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Nuclear receptor coactivators: Regulators of steroid action in
brain and behavior

Marc J. Tetel and Kalpana D. Acharya
Neuroscience Program, Wellesley College, 106 Central St., Wellesley, MA 02481

Abstract
Steroid hormones act in specific regions of the brain to alter behavior and physiology. While it has
been well established that the bioavailability of the steroid and the expression of its receptor is
critical to understanding steroid action in brain, the importance of nuclear receptor coactivators in
brain is becoming more apparent. This review will focus on the function of the p160 family of
coactivators, which includes steroid receptor coactivator-1 (SRC-1), SRC-2 and SRC-3, in steroid
receptor action in brain. The expression, regulation and function of these coactivators in steroid-
dependent gene expression in brain and behavior will be discussed.

Keywords
steroid receptor coactivator-1 (SRC-1/NcoA-1); SRC-2 (GRIP1/TIF2/NCoA-2); androgen
receptor; estrogen receptor; progestin receptor; sex behavior; hypothalamus; steroid hormones

Introduction
Steroid hormones act in the brain to profoundly influence behavior and physiology. These
hormones elicit many of their biological effects by binding to their respective receptors,
which are members of the steroid/nuclear receptor superfamily of transcriptional activators.
Receptors for estrogens (ER), progestins (PR) and androgens (AR) can act in a classic
genomic mechanism of action by binding directly to target DNA to alter transcription (1). In
addition, these receptors can act in a rapid, non-classical manner that involve receptors
located at the membrane that activate intracellular signaling pathways in brain (2-7) In the
classic genomic mechanism of action, nuclear receptor coregulators enhance (coactivators)
or repress (corepressors) the transcriptional activity of steroid receptors. Over 350
coregulators have been identified to function with the large superfamily of nuclear receptors
(8). The knowledge of the function of these coregulators in behavior, physiology and disease
is growing rapidly. This review will focus on the role of the p160 steroid receptor
coactivator family in the classic genomic mechanism of ER and PR action in brain and the
regulation of behavior.

Genomic mechanisms of ER and PR action
ER and PR, as well as other steroid receptors, have a modular domain structure consisting of
a highly variable amino-terminal region (N-domain), a conserved central DNA binding
domain (DBD) and a carboxy-terminal ligand binding domain (LBD) (1, 9). In general,
steroid receptors have two transcriptional activation domains in the amino (AF-1) and
carboxyl (AF-2) termini (10). Intracellular ER are expressed as two subtypes, α and β, which
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are transcribed from different genes (11, 12). These subtypes differ in their abilities to bind
different ligands and regulate transcription (13, 14), distribution in brain (15-18), and
regulation of behavior (19-23). In addition, there are ER splice variants (24-26) that bind
differentially with coactivators (27) and may provide another level of regulation. In most
species, PR are expressed in two forms; the full-length PR-B and the N-terminally truncated
PR-A, which are encoded by the same gene but are under the regulation of alternate
promoters and internal translation start sites (28, 29). Under certain cell and promoter
contexts, human PR-B is a stronger transcriptional activator than PR-A (30-32) and PR-A
can repress the transcriptional activity of PR-B. These differences are most likely due to an
additional AF domain in the N-terminus of PR-B (33) and a transcriptional inhibitory region
that has been identified in PR-A (32, 34), respectively. In further support of these
differences in PR-A and PR-B, these two PR isoforms appear to have distinct functions in
reproductive behavior and physiology (35, 36).

In the classic, ligand-dependent, genomic mechanism of action of ER, PR and other steroid
receptors are complexed with several chaperone molecules, including heat shock proteins
(hsp), in the absence of hormone. Upon binding hormone, receptors undergo a
conformational change that causes dissociation of hsp and allow receptors to dimerize (37).
Activated receptors bind directly to specific steroid response elements (SRE) and SRE-like
sequences in the promoter regions of target genes (1, 9). Binding of receptors to DNA
increases or decreases gene transcription by altering the rate of recruitment of general
transcription factors and influencing the recruitment of RNA polymerase II to the initiation
site (38, 39). It is generally thought that estrogens and progestins can act in brain via their
respective receptors to alter neuronal gene transcription in a fashion similar to that described
above, resulting in profound changes in behavior and physiology (4, 40, 41).

Nuclear receptor coregulators
Coregulators consist of coactivators and corepressors that are required for efficient
transcriptional regulation by nuclear receptors (8, 42). Corepressors and their complexes
associate with nuclear receptors when unliganded or bound to antagonists and serve to
repress nuclear receptor transcription by recruiting corepressor complexes to the cis-active
elements in the promoter and enhancers of target genes (42). Nuclear receptor coactivators,
which are the focus of this review, dramatically enhance the transcriptional activity of ER
and PR, as well as other nuclear receptors, by acting as bridging molecules between the
receptor and the general transcription machinery and modifying chromatin within the
promoter and enhancer regions by histone acetylation, methylation and phosphorylation (42,
43). Under most conditions, steroid receptors interact with coactivators in the presence of an
agonist, but not in the absence of ligand or in the presence of an antagonist or a selective
receptor modulator (44-47) but c.f. (48-50). In vitro studies indicate that recruitment of
nuclear receptor coactivators is rate-limiting in steroid receptor-mediated gene transcription
(42, 51). In further support of the importance of nuclear receptor coactivators in steroid-
dependent transcription in vitro, squelching, or the repression of the transcriptional activity
of one steroid receptor by another, is reversed by the addition of coactivators (44). Thus, a
critical component of efficient steroid dependent transcription is the recruitment by receptors
of nuclear receptor coactivators to the complex (8, 42). Finally, the significance of both
coactivators and corepressors in a variety of diseases, including hormone-dependent cancer
and some neurological disorders, is becoming more apparent (8).

The p160 steroid receptor coactivator family
The steroid receptor coactivator (SRC) family of p160 proteins consists of SRC-1 (NcoA-1),
SRC-2 (GRIP1/TIF2/NCoA-2) and SRC-3 (AIB1/TRAM-1/ ACTR/RAC3/pCIP). Nuclear
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receptor coactivators, including the SRC coactivator family, share a general set of
characteristics. The SRC family of coactivators physically interacts with steroid receptors,
including ER, PR, AR and receptors for glucocorticoids (GR), in a ligand-dependent manner
(43). The SRCs physically interact with agonist-bound receptors through centrally-located
multiple LXXLL motifs (L, leucine; X, any amino acid) that make up nuclear receptor
boxes. The SRCs and other coactivators do not bind DNA and thus distinguish them from
traditional transcription factors. The C-terminus of the SRCs contains two activation
domains: AD-1 and AD-2. The N-terminus contains a third activation domain (AD-3) and a
basic helix loop helix-Per Arnt Sims (bHLH-PAS) motif, which is the most conserved
domain within this family of proteins. The activation domains interact with secondary
coactivators known as co-coactivators (43). These co-coactivators modify chromatin to
facilitate binding of regulatory proteins and general transcription factors.

The p160 steroid receptor coactivator family in reproductive physiology
and behavior
Expression and regulation in brain

Sex steroids, including estrogens, progestins and androgens, are required for brain
development and reproductive behavior in rodents and birds. Therefore, both rodents and
birds have been excellent models for studying coactivator function in brain. In male and
female rodents, SRC-1 mRNA and protein are expressed at high levels in the cortex,
hippocampus, cerebellum and hypothalamus (52-58, 59: Bian, 2011 #5215). In addition, the
SRC-1 isoform, full length SRC-1a, is found in high levels in the rodent hypothalamus,
whereas levels of the C-terminally truncated SRC-1e are higher in the nucleus accumbens,
thalamus, and amygdala (54). Recently, this SRC-1a:SRC-1e ratio has been shifted in the
central nucleus of the amygdala using antisense targeting the SRC-1e isoform, which may
prove valuable in studying the functions of these SRC isoforms in brain (60). Expression of
SRC-1 in the female rat brain appears to decline as the animal ages, suggesting a loss of
steroid sensitivity (61). SRC-2 is highly expressed throughout the hippocampus, amygdala
and hypothalamus, including the medial preoptic area (MPOA), ventral medial nucleus
(VMN), arcuate nucleus (ARC), bed nucleus of the stria terminalis, supraoptic nucleus and
suprachiasmatic nucleus (58, 62-64). While it is not known if a sex difference exists, SRC-3
is expressed predominantly in the hippocampus and very sparsely in the hypothalamus in
both male and female rodents (58, 64).

The avian brain provides an excellent model for studying steroid action since singing and
non-singing birds respond to steroids. Songbirds have a specific group of interconnected
nuclei called the song control system that are required for singing and are sexually
dimorphic and steroid-sensitive (65). . In the songbird zebra finch, AR and ER are expressed
in the song control nuclei from early post-hatching ages (66-68). Injection of 17β-estradiol
in early post-hatching females masculinizes the song system and makes the females capable
of singing as adults (69-72). While the organizational effects of estrogens are limited to
early development in zebra finches, in other songbirds, such as canaries, manipulation of
these hormones during adulthood affects the size of song nuclei and song (73). In quail, a
non-singing bird, steroids regulate both appetitive and consummatory (copulatory) male
sexual behavior (74, 75). (76, 77)In males, AR and ER are expressed in the medial preoptic
nucleus (POM) of quail and are required for both aspects of sexual behavior (74, 78).
Members of the p160 family of steroid receptor coactivators, SRC-1 and SRC-2, are
expressed in both songbirds and non-singing birds. SRC-1 mRNA is expressed as early as
post-hatching day one (P1) in the telencephalon of zebra finches, and in the song control
nuclei and hypothalami of adult canaries and zebra finches (79, 80). Interestingly, SRC-1
mRNA and protein show a male-biased expression in the song nucleus HVC of adult
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canaries and zebra finches, respectively (79, 80). In the quail brain, SRC-1 is expressed in
the steroid sensitive areas, including the POM and bed nucleus of stria terminalis (79).
Similar to SRC-1, quail POM expresses SRC-2 protein in a level that is similar in males and
females (81).

In order for coactivators to function with steroid receptors, they must be expressed in the
same cells. Estradiol-priming dramatically increases the expression of PR in a variety of
rodent brain regions, including the MPOA, VMN, ARC and the midbrain central gray
(82-87). We found that SRC-1 and SRC-2 are expressed in the majority of estradiol-induced
PR cells in regions involved in female reproduction, including the VMN, MPOA and ARC
in rats and mice (62, 88, 89). Given that virtually all estradiol-induced PR cells in the
hypothalamus contain ERα (84, 85), these findings suggest that these coexpressing cells
represent functional sites of interaction between steroid receptors and coactivators in brain
(62, 88, 89). In further support, SRC-1 was found to be expressed in estrogen-sensitive
proopiomelanocortin and steroidogenic factor-1 neurons in the arcuate nucleus and VMH,
respectively (90).

It is thought that coactivators are modulators of cellular responsiveness to steroids. In
support, SRC-1 knockout mice, while fertile, have decreased responsiveness in progestin
target tissues (91) and partial resistance to thyroid hormone (92). It is important to note that
in these mice SRC-2 is up-regulated in steroid sensitive tissues, including brain and testes,
suggesting that increased expression of SRC-2 compensates for the loss of SRC-1 (91).
Therefore, studying the regulation of coactivator expression is essential to understanding
hormone action in brain. A number of studies indicate that hormones can regulate
coactivator expression in rodent and bird brain. In rodents, SRC-1 is expressed in a sexually
dimorphic manner in the pituitary gland, with males having higher mRNA (52) and protein
(93) levels than females. In further support, male rodents have higher levels of SRC-1 than
females in a number of brain regions, including the dorsomedial hypothalamus,
ventromedial hypothalamus (VMH) and paraventricular nucleus (94). Ovariectomy
decreases SRC-1 expression in the VMH, while estradiol reverses this effect (95). In the
hypothalamus of cycling female rats, SRC-1 levels were lowest during diestrus, and highest
at proestrus and estrus, suggesting that ovarian hormones up-regulate SRC-1 (96). In
contrast, ovariectomy did not alter SRC-1 levels in the hippocampus, suggesting that ovarian
hormones do not regulate SRC-1 expression in this brain region (97). Interestingly, the
endocrine disruptor 4-methylbenzylidene camphor (4-MBC), which has estrogenic activity
and impairs the thyroid axis, increases SRC-1 mRNA in the VMH and MPOA of female rats
(98). Exposure of another endocrine disruptor, 3-benzylidene camphor (3-BC), during early
development through adulthood increases SRC-1 mRNA levels in the MPO of both males
and females (99). These effects of 4-MBC and 3-BC on SRC-1 could enhance their
estrogenic effects and alter other nuclear receptor signaling pathways. Testosterone
treatment does not alter SRC-1 expression in the MPOA, BNST, ARC and amygdala of
castrated hamsters (100). However, testosterone decreases SRC-2 expression in
hypothalamus of male rats (63). Finally, thyroid hormone decreases SRC-1 expression in rat
cortex and dentate gyrus (101) and neonatal mouse cerebellum (102). In adult birds,
testosterone increases SRC-1 expression in the quail hypothalamus (103), while
administration of estradiol, testosterone or aromatase inhibitor has no effect on SRC-1
expression in zebra finches (80).

In addition to gonadal steroids, it appears that glucocorticoids and stress can influence
SRC-1 expression. Treatment of male rats with the synthetic glucocorticoid, dexamethasone,
reduces SRC-1 mRNA in brain, but does not affect the other members of the p160 family of
coactivators, SRC-2 and SRC-3 (104). In further support, adrenalectomized male rats
exposed to high levels of corticosterone have decreased SRC-1e mRNA levels in the
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anterior pituitary, but interestingly no changes were detected in the hippocampus (105). In
rats, acute restraint stress decreases SRC-1 expression in the male and female hypothalamus
and male frontal cortex, and increases SRC-1 levels in the male pituitary and the female
hippocampus (93). Taken together, these studies suggest that glucocorticoids and stress may
alter brain function by influencing coactivator expression in a brain region-and sex-specific
manner.

Daylength has profound effects on reproduction and other neuroendocrine events (106). In
male Siberian hamsters exposed to short days, we found reduced SRC-1 expression in the
posteromedial BNST and posterodorsal medial amygdala (100). In addition, SRC-1
expression in the hippocampus, hindbrain and optic lobes change through the day in
Japanese quail (103, 107). Given that both Siberian hamsters and Japanese quail have
seasonal cycles, these findings suggest that this photoperiodic regulation of SRC-1
contributes to androgen regulation of seasonal reproduction.

An increasing number of novel functions are being attributed to the p160 family of
coactivators. For example, SRC-1 is predominantly expressed in neuronal lineage cell lines
during neural stem cell differentiation (108). In addition, this expression of SRC-1 is higher
in mature neurons than immature neurons, suggesting a role for SRC-1 in differentiation of
neural stem cells (108). Further investigation of coactivator expression will be essential to
fully understand their function in hormone action.

In addition to regulation of coactivator expression, functional interaction of coactivators
with receptors can be affected by posttranslational modifications such as phosphorylation,
methylation and acetylation of coactivators (109). For example, SRC-1, SRC-2 and SRC-3
undergo phosphorylation at different sites (110-114) which can alter the conformation,
stability and activity of these proteins (109, 110). Given that these posttranslational
modifications have been studied in cell culture systems, in future studies it will be important
to explore if these modifications occur in brain and impact behavior.

Regulation of steroid-dependent gene expression in brain by coactivators
A classic example of steroid-dependent gene expression is the estradiol-induction of PR in a
variety of estrogen-responsive tissues, including brain, breast and uterus (82-87). Induction
of PR expression by estradiol in the ventromedial hypothalamus is important for steroid-
dependent female sexual behavior in rodents (115). Therefore, we tested the hypothesis that
SRC-1, along with the co-coactivator CBP, are critical in modulating ER-mediated
transactivation of the PR gene in the VMN. Infusions of antisense to SRC-1 and CBP
mRNA into the VMN of adult female rats reduced the expression of ER-mediated activation
of PR gene expression compared to controls (56). These findings extend previous in vitro
studies indicating that SRC-1 and CBP act together to modulate ER and PR function (116,
117). Another study in rodent brain supports these findings of SRC-1 function in ER-
mediated induction of PR in the VMN and extend them to include a role for SRC-2, but not
SRC-3 (64). In a mouse hypothalamic neuronal cell line, ERβ and the ERβ agonist, 3β-diol,
increased oxytocin gene mRNA levels and the occupancy of the oxytocin gene promoter by
SRC-1 and CBP (118). These results suggest that SRC-1 and CBP form a coactivator
complex that regulates oxytocin gene expression (118) and support the findings above that
SRC-1 and CBP function in ER-mediated induction of PR in brain (56).

In male quails, the volume of the POM, a critical brain region in male sexual behavior, and
aromatase expression is increased by testosterone treatment within 14 and 2 days,
respectively (74). Interestingly, knocking down SRC-1 by antisense decreases testosterone-
dependent POM volume and aromatase immunoreactivity in male quails, suggesting a role
for SRC-1 in testosterone-induced changes in brain structure and gene expression in birds
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(119). While not a member of the p160 family of coactivators, another steroid receptor
coactivator, ribosomal protein L7 (RPL7, aka L7/SPA), has been well-studied in bird brain.
RPL7 is part of the ribosomal complex required in transcription and translation (120) and
has been shown to be a coactivator for ERα, PR and vitamin D receptor (121, 122). In the
song system of zebra finches, RPL7 protein shows a greater expression in posthatch day 1
and adult males as compared to females (123). Antisense administration to RPL7 mRNA
increased neuronal death in HVC and Area X, suggesting a role for this coactivator in
neuroprotection (124). Similar effects of reducing RPL7 were observed in neuronal cultures
from posthatch day 1 males and females, with neuronal loss being greater in males as
compared to females. Estradiol treatment prevented the neuronal loss caused by antisense to
RPL7, suggesting that the neuroprotective effects of estradiol are not dependent on ERα in
this model (124, 125).

In further support of a role for the p160 family of coactivators in modulating ER action in
brain, studies have recently been done in human astrocytoma cell lines. Estradiol treatment
increases the number of cells in two (U373 and D54) astrocytoma cell lines (126). This
effect seems to be mediated by ERα, given that the ERα agonist (PPT), but not the ERβ
agonist (DPN), mimicked the effects of estradiol on cell proliferation. Interestingly,
coactivator silencing by RNA interference of SRC-1, but not SRC-3, blocked the PPT-
induced increase in cell number, suggesting that SRC-1 regulates the ERα-mediated
increase in cell number in these astrocytoma cell lines (126). In a related study, progesterone
increases vascular endothelial growth factor expression (VEGF) in this D54 astrocytoma cell
line (127). Silencing of SRC-1 reduced VEGF protein levels following progesterone
treatment, suggesting that SRC-1 is important in modulating the expression of this progestin
sensitive gene (127). Future studies in brain and cell lines will be critical in further
elucidating the function of coactivators in modulating steroid action in brain.

Coactivators modulate steroid-dependent behaviors
Given that nuclear receptor coactivators appear essential for hormone-dependent gene
expression in brain, we tested the hypothesis that coactivators act in brain to modulate the
expression of hormone-dependent behaviors (56, 128). Female rats treated with antisense to
both SRC-1 and CBP mRNA into the VMN showed lower levels of steroid-dependent
lordosis compared to scrambled-treated controls (56). Another study supported these
findings with SRC-1 and extended them to include a role for SRC-2 in hormone-dependent
lordosis (64). In further support of the gene expression studies discussed above, SRC-3 did
not appear to function in brain in steroid-dependent lordosis (64). Given that ERα, and not
ERβ, appears to mediate female sexual behavior in rats (129), these findings suggest that
SRC-1 and SRC-2 are functioning with ERα to elicit these effects on behavior.

One limitation of the behavioral experiments discussed above is that they do not isolate the
effects of coactivators on specific ER-and PR-dependent aspects of female sexual behavior.
Therefore, we designed experiments to ask if coactivators act specifically with ER or PR in
brain to influence behavior in rats (128). To test the hypothesis that coactivators modulate
ER-mediated aspects of female sexual behavior, animals were injected with two slightly
higher doses of estradiol alone which elicits lordosis (41). Antisense to SRC-1 and CBP
infused into the VMN of animals treated with estradiol decreased the frequency and
intensity of lordosis, suggesting that these coactivators modulate ER-mediated aspects of
female sexual behavior (128). To test if coactivators act with PR in brain to influence
behavior, we took advantage of the fact that proceptive behaviors by the female, such as ear-
wiggling and hopping and darting that serve to solicit interaction by the male, are PR-
dependent (130, 131). In this experiment, antisense to SRC-1 and CBP mRNA was infused
into the VMN after priming with estradiol and around the time of progesterone
administration. This timing of coactivator antisense infusion allowed for disruption of PR
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activity, but did not alter induction of PR by estradiol. Females treated with antisense to
coactivators had a reduced frequency of PR-dependent ear-wiggling and hopping and
darting, but not PR-dependent receptivity (128). These findings suggest that reduction of
SRC-1 by antisense disrupted the activity of PR signaling pathway(s) that influence
proceptivity, while alternate PR signaling pathways, that regulate PR-dependent receptivity,
remained intact and functional. Thus, it appears that coactivators function in brain to
modulate both PR- and ER-specific aspects of steroid-dependent female sexual behaviors in
rodents.

Studies in male quails provide further support for a role of SRC-1 and SRC-2 in regulating
behavior. Antisense to SRC-1 in the POM of quail inhibited both AR-and ER-mediated
sexual behavior (132). In quail, strutting and crowing by males as a response towards
females are androgen dependent, while mount attempts, mounts and cloacal contact
movements by the male are estrogen-dependent (76, 77). Testosterone injection induces
these behaviors by directly acting on AR and on ER following the aromatization of
testosterone to estrogens. Antisense to SRC-1 blocked all of these testosterone-mediated
male sexual behaviors, which were reinstated after terminating the antisense treatment (132).
SRC-2 is also required in reproductive behavior as evidenced by a reduction in the size of
the POM as well as a decrease in testosterone-induced male sexual behavior following
SRC-2 antisense injection into the third ventricle (133).

Coactivators from brain associate with ER and PR
As stated above, one of the criteria of nuclear receptor coactivators is that they physically
associate with receptors. To test the hypotheses that members of the p160 family of steroid
receptor coactivators from brain physically associate with ER and PR subtypes in a ligand-
dependent manner, we developed pull-down assays with brain tissue from female rodents.

SRC-1 from rat hypothalamic or hippocampal extracts interacted with Flag-tagged ERα and
ERβ when bound to estradiol, which was confirmed by mass spectrometry (134). Little to no
association of SRC-1 from brain with ERα or ERβ was detected in the absence of ligand or
in the presence of tamoxifen, a selective ER modulator (SERM). These findings suggest that
SRC-1 from brain interact with ER in a ligand-dependent manner and that the SERM
tamoxifen is functioning as an antagonist in this assay to prevent receptor-coactivator
interactions. In further support, the ERα agonist, propyl pyrazole triol (PPT), promoted
physical association between ERα and SRC-1 in the hypothalamus as detected by co-
immunoprecipitation (90). These results support our previous findings that SRC-1 action in
the hypothalamus is important for maximal ER-mediated transactivation of the PR gene and
expression of female sexual behavior (56, 128). SRC-1 may function with both ER subtypes
in the hippocampus to differentially modulate the effects of estrogens on cognition and
stress (19, 23, 135-138). Interestingly, SRC-1 from the hippocampus interacted equally with
ERα and ERβ, while SRC-1 obtained from hypothalamic extracts interacted more with ERα
than with ERβ, suggesting that other cofactors involved in these protein-protein interactions
have different expression patterns in these brain regions. In addition, it is possible that
SRC-1 undergoes distinct post-translational modifications (e.g. phosphorylation) in these
two brain regions, leading to differential interactions with receptors.

Similar to findings with SRC-1 and also confirmed with mass spectrometry, SRC-2 from
hypothalamus or hippocampus interacted with ERα in a ligand-dependent manner (62).
However, in dramatic contrast to SRC-1, SRC-2 from brain showed little to no interactions
with ERβ under any ligand conditions. This weak association of estradiol-bound ERβwith
SRC-2 from brain is in contrast to cell culture studies indicating over-expressed SRC-2
interacts with ERβ (139-142). It is possible that the over-expression of coactivators leads to
altered interactions with receptors and/or the presence of other factors in brain may mediate
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appropriate receptor-coactivator associations. Taken together, these findings suggest it is
important to use biologically-relevant tissue in studying these receptor-coactivator
interactions. Finally, these differential interactions between SRC-2 and ERα and ERβ may
contribute to the functional differences of these ER subtypes in brain (19). In future studies
it will be important to explore the possibilities that coactivators, including the SRCs,
function in non-genomic estrogen signaling pathways in brain.

Interactions between coactivators from brain and the PR isoforms have also been studied.
SRC-1 from rat hypothalamic or hippocampal extracts interacted with both GST-tagged PR-
A and PR-B when bound to the agonist R5020, but not in the absence of ligand or in the
presence of the selective PR modulator (SPRM), RU486 (134). These agonist-dependent
interactions between PR and SRC-1 from brain support our previous work indicating a role
for hypothalamic SRC-1 in PR-dependent female sexual behavior (128) and provide
evidence that SRC-1 may contribute to progestin effects in the hippocampus on memory
(143, 144). Interestingly, we found that SRC-1 from hypothalamus or hippocampus interacts
more with PR-B, than with PR-A. In regard to SRC-2, we found that this coactivator
interacted with PR-B, but not PR-A, in a ligand-dependent manner. Furthermore, cell culture
studies suggest that under certain circumstances, human PR-B is a stronger transcriptional
activator than PR-A (32, 145, 146), likely due to the additional activation function (AF-3) of
PR-B (33, 147). Our findings that these coactivators interact more with PR-B than PR-A are
consistent with some cell culture studies (146) and suggest a mechanism by which PR-B
may be a stronger transcriptional activator than PR-A. However, it should be noted that
while studies using PR-A and PR-B specific knock-outs reveal that both receptors are
important for the full display of progesterone-facilitated lordosis, PR-A has a greater role
than PR-B in ligand-independent lordosis facilitated by the cyclic AMP analogue, 8-bromo-
cAMP (35). We are currently using mouse PR and mouse brain tissue to explore PR-
coactivator interactions. In future studies, it will be important to investigate the function of
the SRCs and other coactivators in ligand-independent activation of PR in rodent brain.
Understanding how nuclear receptor coactivators interact with various steroid receptors, and
their subtypes, is critical to understanding how hormones act in different brain regions to
profoundly influence physiology and behavior. Ultimately, mass spectrometry analyses of
these receptor-coactivator interactions using brain tissue may allow the identification of
novel coregulators involved in the steroid receptor complex in brain.

Conclusions
Following the discovery of the p160 family of coactivators and other nuclear receptor
coactivators, findings from in vitro and cell culture studies revealed much about the function
of coactivators in steroid action. More recently, approaches using animal models and
neuronal cell lines have greatly expanded our knowledge of coactivator function and
enabled us to better understand how these coactivators modulate steroid action in brain and
influence complex behaviors. In addition, our recent receptor-coactivator interaction studies
using rodent brains discussed above point to the significance of using biologically-relevant
tissue in exploring these important interactions. A critical question in neuroendocrinology is
how individual cells respond to steroids and how this responsiveness can change over time
or with experience. The regulation and expression of a large diversity of nuclear receptor
coactivators, including the p160 family of coactivators, provide a mechanism by which
individual cells in specific brain regions can differentially respond to hormones and enable
adjustment of this sensitivity to steroids in response to changes in external stimuli. In
addition, recruitment of different members of the p160 family of coactivators by receptors
may lead to distinct signaling pathways and behaviors (Figure 1). In support, in vitro studies
show that ER recruit either SRC-1 or SRC-2 depending on the estrogen response element
(148). Future research using a variety of animal models, including rodent and bird models,
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will continue to elucidate the function of these important regulatory proteins in behavior,
physiology and disease.
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Figure 1.
Diagram depicting the concept that steroid receptors (SR) recruit different sets of nuclear
receptor coactivators (NRC) to enhance transactivation of distinct target genes and elicit
different behaviors.

Tetel and Acharya Page 18

J Neuroendocrinol. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


	Wellesley College
	Wellesley College Digital Scholarship and Archive
	11-2013

	Nuclear receptor coactivators: Regulators of steroid action in brain and behavior
	Marc J. Tetel
	Kalpana D. Acharya
	Recommended Citation


	tmp.1418135866.pdf.qqSsa

