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FUNCTORIAL CW-APPROXIMATION

PHILIP S. HIRSCHHORN

Abstract. The usual construction of a CW-approximation is functorial up
to homotopy, but it is not functorial. In this note, we construct a functorial
CW-approximation. Our construction takes inclusions of subspaces into in-
clusions of subcomplexes, and commutes with intersections of subspaces of a
fixed space.
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1. Introduction

A CW-approximation to a topological space B is a CW-complex B̃ together

with a weak equivalence B̃ → B. The usual construction of a CW-approximation
is functorial up to homotopy, but it is not functorial. In this note, we construct a
functorial CW-approximation. Our construction takes inclusions of subspaces into
inclusions of subcomplexes (see Theorem 2.4), and commutes with intersections of
subspaces of a fixed space (see Theorem 2.5).

We construct a CW-approximation to a space using a construction that functor-

ially factors a map A → B as A → B̃ → B where A → B̃ is a relative CW-complex
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2 PHILIP S. HIRSCHHORN

and B̃ → B is a weak equivalence; applying this to the map ∅ → B produces a

CW-approximation B̃ → B to B.
We actually define two such factorizations. The first is for arbitrary maps A → B

(see Theorem 2.1). If A is a nonempty CW-complex, though, then the relative

CW-complex A → B̃ that it produces will not, in general, be the inclusion of a
subcomplex. Thus, we construct a different functorial factorization in Theorem 2.2

for maps A → B in which A is a CW-complex; in the factorization A → B̃ → B

that it produces, the relative CW-complex A → B̃ is the inclusion of a subcomplex.
We show in Theorem 2.4 that if the factorization of Theorem 2.1 is used to

construct a functorial CW-approximation (by factoring the maps with domain the
empty space), then this construction turns an inclusion of a subspace into an in-

clusion of a subcomplex, i.e., if B is a subspace of B′, then B̃ is a subcomplex of

B̃′. Thus, it defines a functorial CW-approximation for pairs, triads, etc. We also
show that this operation commutes with taking intersections of subspaces of a fixed
space (see Theorem 2.5).

2. The main theorems

2.1. The first factorization.

Theorem 2.1. Every map f : A → B has a functorial factorization A
j
−→ B̃

p
−→ B

such that j is a relative CW-complex and p is a weak equivalence.

To obtain a CW-approximation B̃ → B to a space B, you apply the factorization
of Theorem 2.1 to the map ∅ → B. We show in Theorem 2.4 that if B is a subspace

of B′ then the map B̃ → B̃′ is the inclusion of a subcomplex, and we show in
Theorem 2.5 that this operation commutes with taking intersections of subspaces
of a fixed space.

The outline of the proof of Theorem 2.1 follows that of the standard construction
of a CW-approximation, but instead of choosing maps of spheres that represent
elements of homotopy groups to be killed by attaching disks, we attach disks using
all possible such maps. Thus, we attach many more cells than are required, but the
result is that our construction is functorial.

This construction is a cross between the usual construction of a functorial-only-
up-to-homotopy CW-approximation to a space and the small object argument used
to factorize maps in model categories ([1, Prop. 10.5.16]). The standard small
object argument would produce a factorization into a relative cell complex (in
which the attaching maps of cells do not, in general, factor through a subspace of
lower dimensional cells) followed by a map that is both a weak equivalence and
a fibration; our construction produces a relative CW-complex followed by a weak
equivalence. The proof of Theorem 2.1 is in Section 3.

2.2. The second factorization. If the space A is nonempty, then even if it is a

CW-complex, the space B̃ produced by Theorem 2.1 will not generally be a CW-

complex, because there is no restriction on how the cells attached to construct B̃
out of A meet the cells of A. Thus, we will also prove the following theorem.

Theorem 2.2. Every map f : A → B such that A is a CW-complex has a functorial

factorization A
j
−→ B̃

p
−→ B such that j is the inclusion of a subcomplex of a CW-

complex and p is a weak equivalence, where “functorial” means that it is natural



FUNCTORIAL CW-APPROXIMATION 3

with respect to diagrams

A
f

//

��

A′

��

B
g

// B′

in which f : A → A′ is a cellular map of CW-complexes.

Theorem 2.2 can also be used to obtain a functorial CW-approximation to a
space B by applying it to the map ∅ → B, but we show in Proposition 2.3 that this
produces the same result as using Theorem 2.1.

The proof of Theorem 2.2 is in Section 4.

Proposition 2.3. If B̃ → B is the CW-approximation to B obtained by applying

the factorization of Theorem 2.1 to ∅ → B and B̂ → B is the CW-approximation
to B obtained by applying the factorization of Theorem 2.2 to ∅ → B, then there

is a natural isomorphism B̂ → B̃ that makes the diagram

B̂

''❖
❖❖

❖❖
❖

��
B

B̃

77♦♦♦♦♦♦

commute.

The proof of Proposition 2.3 is in Section 5.

2.3. Relative CW-approximation. The constructions of Theorem 2.1 and The-
orem 2.2 can be used to create relative CW-approximations.

Theorem 2.4. If (B′, B) is a pair of spaces (i.e., if B is a subspace of the space
B′) then in the commutative square

B̃
f̃

//

��

B̃′

��

B
f

// B′

obtained by applying the factorization of Theorem 2.1 to the maps ∅ → B and

∅ → B′, the map f̃ : B̃ → B̃′ is an inclusion of a subcomplex.

Thus, Theorem 2.1 creates relative CW-approximations for pairs, triads, etc.
Alternatively, given a pair (B′, B), one could apply Theorem 2.2 to the map ∅ → B

to obtain B̃ → B and then apply Theorem 2.2 to the composition B̃ → B → B′ to

obtain B̃′ → B′, and B̃ would be a subcomplex of B̃′. The proof of Theorem 2.4 is
in Section 6.

Theorem 2.5 (CW-approximation commutes with intersections). If X is a space,
let CW(X) denote the CW-complex obtained by applying the factorization of The-
orem 2.1 to the map ∅ → X . If X is a space, S is a set, and for every element s
of S we have a subspace Xs of X , then each CW(Xs) is a subcomplex of CW(X),
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and ⋂

s∈S

CW(Xs) = CW
(⋂

s∈S

Xs

)
.

The proof of Theorem 2.5 is in Section 7.

3. The proof Theorem 2.1

We construct the factorization in Section 3.1, show that the map B̃ → B is a
weak equivalence in Section 3.2, and show that the construction is functorial in
Section 3.3.

3.1. The construction. We will construct a sequence of spaces

A = A−1
//

��

A0
//

zz✉✉
✉
✉✉
✉
✉✉
✉
✉

A1
//

uu❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

· · ·

B

that map to B and then let B̃ = colimn An. Each An for n ≥ 0 will be constructed
from An−1 by attaching n-cells in such a way that the map An → B is n-connected
(see Notation 3.1). Since spheres and disks are compact, any map from a sphere

or disk to colimn An will factor through some An, and so we will have πiB̃ =

colimn πiAn for all i ≥ 0, and the map B̃ → B will be a weak equivalence.
We begin by letting A−1 = A, and then defining

A0 = A−1 ∐
( ∐

D0→B

D0
)

.

That is, we let A0 be the coproduct of A−1 with a single point for each map of a
point to B; this maps to B by taking the D0 indexed by a map D0 → B to B by
that indexing map.

To construct A1 we construct the pushout

∐

Map(S0,A0)×Map(S0,B)Map(D1,B)

S0 //

��

A0

��

��

A1

��∐

Map(S0,A0)×Map(S0,B)Map(D1,B)

D1

99

// B

where Map(S0, A0)×Map(S0,B) Map(D1, B) is the set of commutative squares

S0 //

��

A0

��

D1 // B .

That is, for every such square we attach a 1-cell to A0, and we use the bottom
horizontal map of that square to map that attached 1-cell to B.
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If n > 1 and we have constructed An−1 along with it’s map to B, we construct
An by constructing the pushout

∐

Map(Sn−1,An−1)×Map(Sn−1,B)Map(Dn,B)

Sn−1 //

��

An−1

��

��

An

��∐

Map(Sn−1,An−1)×Map(Sn−1,B)Map(Dn,B)

Dn

77

// B

where Map(Sn−1, An−1)×Map(Sn−1,B)Map(Dn, B) is the set of commutative squares

Sn−1 //

��

An−1

��

Dn // B .

That is, for every such square we attach an n-cell to An−1, and we use the bottom
horizontal map of that square to map that attached n-cell to B.

To complete the construction we let B̃ = colimn An, and the map A → B̃ is

clearly a relative CW-complex. We show that the map B̃ → B is a weak equivalence
in Section 3.2, and we show that the construction is natural in Section 3.3.

3.2. The homotopy groups of the spaces in the construction.

Notation 3.1. If f : X → Y is a map and n ≥ 0, then we will say that f is n-
connected if

• the set of path components of X maps onto the set of path components of
Y , and

• for every choice of basepoint in X the induced map of homotopy groups
(for i > 0) or sets (for i = 0) πi(X) → πi(Y ) is an isomorphism for i < n
and an epimorphism for i = n.

Lemma 3.2. For each n ≥ 0 the map An → B is n-connected.

Proof. We will show inductively on n that the map An → B is n-connected.
The space A0 was constructed to map onto B, and so the map A0 → B is

0-connected
The space A1 was constructed by attaching 1-cells to A0 that connected any pair

of points in A0 whose images were in the same path component of B; thus, the set
of path components of A1 maps isomorphically to the set of path components of
B. In addition, a loop was wedged at every point of A0 for every loop in B at the
image of that point; thus, for every basepoint of A1, the fundamental group of A1

maps epimorphically onto the fundamental group of B. Thus, the map A1 → B is
1-connected.

Suppose now that n > 1 and that the map An−1 → B is (n−1)-connected. Since
An is constructed from An−1 by attaching n-cells, for every choice of basepoint we
have πi(An−1) ≈ πi(An) for i < n− 1 and πn−1(An) is a quotient of πn−1(An−1).
For every map α : Sn−1 → An−1 such that the composition with An−1 → B is

nullhomotopic, we’ve attached an n-cell, and so the composition Sn−1 α
−→ An−1 →
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An is nullhomotopic. Thus, πn−1(An) → πn−1(B) is an isomorphism for every
choice of basepoint. In addition, for every map β : Dn/Sn−1 → B for which the
image of the collapsed Sn−1 is in the image of An−1 → B, we’ve wedged on a copy
of Dn/Sn−1 to An−1 and mapped it to B using β, and so πn(An) → πn(B) is
surjective for every choice of basepoint. Thus, the map An → B is n-connected.
This completes the induction. �

We now let B̃ = colimn An. Since spheres and disks are compact, every map
from a sphere or disk to colimn An factors through some An, and so we have

colimn πiAn ≈ πiB̃ for i ≥ 0. Since the map πiAn → πiB is an isomorphism

for n > i, the map πiB̃ → πiB is an isomorphism for i ≥ 0, and so the map B̃ → B
is a weak equivalence.

3.3. The functoriality of the construction. We will now show that the con-
struction of Section 3.1 is functorial, i.e., that if we have a commutative square

A
f

//

��

A′

��

B
g

// B′

and we apply the construction of Section 3.1 to A → B to obtain A → B̃ → B and

to A′ → B′ to obtain A′ → B̃′ → B′, then there is a natural commutative diagram

A
f

//

��

A′

��

B̃
g̃

//

��

B̃′

��

B
g

// B′ .

We define g̃ by defining fn : An → A′

n inductively on the constructions of B̃ and

B̃′.
To begin, we have

A0 = A−1 ∐
( ∐

D0→B

D0
)

and A′

0 = A′

−1 ∐
( ∐

D0→B′

D0
)

and we define f0 : A0 → A′

0 by sending the copy of D0 indexed by α : D0 → B to
the copy of D0 indexed by g ◦ α : D0 → B′.

For the inductive step, suppose that n > 0 and that we’ve defined fn−1 : An−1 →

A′

n−1. The space An is constructed by attaching an n-cell to An−1 for each com-
mutative square

Sn−1 α
//

��

An−1

��

Dn

β
// B
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We take the cell attached to An−1 by the map α to the cell attached to A′

n−1 by
the map fn−1 ◦ α indexed by the outer commutative rectangle

Sn−1 α
//

��

An−1

��

fn−1
// A′

n−1

��

Dn

β
// B

g
// B′

Doing that for each n-cell attached to An−1 defines fn : An → A′

n.

That completes the induction, and we let g̃ : B̃ → B̃′ be colimn fn.

4. The proof of Theorem 2.2

We construct the factorization in Section 4.1, show that the map B̃ → B is a
weak equivalence in Section 4.2, and show that the construction is functorial in
Section 4.3.

4.1. The construction. We use a modification of the construction of Section 3.1.
We construct A0 exactly as in Section 3.1, but when n > 0 and we are constructing
An out of An−1, we attach only the n-cells indexed by commutative squares

Sn−1 α
//

��

An−1

��

Dn

β
// B

for which α : Sn−1 → An−1 is a cellular map.

4.2. The homotopy groups of the spaces in the construction.

Lemma 4.1. For each n ≥ 0 the map An → B is n-connected.

Proof. We will show inductively on n that the map An → B is n-connected.
The space A0 was constructed to map onto B, and so the map A0 → B is

0-connected.
The space A1 was constructed by attaching 1-cells to A0 that connected any pair

of vertices in A0 whose images were in the same path component of B; since every
path component of A0 contains at least one vertex, the set of path components
of A1 maps isomorphically to the set of path components of B. In addition, a
loop was wedged at every vertex of A0 for every loop in B at the image of that
vertex; since every path component of B contains the image of a vertex of A0, for
every basepoint of A1 the fundamental group of A1 maps epimorphically onto the
fundamental group of B. Thus, the map A1 → B is 1-connected.

Suppose now that n > 1 and that the map An−1 → B is (n−1)-connected. Since
An is constructed from An−1 by attaching n-cells, for every choice of basepoint we
have πi(An−1) ≈ πi(An) for i < n− 1 and πn−1(An) is a quotient of πn−1(An−1).
For every cellular map α : Sn−1 → An−1 such that the composition with An−1 → B

is nullhomotopic, we’ve attached an n-cell, and so the composition Sn−1 α
−→ An−1 →

An is nullhomotopic. Since every map Sn−1 → An−1 is homotopic to a cellular map,
πn−1(An) → πn−1(B) is an isomorphism for every choice of basepoint. In addition,
for every map β : Dn/Sn−1 → B for which the image of the collapsed Sn−1 is in the
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image of a vertex of An−1, we’ve wedged on a copy of Dn/Sn−1 to that vertex of
An−1 and mapped it to B using β; since every path component of B is in the image
of a vertex of An−1, πn(An) → πn(B) is surjective for every choice of basepoint.
Thus, the map An → B is n-connected. This completes the induction. �

We now let B̃ = colimn An. Since spheres and disks are compact, every map
from a sphere or disk to colimn An factors through some An, and so we have

colimn πiAn ≈ πiB̃ for i ≥ 0. Since the map πiAn → πiB is an isomorphism

for n > i, the map πiB̃ → πiB is an isomorphism for i ≥ 0, and so the map B̃ → B
is a weak equivalence.

4.3. The functoriality of the construction. We will now show that the con-
struction of Section 4.1 is functorial, i.e., that if we have a commutative square

A
f

//

��

A′

��

B
g

// B′

in which f : A → A′ is a cellular map and we apply the construction of Section 4.1

to A → B to obtain A → B̃ → B and to A′ → B′ to obtain A′ → B̃′ → B′, then
there is a natural commutative diagram

A
f

//

��

A′

��

B̃
g̃

//

��

B̃′

��

B
g

// B′ .

We define g̃ by defining fn : An → A′

n inductively on the constructions of B̃ and

B̃′. Since each fn : An → A′

n is a cellular map, the composition of a cellular map
α : Sn−1 → A′

n with fn−1 : An−1 → A′

n−1 is also cellular, and so we have an induced

map fn : An → A′

n. Thus, the induction goes through, and we let g̃ : B̃ → B̃′ be
colimn fn.

5. Proof of Proposition 2.3

Since we are factorizing the map ∅ → B, in the sequence A−1 → A0 → A1 → · · ·

whose colimit is B̃ (see Section 3.1) the space A−1 is empty. Thus, for each n ≥ 0
the space An is an n-dimensional CW-complex, and so every map Sn → An is a
cellular map. Thus, the sequence constructed in Section 4.1 is exactly the same as
the sequence constructed in Section 3.1, and so their colimits are the same.
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6. Proof of Theorem 2.4

We will show by induction that in the diagram

∅ = A−1
// A0

//

��

A1
//

��

A2
//

��

· · ·

∅ = A′

−1
// A′

0
// A′

1
// A′

2
// · · ·

used to construct B̃ → B̃′, each map An → A′

n is an inclusion of a subcomplex.
The induction is begun because A0 has one point for every point of B and A′

0 has
one point for every point of B′.

Now assume that n > 0 and that An−1 → A′

n−1 is an inclusion of a subcomplex.
Since the map B → B′ is also an inclusion, the set of n-cells to be attached to An−1

is a subset of the set of n-cells to be attached to A′

n−1, and so An → A′

n will also
be an inclusion of a subcomplex.

7. The proof of Theorem 2.5

Let XS = ∩s∈SXs.

• Let ∅ = A−1 → A0 → A1 → · · · be the sequence created in the proof of
Theorem 2.1 whose colimit is CW(X),

• let ∅ = AS
−1 → AS

0 → AS
1 → · · · be the sequence created in the proof of

Theorem 2.1 whose colimit is CW(XS), and
• for each s ∈ S let ∅ = As

−1 → As
0 → As

1 → · · · be the sequence created in
the proof of Theorem 2.1 whose colimit is CW(Xs).

The proof of Theorem 2.4 shows that AS
n and As

n are subcomplexes of An for all
s ∈ S and n ≥ 0; we will show by induction that AS

n = ∩s∈SA
s
n for all n ≥ 0.

Since AS
0 is discrete with one point for each point of XS and for all s ∈ S the

space As
0 is discrete with one point for each point of Xs, we have AS

0 = ∩s∈SA
s
0.

Assume now that n > 0 and AS
n−1 = ∩s∈SA

s
n−1. The space AS

n is constructed

by attaching an n-cell to AS
n−1 for each commutative square

Sn−1 //

��

AS
n−1 = ∩s∈SA

s
n−1

��

Dn // XS = ∩s∈SXs

Since the maps AS
n−1 → As

n−1 and XS → Xs are inclusions for all s ∈ S, each such

n-cell corresponds to a unique n-cell in ∩s∈SA
s
n, i.e., the map AS

n → ∩s∈SA
s
n is an

injection.
To see that the map AS

n → ∩s∈SA
s
n is a surjection, let

Sn−1 αs
//

��

As
n−1

��

Dn

βs

// Xs





for every s ∈ S

index n-cells of the As
n that together define an n-cell of ∩s∈SA

s
n. Since the maps

As
n−1 → An−1 and Xs → X are all inclusions, the compositions Sn−1 αs

−→ As
n−1 →
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An−1 are all equal and the compositions Dn βs
−→ Xs → X are all equal, and the

diagram

Sn−1 αs
//

��

As
n−1

// An−1

��

Dn

βs

// Xs
// X

(for any s ∈ S; the upper and lower compositions are all the same) indexes an n-cell
that was attached to An−1 when creating An. Since the upper composition factors
uniquely through ∩s∈SA

s
n−1 and the lower composition factors uniquely through

XS = ∩s∈SXs, those factorizations index an n-cell that was attached to AS
n−1 when

creating AS
n , and that n-cell maps to our n-cell of ∩s∈SA

s
n.
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