, which means that they can detect thread locality only at

the beginning of a datum’s life, they fail to detect patterns of extensive intermittent thread-local

reprivatization. Crucially, the current implementation of these filters can compromise the soundness

of the tools they are used with, which leads to missed data races.

1.2 Goals

The goal of this work is to develop new thread-aware lockset-based algorithms and compare their

precision and performance to those of existing lockset tools in order to characterize the improvement
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offered by thread analysis. I aim to eliminate the risk of unsoundness posed by current thread-local

filters by incorporating the thread analysis as part of the lockset algorithms. The second goal of the

thread-aware lockset-based algorithms is to support the classification of data as thread-local at any

point during the data’s life, not just at the beginning.

The long-term goal of this work is to gain insight into how lockset-based data race detection can be

made more effective. It is not within the scope of this project to develop a lockset-based algorithm

that provides significant improvements over existing fast and precise algorithms. My goal is rather

to explore how thread-local analysis can be used to enhance lockset-based algorithms. Combined

with other possible optimization that could eliminate some of the performance overhead of main-

taining both a thread and a lockset for each memory location, thread-local analysis might make such

significant improvements possible in the future.

1.3 Contributions

This work presents a series of novel algorithms that use thread analysis to provide a more robust

model of lockset-based data race detection. The algorithms are able to capture patterns of intermit-

tent or eventual thread-locality that simple lockset algorithms cannot detect, without the need for

the complex computations required by vector-clock-based data race detection.

The work develops a series of tools based on the algorithms and evaluates their precision, soundness

and performance on a suite of multithreaded Java benchmarks. Experimental evaluation shows that

sound thread analysis improves the precision of lockset-based data race detection relative to the

canonical algorithm by 82% on average, while incurring an average slowdown of only 17%. Case

studies of two benchmarks characterize the patterns of execution for which lockset-based tools report

false alarms and the ways in which thread analysis can reduce this imprecision.

Overall, these results demonstrate that sound thread-local analysis opens up new potential for

effective lockset-based data race detection.

1.4 Outline

The work is presented as follows:

Chapter 2 covers the background and motivation for this project, as well as existing approaches and

theory to data race detection.

Chapter 3 presents the thread-aware data race detection algorithms developed as part of this work,

and provides an argument for their soundness.
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Chapter 4 outlines the implementation of the algorithms for multithreaded Java programs.

Chapter 5 evaluates the precision and performance of the tools developed for each algorithm.

Chapter 6 describes areas for future work.

Chapter 7 concludes.



Chapter 2

Background and Motivation

2.1 Motivating Example

To illustrate the importance of data race detection, consider the simplified example of an online

voting system. Different voters can cast their vote at the same time in different threads. If they

cast a vote for the same candidate and the voting system does not handle the concurrency correctly,

it is possible that the way in which the different voting threads access and update the vote count

for that candidate leads to a wrong final result. The thread interleaving demonstrated in Figure 2.1

would produce such an error.

Thread 1 Thread 2 Value of O.count

x = O.count // x = 45 45

y = O.count // y = 45 45

y += 1 // y = 46 45

O.count = y // y = 46 46

x += 1 // x = 46 46

O.count = x // x = 46 46

Figure 2.1: Multithreaded program execution containing an example of a concurrency error.
(Time flows down.)

Both threads follow a simple model of updating the global O.count variable: they store the global

count into a local variable, x or y, increment the local variable by 1, and then store the updated

result back in O.count. However, an error occurs when execution switches to Thread 2 before

Thread 1 has finished performing its update, which leads to an incorrect global count being stored

at the end.

5



6 Chapter 2. Background and Motivation

This error occurs because the update procedure that the threads follow lacks atomicity. A block of

code is atomic if its execution is not affected by and does not interfere with concurrency. This means

that regardless of whether there are other threads accessing the same memory location, the behavior

of the atomic section of code is deterministic, and any shared data that is read or modified by the

critical section of code is not modified by another thread during the execution of the critical section

[1, 2]. In this example, the three lines of code that constitute the procedure to update O.count

should be executed atomically, because they represent one logical operation as a whole. However,

there is no mechanism employed to guarantee the atomicity of the operations, which leaves the code

vulnerable to data races [3]. Data races are pairs of concurrent accesses to the same memory location

that execute in a nondeterministic order and can lead to unpredictable results. In this case, both

Thread 1 and Thread 2 read and modify O.count concurrently, which creates a data race condition

that violates the atomicity of the code. Therefore, the program execution can contain concurrency

errors that result in an erroneous final result in O.count.

It is easy to imagine how a generalization of this problem to a larger scale system can have dire

consequences.

2.2 Happens-Before and Data Races

Data races are defined in terms of the happens-before relationship, which was first developed by

Lamport in [4]. The happens-before relation, denoted as ≺, provides a partial ordering of events in

a distributed system, where A≺B if one of the following holds:

1. A and B are events in the same thread and A comes before B sequentially,

2. A is the release of a lock from one thread and B is the acquire of the same lock by a different

thread,

3. There is a third event C such that A≺C, and C≺B.

Other synchronization mechanisms, such as fork-join, can be used to established a happens-before

relationship between events as well.

In this model, two events are concurrent if neither A≺B nor B≺A holds. A data race can then be

defined using this notion of concurrency. A data race occurs in a multithreaded program when all

of the following occur:

1. Two or more threads access the same shared memory location,

2. At least one of the accesses is a write,

3. The accesses happen concurrently.
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Thread 1 Thread 2

acquire l

x = O.count

x +=1

O.count = x

release l

acquire l

x = O.count

x +=1

O.count = x

release l

Figure 2.2: Example of a happens-before edge introduced by the use of locks.

To illustrate the practical application of this definition more clearly, consider the example from the

previous section. The program execution in Figure 2.1 is an example of a data race, because both

threads write to the O.count variable, and there is no happens-before edge established between the

accesses. A happens-before edge could be introduced by the use of a lock guarding O.count, as

shown in Figure 2.2. In this example, both Thread 1 and Thread 2 have to acquire the lock l

before they can access O.count. The actions of acquiring and consequently releasing the lock ensure

the atomicity of the increment operation and introduce a happens-before relationship between the

two accesses, which guarantees they will be free of data races.

2.3 Data Race Detection Tools

2.3.1 Static Analysis

Static data race detection algorithms analyse code before it is run and try to determine memory

accesses that can cause a data race. An example of such an algorithm is the one used in rccjava [5].

It extends the type system to capture common synchronization patterns and detect data races by

tracking the locks guarding each memory access. Although static data race detection tools trivially

incur no run-time overhead for the program, they are often conservative in their error reporting. This

means that, in order to be sound, they need to be imprecise since they lack the insights into program

behavior that dynamic tools have access to. Therefore, a large number of the errors reported by

static data race detection tools are typically false positives, which causes programmers to use up

time and resources in identifying those false positives, or finding ways to work around the tool’s

reports.
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An exception to this model is the algorithm presented in [6], which is a static race detection algo-

rithm that compromises soundness in order to guarantee near-perfect precision. This is achieved by

employing a combination of successive static analyses that effectively reduce the number of memory

access pairs that could be involved in a data race. The four consecutive steps compute the reach-

able pairs, the aliasing pairs, the escaping pairs, and the unlocked pairs of memory accesses in a

program. Each step further refines the results calculated by the previous one. The reachable pairs

computation filters memory accesses based on the fact that only accesses reachable from a thread

that is itself reachable from the main can be involved in a data race. The second filter, aliasing

pairs, employs the fact that a pair of memory accesses can be involved in a data race only if they

access the same location. Next, the escaping pairs computation filters out accesses to thread-local

data; that is, data that is only accessed by one thread. Finally, the unlocked pairs computation

filters out pairs of accesses that are safe from data races based on holding a common set of locks.

Through this careful analysis, the algorithm filters out most of the false alarms that would otherwise

be raised by a static race detector. However, it does so at the expense of soundness, as some of the

assumptions necessary for this type of static analysis rely on estimations rather than provable facts

about the program.

2.3.2 Vector Clock Algorithms

A large subset of dynamic data race detection algorithms relies on the notion of happens before as

defined by Lamport [4] to perform run-time data race checks. In practice, however, the logical clocks

proposed by Lamport are not enough to precisely determine if a data race occurs. Mattern expands

the happens-before model by introducing the notion of Vector Clocks [7]. A vector clock is a vector

of recordings of relative time for each thread in a program. Vector clocks are a way for each thread

in a system to track the relative time of each other thread in the system, which makes it possible to

determine if there is ever a data race. Algorithms that follow that model perform checks to establish

whether conflicting memory access are separated by synchronization events.

The algorithm implemented in the FastTrack tool implements the idea of vector clock enforced

detection [8]. Each thread has a vector clock maintaining the current state of the entire system, or

rather the thread’s knowledge of the state of the system; that is, each thread has a map from thread

to current time for each other thread in the program. A thread updates its own entry in its vector

clock when it performs a synchronization event such as a releasing a lock. The synchronization

objects, or locks, are also augmented with a vector clock, which is updated accordingly when events

using that lock occur. This allows threads to communicate and update their vector clocks’ entries

for other threads representing the current time of program execution.

Vector clock algorithms are both sound and precise for the current execution of the program. This

means that they report all data races that occur in this execution, with no false alarms, but do not
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report all data races that could occur in all feasible executions of the program. However, the run-

time overhead incurred by performing the checks necessary to establish the happens-before relations

between different memory accesses in the program often mean that such tools slow down program

execution significantly; FastTrack cites an average slowdown of 8.5 times [8].

2.3.3 Lockset Based Algorithms

Lockset based data race detection algorithms are founded on the common locking model in which

each memory location is consistently guarded by at least one lock. A thread must acquire the lock

for a memory location before it accesses that memory location, then release it after it has performed

the operations that represent one logical atomic access, as judged by the programmer. The lock

ensures that no other thread can intervene and access or modify the memory location while the

original access thread still holds the lock, which prevents data races by definition: no two threads

can have concurrent access to a memory location, as long as it is consistently guarded by the lock.

Eraser is the canonical dynamic data race detector that uses a lockset-based approach [9]. The basis

of the algorithm is quite simple: it enforces a locking discipline in which each memory location must

be consistently guarded by at least one lock throughout the entire program. This means that there

must be a non-empty set of locks, or lockset, that is held consistently at each access to that memory

location. A data race is reported when it becomes clear that there is no such lockset for a memory

location. Algorithm 2.1 presents the basic Eraser algorithm for a memory access to a variable x by

a thread t, as described in [9].

Algorithm 2.1 Eraser Lockset

1: function access(x, t)
2: LS (x ) := LS (x ) ∩ LS (t)
3: if LS (x ) = ∅ then
4: issue a warning
5: end if
6: end function

Eraser’s algorithm is implemented by tracking a lockset shadow variable for each memory location.

At each access to that location, the intersection of the stored lockset and the lockset held by the

current thread is calculated. If the intersection is not empty, this means that there has been at least

one lock consistently guarding the location so far, and the lockset shadow variable is updated to

that new intersection. If, on the other hand, the intersection of the recorded and current lockset is

empty, the program signals a data race for that memory access, as there is no identifiable guarding

lock for the location.

Figure 2.3 demonstrates the way in which the Eraser algorithm detects data races. When Thread 1

first accesses the memory location x, x’s guarding lockset is updated to be the set of locks currently

held by Thread 1, i.e. {m1, m2}. Then, on the subsequent access by Thread 2, x’s lockset is
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Thread 1 Thread 2 LS Guard State

acquire m1

acquire m2

write to x {m1, m2}
release m2

release m1

acquire m2

acquire m3

write to x {m2}
release m3

release m2

acquire m1

write to x {} ⇒ Error

release m1

Figure 2.3: Example of the way Eraser detects data races.

updated to be {m2}, which is the intersection of the two locksets: the one previously recorded for

that location, and the one that is held by the current access thread. Then, when Thread 1 accesses

x again, the same procedure is performed, and the intersection between the recorded and current

access lockset is taken. However, this results in an empty lockset. This signifies to Eraser that a

potential data race can occur at that access, so it reports an error.

Thread 1 Thread 2 LS Guard State

acquire m1

acquire m2

write to x {m1, m2}
release m2

release m1

acquire m2

acquire m3

write to x {m2}
release m3

release m2

acquire m1

acquire m3

write to x {} ⇒ Error

release m3

release m1

Figure 2.4: Example of a situation in which Eraser reports a false positive.
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Figure 2.4 shows an example of a series of accesses that are also data race free, but for which Eraser

reports an error. It behaves in the exact same way as in the example in Figure 2.3, even though

this example is not a data race condition, as there is always at least one common lock between each

pair of accesses from different threads. However, because it always records the intersection of the

current access lockset and the recorded lockset, Eraser does not recognize this as a valid and safe

locking discipline and instead reports a data race for the last access.

The base Eraser algorithm is sound, as it guarantees to report any data races that could occur in

a program. However, as demonstrated above, it is not precise because it only tracks the locking

behavior of a program, and even then it fails to detect some locking patterns that would still

guarantee data race free execution. In practice, there are many other commonly used synchronization

mechanisms, such as fork-join. Those could be used to write a program free of data races without

the use of locks. This would lead Eraser to report many false positive errors because of its sole

reliance on locksets.

2.3.4 Hybrid Algorithms

Various data race detection tools rely on a combination of multiple approaches to provide better

performance, soundness and precision. Many dynamic tools utilize static analysis to filter out

unnecessary run-time checks, which can lead to improved performance. Furthermore, there are some

hybrid tools that combine the lockset and happens-before based approaches, which allows them to

be both sound and precise, even though that usually comes at the cost of decreased performance.

For example, the Goldilocks algorithm is a dynamic data race detection algorithms that uses lock-

sets to establish happens-before relations in a program execution [10]. Though lockset-based, the

Goldilocks algorithm handles other synchronization disciplines such as software transactions. It also

stores other metadata such as the last thread to access a memory location, which improves the pre-

cision of its analysis. This makes it unlike most other lockset based algorithms which are imprecise,

but also allows it to maintain performance better than that of traditional happens-before algorithms

that use vector clocks in their analysis. Furthermore, the algorithm uses static analysis of the code

to improve run-time performance.

Acculock is another example of a happens-before and lockset hybrid algorithm [11]. It uses epoch-

based data race detection similar to FastTrack to establish weak happens-before edges in a program

execution, ignoring the locking discipline of the program. If a violation is discovered in the establish

relations, it uses a lockset algorithm to filter out those accesses that are actually protected by the

locking discipline. This way it guarantees soundness while improving over the precision of traditional

lockset-based algorithm. It maintains performance comparable to FastTrack, but still slower than

Eraser’s when implemented with the same framework.
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2.4 Optimizations to Data Race Detection Algorithms

2.4.1 Escape Analysis

There are some observations about program behavior that can help improve the precision and

performance of dynamic data race detection tools. A key observation is that all data is initialized as

local to a single thread; i.e., it is initially private, or thread-local, data. Data escapes when it becomes

available to more than one thread. Therefore, data race detection algorithms can be optimized to

perform checks only on shared data — that is, only data that has escaped.

2.4.1.1 Eraser

Eraser uses this knowledge to filter out unnecessary and expensive lockset checks on data that is

guaranteed to be race-free. Data can exist in four states. All data is initialized in the Virgin state,

and transitions to the Exclusive state once it has been written to by a thread. Any subsequent

accesses by the same thread maintain it in the Exclusive state, because by definition no data race

could occur between them. No lockset information is recorded during the Virgin and Exclusive

states. A read from a different thread changes the data’s state to Shared, in which lockset recording

begins. As long as no thread writes to the location, the same state is maintained and no data races

are reported even if the lockset becomes empty, because the data has not been modified in a situation

in which a data race could occur. The last state is the Shared-Modified state. The transition to

that state happens upon a write from a new thread if in the Exclusive state or a write from any

thread in the Shared state. The checks performed in the Shared-Modified state are those in the base

Eraser algorithm; the intersection of the current and the recorded lockset is taken, and data races

are reported if it ever becomes empty.

This enhanced model allows Eraser to filter out many unnecessary checks, which improves not only

performance but precision as well. However, it does leave it vulnerable to the case in which the first

shared-modified access to a new memory location is unsafe, because no previous lockset information

would have been recorded for it. This is demonstrated in Figure 2.5. Therefore, even though the

filter improves performance and precision, it impacts the soundness of the subsequent analysis.

2.4.1.2 TRaDe

Another algorithm that deals with escape analysis is TRaDe [12], a topological race detector that uses

vector clocks. Data in the TRaDe algorithm is monitored using the underlying garbage collection

to determine whether it is reachable by more than one thread at any point in the execution. Data

is transitioned from private to shared whenever a reference to a previously local memory location

is posted to a global location, even if it has only been directly accessed by one thread. This is
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Thread 1 Thread 2 Guard Tool for x.m Guard State for x.m

begin

start Thread 2

begin

x = new X() TL

x.m = 5 TL Thread 1

acquire l TL Thread 1

x.m = 13 TL ⇒ Lockset {l}

Figure 2.5: An example trace for which use of the Thread-Local prefix filter would result in
unsound analysis. The Guard Tool column shows the tool currently guarding the memory location
(i.e., TL or Lockset), and the Guard State column shows the recorded metadata for the location.
Since the first write to x.m is while the field is still thread-local, no lockset information is recorded
for the field. Therefore, on the first access to x.m by Thread 2, the guarding lockset becomes {l},
even though the field was previously unprotected and the two accesses to it constitute a data race.
Therefore, it is not possible to know whether it forms a data race with any previous access.

different from Eraser’s algorithm, which marks data as shared only after it is accessed by a different

thread. This distinction of data being accessed versus accessible by more than one thread is crucial

in maintaining the soundness of the algorithm.

Thread 1 Thread 2 Status of x

x = new X() ... Local to Thread 1

... ...

O.f = new X() ... Accessible to T2 through
global object O

...

O.f.doSomething() Accessed by T2

Figure 2.6: Difference between data being accessed and accessible to more than one thread.

Figure 2.6 illustrates the difference in code for data becoming accessed versus it becoming accessible.

When the reference to the locally initialized object x is first posted to the global object O, the TRaDe

algorithm would mark it as shared and begin data race monitoring from that point on, because it

is now globally accessible. Eraser, however, would not mark x as shared until later in the code,

when Thread 2 first accesses x through the reference stored in O.f. TRaDe’s approach maintains

the soundness of the algorithm because it is guaranteed that by the first global access to x, it will

have already recorded the necessary information to perform a data race check.
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2.4.1.3 Other Algorithms

Many other data race detection algorithms, regardless of whether they are based on locksets and

happens before, use similar approaches to filter out unnecessary check or reduce runtime overhead.

For example, the FastTrack algorithm [8] performs analysis to determine if data is thread local or

read shared. It uses the observation that thread-local accesses to data are necessarily ordered, and

reads to read-shared data are free of data races if they are ordered with all previous reads. This

allows the algorithm to perform constant time and space overhead checks for those cases, as opposed

to the usual analysis, which is linear in time and space. It accomplishes this by switching from

tracking vector clock metadata to tracking epochs, which is a pair of clock and thread identifier

of the last access to the data. This significantly improves the efficiency of the algorithm without

compromising soundness and precision.

An example of thread local analysis is implemented as part of the RoadRunner framework for

dynamic analysis [13]. It facilitates program analysis by allowing memory locations to be extended

with shadow data that can be used to perform various checks and analyses. In the case of the thread

local extension, the recorded shadow data is the thread identifier of the previous access thread. At

each subsequent access to the memory location, the identifier of the thread is checked against the

recorded thread identifier; if they are the same, the data is determined to be thread local. If they

are different, the data leaves the thread-local state and is passed on to the next stage of the analysis.

This is a simple and efficient way to filter out unnecessary and expensive checks on a large amount

of data.

2.4.2 Reprivatization

While escape analysis offers optimization opportunities at the beginning of program execution,

reprivatization can detect when previously shared data becomes private again, allowing for further

performance gain. Much like data begins in a thread-local state and then transition to being thread-

shared, it is possible for shared data to change back to a thread-local state at some point during

program execution.

Figure 2.7 extends the example from the previous section to illustrate the way in which data can

be reprivatized. Here, it is also possible to make the distinction between data being accessed by

more than one thread, versus being accessible to more than one thread. Assuming that x is shared

between Thread 1 and Thread 2, after Thread 2 accesses x for the last time, that memory location

transitions back to being accessed solely by Thread 1. However, at that point it is still accessible

to Thread 2; that changes only after the thread nullifies its last reference to the memory location.

At that point, the data becomes accessible only to Thread 1.

Similarly to initially thread-local data, reprivatized data is safe to access without synchronization

because only one thread is performing accesses to the location. In this example, after Thread 2
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Thread 1 Thread 2 Status of x

x = new X() ... Local to Thread 1

... ...

O.f = new X() ... Accessible to Thread 2
through global object O

...

O.f.doSomething() Accessed by Thread 2

... ...

// last access by Thread 2

O.f.doSomething()

Reprivatized (No longer
accessed by Thread 2)

... ...

O.f = null Reprivatized (No longer
accessible to Thread 2)

Figure 2.7: Data being reprivatized, following the accessed vs. accessible principle.

stops accessing x, no data race can occur involving x, because Thread 1 is the only thread that

accesses that memory location. By definition, such accesses are guaranteed to be free of data races.

The TRaDe algorithm discussed in the previous section supports reprivatization analysis. Because

it periodically tracks how many threads have access to each memory location, it can establish if a

location ever goes back to being owned by a single thread. This means that data that used to be

shared can become private at a point in program execution when only one thread has access to it.

This is an improvement over the prefix optimizations of Eraser, as it provides more opportunity for

eliminating unnecessary checks.

Two other algorithms use the Eraser state machine as a basis for their filtering, while extending it

with additional transitions and states that allow for reprivatization of data.

The MulticoreSDK data race detector described in [14] employs a state machine based on the state

machine used by Eraser. They add two additional transitions which allow data to go back to the

Exclusive state if it is determined that it is only accessed by one alive thread. Therefore, while less

complex than TRaDe’s analysis, it still provides performance and precision improvements over the

basic algorithms.

Similarly, Pozniansky and Schuster present another state machine that extends Eraser’s [15]. They

add additional states to the basic state machine presented in Eraser, the most significant of which

is the Clean state to which data transitions after the presence of a barrier. The employment of this
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additional synchronization analysis allows for improving the precision of the algorithm, and serves

as a simplified version of reprivatization analysis.

2.4.3 Other Optimizations

In practice, because the problem of detecting data races is computationally hard, there is no single

best approach. Most tools base their analysis on one approach and then add optimizations to

improve on the quality of their performance, soundness, and precision.

The filtering techniques for the Intel Thread Checker Race Detector described in [16] provide further

examples of optimizations to the basic data race detection algorithms. The proposed filters use an

Eraser-like state machine to eliminate checks on thread local and read shared data in the vector

clock based algorithm the Thread Checker uses. However, they modify the basic Eraser state

machine to perform data race checks on the references that trigger transitions from one state to

another, which resolves the soundness issue introduced by Eraser’s optimization. The algorithm also

filters out stack references by a simple memory address check, since stack data is always private.

Additionally, they implement a filter that removes duplicate references from the checked conditions.

This improves performance, while it guarantees to only remove duplicate data races, meaning it

maintains soundness.

2.5 Design Trade-Offs

Existing approaches to data race detection often need to make a compromise between the soundness

and the precision of their reports. Theoretically, it seems more intuitive to focus on implementing a

sound algorithm, in order to guarantee that all data races will be reported. However, it is important

to consider the practical application of the tools: if an algorithm is completely sound, but imprecise

to the point where most of the data races it reports are false alarms, it would not be a feasible

solution for a debugging tool, as it would mean that a lot of the time and effort spent on analyzing

its results are wasted on the false alarms. Thus, in practice in some cases it may be acceptable, and

even desirable, to allow small compromises in soundness in order to improve precision significantly.

Different algorithms make different guarantees for the soundness and precision of their tools. For

example, there are tools that are precise with regard to the current execution of the program.

This means that they report data races only if they actually occurred in this particular execution,

as opposed to data races that could occur in other executions with different interleavings of the

code. There are also tools that guarantee to be sound with respect to all possible executions of the

program; that is, they guarantee to report data races in the program even if they did not occur in

this particular execution. Again, there is a tradeoff between the two approaches and their efficiency

and usability in practice.
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Similarly to soundness and precision, a tool’s run-time performance and efficiency are important to

consider. Even if a tool provides detailed and correct analysis of data race occurrences in a program,

if it slows down program execution significantly, it is not particularly useful to a programmer trying

to debug their code. Often times tools that report to be sound and precise are lacking in this aspect,

which makes them difficult to use frequently and successfully.

Eraser [9] is a sound tool that uses a lockset based algorithm to detect data races and reports a

slowdown of 10 to 30 times when implemented on the Digital Unix operating system on the Alpha

processor, using the ATOM binary modification system. On the other hand, FastTrack [8], a vector

clock based algorithm, reports a slowdown of around 10 when implemented on top of unmodified

JVMs. This is comparable to Eraser’s performance when implemented in the same way. FastTrack

reports to be one of the fastest vector-clock based data race detectors; it outperforms other such

algorithms at least by a factor of 2 [8].

FastTrack is better or as good as Eraser along all axes: it is also sound, almost as fast, and completely

precise (compared to Eraser, which is very imprecise). However, while Eraser is the canonical

example of lockset-based data race detection, it has a lot of shortcomings and areas of possible

improvement. This work aims to improve its precision by including thread-local analysis. Combined

with possible future performance optimizations, such as eliminating the overhead of checking both

the thread and the lockset of a memory location based on predictive profiling work, this could lead

lockset-based data race detection to maintain its soundness, significantly improve precision, and

achieve performance better than FastTrack.
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Chapter 3

Sound Thread-Aware Lockset

Algorithms

I develop a series of algorithms that modify and enhance the basic Eraser Lockset algorithm [9]. For

clarity, I refer to that algorithm as Lockset, or LS, for the rest of this work. I changed the Lockset

algorithm along two dimensions: first, I modified the way in which locksets are recorded, and second,

I added thread tagging to support different patterns of thread-locality in program execution.

This chapter presents the algorithms in increasing order of precision, with each algorithm making

an incremental improvement in one of the two dimensions of change. I begin with a discussion of

the shortcomings of the basic Lockset algorithm. Then, to illustrate the improvement in precision,

each algorithm is presented with an example of a safe access pattern that Lockset and the previously

described algorithms would fail to detect as safe. I also present a justification of the soundness of

each modification. Table 3.1 contains a summary of the algorithms and the key change each one

makes to improve precision.

3.1 Lockset Algorithm

To motivate my contributions to enhanced lockset data race detection, I first present the limitations

of the Lockset (LS) algorithm. The algorithm’s soundness can be justified using the happens-before

relations built by the program. For any two memory accesses a and b to a location x to be considered

data race-free by Lockset, there must be at least one common lock m held at each of the access.

There are only two situations in which that is possible. First, it is possible that the common lock

has been released after the first access and acquired before the second. This lock release-acquire

synchronization sequence establishes a happens-before edge between the two memory accesses in

19
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Algorithm
Thread-Local
Check On

Update

LockSet Thread

Lockset Handoff LH — Current None

Lockset Intersection Private Suffix LI-PS Empty lockset Intersect Current

Lockset Handoff Private Suffix LH-PS Empty lockset Current until Current
empty intersect

Lockset Intersection Private Reset LI-PR Empty lockset Nonempty intersect Current
else current

Lockset Intersection Private Handoff LI-PH All Current if local Current
else intersection

Lockset Handoff Private Handoff LH-PH All Current Current

Table 3.1: Summary of algorithms presented in this chapter.

different threads. If the lock has not been released and re-acquired between the two actions, then it

must be that the actions are both performed by the same thread, since it is not possible for more than

one thread to hold a lock simultaneously. Figure 3.1 contains an example of each of these situations.

Events in a single thread are necessarily ordered by happens-before, since a single thread’s actions

occur in program-order. Therefore, in both cases, the two memory accesses are guaranteed to be

data-race free.

Thread 1 Thread 2

acquire m

write to x

release m

acquire m

write to x

release m

Trace Example 1

Thread 1

acquire m

write to x

...

write to x

release m

Trace Example 2

Figure 3.1: Memory accesses protected by the same lock. On the left, the lock is released and
re-acquired between the two accesses, so they are ordered by synchronization happens before. On
the right, the lock is held by a single thread that performs both accesses, so they are ordered by
program order happens before.

The Lockset algorithm, though sound, is also imprecise in several ways. Firstly, it fails to detect

synchronization patterns in which the lock guarding a memory location changes throughout program

execution. Lockset relies on the assumption that each memory location is guarded by at least one

lock consistently, and the lock must be the same throughout the entire program. However, there

are patterns of program execution that do not fit this model for which Lockset reports false alarms,

as shown in Figure 2.4. Another point of imprecision in the Lockset algorithm is that it is possible

for shared data to become temporarily or permanently thread-local, without being guarded by a

lockset, and still be free of data races because it is private. Because it lacks thread awareness,
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Lockset once again reports many false positive errors in this situation. Lockset is also imprecise

with respect to read-shared data, the fork-join model of synchronization, and other synchronization

mechanisms. This work targets the limitations posed by the lockset recording model and the lack

of thread analysis in particular.

3.2 Lockset Handoff Algorithm

Motivation The Lockset Handoff algorithm targets patterns in which the lock guarding a memory

location changes throughout program execution. To illustrate this situation, consider the program

trace shown in Figure 3.2. There is no data race in the trace, because there exists a happens-before

edge between each consecutive pair of memory accesses. The first two accesses both share the lock

m1, since their executing threads both hold m1 while the accesses occurs. This means that the release

and acquire of m1 establishes a happens-before relation between the first two accesses. Similarly,

the second two accesses share m2, and so the release and acquire of m2 establishes a happens-before

relation between the second and third accesses. The transitivity of the happens-before relation

then establishes a happens-before edge between the first and third accesses, meaning that all of the

accesses in this example are free of data races.

Thread 1 Thread 2 LS Guard State LH Guard State

acquire m1

write to x {m1} {m1}
release m1

acquire m1,m2

write to x {m1} {m1, m2 }
release m1,m2

acquire m2

write to x ∅ ⇒ Error {m2}
release m2

Figure 3.2: Lockset Handoff Pattern Trace Example

The soundness of this program execution can be justified similarly to that of the Lockset algorithm.

Even if there is no single lock that protects a memory location throughout the entire program

execution, any two pairs of accesses to the same memory location that occur following each other

must have at least one lock in common. This means that a happens-before edge is established

between each pair of accesses. For an access to be considered data-race free with the previous one,

it must share at least one lock with it. Similarly, the previous access must have shared at least one

lock with the one preceding it. The transitivity of the happens-before relation then allows us to

build an ordering of all the safe accesses in the program.
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Even though the pattern shown in Figure 3.2 is safe, Lockset records the intersection of the two

locksets, so it records {m1} as the only lock guarding x after the second access. It then reports

an error on the third access, because the intersection of the current access lockset, {m2}, and the

recorded lockset, {m1}, is empty.

Algorithm The Lockset Handoff algorithm addresses this issue by modifying the way in which

locksets are recorded by Lockset. Both algorithms check that the intersection of the recorded lockset

and the current lockset is not empty. Whereas the Lockset algorithm then records the intersection of

the algorithm, the Lockset Handoff algorithm records the current lockset instead. That way, even if

a memory location is not consistently guarded by the same lock throughout program execution, if all

of the accesses to it are ordered by some lock pattern, the algorithm does not report an error. The

full Lockset Handoff algorithm and state machine are presented in Figure 3.3. Each state displays

the metadata recorded after a transition, which for Lockset Handoff is the lockset for this memory

location. The transition arrows contain the condition for a safe transition from one memory access

to another, meaning no data race exists between them.

The Lockset Handoff algorithm recognizes the trace from Figure 3.2 as a valid synchronization

pattern and does not report an error. After checking the lockset intersection between each pair of

accesses is not empty, it records the current lockset. Thus, the lockset recorded before the third

access is {m1,m2}, so there is no error reported at the third access, since it shares a m2 with the

recorded lockset. This subtle difference allows Lockset Handoff to improve precision over LS.

1: function access(x, t)
2: if LS (t) ∩ LS (x ) = ∅ then
3: issue a warning
4: end if
5: LS (x ) := LS (t)
6: end function

Figure 3.3: Lockset Handoff (LH) Algorithm and State Machine.

3.3 Thread-Aware Lockset Algorithms

As discussed in Section 2.2, any two memory accesses that are performed by the same thread are

necessarily ordered by program order. No data race can occur between memory accesses from the

same thread, even if there are no locks guarding the memory location. However, because they lack

any thread information, both Lockset and Lockset Handoff fail to recognize unguarded thread-local

memory accesses as safe. Consider the sample trace shown in Figure 3.4. The first two accesses to

x share a lock, so they are data-race free. Then, even though the two accesses to x by Thread 2

are not protected by a shared lock, there is no data race between them, as they are both performed
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by the same thread. However, both Lockset and Lockset Handoff report an error for that trace,

because the lockset guarding x is empty at the third access

Thread 1 Thread 2 LS Guard State LI-PS Guard State

acquire m1

write to x {m1} (t1, {m1})
release m1

acquire m1

write to x {m1} (t2, {m1})
release m1

write to x ∅ ⇒ Error (t2, ∅)

Figure 3.4: Thread-Local Access Pattern Trace Example

Extending the algorithms with information that lets us compare the current access thread to the

previous access thread allows us to be more precise in the performed analysis. The lockset operations

performed by the Thread-Aware Lockset algorithms demonstrate the same orderings as the lockset

operations in either the Eraser or Lockset Handoff algorithm, which has been established as sound

already. Therefore, all pairs of memory accesses for which the Thread-Aware Lockset algorithms

do not report an error are guaranteed to be free of data races because it is possible to establish a

happens-before edge between them. Thus, the algorithms in their entirety are sound as well.

The Thread-Aware Lockset (TAL) algorithms all record the thread of the last access to each memory

location, but they differ in the lockset computations they perform.

3.3.1 Lockset Intersection Private Suffix Algorithm

Motivation The Lockset Intersection Private Suffix (LI-PS) algorithm captures a pattern of exe-

cution in which a memory location has escaped and been accessed by more than one thread, but later

becomes reprivatized and is accessed by a single thread for the rest of the program execution. This

occurs, for example, when a single master thread initializes the data, then different worker threads

process the data and use lockset synchronization, but eventually the data is accessed exclusively by

the master thread. At that point, there is no more need for lockset synchronization, because all

accesses are protected by a program-order happens before edge.

Algorithm The Lockset Intersection Private Suffix records the intersection of the current and

the recorded locksets, and allows a transition if it is not empty. The one modification it makes to

capture thread-locality is that if the intersection is empty, but the current access thread is the same

as the recorded (i.e., last access) thread, it allows a safe transition. After such a transition, the only

possible recorded lockset is the empty set, and if the memory location is ever accessed by a different
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thread, the algorithm reports an error. The Lockset Intersection Private Suffix algorithm and state

machine are presented in Figure 3.5. The state machine follows the same conventions as the one

for Lockset Handoff, but it contains thread information as well. Transitions are based on conditions

involving both. The symbol is used as a wild card, meaning any thread or lockset state as long as

the other condition is satisfied.

1: function access(x, t)
2: LS (x ) := LS (t) ∩ LS (x )
3: if LS (x ) = ∅ then
4: if t 6= T (x ) then
5: issue a warning
6: end if
7: end if
8: T (x ) := t
9: end function

Figure 3.5: Lockset Intersection Private Suffix (LI-PS) Algorithm and State Machine.

3.3.2 Lockset Handoff Private Suffix Algorithm

Motivation Similarly to the pattern discussed Section 3.2, data may be guarded by more than

lock throughout program execution before becoming reprivatized. For example, the trace shown in

Figure 3.6 contains such an access pattern. This is still a safe access pattern, because while shared,

data is protected by at least one lock in common between each pairs of accesses. Lockset Intersection

Private Suffix fails to capture this pattern because it performs Lockset style computations when data

is not thread-local.

Algorithm The Lockset Handoff Private Suffix (LH-PS) algorithm combines Private Suffix track-

ing with Lockset Handoff style lockset computations in its transitions. This means that it checks

that the intersection of the current and recorded locksets is not empty, but then records the current

lockset rather than the intersection. It still allows a safe transition based on an empty intersection if

the current access thread is the same as the recorded thread. The full algorithm for Lockset Handoff

Private Suffix is given in Figure 3.7.
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Thread 1 Thread 2 LI-PS Guard State LH-PS Guard State

acquire m1

write to x (t1, {m1}) (t1, {m1})
release m1

acquire m1,m2

write to x (t2, {m1}) (t2, {m1, m2})
release m1,m2

acquire m2

write to x (t1, ∅) ⇒ Error (t1, {m2})
release m2

. . .

write to x (t1, ∅)

Figure 3.6: Lockset Handoff Private Suffix Access Pattern Trace Example

1: function access(x, t)
2: if LS (t) ∩ LS (x ) = ∅ then
3: if t 6= T (x ) then
4: issue a warning
5: else
6: LS (x ) := ∅
7: end if
8: else
9: LS (x ) := LS (t)

10: end if
11: T (x ) := t
12: end function

Figure 3.7: Lockset Handoff Private Suffix (LH-PS) Algorithm and State Machine.

3.3.3 Lockset Intersection Private Reset Algorithm

Motivation The Lockset Intersection Private Reset (LI-PR) algorithm captures patterns of ex-

ecution in which a piece of data becomes temporarily thread-local and then escapes again. To

illustrate such behavior, consider the trace shown in Figure 3.8. Both of the first two access occur

within Thread 1, so they are ordered by program order even if they do not share a lockset. Then,

the second and third accesses are both protected by m2, so they are also safe. However, all of the

algorithms presented thus far report an error for this trace. Lockset and Lockset Handoff report

errors because they lack thread information which prevents them from recognizing safe program-

order accesses. Lockset Intersection Private Suffix and Lockset Handoff Private Suffix report errors

because they do not reset the lockset if it becomes empty, so accesses by a different thread are

considered errors, regardless of whether there is a shared lock between them. Lockset Intersection
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Private Reset, however, resets the lockset associated with x to {m2} after the second access, which

allows it to transition safely to the third access.

Thread 1 Thread 2 LH-PS Guard State LI-PR Guard State

acquire m1

write to x (t1, {m1}) (t1, {m1})
release m1

acquire m2

write to x (t1, ∅) (t1, {m2})
release m2

acquire m2

write to x (t2, ∅) ⇒ Error (t2, {m2})
release m2

Figure 3.8: Lockset Intersection Private Reset Access Pattern Trace Example

Algorithm The Lockset Intersection Private Reset algorithm addresses that imprecision by re-

setting a thread-local memory location’s lockset to the full set of locks held by the thread. Similarly

to the other algorithms, it allows a transition over an empty lockset if the current access thread is

the same as the recorded thread, but instead of keeping the empty lockset as the recorded lockset

of that memory location, it sets it to be the current access lockset. As discussed above, this is a

safe transition because the accesses are made by the same thread, and are thus necessarily ordered

by program order. Resetting the lockset of thread-local data improves precision since it allows the

memory location to be accessed later by different threads if the accesses are protected by a common

lockset intersection. The Lockset Intersection Private Reset algorithm is shown in Figure 3.9.

1: function access(x, t)
2: LS (x ) := LS (x ) ∩ LS (t)
3: if LS (x ) = ∅ then
4: if T (x ) = t then
5: LS (x ) := LS (t)
6: else
7: issue a warning
8: end if
9: end if

10: T (x ) := t
11: end function

Figure 3.9: Lockset Intersection Private Reset (LI-PR) Algorithm and State Machine.
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3.3.4 Lockset Intersection Private Handoff Algorithm

Motivation The Lockset Intersection Private Handoff (LI-PH) algorithms targets patterns like

the trace shown in Figure 3.10. This trace is almost the same as the one shown in Figure 3.8, but

the lockset intersection between the first and second accesses is not empty. This means that Lockset

Intersection Private Reset does not reset the recorded lockset for x, which leads it to report an error

on the third access.

Thread 1 Thread 2 LI-PR Guard State LI-PH Guard State

acquire m1

write to x (t1, {m1}) (t1, {m1})
release m1

acquire m1,m2

write to x (t1, {m1}) (t1, {m1, m2})
release m1,m2

acquire m2

write to x (t2, ∅) ⇒ Error (t2, {m2})
release m2

Figure 3.10: Lockset Intersection Private Handoff Access Pattern Trace Example

1: function access(x, t)
2: if T (x ) = t then
3: LS (x ) := LS (t)
4: else
5: LS (x ) := LS (t) ∩ LS (x )
6: if LS (x ) = ∅ then
7: issue a warning
8: end if
9: end if

10: T (x ) := t
11: end function

Figure 3.11: Lockset Intersection Private Handoff (LI-PH) Algorithm and State Machine.

Algorithm Lockset Intersection Private Handoff, on the other hand, is able to transition safely

because it modifies the way in which locksets are recorded under a same-thread transition. Rather

than recording the intersection of locksets or resetting it to the current lockset if the intersection

becomes empty, the algorithm records the current access lockset in all thread-local accesses. If the

current access thread is different than the recorded one, then the algorithms behaves as the basic
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Lockset algorithm and records the intersection between the two locksets. The full algorithm for

Lockset Intersection Private Handoff is in Figure 3.11.

3.3.5 Lockset Handoff Private Handoff Algorithm

Thread 1 Thread 2 LI-PH Guard State LH-PH Guard State

acquire m1

write to x (t1, {m1}) (t1, {m1})
release m1

acquire m2

write to x (t1, {m2}) (t1, {m2})
release m2

acquire m2, m3

write to x (t2, {m2}) (t2, {m2, m3})
release m2, m3

acquire m3

write to x (t1, ∅) ⇒ Error (t1, {m3})
release m3

Figure 3.12: Lockset Handoff Private Handoff Access Pattern Trace Example

Motivation The last, and most precise, variation of the Thread-Aware Lockset algorithms is the

Lockset Handoff Private Handoff (LH-PH) algorithm. It captures patterns of execution in which

the guarding locks of a memory location change throughout program execution, and the location

becomes intermittently thread-local and then shared again. A small version of such a pattern can

be seen in Figure 3.12. It presents an example program trace which is free of data races, but all

other algorithms report an error on.

This trace is free of data races. The only types of accesses and transitions are those already shown to

be sound in previous sections. However, as Figure 3.14 illustrates, Lockset Handoff Private Handoff

is the only algorithm that successfully transitions through all four accesses.

Algorithm The Lockset Handoff Private Handoff algorithm combines the analysis of all the

previous algorithms into a most precise generalized version. Its lockset recording procedure is the

same as that of the Lockset Handoff algorithm, in that it always records the current access lockset

regardless of thread locality. This means that the Lockset Handoff Private Handoff algorithm reports

an error only when both (a) the intersection of the two locksets is empty and (b) the current and

recorded threads differ. In all other cases, it considers the transition error-free. The full algorithm

of Lockset Handoff Private Handoff is shown in Figure 3.13.
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1: function access(x, t)
2: if LS (t) ∩ LS (x ) = ∅ then
3: if T (x ) 6= t then
4: issue a warning
5: end if
6: end if
7: LS (x ) := LS (t)
8: T (x ) := t
9: end function

Figure 3.13: Lockset Handoff Private Handoff (LH-PH) Algorithm and State Machine.

Figure 3.14 illustrates the behavior of Lockset Handoff Private Handoff along with all the other

algorithms, and demonstrates the improvement in precision from each algorithm. Each row repre-

sents an access to x, with the ID of the thread and the currently held lockset shown in the first two

columns. All other columns contain the metadata that each algorithm records for x after the access,

or “Error” if the algorithm reports an error there.

Thread Lockset LS LH LI-PS LH-PS LI-PR LI-PH LH-PH

1 {m1} {m1} {m2} t1, {m1} t1, {m1} t1, {m1} t1, {m1} t1, {m1}

1 {m2} Error Error t1, ∅ t1, ∅ t1, {m2} t1, {m2} t1, {m2}

2 {m2,m3} Error Error t2, {m2} t2, {m2} t2, {m2,m3}

1 {m3} Error Error t1, {m3}

Figure 3.14: Algorithm behavior for example access pattern shown in Figure 3.12.
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Chapter 4

Implementation

I implemented the Lockset Handoff and Thread-Aware Lockset algorithms outlined in Chapter 3

for multithreaded Java programs using the RoadRunner dynamic analysis framework [13]. This

chapter describes the implementation of the tools. Section 4.1 reviews relevant details about the

RoadRunner framework. Sections 4.2 and 4.3 describe the implementation of the Lockset Handoff

and Thread-Aware Lockset tools respectively.

4.1 RoadRunner Framework Background

The RoadRunner dynamic analysis framework [13] provides functionality to instrument multi-

threaded code and track metadata for memory locations and synchronization principals. The core

of the RoadRunner API is presented in Figure 4.1.

RoadRunner instruments each memory location with a shadow variable to track metadata associated

with that memory location. ShadowVar objects are stored alongside the corresponding memory

location they track. For example, the Eraser implementation that comes with RoadRunner defines a

LockSet extension of ShadowVar that is used to implement the Lockset algorithm, which is discussed

in more detail below. The shadow data for each memory location can be accessed and modified

on events such as memory access (access method) and initialization (makeShadowVar method).

Threads are also instrumented with ShadowThread objects. By defining their own types of shadow

variables and program event handlers through extending the relevant classes, analysis tools can

track any information necessary for their computations. RoadRunner lets users implement the

functionality of their algorithm in the form of extensions to the core Tool class. Each Tool can

define instrumentation mechanisms for the events that RoadRunner monitors, such as memory

accesses and lock releases.
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// Decorat ions
c l a s s Decoratable { . . . }

c l a s s Decoration<Key extends Decoratable , Value> {
]

}

// Thread , Lock , and Var iab le Shadows
i n t e r f a c e ShadowVar { }

c l a s s ShadowThread extends Decoratable implements ShadowVar {
Thread thread ;
i n t t i d ;
ShadowThread parent ;
s t a t i c <T> Decoration<ShadowThread ,T> makeDec (T i n i t ) ;

}

c l a s s ShadowLock extends Decoratable {
Object l ock ;
s t a t i c <T> Decoration<ShadowLock ,T> makeDec (T i n i t )

}

// Events
c l a s s Event {

ShadowThread thread ;
}

c l a s s AcquireEvent extends Event {
Acqui re In fo i n f o ; // l o c
ShadowLock lock ;

}

c l a s s ReleaseEvent extends Event {
Re l ea s e In f o i n f o ; // l o c
ShadowLock lock ;

}

c l a s s AccessEvent extends Event {
ShadowVar shadow ;
boolean putShadow (ShadowVar newShadow) { . . . }

}

c l a s s Fie ldAccessEvent extends AccessEvent {
Fi e ldAcce s s In f o i n f o ; // loc , c l a s s / f i e l d desc .
Object t a r g e t ; // r e c i e v e r

}

c l a s s ArrayAccessEvent extends AccessEvent {
ArrayAccessInfo i n f o ;
Object t a r g e t ; // r e c i e v e r

}

// Tools
ab s t r a c t c l a s s Tool {

void c r e a t e (NewThreadEvent e ) { . . . }
void acqu i r e ( AcquireEvent e ) { . . . }
void r e l e a s e ( ReleaseEvent e ) { . . . }
void ac c e s s ( AccessEvent e ) { . . . }
ShadowVar makeShadowVar ( AccessEvent e ) ;

}

Figure 4.1: RoadRunner Core API
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When using RoadRunner, clients can specify which fields to instrument, and the maximum number

of errors that should be reported for each field. If a field in a target program that is instrumented

by a specific tool reaches the maximum number of error reports, access information for that field

stops being passed on to the Tool.

4.1.1 Tool Composition

Tools can be chained together to perform more complex analysis. The first tool in the chain is used to

instrument all code initially. If a field reaches the maximum number of warnings, instrumentation of

that field passes onto the next tool in the chain. At that point, the second tool initializes its shadow

variable for that memory location. This behavior allows tools to be used as filters for other tools to

eliminate unnecessary checks at the beginning of program execution. The RoadRunner framework

comes with a variety of such tools, two of which are the Thread-Local (TL) and Read-Shared (RS)

filters used for Eraser and described in Section 2.4.1.1.

The Thread-Local tool records the creator thread of each memory location as the shadow data for

that location. When the location is accessed, the TL tool checks if the accessor thread is the same

as the creator thread, and if so, does nothing. When a memory location is accessed by a different

thread, the tool advances the memory location to the next tool in the tool chain. The Read-Shared

tool filters out warnings for read-shared data by verifying that accesses to the instrumented memory

locations are only reads. When a write occurs, the memory location is advanced to the next tool.

The use of these filters poses a risk of unsoundness, since the next tool’s shadow data is not initialized

until the memory location is advanced. This means that if using the TL tool, it is possible that the

first access by a different thread constitutes a race with the previous access, but the successor tool

would lack the necessary information to establish that. The same applies to the first write access to

a memory location when using the RS tool.

The RoadRunner implementation provides a Split tool that passes all events to the two or more tools

in parallel composition. Split tool chains are used to reason access by access about the difference in

behavior of tools on the exact program execution.

4.2 Lockset Handoff Tool Implementation

I implented a HandoffTool class that extends the basic RoadRunner tool class and implements the

Lockset Handoff algorithm. The basic code of the class is given in Figure 4.2, with some impertinent

details abstracted away. The only metadata required for the Lockset Handoff tool is the recorded

lockset for each memory location and thread. This means that memory locations are instrumented

with a LockSet shadow variable. When a new memory location is initialized, the shadow variable is

initialized to the current thread’s lockset in the makeShadowVar method. When a location is accessed,
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// LockSet implementation packaged with RoadRunner
c l a s s LockSet implements ShadowVar {

s t a t i c LockSet empty ( )
LockSet add (ShadowLock lock )
LockSet remove ( ShadowLock lock )
LockSet i n t e r s e c t ( LockSet other )
boolean isEmpty ( )

}

c l a s s HandoffTool extends Tool {

s t a t i c Decoration<ShadowThread , LockSet> l ocksHe ld =
ShadowThread . makeDec ( LockSet . empty ( ) ) ;

void acqu i r e ( AcquireEvent e ) {
Set l s = locksHe ld . get ( e . thread ) ;
l ocksHe ld . s e t ( e . thread , l s . add ( e . l o ck ) ) ;

}

void r e l e a s e ( ReleaseEvent e ) {
LockSet l s = locksHe ld . get ( e . thread ) ;
l ocksHe ld . s e t ( e . thread , l s . remove ( e . l o ck ) ) ;

}

ShadowVar makeShadowVar ( AccessEvent e ) {
r e turn locksHe ld . get ( e . thread ) ;

}

void ac c e s s ( AccessEvent e ) {
LockSet l s = ( LockSet ) e . shadow ;
LockSet cur rent = locksHe ld . get ( e . thread ) ;
LockSet i n t e r = l s . i n t e r s e c t ( cur r ent ) ;
e . putShadow ( i n t e r ) ;
i f ( i n t e r . isEmpty ( ) ) e r r o r ( ) ;

}
}

Figure 4.2: Lockset Handoff Tool Simplified Core Implementation

the tool’s access method is called. The AccessEvent object contains relevant information, such

as the accessor thread and details about the memory location along with its shadow variable. The

HandoffTool class uses that information to implement its core lockset algorithm and report an error

if necessary.

To facilitate performance, HandoffTool uses the optimized lockset implementation packaged with

the Lockset tool RoadRunner. To minimize the number of lockset allocations, the LockSet class

memoizes each created LockSet, maintaining a unique data structures for each unique set of locks.

Similarly to the Lockset tool, HandoffTool also maintains a map from thread to current lockset,

which is set of locks it holds (LocksHeld). On lock release and acquire events, the corresponding

release and acquire methods are called. They update the thread’s locksets accordingly. Upon

allocating a new memory location, the Lockset Handoff tool initializes that location’s shadow data

with the current lockset of the creator thread.
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// Lockset Thread Pair
c l a s s LSThreadID implements ShadowVar {

f i n a l ShadowThread thread ;
f i n a l LockSet l s ;

}

c l a s s LHPHTool extends Tool {

s t a t i c Decoration<ShadowThread , LockSet> l ocksHe ld =
ShadowThread . makeDec ( LockSet . empty ( ) ) ;

void acqu i r e ( AcquireEvent e ) {
Set l s = locksHe ld . get ( e . thread ) ;
l ocksHe ld . s e t ( e . thread , l s . add ( e . l o ck ) ) ;

}

void r e l e a s e ( ReleaseEvent e ) {
LockSet l s = locksHe ld . get ( e . thread ) ;
l ocksHe ld . s e t ( e . thread , l s . remove ( e . l o ck ) ) ;

}

ShadowVar makeShadowVar ( AccessEvent e ) {
r e turn new LSThreadID ( e . thread , locksHe ld . get ( e . thread ) ) ;

}

void ac c e s s ( AccessEvent e ) {
LockSet r e c o rd ed l s = ( ( LockSet ) e . shadow ) . l s ;
ShadowThread recordedThread = ( ( LockSet ) e . shadow ) . l s ;
LockSet c u r r e n t l s = locksHe ld . get ( e . thread ) ;
ShadowThread currentThread = e . thread ;

LockSet i n t e r l s = r e c o rd ed l s . i n t e r s e c t ( c u r r e n t l s ) ;

e . putShadow (new LSThreadID ( currentThread , c u r r e n t l s ) ) ;

i f ( currentThread != recordedThread && i n t e r l s . isEmpty ( ) ) {
e r r o r ( ) ;

}
}

}

Figure 4.3: Lockset Handoff Private Handoff Tool Simplified Core Implementation

4.3 Thread-Aware Lockset Tools Implementation

I also implemented five Tool extension classes corresponding to each of the Thread-Aware Lockset

algorithms. The implementation details for all five of the tools are almost identical, with the excep-

tion of the access method. As an example, the code for Lockset Handoff Private Handoff (LH-PH)

tool is given below.

The Thread-Aware Lockset tools need to track both lockset and thread metadata. Therefore, I im-

plemented an LSThreadID class that extends ShadowVar and contains a ShadowThread and LockSet

object. When a memory location is initiated and makeShadowVar is called, a new LSThreadID object

is created that contains the creator thread’s ShadowThread and currently held LockSet. On access

events, the object is updated as required by the respective algorithm, and errors are reported as
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necessary. ShadowThread objects are once again associated with a lockset that is updated on lock

release and acquire events.

4.3.1 Optimizations

To minimize the number of LSThreadID allocations, each ShadowThread is associated with a map

from LockSet to LSThreadID containing that thread/lockset pair. When the shadow variable

LSThreadID for a memory location needs to be updated, the tool first checks if an LSThreadID

instance for the lockset and thread ID already exists, and if so, uses the unique object representa-

tion of the pair. Otherwise, the tool creates a new object and puts it in the map for future use.

This means that the tool maintains a unique LSThreadID instance of each lockset and thread ID

combination throughout program execution. The map uses weak references, so that if a lockset and

thread ID combination is not being used as the shadow variable for any memory location, it may be

collected by the garbage collector.
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Evaluation

To evaluate the precision and performance of the Lockset Handoff and Thread-Aware Lockset tools,

I conducted a series of experiments that measure the number of errors reported and the run-time

slowdown incurred by each tool for a set of benchmarks. In order to characterize the difference in the

type of errors reported by each tool, I also performed detailed case studies on two benchmarks. This

section describes the setup of the experiments (Section 5.1) and discusses the precision (Section 5.2)

and performance (Section 5.3) results, and presents the findings of the case studies (Section 5.4).

5.1 Experimental Setup

We conducted the experiments on a machine running the Ubuntu 16.04 LTS distribution with Linux

kernel version 4.4.0 on 2 × 18-core Intel Xeon E5-2695 v4 CPUs at 2.1GHz with simultaneous

multithreading disabled and 256GB of RAM. The tools were implemented using RoadRunner v0.4

[13] and executed with OpenJDK 1.8.0 121 and OpenJDK Hotspot 64-Bit Server VM.

To test the tools’ precision and performance, I used benchmarks from the DaCapo [17] benchmark

suite. Each benchmark was run under RoadRunner with each of the tools, as well as Eraser [9] and

FastTrack [8] for baseline comparison. The recorded results for each configuration are the average

of 10 experimental runs.

We ran experiments on the following benchmarks from version 9.10 of the DaCapo suite:

• avrora: simulates AVR microcontrollers

• eclipse: performance tests for the Eclipse IDE

• fop: parses and formats it XSL-FO file to a PDF file

37
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• h2 and h2small: a model of a banking application executing transactions

• jython: a Python interpreter written in Java

• luindex and lusearch: indexing and search of a corpus of text documents

• pmd: analyzes a set of Java classes for source code problems

• sunflow: renders a set of images using ray tracing

• xalan: transforms XML documents into HTML

Other benchmarks from the suite were omitted because of RoadRunner compatibility or execution

issues.

5.2 Precision Evaluation

We evaluated the precision of the tools in two different ways. We ran each tool with each benchmark

individually, and recorded the average number of errors reported over 10 runs, with the maximum

number of warnings for each field or array declaration set to 100. This is the default RoadRunner

setting, and increasing the maximum number of warnings results in significant slowdowns due to the

added overhead of the error reporting mechanism. We present the observations from 10 executions.

We also include runs with the Thread-Local (TL) and Read-Shared (RS) filters for Lockset, since

they are part of the full Eraser algorithm. The memory locations for which errors are reported vary

slightly between executions due to the fact that the tools perform dynamic analysis, the precision

and soundness of which is limited to the current program execution, and are actually unsound if

prefixed by the TL and RS filters as discussed in Sections 2.4.1.1 and 4.1.1. We present the results of

the experiment in Table 5.1. The number of errors shown for each tool and benchmark is the average

across the observed runs. There was very little variation between the runs, and the minimum and

maximum number of errors reported by each tool for each benchmark were within 5% of the average.

To gain a better understanding of the precision and soundness of the tools, I ran each benchmark with

FastTrack (FT) [8], Lockset prefixed with the Thread-Local and Read-Shared filters (TL:RS:LS),

Lockset Handoff (LH), and the Thread-Aware Lockset (TAL) tools in a single execution, using the

split tool described Section 4.1.1. For each tool, I recorded the set of fields on which errors were

reported. We focused on errors for instance and static fields only because array access errors are

reported by the line at which the access occurred. Therefore, it is much harder to meaningfully

reason about whether two tools reported errors for the same array, since they could have reported

them at different points of program execution. Since FastTrack is both precise and sound, I used

the errors reported by it as a baseline. To find the number of true errors reported by a tool for a

benchmark, I calculated the size of the intersection between the sets of errors FastTrack reports and

the set of errors reported by the tool under evaluation. To calculate the number of false errors, I



5.2 Precision Evaluation 39

LockSet Analysis Thread-Aware LocksetAnalysis
FT

LS TL:LS TL:RS:LS LH LI-PS LH-PS LI-PR LI-PH LH-PH

avrora 25833 10073 2732 25185 4619 4614 4224 4224 4213 300

eclipse 639789 124555 37537 620079 77854 76973 73265 72560 72519 702

fop 150999 0 0 150690 0 0 0 0 0 0

h2 52451 10200 1054 49333 11099 10428 8415 8420 8279 961

h2small 46357 9107 1052 42404 8249 7487 6008 6055 5981 431

jython 157323 148 4 156338 40 39 38 38 38 30

luindex 39639 232 9 37196 94 92 53 53 52 1

lusearch 38185 2381 0 38005 2469 2469 2370 2370 2371 901

pmd 83629 6777 120 83143 7718 7716 7685 7667 7594 2081

sunflow 37340 17902 400 35910 18720 18710 18255 18273 18185 690

xalan 48154 18438 2400 47588 18572 18473 18330 18335 18180 400

Table 5.1: Average number of errors reported by each tool for each benchmark, with the maxi-
mum number of warnings per memory location set to 100.

found the size of the non-symmetric set difference between the errors reported by the tool and the

errors reported by FT. To calculate the number of missed errors, I found the size of the set difference

between the errors reported by FT and the errors reported by the tool, since any error reported by

FastTrack is a true error. The results of this experiment are recorded in Table 5.2. For each tool

and benchmark, I present the number of true errors (which is the number of errors that both the

tool and FastTrack reported), the number of false errors (which is the number of errors the tool

reported but FastTrack did not), and the number of missed errors (which is the number of errors

that FastTrack reported but the tool did not).

The Lockset Handoff (LH) tool reports the same number of errors on average as Lockset (LS), so the

modification in the lockset recording algorithm does not seem to make a significant difference to the

results. The benchmarks tested did not rely solely on the synchronization patterns that LH tracks.

They use other types of synchronization, or have thread-local and read-shared data, in addition to

any locking discipline they follow. Thus, the Lockset Handoff pattern by itself is not sufficient to

capture the pattern of all memory location accesses, even if they are safe, which was an expected

result given the natural limitations of the algorithm.

All of the Thread-Aware Lockset (TAL) tools report fewer errors on average than both Lockset

and Lockset Handoff do, which indicates an improvement in precision. Furthermore, the results

from Table 5.2 demonstrate that the Thread-Aware Lockset tools are sound, as they do not miss

any errors. The difference in precision varies across benchmarks, but the tools show an average

improvement of 82% fewer false errors reported compared to Lockset. In some benchmarks, such as

avrora and xalan, the Thread-Aware Lockset tools do report many fewer errors than LS, they still do
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TL:RS:LS LH LI-PS LH-PS LI-PR LI-PH LH-PH

avrora

true 3 3 3 3 3 3 3

false 34 310 94 93 93 92 92

missed 0 0 0 0 0 0 0

eclipse

true 14 21 21 21 21 21 21

false 301 4282 1127 1094 1080 1044 1044

missed 7 0 0 0 0 0 0

fop

true 0 0 0 0 0 0 0

false 0 1599 0 0 0 0 0

missed 0 0 0 0 0 0 0

h2

true 1 1 1 1 1 1 1

false 3 430 109 102 82 82 82

missed 0 0 0 0 0 0 0

h2small

true 1 1 1 1 1 1 1

false 3 429 107 100 81 81 81

missed 0 0 0 0 0 0 0

jython

true 3 21 21 21 21 21 21

false 0 969 5 5 4 4 4

missed 18 0 0 0 0 0 0

luindex

true 1 1 1 1 1 1 1

false 1 506 31 31 16 16 16

missed 0 0 0 0 0 0 0

lusearch

true 0 0 0 0 0 0 0

false 0 346 25 25 24 24 24

missed 0 0 0 0 0 0 0

pmd

true 2 18 18 18 18 18 18

false 0 760 17 17 16 16 16

missed 16 0 0 0 0 0 0

sunflow

true 3 5 5 5 5 5 5

false 1 281 129 129 125 125 125

missed 2 0 0 0 0 0 0

xalan

true 1 6 6 6 6 6 6

false 12 491 147 146 147 146 146

missed 5 0 0 0 0 0 0

Table 5.2: The number of memory locations for which each tool reported true and false errors,
and the number of missed errors for each tool and benchmark.
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not compete with FastTrack’s precision levels. For example, in avrora the TAL tools eliminate 82%

of the false errors reported LS, but still report more than 14 times the number of errors reported by

FastTrack. On benchmarks such as jython and lusearch, the number of errors reported by each of

the TAL tools is comparable to that reported by FastTrack, and is a 99% improvement in precision

over the Eraser and LH tools.

The full Eraser algorithm, which consists of the TL:RS:LS tool, reports significantly fewer errors

than any of the Thread-Aware Lockset tools for all benchmarks (excluding fop, which has no shared

data). The results in Table 5.2 also show that the tool allows actual errors to pass unreported. There

are benchmarks such as avrora and lusearch for which the tool does not miss any errors, there are

others such as pmd and jython for which the tool misses a significant portion of the errors reported

by FastTrack. In contrast, the Thread-Aware Lockset tools report many false errors but they never

miss an actual data race and report all true errors as well.

The fact that all of the Thread-Aware Lockset tool variations report almost the same number of

errors is consistent with the small difference in errors reported by Lockset and Lockset Handoff, since

the lockset-recording procedure does not have a significant impact on precision in practice. These

results indicate that tracking the thread accessing a memory location is more useful for filtering

unnecessary data race checks, while modifying the lockset algorithm to record the current lockset

rather than the intersection of the recorded and current lockset has little effect on the precision of

the tools for these applications This is not surprising because a lot of program data is thread-local,

or becomes local to a single thread after being initialized by a main thread. It is possible that the

recording style of Lockset Handoff makes a difference over LS only when combined with the Private

Handoff analysis. However, this is probably rare and would be hard to measure in practice.

The improvement in precision is also due to the fact that even if data is shared by two or more threads

without synchronization, the TAL tools report an error only on the first access by a different thread.

All subsequent accesses by the same thread are considered safe, and no error is reported for them.

Thus, volume of errors reported for each memory location is decreased. Furthermore, while there

are cases in which LI-PS reports more false alarms than the other TAL variations, the comparable

precision of all these tools would suggest that patterns of reprivatization at the end of data lifetime

are relatively more common compared to intermittent thread-locality.

5.3 Performance Evaluation

To evaluate performance, I conducted a series of experiments that recorded the average running time

of each benchmark instrumented with each tool. Figure 5.1 and Table 5.3 show the performance

experiment results. We present the average slowdown of each tool for each benchmark, normalized

to the benchmark’s native runtime.



42 Chapter 5. Evaluation

LockSet Analysis Thread-Aware LocksetAnalysis
FT

LS TL:LS TL:RS:LS LH LI-PS LH-PS LI-PR LI-PH LH-PH

avrora 3.3 3.3 3.2 3.3 7.1 7.0 7.8 7.0 7.6 4.0

eclipse 13.2 12.5 12.3 13.2 16.1 16.6 17.2 16.4 16.3 14.8

fop 8.4 4.8 4.8 8.4 5.5 5.6 5.4 5.4 5.4 5.8

h2 13.9 12.6 11.2 13.4 19.0 18.1 18.8 18.4 18.2 13.8

h2small 13.7 11.5 11.1 13.2 19.0 19.4 19.8 17.7 18.3 13.5

jython 7.7 6.5 6.4 7.7 7.9 8.0 8.1 8.0 7.9 7.5

luindex 7.8 5.7 5.7 7.7 11.9 11.7 12.2 11.3 11.8 9.0

lusearch 6.7 6.2 6.2 6.7 8.7 8.4 7.6 7.9 7.3 7.6

pmd 7.7 6.9 6.3 7.7 7.8 7.7 7.9 7.5 7.6 8.0

sunflow 10.1 9.0 8.3 10.3 15.9 16.9 15.5 16.6 15.1 11.7

xalan 8.0 5.6 7.9 6.4 7.7 6.1 9.1 6.0 6.1 6.7

Table 5.3: Average run time slowdown incurred by each tool for each benchmark normalized to
the benchmark’s native performance, with the maximum number of warnings per memory location
set to 100.

The Lockset Handoff tool’s performance is comparable to that of Lockset, which is expected given

the similarity in their logic and implementation. Both tools record the same type of metadata and

perform very similar computations in the instrumented code. They also both used the memoized

lockset implementation described in Section 4.3.

The series of Thread-Aware Lockset (TAL) tools all perform comparably to each other, but on

average incur a slowdown of 1.17 times that of Lockset. For some of the benchmarks, the tools

incur a significant slowdown compared to Lockset and FastTrack. This is most evident in avrora,

on which the Thread-Aware Lockset tools incur a slowdown of as much as 7 times relative to the

benchmark’s native performance. This is more than twice the slowdown of Lockset and FastTrack

incur on the same benchmark. Other benchmarks for which TAL tools perform significantly worse

than the simple LockSet tools are eclipse, h2, h2small, and luindex. On all of these, the TAL tools

incur a slowdown that is 1.3-1.5 times that of LS and FT.

The Thread-Aware Lockset tools perform as well as or better than Lockset on several of the bench-

marks. This is most notable in fop, for which the TAL tools have a 36% improvement in performance

compared to LS. This is due to the fact that the fop application performs no thread-sharing of data.

A similar result is shown in jython, which has very little shared data. This is likely due to the

fact that the Thread-Aware Lockset tools report significantly fewer errors for these benchmarks,

and error reporting is expensive in RoadRunner. For xalan, lusearch and pmd, the performance is

mostly comparable across all of the tested tools, while precision on these benchmarks is significantly

improved over Lockset’s precision.
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5.4 Case Studies

To better understand the types of synchronization and program execution patterns that the Thread-

Aware Lockset algorithm tools capture, I examined the errors reported by different tools for avrora

and xalan. We chose these benchmarks because the tools’ comparative behavior is different for these

two benchmarks, and it was possible to find the source code of each of them. Since Lockset Handoff

Private Handoff is the most precise of the tools, I used that tool in the analysis. We used the

errors reported by Eraser as a baseline for the false positive errors that Lockset Handoff Private

Handoff eliminated. Similarly, I used FastTrack as a precision baseline, with the assumption that

any error reported by FastTrack is a true data race. We also ran the tools with combinations of the

Thread-Local (TL) and Read-Shared (RS) filters described in Section 4.1.1 to determine how much

improvement the augmented Thread-Aware Lockset analysis provides over the full Eraser algorithm,

including its use of Thread-Local and Read-Shared filtering. This allows us to reason about what the

more sophisticated thread-local tracking contributes over the simple Thread-Local filter in Eraser.

We ran the case study experiments using the Split tool (Section 4.1.1), which runs the tools in

parallel in the same execution. This makes it possible to reason about the exact difference in

behavior between the tools. We ran the experiment with a maximum of 1 warning reported for each

field or array declaration. With this setting, each tool can report a maximum of one error for each

unique memory declaration before it stops tracking it. This is different from reporting a maximum

of one warning per memory location, as it is possible that different instances of the same object all

have a data race on a specific field, but only the first such instance would be reported. This allowed

us to better distinguish between the unique memory declarations for which errors are reported by

each tool. To gain an understanding for the total number of errors reported by each tool, I ran the

same experiments with a maximum of 100 warnings for each memory location, which is the default

RoadRunner configuration. The experiments also included filtering by the Thread-Local and Read-

Shared tools. The ‘:’ notation used between tools means that the tools are used in succession as

filters (Section 4.1.1). For example, ‘TL:LH-PH’ means that the LH-PH tool was preceded by the

Thread-Local prefix filter, and ‘TL:RS:LH-PH’ means that the LH-PH tool was preceded by the TL

filter followed by the RS filter.

5.4.1 Avrora

The avrora benchmarks simulates programs run on a grid of AVR microcontrollers. It exhibits various

data sharing patterns, and relies on primarily locks as its explicit synchronization mechanism. The

average number of errors observed from the avrora case study experiments are recorded in Table 5.4.
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Number of errors reported

Tool 1 Warning per Field 100 Warnings per Field

FastTrack 3 300

TL:RS:LH-PH 3 300

TL:RS:LS 37 2800

TL:LH-PH 39 2500

TL:LS 120 10000

LH-PH 134 4212

LS 657 25800

Table 5.4: Average number of errors reported for avrora by each tool with the specified maximum
number of warnings.

5.4.1.1 True Data Races

To understand the behavior of each tool, it is necessary to examine the true data races in the pro-

gram, which are the three unique errors reported by FastTrack. They occur on the lastBit field in

avrora/sim/radio/Medium$Transmission class, and the Pr and Pn fields of the avrora/sim/radio/

Medium class. The error on the lastBit field stems from the fact that the field is guarded by a lock,

but inconsistently. Most uses of the fields are protected by the lock guarding the Medium object

the Transmission belongs to. However, when a thread writes to the field in the end method of the

Transmission class, it is accessed without lock synchronization. Tracing through the call hierarchy

of the end method shows that the method itself is also invoked without synchronization. Thus, the

write access to the lastBit in that method is in fact a data race.

The two other fields for which data races are reported, Pn and Pr, are both in the Method class

and get used in the same pattern. They are modified in the isChannelClear method of the

Receiver class and in the deliverByte method of the Ticker class, which is internal to the

avrora/sim/radio/Medium$Receiver class, in which they are accessed without synchronization.

This means that there is in fact a data race for both of these locations, which all the tools correctly

detect.

5.4.1.2 False Positive Errors

The tools report errors on sets of memory locations that mostly overlap, but are not identical.

TL:RS:LH-PH, which is the LH-PH tool prefixed by the Thread-Local and Read-Shared filters,

reports exactly the three actual errors in the program. this suggests that the remaining memory

locations for which errors are reported by the other tools are either thread-local or read-shared, and

thus data race free.
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It is interesting to observe that the TL:LH-PH combination reports significantly fewer errors than

LH-PH alone. The cause of this difference in error counts is the transition between tools in Road-

Runner’s tool chain. The Thread-Local filter only advances a memory location if it is accessed by a

thread other than the one that initialized it, as described in Section 4.1.1. This means that it filters

out all the accesses by the creator thread. The first access for which the successor tool starts track-

ing is the first access by a different thread, at which point the metadata for the memory location is

initialized. Therefore, if a memory location is initialized in the main program thread, and then that

object is only ever accessed by a single other thread, the TL filter would prevent the LH-PH tool

from reporting an error for that memory location, even if there is a true data race. Although this

can be a potential source of unsoundness in the tool’s implementation, this did not cause missed

data races in practice in the observed executions of avrora. This is evidenced by the fact that in

each experiment, FT and TL:RS:LH-PH reported the same errors, so all accesses filtered out by the

TL prefix to the LH-PH tool were in fact safe.

The avrora application has many memory locations that follow such a pattern. For example, the

nesting field in the avrora/sim/util/TransactionalList class is initialized when the object is

created in the main thread, but the instance is then only accessed by a different thread forked after

its initialization. The forking of the second thread establishes a happens-before edge between the

initialization in the main thread and all subsequent access by the second thread. FastTrack detects

the fork and does not report an error for the location. LH-PH does report an error, because it does

not track fork and join behavior, but TL:LH-PH does not report an error. This is due to the fact

that applying the Thread-Local filter means that LH-PH only tracks the accesses beginning with the

second thread. However, since the new thread both reads from and writes to the field, the TL:RS

filter is not enough to prevent Lockset from reporting an error for that field. There are 34 other

fields in avrora that have the same behavior, and for which TL:RS:LS incorrectly reports an error,

but TL:LH-PH does not.

5.4.2 Xalan

Xalan transforms XML documents into html format. The conducted studies show that it exhibits

synchronization and data access patterns distinct from those of avrora, but it still contains a lot of

thread-local and read-shared data. The average number of errors observed from the xalan case study

experiments are recorded in Table 5.5.

5.4.2.1 True Data Races

Unlike in avrora, where FastTrack consistently reported the same three data races, the results for

xalan exhibit more variance in terms of the errors reported. Across executions FastTrack reported an

average of 13 errors, but there were executions with as few as 9 and as many as 19 errors reported.
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Number of errors reported

Tool 1 Warning per Field 100 Warnings per Field

FastTrack 13 384

TL:RS:LH-PH 13 1300

TL:RS:LS 13 1300

TL:LH-PH 160 16000

TL:LS 160 16200

LH-PH 185 18184

LS 803 48152

Table 5.5: Average number of errors reported for xalan by each tool with the specified maximum
number of warnings.

We picked a sample execution for which FastTrack reports 13 errors, which are the declarations it

reports most commonly across all executions. As an example, three of these errors come from the

org/apache/xml/serializer/CharInfo class. The onlyQuotAmpLtGt, m, and firstWordNotUsed

fields of the CharInfo class are all accessed in the mutableCopyOf method of the class without

synchronization. Errors on these memory locations are reported by FastTrack in all executions.

Most of the other errors reported by FT are also in the org/apache/xml/serializer package.

5.4.2.2 False Positive and Missed Errors

Compared to their precision for avrora, the Thread-Aware Lockset tools provide less improvement

over Lockset on xalan. Even though LH-PH reduces the number of errors reported by 4 times

compared to LS, it still reports significantly more errors than FT. This is due to the fact xalan has

a lot of data that is read-shared, and LH-PH is not able to detect that pattern. For example, the

m defaultRule field in the org/apache/xalan/templates/StylesheetRoot class is a read-shared

field. It is only initialized once in the StylesheetRoot constructor, and then only accessed through

the getDefaultRule method. After initialization, only reads occur to this default template.

The other commonly occurring sharing pattern is thread-local data that is initialized in the main

thread and then only ever accessed by a single other thread forked from the main thread. The

m firstWalker field in the org/apache/xpath/axes/WalkingInterator class is an example of such

a field. It is initialized in the main thread, and then only accessed by a single other thread throughout

the rest of program execution. FastTrack detects the happens-before edge introduced by forking the

second thread, but the Lockset Handoff Private Handoff and Lockset tools’ analyses cannot detect

it, thus they both report a false error for that field.

However, running both LS and LH-PH with the Thread-Local and Read-Shared filters poses another

problem: it makes the analysis of the successor tools unsound, as discussed in Section 2.4.1.1. Even
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though FastTrack, TL:RS:LH-PH and TL:RS:LS all report errors on 13 unique memory locations,

the locations reported by TL:RS:LH-PH and TL:RS:LS are different from the ones reported by FT.

Since FastTrack is both sound and precise, this means that it reports only true data races, and

thus any errors reported by FT but not by the other tools are races missed by TL:RS:LS. This

is due to the unsound filtering by TL and RS. For example, TL:RS:LS report none of the fields

discussed in the previous section (onlyQuotAmpLtGt, m, and firstWordNotUsed). This example

of unsoundness illustrates the compromise that the filtered Lockset algorithm makes to improve

precision. In contrast, even though the Thread-Aware Lockset tools do not achieve the improved

precision levels of TL:RS:LS, they never fail to report a true data race.

5.5 Discussion

Results from the precision experiments show that tracking thread information can improve precision

significantly over the basic lockset algorithm. However, this improvement is dependent upon the

type of access pattern that the program exhibits. If most of the data is indeed shared, or even

read-shared, thread tracking does not provide significant benefits. Nonetheless, since applications

commonly use at least some, and often a large amount of, thread-local data, the Thread-Aware

Lockset tools improve the precision of lockset-based data race detection by an average of 82%, and

as much as 99% for some benchmarks. These precision results are comparable, and in some cases

better, to that of the canonical thread-local filtering optimization for Lockset. However, while the

Thread-Local filter allows unsound transitions that result in the missed data races, the TAL tools

are completely sound.

While the Thread-Aware Lockset tools offer significant benefits over Lockset, they are naturally

limited in their precision, as they do not track synchronization other than locksets and thread

locality. Furthermore, they do not target read-shared data accesses, which is a common pattern in

many application. This means that they cannot achieve the levels of precision that FastTrack and

other non-lockset based dynamic data race detection tools can.

The Thread-Aware Lockset tools can incur a moderate performance slowdown compared to other

dynamic tools. This is partially due to the fact that they need to record more information that leads

to more expensive computations and allocations for each memory access. The average slowdown

relative to Lockset is 17%. For all benchmark, the Thread-Aware Lockset tools are no more than 2×
slower than Lockset. Furthermore, on four benchmarks the performance of the Thread-Aware Lock-

set tools is competitive with that of Lockset and FastTrack, and sometimes even better, especially

if the majority of data in the program is thread-local.

Overall, the Thread-Aware Lockset tools offer a sound alternative to the Thread-Local filter for

Lockset. These tools provide significant precision gains at little cost to run-time performance.
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Future Work

6.1 Read-Sharing Analysis

Currently, the Thread-Aware Lockset tools do not recognize patterns of execution in which data is

read-shared. Recognizing such patterns as safe could lead to significant increases in precision, as

read-shared data is common. Tools such as Eraser’s Read-Shared filter capture read-shared patterns,

but introduce unsoundness when transitioning from the read-shared state to the next state. Other

tools, such as FastTrack and GoldiLocks, record enough program information to recognize when

data is read-shared and free of data races. It is possible there exists an intermediate solution

between the two approaches that can improve the precision of the Thread-Aware Lockset tools

without compromising their soundness, and without the need to track all of the additional data that

FastTrack and GoldiLocks do. An example of such a solution is implementing an approach analogous

to the Read-Shared filter, but as a suffix rather than a prefix. This could be used similarly to the way

in which the Lockset Intersection Private Suffix and Lockset Handoff Private Suffix can correctly

detect thread locality at the end of a datum’s shared lifetime.

However, such a Read-Shared extension would have to address the tradeoffs between soundness and

precision as well. While the Eraser Read-Shared filter is unsound because there is no way to know

the exact point in program execution when data transitions from read-shared to shared-modified,

any Read-Shared suffix tool would need to decide when to transition data from shared-modified to

read-shared. The two simple approaches to this decision fall on either end of the precision-soundness

dichotomy. We can guarantee soundness by declaring any write after the first write to a memory

location an error, forcing all data to be read-shared. That would be far too imprecise. It is possible

to track only the previous write and read, and allow any new read access that does not conflict

with the previous write, as well as any new write access that does not conflict with the previous

read. This would be imprecise because it could miss reads that occurred after the previous write but
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before the previous read, and were in a data race with the current write. The limitations of both of

these approaches are apparent. Future work in this area should explore the tradeoffs in this type of

analysis.

6.2 Thread-Aware Lockset Optimizations

The implementation of the Thread-Aware Lockset tools evaluated in this work incurs a significant run

time overhead for some benchmarks. Even though I optimized the memory allocations necessary

by maintaining memoized instances of previous thread-lockset pairs, the table lookup operations

required to access those instances also contribute to the slower performance. More detailed profiling

of the number of allocations and table lookups would be a good first step in improving the run-

time performance of the tools. It is possible to implement the thread-lockset pair objects in a way

that allows each memory location to be associated with a single mutable lockset-thread instance

throughout its lifetime. Although that would require additional synchronization when mutating the

fields of the instance, it may prove to be less computationally expensive expensive and thus improve

run time performance. Advances in this area have the potential to bring Thread-Aware Lockset

performance closer to that of Lockset and FastTrack.

6.3 Combined Analysis

Even though there is little published research in the area, work has been done to profile the types of

locking behavior programs follow. Preliminary results indicate that programs usually use relatively

few locksets overall, the locksets are relatively small, typically one lock ([18]). The profiling work

shows that it is possible to predict the lockset that a memory location will have ahead of time. This

could save the time and space overhead of maintaining the lockset by replacing it with a cheap pre-

diction verification step in most cases. The predictive power might make it possible to know exactly

when thread-locality matters, which can mitigate the performance overhead typically incurred by

the algorithm, leading to performance optimizations. Eventually, the combined predictive analysis

may lead to a sound, more precise, and faster lockset-based data race detection algorithm that might

compete with or beat FastTrack.
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Conclusion

This work developed a series of Thread-Aware Lockset algorithms that combine thread-local and

lockset-based dynamic data race detection analysis to improve the precision and soundness of existing

lockset tools. The algorithms can detect thread-local patterns of data sharing without compromising

the soundness of their analysis. This is an important improvement over the existing approaches to

thread-local filtering for lockset tools.

To evaluate the precision and performance of the algorithms, I implemented them for multithreaded

Java programs. The evaluation indicates that the presence of thread-tracking information leads to

a significant improvement in precision for most target applications. The most precise tool achieves

an average improvement in precision of 82% over purely lockset-based algorithms. The significant

precision improvements of the Thread-Aware Lockset tools come at a run-time slowdown of only

17% over the best lockset-based dynamic data race detection tools.

The performance and precision of the tools do not yet compete with that of vector-clock based algo-

rithms like FastTrack, but the tools offer a fully sound and significantly more precise alternative to

the standard lockset algorithms at little additional performance cost. Overall, thread-local analysis

provides a non-trivial improvement in the precision of lockset-based data race detection. Combined

with other possible optimizations described in Section 6.3, this can eventually lead to significant

improvements to all aspects of lockset-based data race detection.
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