
Wellesley College
Wellesley College Digital Scholarship and Archive

Faculty Research and Scholarship

2013

The arithmetical hierarchy in the setting of
ω_1
Jacob Carson

Jesse Johnson

Julia F. Knight

Karen Lange
klange2@wellesley.edu

Charles McCoy CSC

See next page for additional authors

Follow this and additional works at: http://repository.wellesley.edu/scholarship

This Article is brought to you for free and open access by Wellesley College Digital Scholarship and Archive. It has been accepted for inclusion in
Faculty Research and Scholarship by an authorized administrator of Wellesley College Digital Scholarship and Archive. For more information, please
contact ir@wellesley.edu.

Recommended Citation
The arithmetical hierarchy in the setting of ω_1 computability, J. Carson, J. Johnson, J. Knight, K. Lange, C. McCoy, and J.
Wallbaum, Computability, 2(2) (2013), 93-105.

http://repository.wellesley.edu?utm_source=repository.wellesley.edu%2Fscholarship%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.wellesley.edu/scholarship?utm_source=repository.wellesley.edu%2Fscholarship%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.wellesley.edu/scholarship?utm_source=repository.wellesley.edu%2Fscholarship%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ir@wellesley.edu

Authors
Jacob Carson, Jesse Johnson, Julia F. Knight, Karen Lange, Charles McCoy CSC, and John Walbaum

This article is available at Wellesley College Digital Scholarship and Archive: http://repository.wellesley.edu/scholarship/124

http://repository.wellesley.edu/scholarship/124?utm_source=repository.wellesley.edu%2Fscholarship%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages

The arithmetical hierarchy in the setting of ω1

Jacob Carson, Jesse Johnson, Julia F. Knight, Karen Lange,
Charles McCoy CSC, John Wallbaum

April 29, 2013

Abstract

We continue work from [1] on computable structure theory in the set-
ting of ω1, where the countable ordinals play the role of natural numbers,
and countable sets play the role of finite sets. In the present paper, we
define the arithmetical hierarchy through all countable levels (not just the
finite levels). We consider two different ways of doing this—one based on
the standard definition of the hyperarithmetical hierarchy, and the other
based on the standard definition of the effective Borel hierarchy. For each
definition, we define computable infinitary formulas through all countable
levels, and we obtain analogues of the well-known results from [2] and
[4] saying that a relation is relatively intrinsically Σ0

α just in case it is
definable by a computable Σα formula. Although we obtain the same re-
sults for the two definitions of the arithmetical hierarchy, we conclude that
the definition resembling the standard definition of the hyperarithmetical
hierarchy seems preferable.

1 Introduction

We consider computability in the setting of ω1. The countable ordinals play
the role of natural numbers, and countable sets play the role of finite sets. We
assume V = L. This implies that all reals are present in Lω1 . In fact, every subset
of ω1 is “amenable” for Lω1 ; i.e., for all A ⊆ Lω1 and all x ∈ Lω1 , A∩x ∈ Lω1 . In
the remainder of the introduction, we review some basic definitions and results
from [1]. In Section 2, we define the arithmetical hierarchy—the Σ0

α and Π0
α

subsets of ω1, for countable ordinals α. We do this in two different ways. The
first is based on the standard definition of the hyperarithmetical hierarchy—a
set is Σ0

α if it is c.e. relative to a complete ∆0
α oracle. The second definition is

based on the definition of the effective Borel hierarchy—a set is Σ0
α if it is a c.e.

union of sets each of which is Π0
β for some β < α.

In Section 3, we define computable infinitary Σα formulas in two different
ways, corresponding to the different definitions of the arithmetical hierarchy.
We allow countable tuples of quantifiers, and our formulas will be from Lω2,ω1 .
In Section 4, we give the main results, saying that for each set of definitions,
a relation R on a computable structure A is relatively intrinsically Σα if and

1

only if it is defined in A by a computable Σα formula. This is the analogue of a
result for the standard computability setting in [2] and [4]. Finally, in Section
5, we explain why the first set of definitions seems preferable.

1.1 Basic definitions

Below, we first say what it means for a set or relation on Lω1 to be computably
enumerable. We then define the computable sets and relations, and the com-
putable functions.

Definition 1.

• A relation R ⊆ (Lω1)n is bounded, or ∆0, if it is defined by a finitary
formula with only bounded quantifiers, (∃x ∈ y) and (∀x ∈ y), in the
language with ∈ and constants from Lω1 .

• A relation R ⊆ (Lω1)n is computably enumerable, or c.e., if it is defined in
Lω1 by a Σ1-formula ϕ(c, x), with finitely many parameters—the formula
is finitary, with only existential and bounded quantifiers, and all negations
appear inside quantifiers.

• A relation R ⊆ (Lω1)n is computable if it and its complement are both
computably enumerable.

• A (partial) function f ∶ (Lω1)n → Lω1 is computable if its graph is c.e.

When we work with these definitions, we soon see that computations involve
countable ordinal steps, and that computable functions are generally defined by
recursion on ordinals—the Σ1 definition for a function f says that there exists
a sequence of steps leading to the value of f at a given ordinal α. Thus, it
might be appropriate to use the term “recursive” instead of “computable” in
this setting.

Results of Gödel give a computable 1−1 function g from the countable ordi-
nals onto Lω1 such that the relation g(α) ∈ g(β) is computable. The function g
prvides ordinal codes for sets—α is the code for g(α). There is also a computable
function ` taking α to the code for Lα. From this, we see that computing in
ω1 is essentially the same as computing in Lω1 . For more details on this point,
see [1].

Above, we were thinking of relations and functions of finite arity. We may
allow relations and functions of arity α, where α < ω1. We extend the definition
as follows.

Definition 2. Suppose R is a relation of arity α < ω1.

• R is c.e. if {β ∶ g(β) ∈ R} is Σ1-definable—the set of ordinal codes for
sequences in R is c.e.

• A relation of arity α is computable if it is both c.e. and co-c.e.

2

• A function f ∶ (Lω1)α → Lω1 is computable if its graph {a, f(a) ∶ a ∈ domf}
is a c.e. relation.

• We have a c.e. set C of codes for pairs (ϕ, c), representing Σ1 definitions,
where ϕ(u,x) is a Σ1-formula and c is a tuple of parameters appropriate
for u. Note that u and x can be countable tuples.

• We have a computable function h mapping ω1 onto C.

Definition 3. For α < ω1, α is a c.e. index for X if h(α) is the code for a pair
(ϕ, c), where ϕ(c, x) is a Σ1 definition of X in (Lω1 , ∈).

Notation: We write Wα for the c.e. set with index α.

Suppose Wα is determined by the pair (ϕ, c); i.e., ϕ(c, x) is a Σ1 definition.

Definition 4. We say that x is in Wα at stage β, and we write x ∈Wα,β, if Lβ
contains x, the parameters c, and witnesses making the formula ϕ(c, x) true.

Remark. The relation x ∈Wα,β is computable. After all, in the current setting,
countable sets, such as Lβ , appear “finite”. In the standard setting, the class of
c.e. sets is closed under finite intersection. We have the analogue here.

Proposition 1.1.
The class of c.e. sets is closed under countable intersection.

Proof. Let Γ be a countable set of countable ordinals (indices for c.e. sets), and
let S = ∩γ∈Γ. We have x ∈ S iff (∃β) (∀γ ∈ Γ)x ∈ Wγ,β , so S is Σ1 definable in
Lω1 .

1.2 Relative computability and jumps

Proposition 1.2. There is a c.e. set U ⊆ ω1 ×ω1 consisting of the pairs (α,β)
such that β ∈Wα.

In the standard setting, we define the halting set K, and we prove that it is
c.e. and non-computable. We then use the s −m − n theorem to show that all
c.e. sets are 1-reducible to K. In the setting of ω1, we could proceed in exactly
the same way [1], letting K = {α ∶ α ∈ Wα}. Instead, we define a set that is
obviously 1-complete.

Definition 5. Let K = {(α, y) ∶ y ∈Wα}.

This set K is c.e. We have a Σ1 definition for K, saying that there exists
β such that Lβ contains the pair h(α) = (ϕ(u, y), a), and Lβ ⊧ ϕ(a, y). The
complement of K cannot be c.e., for then the set {α ∶ α ∉ Wα} would also be
c.e.

Relative computability is important in what follows.

3

Definition 6. Let X ⊆ ω1.

• A relation is c.e. relative to X if it is
Σ1-definable in (Lω1 , ∈,X).

• A relation is computable relative to X if it and its complement are both
c.e. relative to X.

• A (partial or total) function is computable relative to X if the graph is
c.e. relative to X.

Definition 7. A c.e. index for a relation R relative to X is an ordinal α such
that h(α) = (ϕ, c), where ϕ is a Σ1 formula (in the language with ∈ and a
predicate symbol for X), and ϕ(c, x) defines R in (Lω1 , ∈,X).

Notation: We write WX
α for the c.e. set with index α relative to X.

Proposition 1.3. There is a c.e. set U of the codes for triples (σ,α, β) such
that σ ∈ 2ρ (for some countable ordinal ρ), and for all X with characteristic
function extending σ, β ∈WX

α .

A proof of the proposition above appears in [1].

We define the jump of a set X ⊆ ω1 to make the universality obvious.

Definition 8. The jump of X is X ′ = {(α, y) ∶ y ∈WX
α }.

As in the standard setting, for each X, X ′ is c.e. relative to X and not
computable relative to X.

We iterate the jump function through countable levels as follows.

• X(0) =X,

• X(α+1) = (X(α))′,

• for limit α, X(α) is the set of codes for pairs (β,x) such that β < α and
x ∈X(β).

It is convenient to have, for each countable ordinal α ≥ 1, a name for a
specific oracle set.

Notation. For finite n ≥ 1, we write ∆0
n for ∅(n−1), and for countable ordinals

α ≥ ω, we write ∆0
α for ∅(α). We can relativize to a set X. For finite n ≥ 1, we

let ∆0
n(X) =X(n−1), and for α ≥ ω, we let ∆0

α(X) =X(α).

2 The arithmetical hierarchy

In this section, we give two different definitions of the arithmetical hierarchy.

4

2.1 First definition

In our first definition, we follow the approach used in defining the hyperarith-
metical hierarchy in the usual setting.

Definition 9. Let R be a relation on ω1.

• R is Σ0
0 and Π0

0 if it is computable.

• For a countable ordinal α > 0,

– R is Σ0
α if it is c.e. relative to ∆0

α,

– R is Π0
α if the complementary relation ¬R is Σ0

α.

We may relativize this.

Definition 10. Let R be a relation on ω1.

• R is Σ0
0(X) and Π0

0(X) if R is computable relative to X.

• For a countable ordinal α > 0,

– R is Σ0
α(X) if it is c.e. relative to ∆0

α(X),

– R is Π0
α(X) if the complementry relation ¬R is Σ0

α(X)

.

We assign indices to the Σ0
α and Π0

α sets, for α ≥ 1. We ignore the case
where α = 0. The indices have the form (Σ, α, γ) and (Π, α, γ). The first two
components indicate that the set is Σ0

α, or Π0
α. The set with index (Σ, α, γ)

is W
∆0
α

γ , and the set with index (Π, α, γ) is the complementary set. When we
relativize to a set X, we use the same indices. The set with index (Σ, α, γ)
relative to X is W

∆0
α(X)

γ , and the set with index (Π, α, γ) relative to X is the
complement.

2.2 Second definition

In our second definition for the arithmetical hierarchy, we follow the approach
used in defining the effective Borel hierarchy [6].

Definition 11. Let R be a relation on ω1.

• R is Σ0
0 and Π0

0 if R is computable.

• R is Σ0
1 if it is c.e., R is Π0

1 if the complement, ¬R, is c.e.

• For countable ordinal α > 1,

– R is Σ0
α if it is a c.e. union of relations, each of which is Π0

β for some
β < α,

5

– R is Π0
α if ¬R is Σ0

α.

We may relativize to X in a straightforward way. A relation is Σ0
0 and Π0

0

relative to X if it is computable relative to X. For a countable ordinal α > 0, a
relation R is Σ0

α relative to X if it is a c.e. union of relations, each of which is
Π0
β relative to X for some β < α; R is Π0

α relative to X if ¬R is Σ0
α relative to

X.
We may assign indices to the Σ0

α and Π0
α sets in a natural way. We ignore

α = 0. For α = 1, (Σ,1, γ) is the index for the c.e. set Wγ , and (Π,1, γ) is the
index for the complementary set. For α > 1, (Σ, α, γ) is the union of the sets
with indices in Wγ of the form (Π, β, δ), where 1 ≤ β < α. Similarly, (Π, α, γ) is
the index for the intersection of the sets with indices in Wγ of the form (Σ, β, δ),
for 1 ≤ β < α.

When we relativize to a set X, we use the same indices. The set with
index (Σ,1, γ) relative to X is WX

γ ; the set with index (Π,1, γ) relative to X
is the complement. For α > 1, the set with index (Σ, α, γ) relative to X is the
union of the sets with indices (relative to X) in Wγ of the form (Π, β, δ), where
1 ≤ β < α; the set with index (Π, α, γ) relative to X is the intersection of the
sets with indices (relative to X) in Wγ of the form (Σ, β, δ), where 1 ≤ β < α.

2.3 Comparing the two definitions

We write Σ0
α(I), Π0

α(I) for the first definition, and Σ0
α(II), Π0

α(II) for the
second.

Proposition 2.1. For finite n, a set or relation is Σ0
n(I) iff it is Σ0

n(II).

Proof. Under both definitions, the Σ0
0 and Π0

0 sets and relations are the com-
putable ones. Also, under both definitions, the Π0

n sets are the complements of
the Σ0

n sets. A set is Σ0
1(I) iff it is c.e. relative to ∅, and a set is Σ0

1(II) iff it
is c.e. These are clearly equivalent. For larger n, we use some approximations
to ∅′ and ∅(k) for k < n.

The set ∅′ is c.e., so we have a formula γ1, with only bounded quantifiers,
such that y ∈ ∅′ iff the formula (∃v)γ1(v, y) holds in Lω1 . (We ignore the
parameters.) For an ordinal β, let Y1,β be the set of y ∈ Lβ such that (∃v)γ1(v, y)
holds in Lβ ; i.e., we can take v ∈ Lβ . The relation Y = Y1,β (on Y and β) is
computable. We say that β is 1-good if Y1,β = ∅′ ∩Lβ . This means that for all
y ∈ Lβ , if y ∈ ∅′, then (∃v)γ1(v, y) holds in Lβ . The set of β that are 1-good is
Π0

1.
Similarly, ∅(n+1) is c.e. relative to ∅n, so we have a formula γn+1, with

only bounded quantifiers, such that y ∈ ∅(n+1) iff the formula (∃v)γ(v, x) holds
in (Lω1 ,∅(n)). (Again we ignore the parameters.) Let Yn+1,β be the set of
y ∈ Lβ such that (∃v)γn+1(v, y) holds in (Lβ , Yn,β). The relation Y = Yn+1,β is
computable. We say that β is (n+1)-good if it is k-good for all k ≤ n and Yn+1,β =
∅(n+1) ∩ β. This means that for all y ∈ Lβ , if y ∈ ∅(n+1), then (∃v)γn+1(v, y)
holds in (Lβ , Yn,β). The set of β that are (n + 1)-good is Π0

n+1.

6

Assuming that the two definitions agree at level n, where n ≥ 1, we show
that they agree at level n + 1. Suppose R is Σ0

n+1(I), so we have a formula
δ, with only bounded quantifiers, such that x ∈ R iff the formula (∃u)δ(u,x)
holds in (Lω1 ,∅(n)). We have x ∈ R iff there is some β such that x ∈ Lβ , β
is n-good, and (∃u, δ(u,x) holds in (Lβ , Yn,β). For each ordinal α, let Rα be
the set of x such that for some β < α, β is n-good, x ∈ Lβ , and (∃u)δ(u,x)
holds in (Lβ , Yn,β). The sets Rα are Π0

n, uniformly in α, and R is a c.e. union.
Therefore, R is Σ0

n+1(II).
Now, suppose R is Σ0

n+1(II). Say R is the union of Π0
n sets Ri with indices

i in a c.e. set I. Then x ∈ R iff there exists i such that i ∈ I and x is in the
Π0
n set with index i. The set of all pairs (x, i) such that x is an element of the

Π0
n set with index i is Π0

n, so it is computable relative to ∅(n) (think of the
complementary sets). Therefore, R is c.e. relative to ∅(n), so it is Σ0

n+1(I).

The two definitions disagree at level ω and beyond. Under the first definition,
the computation that puts a particular element into a Σ0

ω may involve ∆0
n

information for all n. Under the second definition, an element enters a Σ0
ω

by entering some Π0
n set.

Proposition 2.2. There is a set S that is Σ0
ω(I) and Π0

ω(I) but not Σ0
ω(II).

Proof. Each set that is Σ0
ω(II) has an index of the form (Σ, ω,α)—the set is

equal to the union of the sets that have indices in Wα of the form (Π, n, β), for
n ∈ ω. We can define a set S that is Σ0

ω(I) and Π0
ω(I), such that α ∈ S iff α is not

in the set with second-definition index (Σ, ω,α); we define S to diagonalize out
of the class of Σ0

ω(II) sets. For each α and n, let S(α,n) be the union of the Π0
k

sets with indices in Wα of the form (Π, k, β), with k < n for this fixed n. Note
that each S(α,n) is Σ0

n. The union of these sets over all n will be the Σ0
ω(II)

set with index (Σ, ω,α). For each countable α, we can determine, computably
relative to ∆0

ω, whether (∀n ∈ ω), (α /∈ S(α,n)). (The quantifier (∀n ∈ ω) is
bounded.) We let α ∈ S iff (∀n ∈ ω)α /∈ S(α,n). Then S is ∆0

ω(I), but it is not
equal to any of the Σ0

ω(II) sets.

The set S is Σ0
ω+1(II). The two hierarchies differ by a jump at level ω. They

remain off by a jump all the way up.

3 Computable infinitary formulas

In the standard setting of computability, formulas of Lω1,ω are infinitary formu-
las in which the infinite disjunctions and conjunctions are over countable sets,
but there is no infinite nesting of quantifiers. We consider predicate formulas
with a finite tuple of free variables. There is no prenex normal form for these
formulas—in general, we cannot bring quantifiers to the front. However, we can
bring negations inside, and this results in a kind of normal form. We classify

7

formulas of Lω1,ω in normal form as Σα or Πα for countable ordinals α. Com-
putable infinitary formulas are formulas of Lω1,ω in which the disjunctions and
conjunctions are over c.e. sets. We classify the computable infinitary formu-
las as computable Σα or computable Πα for computable ordinals α. For more
information on computable infinitary formulas in the standard setting, see [3].

In this section, we give definitions, for the setting of ω1, of the computable
Σα and computable Πα formulas for countable ordinals α. Of course, c.e. dis-
junctions and conjunctions may be uncountable. We allow countable tuples of
variables. Thus, our computable infinitary formulas are formulas of Lω2,ω1 , not
Lω1,ω.

We give two different definitions, corresponding to our two different defini-
tions of the arithmetical hierarchy.

3.1 First definition

Our first definition of the computable infinitary formulas corresponds to our
first definition of the arithmetical hierarchy. We consider both predicate and
propositional languages, as we will need both for the results in Section 4.

Definition 12 (Computable infinitary predicate formulas). Let L be a predicate
language. For simplicity, we suppose that the symbols are the usual kind, with
finite arity. We suppose that the set of symbols in L is computable, and that the
function that assigns the type (relation, operation) and arity to symbols in L is
computable. We consider L-formulas ϕ(x) with a countable tuple of variables
x.

• ϕ(x) is computable Σ0 and computable Π0 if it is a quantifier-free formula
of Lω1,ω—we allow a countable tuple of variables.

• For α > 0,

– ϕ(x) is computable Σα if it is a c.e. disjunction of formulas (∃u)ψ(u,x),
where u is a countable tuple of variables and ψ is a countable con-
junction of formulas each of which is computable Σβ or computable
Πβ for some β < α,

– ϕ(x) is computable Πα if it is a c.e. conjunction of formulas (∀u)ψ(u,x),
where u is a countable tuple of variables and ψ is a countable disjunc-
tion of formulas each of which is computable Σβ or computable Πβ

for some β < α.

We consider structures A with universe a subset of ω1. As in the standard
setting, we identify a structure A with its atomic diagram D(A), where this
is a subset of Lω1 . As we have said above, Gödel’s function lets us identify
elements of Lω1 with elements of ω1. In Proposition 3.1 below, when we say
that a relation is Σ0

α or Π0
α relative to A, we are using the first definition of the

arithmetical hierarchy, relativized to D(A). The computable infinitary formulas
are as above.

8

Proposition 3.1. Let A be an L-structure. If ϕ(x) is computable Σα (or
computable Πα) L-formula, then the relation defined by ϕ(x) in A is Σ0

α (or
Π0
α) relative to A, uniformly.

Proof. The proof is by induction on α. First, let α = 0. The formula ϕ(x) is
computable Σ0 and computable Π0 if it is a quantifier-free formula of Lω1,ω.
Satisfaction of such formulas by countable tuples in A is computable relative to
D(A). Next, let α > 0 and suppose ϕ(x) is computable Σα, a c.e. disjunction
of formulas (∃u)ψ(x,u), where ψ is a countable conjunction of formulas each
of which is computable Πβ for some β < α. Using ∆0

α(D(A)), we can determine

whether a given tuple (a, b) satisfies the conjuncts of such a ψ(x,u). For a given
a, we can search for a disjunct and a tuple b witnessing that ϕ(a, b) holds in
A. This shows that the relation defined by ϕ(x) is Σ0

α relative to A. The case
where ϕ(x) is computable Πα is dual.

When we prove the converse of Proposition 3.1, we shall also use computable
propositional formulas.

Definition 13 (Computable infinitary propositional formulas). Let P be a com-
putable set of propositional variables.

• ϕ is computable Σ0 and computable Π0 if it is a formula of the proposi-
tional language Pω1 (allowing countable disjunctions and conjunctions).

• For α > 0,

– ϕ is computable Σα if it is a c.e. disjunction of countable conjunc-
tions of formulas each of which is computable Σβ or computable Πβ

for some β < α.

– ϕ is computable Πα if it is a c.e. conjunction of countable disjunc-
tions of formulas each of which is computable Σβ or computable Πβ

for some β < α.

A structure for the propositional language P is a set S ⊆ P . We have the
analogue of Proposition 3.1. Truth of computable Σα formulas in S is Σ0

α relative
to S, and truth of computable Πα formulas in S is Π0

α relative to S.

3.2 Second definition

Our second definition of the computable infinitary formulas corresponds to our
second definition of the arithmetical hierarchy. Again we consider both predicate
and propositional languages.

Definition 14 (Computable infinitary predicate formulas). Let L be a com-
putable predicate language, as above.

• ϕ(x) is computable Σ0 and computable Π0 if it is a quantifier-free formula
of Lω1,ω.

9

• For α > 0,

– ϕ(x) is computable Σα if it is a c.e. disjunction of formulas (∃u)ψ(u,x),
where u is a countable tuple of variables and ψ is computable Πβ for
some β < α.

– ϕ(x) is computable Πα if it is a c.e. conjunction of formulas (∀u)ψ(u,x),
where u is a countable tuple of variables and ψ is computable Σβ for
some β < α.

In the result below, the definitions are as in the second approach.

Proposition 3.2. Let A be an L-structure. If the formula ϕ(x) is computable
Σα (or computable Πα), then the relation defined by ϕ(x) in A is Σ0

α (or Π0
α)

relative to A, uniformly.

Proof. The proof is by induction on α. For α = 0, there is no difference between
the two sets of definitions. Let α > 0 and suppose ϕ(x) is computable Σα, a c.e.
disjunction of formulas (∃u)ψ(x,u), where ψ is computable Πβ for some β < α.
We must show that the relation R defined by ϕ is Σ0

α relative to A. For each
ψ(x,u), and each countable ordinal γ, let Rψ,γ consist of the tuples a such that

(∃b ∈ Lγ)A ⊧ ψ(a, b). The relation Rψ,γ is Π0
β relative to A. The relation R is

the c.e. union of these. A dual argument shows that the relation defined by a
computable Πα formula is Π0

α relative to A.

Definition 15 (Computable infinitary propositional formulas). Let P be a com-
putable propositional language, as above.

• A formula ϕ is computable Σ0 and computable Π0 if it is a formula of
Pω1 .

• For α > 0,

– ϕ is computable Σα if it is a c.e. disjunction of formulas each of
which is computable Πβ for some β < α.

– ϕ is computable Πα if it is a c.e. conjunction of formulas each of
which is computable Σβ for some β < α.

For both sets of definitions, our computable infinitary formulas are in “nor-
mal form”. Given a formula ϕ, we write neg(ϕ) for the dual formula that is
logically equivalent to the negation. It is easy to see that if ϕ is computable Σα,
then neg(ϕ) is computable Πα, and vice versa.

Remark. As above, for S ⊆ P , truth of computable Σα (or computable Πα)
formulas in S is Σ0

α (Π0
α) relative to S, uniformly.

10

4 Relatively intrinsically arithmetical relations

Recall that for a computable language L, a “computable L-structure, A” is a
structure such that the set of codes for sentences in the atomic diagram of A is
computable. We define what it means for a relation to be relative intrinsically
Σ0
α on A. The definition is the same as in the standard setting, except that the

terms “computable” and “Σ0
α relative to” are understood in the new sense. It

should also be noted that our definition is actually two definitions according to
the two different notions of “Σ0

α.”

Definition 16. Let A be a computable structure, and let R be a relation on
A. We say that R is relatively intrinsically Σ0

α on A if for all isomorphisms F
from A onto a copy B, F (R) is Σ0

α relative to B.

Below is the statement of our main result. There are really two different
theorems, corresponding to the two different sets of definitions, but they look
the same.

Theorem 4.1. Let 1 ≤ α < ω1. Let A be a computable structure, and let R be
a relation on A. Then the following are equivalent:

1. R is relatively intrinsically Σ0
α on A,

2. R is defined in A by a computable Σα formula ϕ(c, x), with a countable
tuple of parameters c.

For simplicity, we suppose that A has universe equal to ω1, and that R
is unary. We give two proofs, one for each set of definitions. We begin with
the first definition of the arithmetical hierarchy and the first definition of the
computable infinitary formulas.

First proof. We get 2 ⇒ 1 by Proposition 3.1. To prove that 1 ⇒ 2, we use
forcing, as in [2] and [3]. We build a generic copy B of A by building a generic
permutation F of ω1, and we let (B,R′) ≅F (A,R). The forcing conditions are
countable partial permutations of ω1. Note that the union of a countable chain
of forcing conditions is a forcing condition.

We will write S(Σ,β.γ)(B) for the set W
∆0
β(B)

γ . We write S(Π,β.γ)(B) for the
complement. We identify the structure B, under construction, with its atomic
diagram. For our forcing language, we need formulas with the meanings below.

• b ∈ B,

• b ∉ B,

• b ∈ ∆0
β(B),

• b /∈ ∆0
β(B),

• b ∈ S(Σ,β.γ)(B),

11

• b ∈ S(Π,β.γ)(B),

• R′ = S(Σ,β.γ)(B).

We use a propositional language in which the propositional variables are the
atomic sentences involving symbols from L,R, and constants from ω1. We will
identify propositional variables with their codes. The set of codes for proposi-
tional variables is a computable set. We write neg(ϕ) for a formula in normal
form that is logically equivalent to ¬ϕ. We switch disjunctions with conjunctions
and we replace a propositional variable by its negation, and vice versa.

• To say that b ∈ B: if b is a propositional variable or the negation of one,
we write b, and if it is not a propositional variable or the negation of one,
we write �.

• To say that b /∈ B, if b is a propositional variable, we write ¬b, and if
b = ¬c, where c is a propositional variable, we write c. If b is neither a
propositional variable nor the negation of one, then we write ⊺.

Recall that ∆0
1(B) is just (the atomic diagram of) B. So, we have formulas

saying that b ∈ ∆0
1(B) and b ∉ ∆0

1(B).

• Suppose β is a successor ordinal—β = δ + 1. Then ∆0
β(B) is the jump of

∆0
δ(B). To say that b ∈ ∆0

β(B), if b is a pair (γ, c), we recall the set U
from Proposition 1.3, and we take the disjunction over ρ ∈ 2<ω1 such that
(ρ, γ, c) ∈ U of formulas saying that x ∈ ∆0

δ(B) if ρ(x) = 1 and x ∉ ∆0
δ(B)

if ρ(x) = 0. If b is not a pair (γ, c), we write �. To say that b ∉ ∆0
β(B), we

apply neg to the formula above.

• Suppose β is a limit ordinal. To say that c ∈ ∆0
β(B), if c is a pair (δ, d),

where δ < β, we take the formula saying that d ∈ ∆0
δ(B), and if c is not

such a pair, then we write �. To say that c ∉ ∆0
β(B), if c is a pair (δ, d),

where δ < β, then we take the formula saying that d ∉ ∆0
δ(B), and if c is

not such a pair, then we write ⊺.

• To say that b ∈ S(Σ,β,γ)(B), we take the disjunction over ρ ∈ 2<ω1 such that
the triple (ρ, γ, b) ∈ U of formulas saying that c ∈ ∆0

β(B) if ρ(c) = 1 and

c ∉ ∆0
β(B) if ρ(c) = 0.

• To say that b ∈ S(Π,β,γ)(B), we apply neg to the formula saying that
b ∈ S(Σ,n+1,γ).

• To say that R′ = S(Σ,β,γ)(B), we take the conjunction over all b of the
formulas ⩕

b

(b ∈ S(Σ,β,γ)(B)↔ R′b).

We let T include the computable Σβ and Πβ formulas, for countable ordinals
β ≤ α, plus the Πα+1 formulas χγ saying that R′ is equal to the set with index
(Σ, α, γ) relative to B, and the Σα+1 formulas neg(χγ). We define forcing for
the formulas in T .

12

Definition 17 (Definition of forcing). Let p be a forcing condition. We define
the relation p ⊩ ϕ, for ϕ in our propositional language.

• Suppose ϕ is computable Σ0 and Π0. Then p ⊩ ϕ if the constants in the
propositional variables that occur in ϕ are all in dom(p) and p interprets
these constants so as to make ϕ true in the structure (A,R).

• Suppose ϕ is computable Σβ, for β ≥ 1, say ϕ is the c.e. disjunction of
formulas ψi, where ψi is a countable conjunction of formulas ψi,j and for
each j, ψi,j is Σγ or Πγ for some γ < β. Then p ⊩ ϕ if there is some i
such that for all j, p ⊩ ψi,j.

• Suppose ϕ is computable Πβ, for β ≥ 1, say ϕ is the c.e. conjunction of
formulas ψi, where ψi is a countable disjunction of formulas ψi,j and for
each j, ψi,j is computable Πγ or computable Σγ for some γ < β. Then
p ⊩ ϕ if for all i and all q ⊇ p, there exist r ⊇ q and j such that r ⊩ ψi.j.

We have the usual lemmas, extension, consistency, and density, all proved
by induction on formulas in the forcing language.

Lemma 4.2 (Extension). If p ⊩ ϕ and q ⊇ p, then q ⊩ ϕ.

Lemma 4.3 (Consistency). It is not the case that p ⊩ ϕ and p ⊩ neg(ϕ).

Lemma 4.4 (Density). For all p and ϕ, there exists q ⊇ p such that q “decides”
ϕ; i.e., q ⊩ ϕ or q ⊩ neg(ϕ).

From the definition above, forcing of computable Πβ formulas does not ap-
pear to be Π0

β . The lemma below gives an alternative condition, which is Π0
β .

Lemma 4.5. Let ϕ be a computable Πβ formula, the c.e. intersection of for-
mulas ψi, where ψi is a countable disjunction of formulas ψi,j, for j ∈ ω, each
computable Πγ or computable Σγ for some γ < β. For a forcing condition p,
p ⊩ ϕ iff for all i and all q ⊇ p, it is not the case that for all j ∈ ω, q ⊩ ψi,j.

Proof. We show that for all i, the following are equivalent.

1. for all q ⊇ p, there exist r ⊇ q and j such that r ⊩ ψi,j ,

2. for all q ⊇ p, it is not the case that (∀j) q ⊩ neg(ψi,j).

First suppose (1). If (2) fails, we would have q ⊇ p such that (∀j) q ⊩
neg(ψi,j). By the Extension and Consistency lemmas, we cannot have r ⊇ q
and j ∈ ω such that r ⊩ ψi,j . This contradicts (1). Therefore, (2) holds. Now,
suppose (2). If (1) fails, we would have q ⊇ p such that there do not exist r ⊇ q
and j with r ⊩ ψi,j . We build a chain (rj)j∈ω of extensions of q, where r0 ⊇ q
forces neg(ψi,0) and rj+1 ⊇ rj forces neg(ψi,j+1). Let r = ∪jrj . Then r ⊇ p and
for all j, r ⊩ neg(ψi,j), contradicting (2).

13

Definition 18 (Complete forcing sequence). A complete forcing sequence, or
c.f.s., is a sequence (pδ)δ<ω1 such that

1. if δ < δ′, then pδ ⊇ pδ′ ,

2. for all ϕ ∈ T , there is some δ such that pδ decides ϕ,

3. for all a ∈ ω1, there is some δ such that a ∈ ran(pδ).

It follows from the lemmas that we can form a complete forcing sequence.
For limit δ, we let pδ = ∪δ′<δpδ′ . Let F = ∪δpδ for δ < ω1. From this, we obtain
B and R′ such that (B,R′) ≅F (A,R), as planned. Now, B and (B,R′) are
predicate structures. Taking the positive sentences in the atomic diagrams, we
obtain corresponding propositional structures, which we denote in the same way.

Lemma 4.6 (Truth and Forcing Lemma). For ϕ ∈ T , (B,R′) ⊧ ϕ iff there is
some δ such that pδ ⊩ ϕ.

Proof.

1. Suppose ϕ is computable Σ0 and computable Π0. Take δ such that
dom(pδ) includes all of the constants that appear in the propositional
variables in ϕ. If pδ makes ϕ true in (A,R), then pδ ⊩ ϕ and (B,R′) ⊧ ϕ.
If pδ makes ϕ false in (A,R), then pδ ⊩ neg(ϕ) and (B,R′) ⊧ neg(ϕ).

2. Suppose ϕ is computable Σβ , the c.e. disjunction of formulas ψi, where
ψi is a countable conjunction of formulas ψi,j , and for each j, ψi,j is
computable Πγ or computable Σγ for some γ < β. First, suppose (B,R′) ⊧
ϕ, then there is some i such that for all j, (B,R′) ⊧ ψi,j . By the induction
hypothesis, for each j, there is some δi,j such that pδi,j ⊩ ψi,j . Let δ be
the sup of the δi,j . Then pδ ⊩ ψi,j for all j, so pδ ⊩ ϕ. Now, suppose
pδ ⊩ ϕ. By the definition of forcing, there is some i such that for all j,
pδ ⊩ ψi,j . By the induction hypothesis, for all j, ψi,j is true, so ψi is true
and so is ϕ.

3. Suppose ϕ is computable Πβ , the c.e. conjunction of formulas ψi, where
ψi is a countable disjunction of formulas ψi,j , each computable Σγ or
computable Πγ for some γ < β. First, suppose (B,R′) ⊧ ϕ. This means
that for all i, ψi is true. For some δ, pδ forces either ϕ or neg(ϕ). We
show that pδ cannot force neg(ϕ). If pδ ⊩ neg(ϕ), then for some i, for all
j, pδ ⊩ neg(ψi,j). By the induction hypothesis, for all j, neg(ψi,j) is true,
so the conjunction is true, and this is neg(ψi), contradicting the fact that
ψi is true. Now, suppose that for some δ, pδ ⊩ ϕ. For each i and each
q ⊇ pδ, there is some r ⊇ q such that for some j, r ⊩ ψi,j . If ϕ is false,
then for some i, ψi is false, which means that for all j, ψi,j is false. By
the induction hypothesis, for each of the countably many j, there is some
pδj forcing neg(ψi,j). Let q be the union of pδ and the pδj . Since q ⊇ pδ,
there is some r ⊇ q such that for some j, r ⊩ ψi,j . Then r forces both ψi,j
and neg(ψi,j), a contradiction. Therefore, ϕ must be true.

14

Let T ′ be the set of formulas in T that do not involve R. We shall prove
that forcing for these formulas is definable in A.

Lemma 4.7 (Definability of forcing). For any ϕ ∈ T ′, and for any tuples b and
x of the same countable ordinal arity, there is a predicate formula Forceb,ϕ(x)
such that A ⊧ Forceb,ϕ(a) iff the correspondence taking bi to ai is a forcing
condition p such that p ⊩ ϕ. Moreover, if ϕ is computable Σβ, or computable
Πβ, for 1 ≤ β, then Forceb,ϕ(x) is also computable Σβ, or computable Πβ.

Proof. We suppose that the elements of b are distinct, and the variables in x are
distinct. We have a simple formula forceb(x) saying that the correspondence
taking bi to xi is a forcing condition—take the conjunction of formulas xi /= xj ,
where i /= j. Now, we give the formulas Forceb,ϕ(x) by induction on ϕ.

1. Suppose ϕ is computable Σ0 and computable Π0. While ϕ is really propo-
sitional, it is convenient to think of it also as a quantifier-free predicate
sentence involving predicate symbols from the language ofA and constants
from the universe of B. Suppose that the constants that appear in ϕ are
all in b, and let ϕ′ be the result of replacing each occurrence of bi in ϕ by
xi. Then Forceb,ϕ(x) = (forceb(x) & ϕ′). If the constants that appear

in ϕ are not all in b, then Forceb,ϕ(x) = �. In either case, the formula

Forceb,ϕ(x) is computable Σ0 and computable Π0.

2. Suppose ϕ is computable Σβ , the c.e. disjunction of formulas ψi, where ψi
is a countable conjunction of formulas ψi,j , each of which is computable Πγ

or computable Σγ for some γ < β. Let Forceb,ϕ(x) be⩔i⩕j Forceb,ψi,j(x).
Each Forceb,ψi,j(x) is computable Πγ or computable Σγ for some γ < β.

Then Forceb,ϕ(x) is computable Σα.

3. Suppose that ϕ is computable Πβ , the c.e. conjunction of formulas ψi,
where ψi is a countable disjunction of formulas ψi,j , each of which is
computable Σγ or computable Πγ for some γ < β. We think of the al-
ternative definition of forcing for such formulas. We let Forceb,ϕ(x) be

a computable Πβ formula saying that for all i and for all d and u, if the

correspondence taking b, d to x,u is a forcing condition q, then it is not
the case that for all j ∈ ω, q ⊩ neg(ψi,j). We write

⩕
i
⩕
d

(∀u) (forceb,d(x,u)→⩕
j

neg(Forceb,d,neg(ψi,j)(x, b))

This is equivalent to a c.e. conjunction of countable conjunctions of com-
putable Σγ and computable Πγ formulas for γ < β.

15

We are ready to complete the proof. By assumption and Lemma 4.5, some
p forces S(Σ,α,γ)(B) = R′, for some γ. Say that p maps d to c. We can see that
a ∈ R iff there is some q ⊇ p such that q(b) = a and q ⊩ b ∈ S(Σ,α,γ)(B). For
any b, the formula saying that b ∈ S(Σ,α,γ) is computable Σα. We can write
a computable Σα predicate formula ϕ(c, x) saying that there exists q ⊇ p such
that q(b) = x and q ⊩ b ∈ S(Σ,α,γ)(B). We take the c.e. disjunction over b, b1 of
the formulas (∃u)Forced,b,b1,b∈S(Σ,α,γ)(B)(c, x, u). This formula defines R, and

it is computable Σα.

We have proved the first version of the theorem, using the first set of defini-
tions. We now consider the second version of the theorem, using the second set
of definitions.

Second proof. Again we get 2 ⇒ 1 by Proposition 3.2. To prove that 1 ⇒ 2,
we use forcing. The outline of the proof is the same as above. Recall that
S(Σ,α,γ)(B) is the c.e. union of the sets S(Π,β,δ)(B) such that (Π, β, δ) ∈Wγ and
β < α. We write S(Σ,α,γ)(B), or S(Π,α,γ)(B), for the set with index (Σ, α, γ),
or (Π, α, γ), relative to B. For α = 1, S(Σ,1,γ)(B) = WB

γ , and S(Π,1,γ)(B) is
the complementary set. For our forcing language, we need formulas with the
meanings below.

• b ∈ B,

• b ∉ B,

• b ∈ S(Σ,1,γ)(B),

• b ∈ S(Π,1,γ), or b ∉ S(Σ,1,γ)(B),

• b ∈ S(Σ,β,γ)(B), or b ∈ S(Π,β,γ)(B),

• R′ = S(Σ,β,γ)(B).

Again, the propositional variables are the atomic sentences involving symbols
from L,R, and constants from ω1.

• The formulas saying that b ∈ B and b ∉ B are the same as before. To say
that b ∈ B, we write b if b is a propositional variable, ¬c if b is the negation
of a propositional variable c, and � otherwise. To say that b ∉ B, we write
¬b if b is a propositional variable, c if b is the negation of c, and ⊺ if b is
neither a propositional variable nor the negation of one.

• To say that b ∈ S(Σ,1,γ)(B), we take the disjunction, over ρ ∈ 2<ω such
that (ρ, γ, b) is in the relation U , of the conjunction of formulas saying
x ∈ B, for ρ(x) = 1, and formulas saying x ∉ B, for ρ(b) = 0. To say that
b ∈ S(Π,1,γ)(B), or b ∉ S(Σ,1,γ)(B), we apply neg to the formula saying
b ∈ S(Σ,1,γ)(B).

16

• For δ > 1, to say that b ∈ S(Σ,δ,γ)(B), we take the disjunction, over
(Π, δ′, γ′) ∈ Wγ with 1 ≤ δ′ < δ, of formulas saying that b ∈ S(Π,δ′,γ′)(B).
To say that b ∈ S(Π,δ,γ)(B), we apply neg to the formula saying that
b ∈ S(Σ,δ,γ)(B).

• To say thatR′ = S(Σ,α,γ)(B), we take the formula saying⩕b(b ∈ S(Σ,α,γ)(B)↔
R′b).

We let T include the computable Σβ and Πβ formulas, for countable ordinals
β ≤ α, plus the formula saying R′ = S(Σ,α,γ)(B) and the result of applying neg
to this formula.

Definition 19 (Definition of forcing). Let p be a forcing condition.

• Suppose ϕ is computable Σ0 and Π0. We say p forces ϕ, or p ⊩ ϕ, if the
constants in the propositional variables that occur in ϕ are all in dom(p)
and p interprets these constants so as to make ϕ true in (A,R).

• Suppose ϕ is computable Σβ, for β ≥ 1, a c.e. disjunction of formulas ψi,
where each ψi is computable Πγ for some γ < β. Then p ⊩ ϕ if p ⊩ ψi, for
some i.

• Suppose ϕ is computable Πβ, for β ≥ 1, a c.e. conjunction of formulas ψi,
where each ψi is computable Σγ for some γ < β. Then p ⊩ ϕ if for all i
and all q ⊇ p, there is some r ⊇ q such that r ⊩ ψi.

We have the usual lemmas, extension, consistency, and density, all proved
by induction on formulas in the forcing language.

Lemma 4.8 (Extension). If p ⊩ ϕ and q ⊇ p, then q ⊩ ϕ.

Lemma 4.9 (Consistency). It is not the case that p ⊩ ϕ and p ⊩ neg(ϕ).

Lemma 4.10 (Density). For all p and ϕ, there exists q ⊇ p such that q ⊩ ϕ or
q ⊩ neg(ϕ).

As for the first definition, we could show that if ϕ is computable Πβ , a c.e.
conjunction of formulas ψi, each computable Σγ for some γ < β, then p ⊩ ϕ iff
for all i and all q ⊇ p, q does not force neg(ψi). This is not necessary, since for
the second definition, the relation p ⊩ ϕ is easily seen to be Π0

β .

We can form a complete forcing sequence F . For limit β, we let pβ = ∪γ<βpγ .
Let F = ∪βpβ for β < ω1. From this, we obtain B and R′ such that (B,R′) ≅F
(A,R), as planned. As above, B and (B,R′) are predicate structures. Taking the
positive sentences in the atomic diagrams, we obtain propositional structures,
which we denote by B and (B,R′).
Lemma 4.11 (Truth and forcing Lemma). For ϕ ∈ T , (B,R′) ⊧ ϕ iff there is
some β such that pβ ⊩ ϕ.

17

We have definability of forcing. Let T ′ be the set of formulas in T that do
not involve R. Forcing for these formulas is definable in A.

Lemma 4.12 (Definability of forcing). For any ϕ ∈ T ′, and for any b and x of
the same countable ordinal arity, there is a predicate formula Forceb,ϕ(x) such

that A ⊧ Forceb,ϕ(a) iff the correspondence taking bi to ai is a forcing condition
p such that p ⊩ ϕ. Moreover, if ϕ is computable Σβ, or Πβ, for 1 ≤ β ≤ α, then
Forceb,ϕ(x) is also computable Σβ, or computable Πβ.

Proof. First, suppose ϕ is computable Σ0 and computable Π0. If b includes all
of the constants that appear in the propositional variables of ϕ, then we let
Forceb,ϕ(x) be forceb(x) & ϕ′, where ϕ′ is the result of replacing the occur-

rences of the constant bi in ϕ by the corresponding variable xi. If b does not
include all of the constants of ϕ, then Forceb,ϕ(x) is �. Suppose ϕ is computable
Σβ , a c.e. disjunction of formulas ψi, each of which is computable Πγ for some
γ < β. We let Forceb,ϕ(x) be

⩔
i

(forceb(x) & Forceb,ψi(x))

This is a computable Σβ predicate formula. Finally, suppose ϕ is computable
Πβ , a c.e. conjunction of formulas ψi, each of which is computable Σγ for some
γ < β. We let Forceb,ϕ(x) be the conjunction of forceb(x) and the following
formulas, one for each i and c:

(∀u) [forceb,c(x,u)→⩔
d

((∃v)(forceb,c,d(x,u, v) & Forceb,c,d,ψi(x,u, v))]

This is logically equivalent to a computable Πβ predicate formula.

We are ready to complete the proof of the second version of the theorem.
Suppose p forces S(Σ,α,γ)(B) = R′, where p maps d to c. We can see that a ∈ R
iff there is some q ⊇ p such that q(b) = a and q ⊩ b ∈ S(Σ,α,γ)(B). We have
a computable Σα predicate formula ϕ(c, x) saying that there exists q ⊇ p such
that q(b) = x and q ⊩ b ∈ WB

α . We take the c.e. disjunction over b, b1 of the
formulas (∃u)Forced,b,b1,b∈S(Σ,α,γ)(B)(c, x, u). This formula defines R.

5 Which definition is better?

The two definitions of the arithmetical hierarchy in the setting of ω1 are not
equivalent. Each definition yields a result saying that a relation is relatively
intrinsically Σ0

α on A iff it is defined by a computable Σα formula. So, we do
not have evidence that one definition is more productive. We would like to
claim that the first definition is better. In the standard setting, an element
enters a Σ0

5 set based on finitely much ∆0
5 information. We are using the full

18

power of the oracle. In our first definition, an element enters a Σ0
ω set based

on countably many pieces of ∆0
ω information. We may use the full power of

the ∆0
ω oracle. In our second definition, an element enters a Σ0

ω set by entering
one of a c.e. family of sets, each of which is Π0

n for some n < ω. We never use
the full power of ∆0

ω. Using this reasoning, it seems more natural to use the
first definition for the arithmetical hierarchy. We are grateful to Joe Mileti for
helpful discussions of this point. We are also grateful to Sy Friedman, for telling
us about some related work of Jensen, on master codes, in which he also has a
choice of approaches, and makes a choice like ours ([5], Section 2).

References

[1] N. Greenberg and J. F. Knight, “Computable structure theory in the setting
of ω1, paper for Proceedings of first EMU workshop.

[2] C. J. Ash, J. F. Knight, M. Mannasse, and T. Slaman, “Generic copies of
countable structures”, Annals of Pure and Appl. Logic, vol. 42(1989), pp.
195-205.

[3] C. J. Ash, J. F. Knight, Computable Structures and the Hyperarithmetical
Hierarchy, Studies of Logic and the Foundations of Mathematics, vol. 144
(2000).

[4] J. Chisholm, “Effective model theory versus recursive model theory”, J.
Symb. Logic, vol. 55(1990), pp. 1168-1191.

[5] R. Jensen, “The fine structure of the constructible hierarchy”, Annals of
Math. Logic, vol. 4 (1972), pp. 229308.

[6] M. Vanden Boom, “The effective Borel hierarchy”, Fund. Math., vol.
195(2007), pp. 269-289.

19

	Wellesley College
	Wellesley College Digital Scholarship and Archive
	2013

	The arithmetical hierarchy in the setting of ω_1
	Jacob Carson
	Jesse Johnson
	Julia F. Knight
	Karen Lange
	Charles McCoy CSC
	See next page for additional authors
	Recommended Citation
	Authors

	tmp.1471014964.pdf.Y_Zpg

