
Wellesley College
Wellesley College Digital Scholarship and Archive

Honors Thesis Collection

2016

Personalized Air Quality Sensing: A Case Study
Analysis in Singapore
Meredith McCormack-Mager
mmccorm2@wellesley.edu

Follow this and additional works at: https://repository.wellesley.edu/thesiscollection

This Dissertation/Thesis is brought to you for free and open access by Wellesley College Digital Scholarship and Archive. It has been accepted for
inclusion in Honors Thesis Collection by an authorized administrator of Wellesley College Digital Scholarship and Archive. For more information,
please contact ir@wellesley.edu.

Recommended Citation
McCormack-Mager, Meredith, "Personalized Air Quality Sensing: A Case Study Analysis in Singapore" (2016). Honors Thesis
Collection. 357.
https://repository.wellesley.edu/thesiscollection/357

https://repository.wellesley.edu?utm_source=repository.wellesley.edu%2Fthesiscollection%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.wellesley.edu/thesiscollection?utm_source=repository.wellesley.edu%2Fthesiscollection%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.wellesley.edu/thesiscollection?utm_source=repository.wellesley.edu%2Fthesiscollection%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.wellesley.edu/thesiscollection/357?utm_source=repository.wellesley.edu%2Fthesiscollection%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ir@wellesley.edu


WELLESLEY COLLEGE

Personalized Air Quality Sensing:

A Case Study Analysis in Singapore

by

Meredith McCormack-Mager

Submitted in Partial Fulfillment

of the

Prerequisite for Honors

in the Department of Mathematics

Wellesley College

Supervisors: Dr. Marguerite Nyhan, Massachussetts Institute of Technology

Dr. Jonathan Tannenhauser, Wellesley College

May 2016

c©2016 Meredith McCormack-Mager



Department of Mathematics

Wellesley College

for Undergraduate Honors

Abstract

by Meredith McCormack-Mager

Singapore’s current air quality sensing system tracks only background pollution levels

using a handful of stationary sensors, missing localized air pollution information despite

traffic emissions being the top cause of air pollution in the city. A novel approach to

air pollution data collection using personal mobile sensors is analyzed, and is found to

provide additional information about individual exposure to air pollutants. Using de-

scriptive statistics and hypothesis testing, this thesis demonstrates that this personalized

sensing technique detects higher air pollution levels and more variance in air quality in

the Jurong East neighborhood of Singapore, offering a more specific picture of the air

pollution experienced by citizens commuting within the area. Personalized sensing en-

ables additional spatial and temporal analysis, and it is shown using spatial interpolation

and data visualization that inclusion of these factors in air quality analysis gives a more

specific picture of pollution levels in real time. Personalized sensing of air quality thus

contributes highly relevant data about local air pollution levels and personal exposure,

which have great potential to provide real-time, localized air quality predictions that

the Singaporean government and citizens can use to improve their public and personal

health.
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Chapter 1

Introduction

The current approach to air quality data collection in Singapore is limited in the scope

of information it can provide to researchers and citizens. This thesis analyzes a new,

personalized approach to collection of carbon monoxide and nitrogen dioxide pollution

data and discusses the value of this method as an addition to the present approach used

by the Singaporean government.

1.1 Effects of Air Pollution on Human Health

The World Health Organization considers air pollution to be the world’s largest environ-

mental health risk. Poor air quality contributes to higher prevalence of stroke, cancer,

and ischaemic heart disease, and exacerbates the spread of communicable diseases. In

some cases, it even leads to death (WHO, 2014).

In particular, carbon monoxide (CO) exposure can cause a range of health effects. Con-

tinuous low concentrations of carbon monoxide cause negative cardiovascular and neu-

robehavioral effects, while high, acute doses of CO lead to carbon monoxide poisoning.

Carbon monoxide poisoning can result in myocardial impairment and pulmonary edema,

among other disorders (Raub et al. 2000).

Nitrogen dioxide (NO2), on the other hand, does not have any proven negative health

effects in healthy adults, but has been found to weaken lung capacity in asthmatic

children (Smith et al., 2000). Additionally, nitrogen dioxide is a chemical precursor to

more harmful secondary pollutants including nitric acid, ozone, and particulate matter,

which are well documented as having serious negative effects on human health and on

the environment (WHO, 2003).

1
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1.2 Dosimetry Prediction

Pollutants can have varied effects on the human body depending on their concentration

and path of absorption into the bloodstream. The quantification of airborne pollu-

tants entering and settling in the respiratory tract (from which they absorb into the

bloodstream) is referred to as dosimetry, and can be predicted using ambient air quality

information and knowledge of the path of a pollutant in the human airway.1 This path

is determined by multiple factors, which also contribute to whether the pollutant enters

and deposits in the respiratory tract at all. These factors include size, concentration,

and hygroscopicity of the pollutant, as well as the breathing rate of the individual in-

taking the pollutant. The pollutant is either exhaled or deposited into one or more

of the extrathoracic, tracheobronchial, and alveolar regions of the lungs (McCreddin,

2014). The total amount of deposited pollutant is called the lung deposited dose, and

is calculated using the standard International Commission on Radiological Protection

model (ICRP, 1994).

Prediction of the lung deposited dose enables anticipation of negative health effects

and their consequences. On a statistical level, the long term effects of continuous low-

concentration air pollution in individuals can be anticipated from established correlations

between pollutant concentration and heart rate variability, an indicator for cardiac stress

(Nyhan et al 2013). For a government, dosimetry can be important in predicting the

burden on the health care system from air pollutant related illnesses. This knowledge can

then be used to streamline diagnosis and care, as well as to properly allocate resources

towards air pollution abatement and treatment of pollution-associated illnesses.

1.3 Municipal Air Pollution

Although some air pollutants occur naturally, the vast majority of air pollution is a

result of anthropogenic activity (Kampa and Castanas 2008). Nitrogen dioxide (NO2)

results from NOx gases released in the combustion process of motor vehicles. In fact,

nitrogen dioxide is regarded as an indicator of traffic pollution (WHO, 2003). Carbon

monoxide is similarly produced by vehicle emissions, and outdoor concentrations of CO

are highest in congested traffic, industrial areas, and parking garages and tunnels with

poor ventilation (Raub et al. 2000). In megacities, where human concentration is

particularly high, traffic congestion is pervasive, and residential communities sometimes

overlap with industrial areas, there is especial danger of increased air pollution and the

resulting increase in health and economic burdens for the city’s many inhabitants.

1On occasion, dosimetry is used to quantify the effects of an airborne pollutant on a community.
However, in this thesis discussion of dosimetry will be restricted to individuals.
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Figure 1.1: Boxplots emphasizing that the small amount of time individuals spend
in transit each day contributes the most to their total air pollution exposure and thus

total inhaled dose of pollutants.(Figure source: deNazelle et al., 2015)

Among individuals, transport activities contribute the most to variability in air pollution

exposure between people from otherwise similar backgrounds (Dons, Evi, et al., 2011).

A study by DeNazelle et al. in Barcelona, Spain found that commuting accounted for 6

percent of participants’ time and 24 percent of their air pollution exposure (2013, Figure

1.1). This suggests that reevaluating the causes of poor air quality that affect people

during the short period of their day in which they are commuting could have a huge

impact on their overall pollutant exposure, and thus health.
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1.4 Air Pollution in Singapore

Air quality in Singapore is regulated by the National Environmental Agency (NEA),

which records data on carbon monoxide and nitrogen dioxide levels (among other pol-

lutants) throughout the city-state. The NEA relies on fourteen stationary sensors dis-

tributed about the city to report air pollution data every hour on the hour. According to

these sensors, Singapore has better air quality than its neighbors, and consistently meets

the World Health Organization’s international goals for air quality (NEA, 2016). How-

ever, stationary sensing lacks some of the power of personalized sensing in determining

individual air pollution exposure, as discussed in the next section. Instead, stationary

sensing is most useful for detecting background air pollution, namely the delocalized

baseline pollution levels experienced by the whole city as a result of polluting factors

such as haze.2

1.5 Personalized Approach to Air Pollution Monitoring

The rise of mobile phone usage enables real-time, localized spatio-temporal tracking

on a large scale. Coupled with increased big data analysis capability, citizen crowd-

sourcing via passive mobile transmission has great potential to provide comprehensive

environmental data, as proposed by Reis et al. (2015).

Background air pollution sensing establishes helpful context for the general pollution

that a city experiences, but misses the local variance in pollution levels between neigh-

borhoods or even between city blocks. A localized view of air quality includes both

background and specific information about air pollution, and provides greater ammuni-

tion for the discovery of air pollution sources. If those sources can be reliably pinpointed

to an intersection or business, then governments can more effectively construct and en-

force air quality improvement strategies (Heimann et al., 2015).

For individuals, real time data on a local level enables citizens to make real time decisions

about their travel patterns throughout their neighborhoods. This is especially important

in commuting, where it was found using personalized sensing that activity patterns

are significant determinants of personal exposure. The same study also found that

exposure estimates using personalized sensing can be highly different from estimates of

background air pollution and posited that measurements not accounting for mobility

can have elevated error (DeNazelle et al., 2013).

2Singapore experiences a significant amount of haze every summer, when industrial forest fires in
nearby Indonesia send polluting haze drifting over the city-state (Cochrane 2015).
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1.6 Objectives

The overall aim of this study is to determine whether a personalized approach to data

collection and analysis of air quality in Singapore contributes information and under-

standing not registered by the government’s current air quality measurement methodol-

ogy. Additional, specific objectives are as follows:

1. Use computational and data cleaning techniques to prepare government and per-

sonalized sensor data for accurate analysis and comparison (Chapter 3). Due to the

differing natures of the two data collection methods and their recording techniques,

it is critical that the data sets be transformed to be statistically comparable.

2. Using descriptive statistics and data visualization, summarize unique characteris-

tics of personalized sensor data to comprehensively demonstrate the capabilities

of the personalized air quality monitoring approach (Chapter 3). Investigate tem-

poral and spatial characteristics of personalized sensor data that differentiate this

method from the government’s stationary sensing and discuss how these differences

do or do not provide additional actionable information to researchers and citizens.

3. Calculate inhaled dose and lung-deposited dose from carbon monoxide and nitro-

gen dioxide exposure recorded by personalized sensors (Chapter 3). This infor-

mation most directly contributes to predictions of human health effects, and is

therefore useful for discussion of new public health analysis and policies resulting

from localized personal sensor data.

4. Compare government-collected air quality data to personalized sensor-collected air

quality data and determine whether these data sets tell the same story about air

pollution in Singapore (Chapters 4, 5). Using relevant statistical tests and spatial

interpolation techniques, visualize and analyze differences between the two data

sets and discuss the implications of their differences and similarities.

This study finds that the personalized sensor data contribute beneficial additional infor-

mation about air pollution levels in Singapore. The personalized sensor data are higher

and more variant in concentration level than the data registered by the stationary gov-

ernment monitors. Additionally, the spatial tags and granular temporal information

unique to the personalized sensor data enable a more comprehensive perspective of the

pollutant data’s behavior. Ultimately, this thesis concludes that personalized sensors

are an effective tool for use by the Singaporean government and health care system

to estimate localized pollution levels in real time and respond to specific air pollutant

threats effectively.



Chapter 2

Background

This main aim of this chapter is to introduce the two methods of air pollution data

collection under study. This will begin with a discussion of the personalized sensor col-

lection method implemented by researchers from the MIT Airscapes Singapore project,

followed by an overview of the air quality data collection method currently used by the

Singaporean government. Additionally, this chapter reviews, by way of environmental

science background, the process of inhaled air pollution dose calculations. The theory

behind hypothesis testing, specifically permutation testing and Wilcoxon rank-sum test-

ing, is included in Chapter 4 (see also Ramsey and Schafer, 2012), and explanation of

the kriging method for spatial interpolation is provided in Chapter 5.

2.1 Smart Sensors for Environmental and Human Health

Research

The Singapore Airscapes study was organized and conducted by environmental science

researchers at MIT’s Senseable City urban development lab (Nyhan et al., 2015). The

Airscapes project sought to apply a distributed network of moving environmental sensors

(Figure 2.1) in an environmental health research study, as proposed in previous literature

(Reis et al., 2015). This methodology had been used in other urban environmental

research with success (deNazelle et al., 2013). The main objective of the Singapore

Airscapes project (of which this analysis is the final segment) is to determine whether

comparing personalized air pollution exposure information to exposure as monitored

municipally by the National Environment Agency would give meaningful data about

the state of air pollution as experienced by the citizens of Singapore.

6
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Figure 2.1: Still from Airscapes Singapore website depicting the tracing of carbon
monoxide concentration paths on Jurong East. Taller, redder lines express high con-
centration, while shorter, greener lines correspond to low concentration. The square,
blue dots represent the distributed network of sensors moving throughout Jurong East.

2.2 Air Pollutant Exposure Monitoring

This section introduces the distributed network of air quality sensors used by the Airscapes

Singapore research team to collect the personalized data (2.2.1) and the municipal air

quality monitoring strategy used by the Singaporean government to collect the station-

ary, background data (2.2.2), and discusses preprocessing techniques.

Personalized and government air pollution data were collected concurrently in the Jurong

East neighborhood of Singapore during April 2015. The two methods of data collection

differed in frequency of sampling, content sampled, and data preprocessing procedure,

though both collections included carbon monoxide and nitrogen dioxide information

for every sampling time point. Key points about the data collection (including special

attention to the differences between the two methods) are highlighted in this section.

2.2.1 Personalized Sensor Air Quality Monitoring

Eleven portable air quality sensors were used to collect the personalized data set in the

Jurong East neighborhood of Singapore (Figure 2.2) during the period of April 1st, 2015

to April 10th, 2015.

The study used FER Air Quality Sensors (Oletic and Bilas, 2015) to collect the person-

alized readings. The sensors are approximately 1.5in x 3in x 1in and easily clip on to

belts or pockets. They communicated via bluetooth with participants’ cell phones (Fig-

ure 2.3), which pinged the sensors every 20 seconds to request air quality and weather

observations. These observations included the humidity (%), temperature (oC), pressure
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Figure 2.2: This map of Jurong East was given to participants in the study, who were
then directed as to which route they should walk during their data collection period.

(hPa), CO level (µg/m3), and NO2 level (µg/m3) that the sensor was experiencing at

that moment. This data was then uploaded in real time to the research database.

University students from Singapore were recruited to carry the FER air quality sensors

around Jurong East for 2-hour intervals in April 2015. The intervals were split into

morning and afternoon sessions, and since multiple sensors were used, some intervals

overlapped temporally. The participants were given maps of Jurong East (Figure 2.2)

and directed where to walk. Each participant was given a different route in order to

cover as much of the neighborhood as possible in the week-long study.

As a result of this multi-sensor testing, the personalized data was not distributed reg-

ularly over time and space. Additionally, the personalized sensors were deployed in an

area with frequently changing conditions (e.g. traffic changes, appearance and disap-

pearance of smokers).

2.2.2 Government Air Quality Monitoring

The government of Singapore collects data using fourteen static sensors positioned

around the city. The city-state is divided into five monitoring regions: North, South,

East, West, and Central. Jurong East, the neighborhood of Singapore on which the

study focuses, is located in between the West, South, and Central monitoring regions
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Figure 2.3: Participants were given portable sensors (shown right) that transmitted
pollutant concentrations and descriptive air statistics via bluetooth to their cellphones

every 20 seconds.

(Figure 2.4).1 On the Singapore National Environmental Association (NEA) website,

Jurong East is listed as being in the region covered by the West sensor (Figure 2.5).

However, Jurong East is on the edge of the West Region, so for the purposes of this

study, the neighborhood will be considered to be equally distant from the West, South,

and Central sensors. Unlike the personalized data, government monitors are not mobile,

and so experience a more consistent environment.

Each government monitor collects readings of the levels of carbon monoxide, nitrogen

dioxide, sulfur dioxide, and multiple types of particulate pollutants. The carbon monox-

ide (CO) levels were recorded in mg/m3 and the nitrogen dioxide (NO2) levels were

recorded in µg/m3. The NO2 levels were recorded precisely as collected every hour on

the hour, whereas the CO levels were recorded as moving 8-hour averages of CO level

readings and were posted every hour on the hour. This is because the international

WHO standards for recommended maximum carbon monoxide exposure are based on

8-hour averages. For nitrogen dioxide, the standard is based upon hourly readings. In

particular, these targets are a 10 mg/m3 8-hour average (or 30 mg/m3 1-hour average)

for CO and a 200 µg/m3 1-hour average for NO2. The data was collected via screenshots

1PSI is a Singapore-specific metric derived by the NEA that rates a linear combination of pollutant
levels (carbon monoxide, nitrogen dioxide, particulate matter, and others) to determine overall air
quality.
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Figure 2.4: This map (from the Singapore National Environmental Agency website)
indicates the location of the five government monitoring regions. The red star marks
the locations of Jurong East. The PSI readings rate the haze on the day the photo was

taken (31 March 2016).

of the NEA website taken every evening during the time period of April 4-10, 2015. Fig-

ure 2.6 shows one such screenshot from April 4th that includes the CO data from the

first half of that day.

2.3 Inhaled Doses of Air Pollution

Inhaled air pollutant dose analysis provides a more accurate assessment of personal

exposure than simply examining exposure concentrations in the micro-vicinity of the

subjects studied (Nyhan et al, 2014). Using the personalized sensor data, a specific
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Figure 2.5: This table is provided on the NEA website to guide users towards the
sensor that is most appropriate to check for their neighborhood. It lists Jurong East as

being best represented by the West sensor.

Figure 2.6: This screenshot includes the government-collected CO level readings (in
mg/m3) from 1am to 12pm on April 4th, 2015. The displayed values are the 8-hour
averages finishing at the time-point listed at the top of each column and collected at the
location designated by the row. The pertinent values are the ones not in parentheses.
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analysis can be conducted of precisely how much pollution is inhaled by a commuting

individual based on their activity, gender, and localized air pollution reading.

To measure minute ventilation (breathing rate in L/min), this thesis refers to the follow-

ing empirical model developed by Zuurbier, et al. (2011) and later adopted in Nyhan,

et al. (2014):

b = exp(c+m ∗H)

where b is minute ventilation (L/min), H is subject heart rate, c is the equation intercept

(1.03 for males, 0.57 for females), and m is the slope of the equation (0.021 for males,

0.023 for females). Assuming a fixed heart rate, cumulative minute ventilation is based

solely on time exposed. Analysis of a subject’s velocity allows for an assumed heart rate,

which can then be used to calculate new cumulative minute ventilation based on time

and type of activity (either using the above formula or previous data collected about

respiratory rate (McCreddin, 2014), shown in Figure 2.7).

Figure 2.7: This table (from McCreddin, 2014) describes the expected breathing rate
B in m3/h (middle row) of individuals engaged in various activities. Note that in this

case, breathing rate is expressed in units of m3/h.

Using the information depicted in Figure 2.7, one can further calculate inhaled dose (the

amount of pollutant inhaled) as follows:

Inhaled Dose = C ∗B ∗ t
where C is pollutant concentration level (µg/m3), B is breathing rate (L/min), and t is

exposure duration (min).

Lung-deposited dose (the amount of inhaled dose that settles in the lungs) can also

be calculated using the minute ventilate data and the International Commission on

Radiological Protection (ICRP) dosimetry model for inhaled pollutants (ICRP, 1994).

This thesis does not pursue lung-deposited dose analysis, since it does not contribute

to the main comparison analysis, but suggests this analysis for future studies as being

useful for predicting more specifically the health repercussions indicated by personalized

data sensing.



Chapter 3

Descriptive Statistics

While powerful hypothesis testing tools will be used in Chapter 4 to rigorously com-

pare the personalized and government data, much can be learned from basic descriptive

statistics and visualization of both data sets. This chapter introduces data from the

personalized (3.1) and government (3.5) sensors, and highlights their similarities and

differences (3.6). The role of data visualization in statistical analysis is further explored

and the additional challenges of introducing space and time considerations in air qual-

ity research are discussed (3.2). Additionally, the chapter delves more deeply into the

personalized data set to draw conclusions about factors that correlate with air pollu-

tion levels (3.3) and to examine inhaled dose results from the personalized data (3.4).

The overarching aim of Chapter 3 is to demonstrate the potential of personalized sensing

techniques in providing comprehensive information about air quality in Jurong East and

to begin to characterize how the results of these techniques differ from the government

monitor data.

3.1 Introduction to Personalized Sensor Data

Personalized sensor data was collected over the period of April 1st, 2015 through April

10th, 2015. In total, 52 outings were recorded by 11 sensors. Temperature data was

collected in degrees Celsius (oC), pressure in hectopascals (hPa), relative humidity in

percentages (%), NO2 concentration in µg/m3, and CO concentration in µg/m3. Read-

ings of each type were collected every 20 seconds during the outings. Most outings

overlapped with others in time, and some included breaks in the data due either to data

transmission failure or breaks taken by the participants (detailed discussion of the col-

lection process can be found in Section 2.2.1). Parsing and cleaning of the data involved

13
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Figure 3.1: Histograms displaying the distributions of the personalized sensor data.
The top panels demonstrate the distributions of the raw CO (left) and NO2 (right)
data, both of which are right-skewed distributions. The bottom panels indicate that
in fact the CO data follows a log normal distribution and the NO2 data is close to

following a log normal distribution.

some discarding of unusable data (explained in 3.2.1). The final number of readings

included in the analysis was 27,083 for CO and 27,067 for NO2.

Both the NO2 and CO readings collected by the personalized sensors follow right-skewed

distributions (Figure 3.1). The CO data follows a log normal distribution with mean

6.56 and standard deviation 0.53 and the NO2 data closely approximates a log normal

distribution with mean 4.63 and standard deviation 0.72 (note that the NO2 data more

closely follows a square root normal distribution except for a dramatic spike on the left

tail of the distribution, which is why a log normal distribution is nevertheless preferred).

The CO concentration data had mean 813.76 µg/m3 and median 700 µg/m3, with min-

imum value 61 µg/m3 and maximum value 15255 µg/m3. The NO2 concentration data

had mean 117.93 µg/m3 and median 110 µg/m3, with minimum value 0 µg/m3 and

maximum value 1466 µg/m3. These values are all consistent with the assertion that

these data follow right-skewed distributions.
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3.2 Spatio-Temporal Visualization and Analysis

Unlike the government monitor data, the personalized data provide localized details

about the time, latitude, and longitude for which they were collected. These details are

helpful for verifying the data, for visualizing and better understanding the breadth of the

data, and for estimating values for nearby locations. The first two points (verification

and visualization) will be addressed in this section, and the third (estimation) is covered

in Chapter 5.

3.2.1 Time and Location Inconsistencies

In the data cleaning process, inconsistencies arose in both the personalized sensor data

and government monitor data. These issues, and how they were addressed, are discussed

in this section.

Using the spatial and temporal tags associated with each data point, it was determined

that some personalized sensor data collected in the study had not been collected in

Jurong East and should be discarded. Recall that the personalized sensor data was

collected by participants roaming the streets of Jurong East with portable, bluetooth-

enabled air pollution sensors engineered in Zagreb, Croatia (Oletic and Bilas, 2015). In

the initial mapping of the data, it was discovered that some observations in the data

set were geotagged in Croatia rather than Singapore. Checking the timestamps of these

data confirmed that the sensors had not been cleared from the internal sensor logs ahead

of the Airscapes Singapore study, and some of leftover Croatian data were mistakenly

included in the sensor logs. These data were subsequently removed from the data set.

Some data were geotagged as having been collected in Singapore, but outside of Jurong

East. These data were found to have been accidentally collected in transport to and

from the principal researcher’s home and were also discarded. Other data were found

to be geotagged in the South China Sea near Singapore. It is unlikely that any of the

participants went swimming this far off the coast of Singapore during their participation

in the study, so the geotagged locations were mostly likely in error. Since other data

were found to have been collected outside of Jurong East, it could not be guaranteed

that these data had been collected in Jurong East as opposed to Croatia or another area

of Singapore, hence these data were also discarded. Finally, some sensor readings were

geotagged at (0, 0) latitude and longitude, and were categorized as missing location data

(although one cannot omit the possibility that some participants spent their week on a

boat in the Atlantic Ocean). Most missing location data cases occurred at the beginning

of a sensor’s first outing in Singapore, and were likely a result of initial sensor calibration.

Three other cases of missing location data not meeting this criterion were found, in all of
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which the location data was missing for less than 2 minutes between two time intervals of

data for which location information was present. Location interpolation was nontrivial

due to the irregular walking patterns taken by the participants in those particular outings

and the readings with missing values comprised only a very small portion of the data

set, so this data was discarded. The discarding of data was implemented by imposing

time and location boundaries on which data were allowed to be included in the analysis.

The time bounds were April 1st through April 10th, 2015, the latitude bounds were

1.3225 N to 1.3455 N, and the longitude bounds were 103.72 E to 103.75 E.

The government data was guaranteed to have been collected in Singapore, due to the

stationary nature of the sensors, but there did exist a notable error in the time stamps.

The Singaporean National Environmental Agency (NEA) lists the air pollution averages

for the previous hour every hour at a few minutes past the hour. The pollution averages

for that hour remain up for the remainder of the day, and all readings from a previous

day are replaced when the first hour of data is posted for the present day at 1am. Each

night from April 1st to April 5th of 2015, the air pollution levels for the whole day

were screenshotted, usually around 9pm. On the night of April 10th, 2015, however, the

data was screenshotted at 12:25am of April 11th. A bug discovered in the NEA website

caused the data to be listed as the data corresponding to April 11th and initially resulted

in the mislabelling of the April 10th data. Hence, the data initially labelled April 11th

were corrected to be labelled April 10th.

3.2.2 Visualization of Personalized Sensor Data

First, the data are examined with respect to space. Figure 3.2 demonstrates how air

pollution levels within Jurong East depend on location, as some areas of the map are

perennially higher in pollutant levels than others. The map also shows how air quality

levels can vary greatly even in small geographic areas, such as at a particular traffic

intersection.

Second, the data are examined with respect to time. Figure 3.3 displays the air pollution

levels of every sensor outing during the period from 5pm to 7:15pm on April 2nd, 2015,

and demonstrates great variation in the data over time for both CO and NO2. However,

Figure 3.3 also indicates a drawback to visualization of personalized sensing, which is

that observation of too many data stories at once can overwhelm a viewer and lead to

greater confusion. Instead, it is often easier to look at smaller portions of anecdotal ev-

idence or use computational data analysis techniques (Chapters 4, 5) to derive meaning

from the data. Figure 3.4 takes an anecdotal approach to statistics, and demonstrates

that even among outings taken at the same time, there can be great variation in the
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Figure 3.2: Maps of the CO (left) and NO2 (right) levels detected by the personalized
sensors during the study. Darker reds correspond to higher pollution levels, while lighter
yellows correspond to lower pollution levels. Some areas of each map (e.g. the busy
intersection in the top middle of the CO panel) demonstrate higher air pollution levels
in general, while other areas (e.g. the twisting garden paths in the top left of the CO
panel) experience lower pollutant levels in general). The color scales are different for

each panel, and should not be compared.

Figure 3.3: Time series representations of the personalized sensor data collected on
April 2nd, 2015 between 5pm and 7:15pm. The x-axis denotes 24-hour time of day in

hours and the y-axis represents pollutant concentration in µg/m3.

pollution levels experienced by the different participants. In this case, the red sensor

experienced much higher and more variable pollution levels for both CO and NO2 than

were experienced by the yellow sensor. This suggests that some other factor (perhaps ge-

ographical dependence) is at play in determining the air pollution exposure experienced

by citizens of Jurong East.
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Figure 3.4: Time series of two personalized sensors’ readings for the time between
5pm and 7:15pm on April 2nd, 2015. The orange sensor had missing CO data for the
first hour of the sensor outing. Note the higher values and higher variance of the red

sensor compared to the orange sensor for both the CO and NO2 time series.

3.3 Correlated Factors

This study finds no correlation between air pollution and other air attributes such as air

pressure, relative humidity, and temperature (Figures 3.5, 3.6). In fact, linear correlation

coefficients for the relationships between CO or NO2 and temperature, relative humidity,

or pressure are all less than 0.060. Also, no correlation was found between CO and

NO2 (correlation coefficient: 0.028), suggesting that CO and NO2 pollution stem from

different sources. Concurrently extreme concentrations of both pollutants are almost

never found (Figure 3.7), suggesting further that pollution levels are a result of individual

episodes of high pollution of one particular gas (causes of which could be events such as

smoking a cigarette or crossing a busy intersection).

3.4 Pollutant Exposure and Inhaled Doses

Air pollution experienced by individuals can be quantified in a number of ways. This

section focuses in particular on dosimetry results relating to air pollution exposure and

inhaled doses of air pollutants.

Investigation of cumulative exposure over time reaffirms the point made in Section 3.2.2

that participants experienced highly variable pollution levels during their outings. Ad-

ditionally, it demonstrates that some participants were exposed to higher total amounts
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Figure 3.5: Scatterplots demonstrating a lack of correlation between gaseous air pol-
lutants (CO and NO2) and other air characteristics (air pressure and relative humidity).

Figure 3.6: Scatterplots depicting a lack of correlation between gaseous air pollutants
(CO and NO2) and temperature.
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Figure 3.7: Scatterplot demonstrating a lack of correlation between CO level and
NO2 level. For typical readings, the data are distributed in a nonlinear clump and do
not indicate any correlations. For especially high values of either pollutant, the other

pollutant’s concentration tends to remain in the typical range.
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Figure 3.8: Graphs displaying the cumulative inhaled doses (in µg) of CO (left) and
NO2 (right) for a walking female during the first set of outings on April 2nd, 2015.
Each line corresponds to a different outing taken in this period. The highlighted red
and orange cumulative inhaled dose lines correspond to the orange and red exposure

lines in Figure 3.4.
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Figure 3.9: Histograms demonstrating the distribution of inhaled dose per minute
averages for all outings in the Airscapes Singapore study. The collection of CO his-
tograms (left) features the distribution of inhaled CO doses for a running male (red),
walking female (orange), and sitting female (yellow), while the graph of NO2 histograms
(right) includes inhaled NO2 doses for a running female (red), walking male (orange),

and sitting male (yellow). The units for both sets of histograms are µg/min.

of air pollution than others (Figure 3.8). However, exposure information does not suffice

to predict the total amount of air pollution inhaled by a person, which is a truer estimate

of the severity of the health effects that follow air pollutant exposure. As discussed in

Chapter 1, it is for this reason that inhaled dose calculations are of particular inter-

est to environmental scientists and public health researchers. Inhaled dose calculations

depend on respiratory intake rates, which differ statistically for males and females and

for different activities. Males tend to have higher respiratory intake rates than females,

and high intensity activities cause higher respiratory intake rates than low intensity

ones (McCreddin, 2014). Table 3.1 displays the average inhaled dose rate (in µg/min)

for each combination of air pollutant, sex, and activity (sitting, walking, or running).

Figure 3.9 illustrates the distributions among all outings from the Airscapes Singapore

study of average inhaled air pollution dose per minute. Note that higher intensity activ-

ities (whose average inhaled doses are consequently higher) similarly demonstrate more

variance than those activities whose low intensity results in low inhaled doses. Math-

ematically, this is an effect of the inhaled dose model discussed in Chapter 2. With

regards to public health, this presents a challenge for determining population inhaled

doses without further information about population structure and habits.
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Table 3.1: Inhaled Doses Per Minute (µg/min)

Sitting Walking Running

CO
Female 5.29 16.95 36.62
Male 7.32 20.34 40.69

NO2
Female 0.77 2.46 5.31
Male 1.06 2.95 5.90

3.5 Introduction to Stationary Government Monitor Data

Air quality data published online1 by the Singaporean government were collected each

day of April 4-10, 2015 by the Airscapes Singapore research team. These published data

were the result of 1-hour and 8-hour pollution averages in each of the five regions of

Singapore for NO2 and CO respectively. A drawback of this method for sharing data

with the public is that the data presented on the NEA website have low significant figures

(with two for NO2 and only one for CO), making any analyses less precise. In contrast,

the personalized sensor data have up to five significant digits for every pollution reading

(the only requirement on the personalized sensor pollution data is that the values all

be integers). Over the time period of April 4-10, 2015, a total of 1530 readings were

collected, 765 each corresponding to CO and NO2.

Singapore runs fourteen municipal sensors, located in five different regions of the city.

Information is not made public about the distribution of the sensors between the re-

gions, and the published air pollution concentration levels are only provided for the

regions rather than for each sensor.2 The five regions appear to experience very dif-

ferent air pollution levels (especially with regards to NO2 levels), demonstrating both

strong heteroscedasticity and highly differing means (Figure 3.10).

To determine whether these differences are statistically significant, a Kruskal-Wallis test

is conducted. The Kruskal-Wallis test is a non-parametric analog of the F-test that does

not require distribution normality, a necessary requirement since the municipal monitor

concentration level distributions are observed to be right-skewed (Figure 3.10). Instead,

the Kruskal-Wallis test ranks the readings and uses the known rankings distribution

to determine whether the distributions all originate from the same population. While

the Kruskal-Wallis test does not require normality, it does require homoscedasticity

(equal variances) and independence within and between distributions. Since the data

are heteroscedastic in general, this test focuses only on the East, North, and South

regions with respect to NO2, since those distributions are observed to have the closest

variances. Independence cannot be guaranteed given the possibility for serial or spatial

1http://www.nea.gov.sg
2It is not known how the pollution values are calculated within the regions, as this information is not

provided on the NEA website.
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Figure 3.10: Boxplots displaying eight days of CO and NO2 readings (3-10 April,
2015) from the five stationary government air pollution sensors in Singapore, each of
which tells a very different story about air quality in the city state. The CO data in this
figure are jittered to account for the discrete nature of the government collection, which
reports only one significant figure for each CO reading (this jittering does, however,
overestimate the variance of the readings) Jurong East is closest to the Central, South,

and West sensors.

correlation, but is assumed for the purposes of this test (more discussion on this issue

is pursued in Section 4.1). The null hypothesis for this test is that the distributions are

all sampled from the same population and the alternative hypothesis is that they are

not. The Kruskal-Wallis test returns a p-value of 5.2527*10−40, indicating that the null

hypothesis should be rejected. This implies that the government data sets cannot all be

considered representative of every location in Singapore.

In order to most closely approximate the true pollution levels of Jurong East, this

analysis uses only the Central, West, and South sensors in its calculations, as those

sensors are located relatively equidistantly from the Jurong East neighborhood. Using

all sensors would not be appropriate due the observed differences in regional air pollution

distribution.3

Once the East and North regions have been excluded, the government data consists

of 918 readings, split evenly between CO and NO2. The readings follow right-tailed

right-skewed distributions (Figure 3.11). These distributions are numerically justified

by noting that the CO mean of 0.42 mg/m3 exceeds the median of 0.4 mg/m3 and the

NO2 mean of 22.3 µg/m3 is higher than the median of 15 µg/m3. The CO data recorded

by the government monitors near Jurong East range from 0.2 mg/m3 (in the Central and

West Regions) to 1.0 mg/m3 (in the West Region), while the NO2 data from the same

3These differences cannot be statistically verified using the typical method of an F-test or its non-
parametric analogs such as Kruskal-Wallis due to the serial nature of the data. Air pollution levels
are not randomly distributed in time, but rather depend on the air pollution levels present in previous
samples. Hence, the requirement of within-sample independence necessary for most hypothesis tests is
violated.
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Figure 3.11: Histograms describing the government data from stationary sensors
in the West, South, and Central Regions that were used to approximate the CO and
NO2 levels in Jurong East during the period of 3-10 April, 2015. The NO2 data follow
a right-skewed distribution, with the highest values coming from the Central Region
and the lowest values coming mostly from the South Region. The CO data also follow
an right-skewed distribution (though the distribution is much closer to a normal one),
with the highest values coming from the West Region and the lowest from the Central

Region.

area range from 2 µg/m3 (in the South Region) to 90 µg/m3 (in the Central Region).

The spatial and temporal variance between the sensors is further discussed in Chapter

4, where it is noted that in addition to differences in the extreme values that have been

remarked upon here, the pollutant concentration in certain regions is in fact always

higher than in others.

3.6 Summary

Although collected concurrently in the same city, the personalized sensor data and gov-

ernment monitor data differ greatly in their content (Sections 3.1, 3.5). The personalized

sensor data set contains more finely tuned spatial and temporal information, and was

collected by a mobile, distributed network of sensors as opposed to the stationary mu-

nicipal monitor. Significantly more personalized sensor data were produced due to the

smaller time steps of the personalized sensing technique. Averaging of the municipal

monitors also contributed to a smaller government monitor data set (since multiple val-

ues were reduced to one average for each published air pollution concentration), and

additionally is likely to have reduced the variance of the government data. Substan-

tive data cleaning was required of both data sets, and aberrant data were corrected or

discarded (Subsection 3.2.1).
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Air pollution concentration levels from both data sets were found to follow right-tailed

right-skewed distributions for CO and NO2. In visualizing the personalized sensor data

spatially and temporally, it was discovered that different routes and different areas of

Jurong East experienced starkly different air pollution concentrations. Mapping the

personalized sensor data enabled location of air-pollution hotspots (3.2.2). For the gov-

ernment monitor data, spatial examination revealed that not all regions of Singapore

reflect the same air pollution concentration distribution, so the government data con-

sidered in this thesis’s analysis were reduced to the subset of regions closest to Jurong

East, namely the West, Central, and South regions (3.5).

No correlations were discovered between the air pollutants (CO and NO2) and weather

parameters (temperature, pressure, relative humidity), nor between CO and NO2 (3.3).

Cumulative exposure to and inhaled doses of air pollution were calculated based on the

personalized sensor data, and confirm the conclusion that the high variance of pollution

concentrations depends on the route taken through Jurong East (3.4).

Descriptive statistics, which have been the focus of this chapter, are often overlooked

in favor of hypothesis testing (Chapter 4), but there can exist great benefit to proper

treatment of descriptive analysis, as evidenced in this chapter. Visualization, in par-

ticular, is helpful in expressing the spatial and temporal content of a data set without

having to make any of the assumptions required of hypothesis testing. However, to

rigorously address the questions of comparison outlined in the study objectives (Section

1.6), hypothesis testing (Chapter 4) and predictive methods (Chapter 5) are necessary.



Chapter 4

Comparison of Personalized

Sensing and Municipal

Monitoring Techniques Using

Hypothesis Testing

This chapter employs non-parametric hypothesis testing to compare the air pollution

data sets collected by the personalized sensors and municipal monitors. Visual inspection

indicates that the personalized air pollution data are higher and more variant than the

government air pollution data (Figures 4.1, 4.2), motivating statistical tests. Two null

hypotheses are proposed for these tests: that the government sampled data and the

personalized sensor data were drawn from areas with the same air pollution levels and

that the data (in both sets) are independent. The alternative hypothesis is that either

the personalized dataset represents higher pollution levels than the government dataset

or the independence assumption is violated.

4.1 Parametric vs. Non-Parametric Testing

In total, there were 27 hours in which data were collected from both government and

personalized sensors. The personalized data did not cover the entirety of these hours, and

there were overlapping personalized data collections during some time periods. The data

collection varied spatially and temporally, and in both pollution measurement methods

samples were collected in an ordered series.

26
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Figure 4.1: Boxplots of all CO and NO2 pollution data. The personalized sensors
recorded higher air pollutant concentrations than the government data, both in absolute
values and on average, and detected significantly more variance in concentration levels.
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Figure 4.2: Zoomed in view of the boxplots of all CO and NO2 pollution data (Figure
4.1). This closer view of the air pollution data highlights the substantial differences be-
tween the air pollution concentrations detected by the government monitors as opposed

to the personalized sensors.
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Figure 4.3: Plots of CO and NO2 pollution time series from data collected by West,
Central, and South government monitors on April 4th and 5th, 2015. NO2 readings
from the past hour were averaged every hour and CO readings from the previous eight

hours were averaged every hour.

This sampling methodology runs the risk of creating serially correlated data sets. Mu-

nicipally monitored air pollution data trends vary greatly by day (Figure 4.3), and there

is no clear indication of consistently serially correlated data. Yet, a within-distribution

independence assumption cannot be made without deeper investigation of air pollu-

tion dispersion rates. The personalized sensor data raises similar concerns about serial

correlation and additional concerns regarding spatial correlation. Due to the changing

environment caused by the participants’ movements and the observation in Chapter 3

that air pollution levels can change quickly as one moves about a relatively small area,

these data are possibly independent. Further investigation of pollution dispersion in

environments like Singapore’s is needed before making claims regarding this data’s in-

dependence.1 Hence, the independence assumptions necessary for hypothesis testing are

not met and must be included in the null hypotheses of the tests.

Parametric tests are a popular choice for statistical analyses due to their computational

efficiency and ability to make accurate predictions when their underlying assumptions

are closely met. These assumptions generally include distribution normality, which is not

met for either the personalized sensor or municipal monitor data. Hence, instead of using

parametric tests to answer the question proposed in this chapter, two non-parametric

1Note that in future studies, a time series analysis of the data could be conducted to address this
question.
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hypothesis testing methods that do not rely on this assumption will be implemented,

namely permutation testing and Wilcoxon rank-sum testing.

4.2 Permutation Test

The first test used is a permutation test using the difference in means of the sample

distributions as the test statistic. Since there are too many data points to run a permu-

tation test efficiently (permutation tests run in asymptotic factorial time on the number

of observations), a subset is sampled from the set of possible permutations of the set of

partitions of the data into group A (simulated government data) and group B (simulated

personalized data). Only partitions that maintain the sizes of the original groups are

considered in the analysis.

For example, suppose there are two government data points, a1 and a2, and three per-

sonalized data points, b1, b2, and b3. A possible permutation might be the following:

Group A: a1, b3

Group B: a2, b1, b2

In the CO permutation test, the number of personalized data points used was 27,083

and the number of government data points used was 54 (i.e. Group A had size 54 and

Group B had size 27,083). In the NO2 permutation test, there were 27,067 personalized

data points used and 54 government data points used.

For each sample permutation, the test statistic is the mean of the group B values sub-

tracted by the mean of the group A values. These statistics are used to construct a

baseline distribution. The p-value is then computed as the proportion of simulated

statistics in the baseline distribution that are more extreme than the true value. A

left-sided p-value is used to reflect the one-sided alternative hypothesis that the mean

of the personalized data is greater than the mean of the government data.

The p-value for a 100,000-partition permutation test on the CO data is 0. The p-value

for a 100,000-partition permutation test on the NO2 data is 0. The p-values for a full

permutation test are below the sensitivity of this sampled permutation test, even with

100,000 simulated permutations, resulting in the zero-valued simulated p-values (Figure

4.4). These p-values indicate that the null hypotheses should be rejected in favor of the

alternative hypothesis that the personalized data distribution has a higher mean than

the government data distribution or that the independence assumption does not hold.
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Figure 4.4: Histogram distributions of the difference in means in the CO (left) and
NO2 (right) permutation tests. The red lines indicate the real difference in means

between the government and personalized data.

4.3 Wilcoxon Rank-Sum Test

Since the personalized sensor pollution readings follow right-skewed distributions, for

each pollutant there exists a high number of extreme outliers (Figure 4.5).

Taking means of samples with outliers can misrepresent what a typical value looks like in

the sample distribution. This problem is addressed translating the values into ranks and

running Wilcoxon rank sum tests on the government and personalized pollution data

for CO and NO2. For the CO and NO2 tests, the p-values are found to be 4.5305*10−33

and 0.08332 respectively.

The CO p-value again implies that the null hypotheses that the two data collection

methods represent the same data should be rejected. However, the NO2 p-value does not

meet the standard 0.05 significance cutoff, so the test is inconclusive. Closer examination

of the personalized sensor NO2 data revealed that an irregular number (10 times the

amount for any other value) of NO2 concentration readings were zero (Figure 4.6),

implying likely missing NO2 concentration values in the personalized data set. When

these irregular values were removed, the resulting p-value for the Wilcoxon rank sum test

was 1.2655*10−44, supporting the conclusion from Section 4.2 that the null hypotheses

should be rejected in favor of the alternative hypothesis.

4.4 Dispersion Analysis

Sections 4.2 and 4.3 demonstrated that the government and personalized data describe

two different populations with differing means, but their variances have not yet been
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Figure 4.5: Both the CO and NO2 personalized sensor readings follow right-skewed
distributions, and contain a high number of outliers.
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Figure 4.6: Graph depicting the frequency of each NO2 concentration level observed
by the personalized sensors for 4-10 April, 2015. The aberrant zero count is highlighted

in red.
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Figure 4.7: Histogram distributions of the difference in means of the absolute dif-
ferences from the sample means in the CO data sets. The red line indicates the real

difference in mean absolute differences for the government and personalized data.

discussed. Using the same permutation and rank sum tests, one may examine whether

the variation in the populations follows the same trend. The null hypothesis in this case

is that the variations in the two populations have the same distribution and that the

variances are independent, and the alternative hypothesis is that the personalized data

describes a population with a higher variance or that the variances are not independent.

The observations for the variance permutation test are the absolute differences between

each data point and its population mean. The permutation test statistic is the mean of

the simulated absolute differences from the personalized sensor data subtracted by the

mean of the simulated absolute differences from the government monitor data. Again,

a left-sided p-value is computed (to fit the alternative hypothesis), which turns out to

be 0 for both the CO test and the NO2 test (both 10,000 permutations). Hence, the

null hypotheses are rejected in favor of the alternative hypotheses that the absolute

differences from the means (and hence the variances) in the personalized data set are

higher than the absolute differences in the government data (Figure 4.7) or the variances

are not independent.

For the Wilcoxon rank sum test, absolute differences between the data points and their

respective sample means are ranked and rank sum tests on these new data sets are

conducted. The resulting left-sided p-values are 3.8751*10−30 for the CO test and

1.5002*10−23 for the NO2 test. This is sufficient evidence in both cases to reject the

null hypothesis that the populations have the same variance and that the variances are

independent and instead embrace the alternative hypothesis.
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4.5 Summary

This section proposed to answer the question of whether or not the personalized sen-

sors and and municipal monitors had sampled from areas with the same air pollution

distribution. Justification was given for use of non-parametric testing (namely permu-

tation testing and Wilcoxon rank sum testing) to answer this question. Using these

non-parametric tests, it was possible to determine that either the mean and variance

of the personalized data were higher than the corresponding values for the government

data or that the independence assumptions of the tests were violated by the data. The

tests used in this section cannot fully separate the two branches of this conclusion, and

further investigation into the spatial and temporal facets of these data (Chapter 5) is

needed to solidly determine whether the personalized data are statistically higher and

more variant than the government data.



Chapter 5

Spatial Analysis

In this chapter, random walks on a spatially interpolated field generated by personalized

sensor data are used to generate new estimates of personal exposure. These values

are then compared to estimates derived from the municipal monitor data and non-

interpolated personalized sensor data. It is discovered in both comparisons that the

interpolated personalized data yield higher concentration estimates.

The Singaporean government’s stationary sensors do not have the capacity to describe

local differences in air pollution within Jurong East. On the other hand, mobile sensing

is uniquely powerful in that it intrinsically records spatial metadata using GPS, Wi-Fi,

and cellular data transmission and includes this information with the air quality read-

ings. The hypothesis testing conducted so far in this thesis (Chapter 4) has highlighted

differences between the personalized sensor data and government monitor data, and

demonstrated a need for examination of the spatial and temporal qualities of the air

pollution data.

Spatial interpolation can be used to estimate pollutant concentrations across an area

and over time using one or more precisely located data points. The personalized sensor

observations yield highly localized readings of air quality, and are plentiful, making this

data ideal for accurate spatial interpolation, since more data leads to more accurate

estimates. This chapter compares these spatially interpolated estimates to the spatially-

ignorant government monitor data and to the artificially spatially-ignorant personalized

sensor data (i.e., the personalized sensor data as they were analyzed in Chapter 4 without

consideration to within-neighborhood location).

34
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Figure 5.1: Example of a path through a spatially interpolated field with two location
dimensions and one time dimension. In this path, a timestep Tn represents either a
step parallel to the plane defined by the location axes or a step parallel to the time

axis.(Nieuwenhuijsen, 2015)

5.1 Spatial and Temporal Interpolation to Produce Air

Pollution Concentration Field

A subset of the personalized sensor data was used to construct an interpolated field on

Jurong East.1 This subset comprised the personalized sensor data collected on April 4th,

2015 from 16:54:21 to 19:10:41, and was chosen arbitrarily from the collection of subsets

whose time intervals matched entirely with a corresponding timespan in the government

data. This data was then interpolated on a 25 × 25 × 410 grid across Jurong East and

across the 2.25 hour timespan on April 4th using a Gaussian process called kriging.

Spatially, each 25× 25 slice of the grid represented a 2D footprint of the pollution levels

over Jurong East. Temporally, the grid was divided into 410 timesteps, each 20 seconds

apart.

1Only a subset of the data were used in this interpolation for efficiency reasons, as kriging (the process
of interpolation described in this section) is computationally expensive.
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5.1.1 Kriging

This subsection gives a brief overview of the process of ordinary kriging used to inter-

polate carbon monoxide values for the field described above using personalized sensor

data. The kriging calculations were carried out by Kevin Li, an undergraduate student

at MIT.

Kriging is a method of spatial interpolation that, given a set of known values with cor-

responding coordinates in a multidimensional space, estimates scalar values. In the case

of this study, the known values are carbon monoxide concentration readings collected

by a personalized sensor. Kriging assumes normality of the population from which the

known values are drawn. While the CO values sampled by the personalized air pollution

sensors on April 4th are log normal, this is largely due to a small collection of extreme

values (Figure 5.2), and the distribution is in fact close to normal. Thus it is assumed for

the purposes of spatial interpolation that the normality conditions for ordinary kriging

are met.

Firstly, a regression function on pollutant concentration in the field is constructed from

weighted averages of known pollutant concentration values in the time and space inter-

vals that bound the interpolation field. In an ordinary kriging interpolation, as used in

this study, the regression function is not initially known, but is required to be a constant

function. The residuals for this regression are assumed to be normally distributed and

are minimized by the regression process. Using the residuals from the known concen-

trations, a Gaussian process centered at 0 with variance and correlation matrix equal to

those of the distribution of known residuals is constructed. It is from this distribution

that interpolated values are assigned to the grid points at which concentration is not

known (hence the initial requirement that the data are normally distributed). Finally,

once the residuals for each point are known, the estimated CO concentration values are

computed.

5.2 Random Walks Through CO Concentration Field

A random walk on an interpolated field over Jurong East produces another estimate of

air pollution exposure, and iterations of these walks generate a distribution of estimates

that one can use to predict the exposure a person would experience walking through the

area.

As discussed in 5.1, the data were interpolated over a 25× 25 grid for 410 distinct time

steps. Though the times and grid point locations correspond to actual times and loca-

tions in Jurong East, a random walk can be constructed in abstract form in order to
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Figure 5.2: Histograms of CO distribution (left) and log CO distribution of April
4th personalized sensor data. The CO distribution is log normal based on the normal

distribution of the log CO distribution, but is still relatively close to normal itself.

generalize this analysis to any time period and any grid on some rectangular neighbor-

hood. It would be possible to construct a specific non-rectangular grid to reflect the

walking paths in Jurong East, which would better estimate the exposure of a real per-

son walking in the area. This type of non-rectangular grid would be useful for making

predictions about the exposure a person would experience on their commute through

Jurong East, but adds a great deal of complexity to the model. For the purposes of

this general analysis that seeks to determine differences between background and local

spatial sensing, such a specific grid is not necessary, and a rectangular grid is used for

simplicity.

The rules of a random walk in this study are designed as follows:

1. The walker begins at a random point on the 25× 25 grid.

2. The walker may not leave the 25× 25 grid at any time.

3. At each timepoint, the walker may choose to remain on the same grid point or

leave.

(a) If the walker is not on an edge of the grid, they randomly and uniformly

choose2 two numbers ∆x,∆y ∈ {−1, 0, 1}. A 1 corresponds to a step one grid

point South and East respectively, a −1 corresponds to a step one grid point

North or West respectively, and a 0 indicates that no step should be taken

along that axis for the time point in question.

(b) If the walker is on an edge of the grid, they are either in a corner or not

in a corner. If they are not in a corner, then they follow the directions in

2It is possible to weight the steps such that the walker moves one way with more probability than
others, but this adds complexity to the model unnecessary for the analysis at hand.
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Figure 5.3: A possible random walk path on a 25 by 25 grid. The starting point is
indicated in red and the ending point in blue.

step 3a for the axis (North-South or East-West) parallel to the edge. For any

axis perpendicular to an edge, the walker randomly and uniformly chooses

q ∈ {0, 1}. If q = 0, the walker does not move along this perpendicular

axis. If q = 1, the walker moves one grid point away from the edge along the

perpendicular axis.

The random walker keeps track of their random path through the abstract grid (Figure

5.3). Then, using these path coordinates and their corresponding time step values, a

concentration vector containing the carbon monoxide levels that the walker would have

experienced were the abstract random walk relocated to the time-dependent, spatially-

interpolated air pollution field on Jurong East is calculated using the stored path co-

ordinates and interpolated values. The predicted total exposure for the walk is then

calculated as a Riemann sum with time steps 20 seconds apart, where each time step

corresponds bijectively with a value in the concentration vector.
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Example:

Suppose a 25-sided die is rolled twice and the results are 9 and 23 respectively. A walker

is placed on a 25 by 25 grid at the gridpoint that is located 8 steps South and 22 steps

East of the Northwest corner of the grid. The walker might take the first ten steps listed

in Table 5.1.

Step x-Coordinate y-Coordinate CO Level

1 9 23 869.00
2 8 24 895.25
3 7 24 923.80
4 8 25 939.17
5 9 25 951.29
6 10 25 953.38
7 10 24 950.67
8 10 25 947.70
9 10 25 947.09
10 10 24 945.08

Table 5.1: Example random walk coordinates and corresponding CO levels.

In the first step, the walker is placed at (9,23). In the second step, the walker moves

diagonally Northeast by one step to (8, 24). In the third step, the walker moves North

by one step to (7, 24), and so on. Note that in the ninth step, the walker does not

move, but moves again in the tenth step. Consulting the data frame containing the

interpolated personalized sensor data, CO levels are found for the first ten time and

location points (Table 5.1).

Since each time step is 20 seconds apart, the total carbon monoxide exposure for the

first ten steps is summed to be:

(869.00 + 895.25 + 923.80 + 939.17 + 951.29 + 953.38

+ 950.67 + 947.70 + 947.09 + 945.08)/3

= 3107.477µg*min/m3.

5.3 Comparison of Random Walks and Spatially-Ignorant

Estimates

This section investigates the effectiveness of spatial interpolation and random walks

in providing new information about pollutant exposure compared to the government

monitor data and to the personalized data as analyzed without consideration of its

spatial components. To do so, a collection of 10000 random walks on the spatially

interpolated field were run, yielding a right-skewed distribution of total CO exposures
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(Figure 5.4). Next, the CO total exposure values for the spatially-ignorant personalized

data and government data were calculated so that they could be compared to the data

generated by the random walks.

In order to calculate the best spatially-ignorant personalized total exposure estimate

to compare to the random walks, the non-interpolated personalized sensor data were

narrowed to the 16:54:21 to 19:10:41 time period on April 4th, 2015. This data subset

was then partitioned into 410 bins matching the 20-second time steps used in the spatial

interpolation. These bins were averaged, and the CO concentration for the total time

period was plotted as a step function with respect to time. This function was then inte-

grated to produce the non-interpolated, personalized CO exposure estimate of 107949.1

µg*min/m3.

The government monitor CO estimate for the April 4th time period is calculated simi-

larly, though only four bins were used. Each bin corresponded to one of the hours from

4pm to 7pm inclusive on April 4th, 2015, and contained the pollution readings from the

South, West, and Central government monitors. These bins were then averaged and the

number of spatial interpolation time points per bin were counted (the first bin contained

17, the second and third bin contained 180 each, and the fourth bin contained 32). Using

this information, the total CO exposure estimate was calculated to be: (17*466.6667 +

180*433.3333 + 180*366.6667 + 32*366.6667)/3 = 54555.56 µg*min/m3.

Both the government monitor estimate and the spatially-ignorant personalized sensor

estimate fall below all 10,000 estimates produced by the random walks on the spatially

interpolated field (Figure 5.4). It was shown in Chapter 4 that the government monitor

pollution readings tend to be much lower than the personalized sensor readings in gen-

eral, so the government estimate being lower than an estimate derived from personalized

sensor data is not surprising. However, it is quite interesting to note that the random

walks estimates are unanimously higher than the the spatially-ignorant personalized sen-

sor estimate. Hence, using random walks on spatially interpolated fields produced by the

personalized sensor data is valuable in that it provides new context for CO distribution

and citizen exposure in Singapore.

5.4 Summary

The personalized sensor data were used to interpolate a CO concentration field with

respect to latitude, longitude, and time. A set of 100,000 random walks through this

field was then generated, and, for each walk, the cumulative CO exposure of an individ-

ual tracing the walk through the concentration field was calculated. The distribution
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Figure 5.4: Histograms comparing the random walk data to the raw sensor data.
The histograms pictured in both the left and right panels describe the distribution of
the total carbon monoxide exposure calculated by taking random walks on the spatially
interpolated field over the April 4th time period. The blue line indicates the carbon
monoxide exposure calculated from the raw personalized sensor data without regards
to position and the red line indicates the CO exposure calculated from the spatially-
ignorant government data whose time steps were hours rather than 20 second chunks

(as were the time steps for both kinds of personalized data).

of these random walk-generated cumulative exposure estimates was then compared to

a cumulative exposure estimate for the same period derived from means of the govern-

ment data, and to an analogous mean-derived estimate calculated from the personalized

sensor data. In both cases, the estimates produced by the random walks through the

interpolated CO field were uniformly higher than the mean-derived estimates.



Chapter 6

Discussion

This study investigated the extent to which personalized sensing of air pollution data

collection provides pertinent information regarding individual exposure to air pollution

in Singapore beyond the data from the presently-used stationary municipal monitors.

Descriptive statistics, hypothesis testing, and data interpolation were used to quan-

titatively evaluate this question. Each of these analysis methods indicated that the

personalized sensors provided new data about local air pollution concentration levels

not observed by the government monitors.

Personalized sensor data were collected as part of the Airscapes Singapore study using

a moving, distributed network of sensors, enabling many observations to be made con-

currently and providing real-time, geotagged data to the Airscapes Singapore database.

Municipal monitor data were extracted from the NEA website, which uploads retrospec-

tive pollution level averages every hour. These data sets then underwent data cleaning

in which aberrant values were processed or eliminated. Each of the CO and NO2 distri-

butions from the government monitor and personalized sensor data were found to follow

right-skewed log-normal distributions. Within each data set, air pollution concentration

logs varied in magnitude depending on the locations where they were collected. Within

the personalized sensor data, no correlations between air pollutants and temperature,

relative humidity, and air pressure were found. The personalized sensor data were ad-

ditionally used to calculate cumulative exposure to and inhaled doses of air pollution.

Comparison of personalized sensor data and municipal monitor data using non-parametric

hypothesis tests indicated that the means and variances of the CO and NO2 distributions

of the personalized data were likely higher than those of the government data. A spatial

and temporal interpolation of CO concentrations was constructed using a section of the

personalized sensor data and random walks on this interpolated field were generated.

These random walks were used to calculate cumulative exposure estimates that were
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then compared to cumulative exposure estimates computed from the municipal monitor

data and raw personalized sensor data without regard to spatial variability. The random

walk exposure estimates were substantively higher than both exposure values that were

calculated independently of locational consideration, confirming that the personalized

sensor data were higher than the government data and demonstrating the importance

of spatial and serial considerations in estimating air pollution exposure.

These findings demonstrate the potential of personalized sensor data collection and anal-

ysis methods in providing novel, detailed information about the state of air pollution on

a localized level in Singapore. In particular, this analysis of the personalized sensor data

gives a more specific view of how an individual commuter’s experience of air pollution

changes over time. This detailed analysis opens the door to an array of applications by

researchers, citizens, and city officials to effect optimal health outcomes for the city’s

residents.

6.1 Applications

The personalized sensing approach is advantageous in that it collects air pollution data

in high spatial and temporal resolution. This enables spatial interpolation and random

walk analysis (Chapter 5) and provides helpful context when making the assumptions

necessary for hypothesis testing (Chapter 4). Additionally, the unprocessed personalized

sensor data (as opposed to the pre-averaged municipally monitored data) demonstrates

more clearly the variance in pollution levels over small distances (Chapter 3). The results

of cumulative exposure, inhaled doses (Chapter 3), and random walk analyses can be

applied in reducing errors in air pollution related health impact predictions in individual

commuters

Predictions about the health impacts of air pollution at a statistical and individual level

can be used to forecast the health burden inflicted by air pollutants on Singapore and to

optimize urban air pollution and transportation policies. Applications range from use

in further research studies, to city-wide regulation ordinances, to neighborhood traffic

reorganization. Detailed air pollution data is informative for researchers of pollution

exposure science, environmental epidemiology, and urban development.

Real-time, spatially-specific information is of particular interest to smart-city research

and the engineering of tools and services for city technologization. This research can

be used to provide citizens of urban areas with constantly-updating information about

evolving pollution hotspots. Armed with this knowledge, citizens would have the ability
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to change their commuting behavior to minimize personal exposure to harmful air pol-

lution and, subsequently, avoid the related negative health effects of such exposure. For

example, these data were used to develop a commuter exposure assessment tool, where

citizens of Jurong East, Singapore can observe the predicted cumulative exposure values

for a set of predetermined paths through their neighborhood.1

Urban planning can be improved by the information provided by a distributed network

of personalized sensors. Municipalities can use the real-time personalized concentration

data to develop responsive strategies to reduce sources of air pollution. For instance,

traffic emissions can be modified through use of adaptively-timed traffic lights and smart-

city applications that reroute traffic in order to minimize instances of acute air pollution.

Businesses or roads which are determined to be major sources of pollution can be moved

away from areas that contain schools, are thickly settled, or are frequently used for

major outdoor special events. A possible way to achieve this would be to implement

congestion charging on high-polluting vehicles and businesses. Based on the data from

the personalized sensors, low and ultra-low emissions zones could be identified, and

charges, proportional to their pollutant emissions, would be levied on polluters within

those zones. Alternatively, non-vehicular commuters could be moved away from sources

of high air pollution by rerouting cycling lanes and pedestrian walkways to streets with

lower air pollution. Using the personalized sensor air quality data, urban planners

can optimally design and manage more sustainable cities, with a particular focus on

improving public health.

Personalized sensor data can be used to improve the assessment of air pollution con-

centration levels on a city, neighborhood, or street level, which can inform regulation

policies and municipal public health goals. Since pollution monitoring using personal-

ized sensors focuses on highly localized areas, presently unknown sources of air pollution

can be identified and targeted in pollution reduction efforts. Public health officials can

better judge personal exposure using these sensors, and can publish quantified recom-

mendations to clinics and hospitals about which air pollutants pose the biggest threat to

the population so that these institutions are prepared to train their nurses accordingly.

Additionally, medical professionals can use knowledge of air pollution hotspots derived

from personalized sensor data to anticipate whether a patient may be suffering from

pollution poisoning based on their areas of residence and work as well as their com-

muting strategy. Using these mechanisms, air pollution prevention and treatment of air

pollution-related illnesses can be optimized using a personalized sensor data collection

and associated spatial and personal exposure analyses.

1http://eoe.airscapes.io
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6.2 Future Work

From a mathematical standpoint, several future directions are proposed. A time series

regression analysis of the data would reduce the need to make assumptions about serial

correlation in hypothesis testing. Similarly, kriging of log concentration would change

the requirement for distribution normality to one of distribution log normality, enabling

use of interpolation on more intervals in the data. If this sensing method were adopted

by the Singaporean government, then an additional direction would be the development

of a fast algorithm for real-time spatial interpolation of concentrations across Singapore,

since ordinary kriging relies on static data and is computationally inefficient.

Future work from an urban planning perspective must include an analysis of how this

data can be used to benefit underserved populations. Although there is great advantage

to using personalized sensor data to determine which areas of Singapore are most prone

to poor air quality, irresponsible dissemination of this data runs the risk of exacerbating

cycles of poverty among low-income citizens. Were this information to be released with-

out embarking upon concerted efforts to improve air quality in areas with high pollution,

these neighborhoods would likely experience property devaluation. As highly-polluted

areas became poorer, income inequality would increase and economic mobility of the

low-income population in these neighborhoods would become more difficult. The conse-

quences of this inequity would include continued greater pollution exposure, increased

risk of illness and premature death, and an exacerbated struggle to find and retain em-

ployment for these already underserved populations. Environmental justice dictates that

researchers, urban planners and city authorities involved in leading smart-city initiatives

have a responsibility to prioritize pollution reduction in economically struggling areas

in order to avoid such outcomes.



Chapter 7

Conclusions

The purpose of this study was to determine whether using a distributed network of

personal sensors to characterize air quality in Singapore contributes information and

understanding relevant to environmental health that supplements current governmental

air quality measurement methods. To answer this question, air quality data collected by

the stationary government monitors and by a distributed network of moving, personal-

ized sensors were compared.

Computational and data cleaning techniques were successfully applied so that both data

sets could be compared.

Descriptive statistics and data visualization techniques were used to illustrate how the

unique temporal and spatial characteristics of personalized sensor data contributed

novel, actionable information about the state of air pollution in Singapore, particu-

larly at a localized level, that can be used to quantify and improve personal exposure

to air pollution. Cumulative air pollution exposure and inhaled doses were calculated

based on recordings from personalized sensors. This information provided context for

a discussion of potential public health analyses and municipal policies to improve air

quality using the localized personal sensor data. Government-collected air quality data

were compared to personalized sensor-generated air quality data using relevant statisti-

cal tests, spatial interpolation techniques, and data visualization. The results of these

comparisons were discussed, and it was determined that the air pollution concentration

level distributions recorded by the two collection methods were fundamentally different.

Personalized sensor data were found to be highly effective in contributing additional

information about air pollution levels in Singapore. It has been demonstrated that

the personalized sensor data were higher and more variant in concentration level than

the data registered by the stationary government monitors. Temporal and and spatial
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analyses of the personalized sensor data were used to establish a more comprehensive

picture of air quality that could not have been manifested by the stationary, hourly-

updated government website. This thesis concludes that personalized sensors are an

effective tool for use by Singaporean city officials to estimate localized pollution levels

in real time and respond to specific air pollutant threats effectively and for use by

individuals to make informed choices about their personal exposure to harmful, invisible

pollutants. Development of megacities demands increased technologization of public

health in order to a ensure future sustainability, and personalized pollution sensors are

indispensable to that future.



Appendix A

Air Quality Data

This appendix includes samples of the data used in this thesis. Some discussion of data

parsing and cleaning is also included.

A.1 Personalized Sensor Data

The sensor data were transmitted via bluetooth to the participants’ mobile phones,

which then copied the air quality, location, and time data to files separated by day and

sensor. In total, this amounted to 52 sensor log files, which were further split by reading

type (CO, NO2, pressure, temperature, humidity, time, latitude, longitude, and battery

charge) and then concatenated into data frames by reading category. Included below is

a sample of an original data file before it was split by reading type (Table A.1).

Table A.1: Personalized Sensor Data

date time type reading longitude latitude

02.04.2015 17.20222 temperature 30 103.7427 1.333417
02.04.2015 17.20222 pressure 1003 103.7427 1.333417
02.04.2015 17.20222 batterys 90 103.7427 1.333417
02.04.2015 17.20250 co 855 103.7427 1.333417
02.04.2015 17.20278 humidity 61 103.7427 1.333417
02.04.2015 17.20306 no2 80 103.7427 1.333417
02.04.2015 17.20750 temperature 30 103.7427 1.333417
02.04.2015 17.20778 pressure 1006 103.7427 1.333417
02.04.2015 17.20778 batterys 89 103.7427 1.333417
02.04.2015 17.20806 co 876 103.7427 1.333417
02.04.2015 17.20833 humidity 61 103.7427 1.333417
02.04.2015 17.20861 no2 162 103.7427 1.333417

48



Personalized Air Quality Sensing: A Case Study Analysis in Singapore 49

Figure A.1: An example of a screenshot used to collect the government pollution
data from the Singapore NEA website.

A.2 Government Sensor Data

The government stationary sensor data were collected using five sensors about which

little information is known other than general region of placement (exact addresses of

sensor locations are not public). These data were copied from the Singapore National

Environmental Agency (NEA) website using mobile phone screenshots. Singapore’s

NEA posts the data hourly and they remain posted until 1am the following day. The

data were then copied by hand into a spreadsheet, from which they were read into R and

subsequently written out as a csv file. Included is one of the mobile phone screenshots

that was initially used to collect the data (Figure A.1) and a sample of the data after

they were read into csv format (Table A.2).

A.3 Spatially Interpolated Personalized Sensor Data

A portion of the personalized sensor data was spatially interpolated on a grid over Jurong

East (Figure A.2), a sample of whose points are described in Table A.4. Interpolated

carbon monoxide values were calculated for each point on the grid every 20 seconds from

16:54:21 to 19:10:41 on 4 April 2015. A sample of these values is included below (Table

A.3).
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Table A.2: Government Sensor Data

date time type reading location

4 1 NO2 33 North
4 1 NO2 5 South
4 1 NO2 20 East
4 1 NO2 42 West
4 1 NO2 64 Central
4 2 NO2 34 North
10 23 CO 0.3 Central
10 24 CO 0.3 North
10 24 CO 0.4 South
10 24 CO 0.5 East
10 24 CO 0.3 West
10 24 CO 0.3 Central

Table A.3: Spatially Interpolated (CO) Personalized Sensor Data

Timepoint\Gridpoint X0 X0.1 X0.2 X0.3 X0.4 X0.5

1 869.00 869.00 869.00 869.00 869.00 869.00
2 895.25 895.25 895.25 895.25 895.25 895.25
3 923.80 923.80 923.80 923.80 923.80 923.80
4 939.17 939.17 939.17 939.17 939.17 939.17
5 951.29 951.29 951.29 951.29 951.29 951.29
6 953.38 953.38 953.38 953.38 953.38 953.38
7 950.67 950.67 950.67 950.67 950.67 950.67
8 947.70 947.70 947.70 947.70 947.70 947.70
9 947.09 947.09 947.09 947.09 947.09 947.09
10 945.08 945.08 945.08 945.08 945.08 945.08

Table A.4: Spatial Interpolation Gridpoints

Gridpoints Longitude Latitude

X0 1.332953 103.7269
X0.1 1.332953 103.7278
X0.2 1.332953 103.7287
X0.3 1.332953 103.7296
X0.4 1.332953 103.7305
X0.5 1.332953 103.7314
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Figure A.2: This grid was overlaid onto Jurong East and used in the kriging spatial
interpolation.



Appendix B

Algorithms Produced for

Analyses

Samples of the original code written (in R) for this thesis are included.1 In particular,

the functions used to produce the hypothesis tests (Chapter 4) and random walks on

the spatially interpolated field (Chapter 5) are provided below and described.

B.1 Permutation Testing

The function perm.test2 takes in two datasets (per and nea), a number of permutations

to make (iter), and bounds on the width of the histogram that is ultimately created (xl),

and returns both a p-value for a permutation test and a visualization for that test. The

vectors per and nea are concatenated to form the vector data, which is then permuted

by resampling without replacement a dataset (s) of the same size as data. The first

length(nea) values of s are categorized as simulated government data (whose mean is n)

and the remaining length(per) values of s are categorized as simulated personalized data

(whose mean is p). The test statistic for this test is computed to be n-p and is stored

in dist. This process is repeated iter times. The true value of the personalized sensor

mean subtracted from the government sensor mean is then computed and compared to

the permutation distribution stored in dist to generate a p-value.

perm.test2 <- function(per, nea, iter, xl ){

dist <- rep(-3, iter)

data <- rep(-2, length(per) + length(nea))

1Only a sample of the code used in the analyses is provided here. Additional code is available upon
request.
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data[1:length(nea)] <- nea

len <- length(nea) + 1

data[len:length(data)] <- per

for (ii in 1:iter){

s <- sample(x = data, size = length(data), replace = FALSE)

n <- mean(s[1:length(nea)])

p <- mean(s[len:length(data)])

dist[ii] <- n-p

}

mp <- mean(per)

mn <- mean(nea)

real_value<- mn-mp

numless <- sum(dist <= real_value)

par(mar = c(4.2,4.5,1,1))

hist(dist, xlim = xl, xlab = expression("Difference in Means

("*mu*"g/"*m^3*")"), main = "")

abline(v = real_value, col = ’red’)

return(numless/iter)

}

B.2 Wilcoxon Rank Sum Testing

For this analysis, the wilcox.test algorithm provided by R was used, with the alternative

hypothesis set to require that the government sensor data be less than the personalized

sensor data.

B.3 Random Walks on a Spatially Interpolated Field

The random walks each occur on a 25 by 25 grid over a span of 410 steps. The variables

ind1 and ind2 keep track of the x and y coordinates respectively, and are initially set

to random coordinate values in the 1 to 25 range. This starting point is considered the

first step in the walk. Any adjacent grid point to the current point (including diagonals)

is considered a valid next step. In the code, this is encapsulated in the portion of

random.walk in which delx and dely are set. On a given axis (for x or y), the walker

can move one step ahead (in the positive direction), one step behind (in the negative
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direction), or no steps at all. To randomly determine the walker’s movement, a number

from -1 to 1 is generated, indicating positive, negative, or no movement. If the walker

is on an edge of the grid (either at index 1 or 25), then their options are limited to

movement one step away from the edge or no movement. In both the edge and non-edge

cases, each movement choice is weighted equally. The walker is then moved accordingly

at the end of the for loop, and their new coordinates are recorded in the arrays xindex

and yindex. The function transforms these two arrays into the columns of a new data

frame with dimensions 410 by 2 and returns the data frame.

random.walk <- function(){

#create arrays in which to store indices

xindex = rep(-1, 410)

yindex = rep(-1, 410)

#generate random starting indices

ind1 = sample(25)[1]

ind2 = sample(25)[1]

xindex[1] = ind1

yindex[1] = ind2

#move about the adjacency matrix

for (t in 2:410){

delx = 0

if (ind1 == 1){

temp = sample(2)[1]

delx = temp - 1

} else if (ind1 == 25){

temp = sample(2)[1]

delx = temp - 2

} else {

temp = sample(3)[1]

delx = temp - 2

}

ind1 = ind1 + delx

dely = 0

if (ind2 == 1){

temp = sample(2)[1]

dely = temp - 1
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} else if (ind2 == 25){

temp = sample(2)[1]

dely = temp - 2

} else {

temp = sample(3)[1]

dely = temp - 2

}

ind2 = ind2 + dely

xindex[t] = ind1

yindex[t] = ind2

}

indices = data.frame(xindex, yindex)

return(indices)

}

The function get.rand.exposure runs a random walk on a 25 by 25 grid by calling ran-

dom.walk. Then, for each pair of coordinates returned by random.walk (stored as rows

in a data frame), the function traces the given coordinates in matrix coordMatrix 2 to

find the column indices of the gridpoint in the kriging output data frame concentrations

(see Appendix A for a sample of this data frame). Once the column indices have been

determined, the kriged values are accessed using the column indices and step numbers.

These values are then summed and divided by three to reflect that exposure in this case

is calculated by minute, while the steps are made in 20s jumps. The total exposure over

the walk is returned.

get.rand.exposure <- function(){

#take random walk on indices

rw = random.walk()

#calculate exposure per 20s period

exp = rep(-1, 410)

for (t in 1:410){

index = coordMatrix[rw[t, 1], rw[t, 2]]

exp[t] = concentrations[t, index]

}

tot_exposure = sum(exp)*1/3 # sum to give total concentration/time

2The process for creating coordMatrix depends on the ordering of the grid by the kriging program.
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return(tot_exposure)

}

The function many.rand.exposure.walks iterates the previous function get.rand.exposure

numIter times and returns an array of exposure values from a set of random walks.

many.rand.exposure.walks <- function(numIter = 100){

result <- rep(-1, numIter)

for (ii in 1:numIter){

result[ii] = get_rand_exposure()

}

return(result)

}
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