
Wellesley College
Wellesley College Digital Scholarship and Archive

Honors Thesis Collection

2016

Tutor-Complete: An Educational Game and
Intelligent Tutoring System for Languages and
Automata
Katherine Kjeer
kkjeer@wellesley.edu

Follow this and additional works at: https://repository.wellesley.edu/thesiscollection

This Dissertation/Thesis is brought to you for free and open access by Wellesley College Digital Scholarship and Archive. It has been accepted for
inclusion in Honors Thesis Collection by an authorized administrator of Wellesley College Digital Scholarship and Archive. For more information,
please contact ir@wellesley.edu.

Recommended Citation
Kjeer, Katherine, "Tutor-Complete: An Educational Game and Intelligent Tutoring System for Languages and Automata" (2016).
Honors Thesis Collection. 395.
https://repository.wellesley.edu/thesiscollection/395

https://repository.wellesley.edu?utm_source=repository.wellesley.edu%2Fthesiscollection%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.wellesley.edu/thesiscollection?utm_source=repository.wellesley.edu%2Fthesiscollection%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.wellesley.edu/thesiscollection?utm_source=repository.wellesley.edu%2Fthesiscollection%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.wellesley.edu/thesiscollection/395?utm_source=repository.wellesley.edu%2Fthesiscollection%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ir@wellesley.edu

WELLESLEY COLLEGE

Tutor-Complete:

An Educational Game and Intelligent

Tutoring System for Languages and

Automata

by

Katherine Kjeer

Submitted in Partial Fulfillment of the

Prerequisite for Honors

in the

Computer Science Department

May 2016

“Play is the highest form of research.”

Albert Einstein

WELLESLEY COLLEGE

Abstract

Computer Science Department

Bachelor of Arts

by Katherine Kjeer

Educational games and Intelligent Tutoring Systems have been shown to improve stu-

dent learning outcomes by increasing engagement and providing individualized instruc-

tion. However, while introductory programming students frequently benefit from such

systems, students in upper-level theoretical courses such as CS 235 (Languages and Au-

tomata) have dense textbooks and dry mathematical readings as their primary or only

resources. Tutor-Complete aims to fill this gap by presenting two fundamental CS 235

concepts in a game environment. In the first activity, students construct Determinis-

tic Finite-State Automata in order to guide their character across a landscape. In the

second activity, students build proofs using the pumping lemma to defeat the “villain”

character. Tutor-Complete also fosters a peer-learning environment by encouraging stu-

dents to explain concepts to each other and providing hints based on past student work.

Finally, Tutor-Complete uses Bayesian Knowledge Tracing to model students’ knowledge

and tailor the learning experience accordingly.

Acknowledgements

With sincere appreciation, I thank my advisor, Eni Mustafaraj, for her incredible guid-

ance and support of this thesis. Tutor-Complete would not exist without her encourage-

ment and expertise. I also thank my committee members, Lyn Turbak and Orit Shaer,

for their valuable feedback and generosity in this process.

Thank you to all the Computer Science professors that I have studied or worked with

(Lyn Turbak, Sohie Lee, Taxis Metaxas, Stella Kakavouli, Randy Shull, Jean Herbst,

Scott Anderson, Rhys Price Jones, Ben Wood, Eni Mustafaraj, Orit Shaer, and Brian

Tjaden) for sharing their wealth of knowledge about this amazing field.

I am grateful to the Computer Science students that participated in user studies for

this thesis, whose thoughtful feedback has strengthened Tutor-Complete and generated

ideas for future work.

Finally, I am very thankful to my family, friends, and professors for their support,

encouragement, and patience in the process of building Tutor-Complete and writing

this thesis.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables ix

List of Algorithms x

Abbreviations xi

1 Introduction 1

1.1 Educational Games . 1

1.2 Intelligent Tutoring Systems . 2

1.3 Motivation . 3

1.4 Educational Goals . 4

1.5 Thesis Overview . 4

2 Related Work 5

2.1 Microworlds . 5

2.1.1 BuggleWorld, TurtleWorld, and PictureWorld 5

2.1.2 Programmer’s Learning Machine 6

2.1.3 PacMan . 6

2.2 Concept Testers . 7

2.2.1 JFLAP . 7

2.2.2 JDSL Visualizers and Testers . 8

2.3 Games . 8

2.3.1 Game2Learn . 9

2.3.2 Dragon Architect . 9

2.3.3 Minecraft . 10

3 Game Design 11

3.1 Game Overview . 11

3.2 CS 235 Concepts . 12

3.2.1 Deterministic Finite-State Automata 12

iv

Contents v

3.2.2 The Pumping Lemma for Regular Languages 13

3.3 Activities . 13

3.3.1 DFA Activity . 14

3.3.2 Pumping Lemma Activity . 17

3.4 Design Factors . 23

3.5 Worlds . 25

3.5.1 World DFA Activities . 26

3.5.2 World Pumping Lemma Activities 26

3.6 Features . 27

3.6.1 Educational Gaming . 27

3.6.2 Peer Instruction . 29

3.6.3 Tutoring . 29

4 Hint Generation 31

4.1 Overview . 31

4.2 Initialization . 33

4.3 Graph Similarity . 34

4.4 Grouping . 37

4.5 Markov Decision Process . 39

5 Bayesian Knowledge Tracing 41

5.1 Theory . 41

5.2 Pumping Lemma: Classical BKT . 43

5.3 DFAs: Contextual BKT . 45

6 Evaluation 47

6.1 User Study Design . 47

6.2 DFA Results . 49

6.2.1 DFA Interface Feedback . 49

6.2.2 DFA Understanding Feedback . 50

6.2.3 DFA Hints Feedback . 50

6.2.4 DFA Activity Score Feedback . 51

6.3 Pumping Lemma Results . 52

6.3.1 Pumping Lemma Interface Feedback 52

6.3.2 Pumping Lemma Understanding Feedback 52

6.3.3 Pumping Lemma Changing String Feedback 53

6.4 Overall Results . 54

6.4.1 Explanations Feedback . 54

6.4.2 Story Feedback . 55

6.4.3 Dashboard Feedback . 55

6.4.4 General Feedback . 56

7 Conclusions and Future Work 58

7.1 Principal Results . 58

7.2 Future Work . 60

7.2.1 Tips . 61

7.2.2 Custom Challenges . 61

7.2.3 Educational Study . 62

Contents vi

7.2.3.1 Group 1: Current CS 235 Students 63

7.2.3.2 Group 2: Former CS 235 Students 64

7.3 Thesis Conclusion . 64

A Hint Generation Functions 66

B DFA BKT Training Data 70

C User Study Protocol 73

C.1 Introduction . 73

C.2 Demo . 73

C.2.1 DFA Activity . 73

C.2.2 Pumping Lemma Activity . 74

C.3 Explanations . 76

Bibliography 77

List of Figures

1.1 Contrasting CS 111 and CS 235 Resorces 3

2.1 BuggleWorld and TurtleWorld [1] . 6

2.2 Programmer’s Learning Machine [2] . 6

2.3 PacMan [3] . 7

2.4 JFLAP [4] . 8

2.5 JDSL [5] . 8

2.6 Game2Learn [6] . 9

2.7 Dragon Architect [7] . 10

2.8 Minecraft [8] . 10

3.1 Tutor-Complete Home Page . 12

3.2 DFA Activity Buttons . 14

3.3 DFA Activity: Testing String Matching Pattern 15

3.4 DFA Activity: Testing String Not Matching Pattern 16

3.5 DFA Activity: Testing Outcomes . 17

3.6 Pumping Lemma Activity: Choosing Language 18

3.7 Pumping Lemma Activity: Pumping Length 18

3.8 Pumping Lemma Activity: Choosing String 18

3.9 Pumping Lemma Activity: Possible Parsings 19

3.10 Pumping Lemma Activity: Changing String 19

3.11 Pumping Lemma Activity: Choosing Parsing 20

3.12 Pumping Lemma Activity: Choosing i . 20

3.13 Pumping Lemma Activity: Choosing an Incorrect i 20

3.14 Pumping Lemma Activity: Choosing Reason 21

3.15 Pumping Lemma Activity: Choosing an Incorrect Reason 21

3.16 Pumping Lemma Activity: Choosing a Correct Reason 21

3.17 Pumping Lemma Activity: Completing Language 22

3.18 World Initial Views . 26

3.19 World DFA Activities . 26

3.20 World Pumping Lemma Activities . 27

3.21 Activity Scores . 28

3.22 Faves . 28

3.23 Explanations . 29

4.1 Iceberg Activity Hint . 32

4.2 Translating Suggested Actions . 39

5.1 Bayesian Knowledge Tracing Model . 42

vii

List of Figures viii

6.1 DFA Activity Interface Feedback . 49

6.2 DFA Activity Understanding Feedback . 50

6.3 DFA Activity Hints Feedback . 51

6.4 DFA Activity Score Feedback . 51

6.5 Pumping Lemma Activity Interface Feedback 52

6.6 Pumping Lemma Activity Understanding Feedback 53

6.7 Pumping Lemma Activity Changing String Feedback 54

6.8 Explanations Feedback . 55

6.9 Story Feedback . 55

6.10 Dashboard Feedback . 56

6.11 General Feedback . 56

List of Tables

3.1 Heroes, Items and Villains . 12

3.2 DFA Activity: Test String Matching Pattern 15

3.3 DFA Activity: Test String Not Matching Pattern 16

3.4 DFA Activity: Testing Outcomes . 17

3.5 Pumping Lemma Activity: Steps . 22

3.6 World DFA Activities . 26

3.7 World Pumping Lemma Activities . 27

4.1 Mapping Similar DFA Nodes . 40

5.1 Bayesian Knowledge Tracing Parameters 42

5.2 Pumping Lemma BKT Parameters . 43

5.3 Pumping Lemma BKT Actions . 44

5.4 Pumping Lemma BKT Actions - Examples 44

5.5 DFA BKT Features . 45

B.1 DFA BKT Training Data - Ranges . 70

B.2 DFA BKT Training Data - Guess Values 71

B.3 DFA BKT Training Data - Slip Values . 71

B.4 DFA BKT Training Data - Total Values 72

ix

List of Algorithms

4.1 Hint Initialization . 33

4.2 GraphSimilarity Object . 35

4.3 GraphWrapper Object . 36

4.4 Cluster Object . 38

A.1 GraphSimilarity: inNodeMap and outNodeMap 66

A.2 GraphSimilarity: initializeSimilarityMatrices 67

A.3 GraphSimilarity: measureSimilarity . 68

A.4 GraphSimilarity: enumFcn . 69

x

Abbreviations

DFA Deterministic Finite-State Automaton

ITS Intelligent Tutoring System

BKT Bayesian Knowledge Tracing

MDP Markov Decision Process

xi

To Emily, my sister and best friend

xii

Chapter 1

Introduction

“Tell me and I forget. Teach me and I remember. Involve me and I learn.”

Benjamin Franklin

Tutor-Complete is both an educational game and an Intelligent Tutoring System (ITS).

This chapter introduces the background of both aspects of Tutor-Complete, the moti-

vation for Tutor-Complete’s activities, and the educational goals that drove the design

and development processes.

1.1 Educational Games

While games have a long history of entertainment applications, they are quickly ex-

panding into education. Researchers name engagement, motivation, improved academic

performance, and hightened retention as just a few of the benefits of educational games

[9–11]. According to Ibáñez et. al. [9],

Students who are engaged are attracted to their work, persist in their aca-

demic activities despite challenges and obstacles, and take visible delight in

accomplishing them . . . Among the most successful approaches (for fostering

student engagement) are digital games because they can potentially create

engaging learning experiences for students when coupled with effective ped-

agogy.

Moreover, educational games have been identified as being particularly successful in

computer science, due to the motivational nature of games’ graphics, scenarios, and

interactivity [12].

1

CHAPTER 1. INTRODUCTION 2

1.2 Intelligent Tutoring Systems

What is an Intelligent Tutoring System?

An Intelligent Tutoring System (ITS) is a computer system intended to help students

master a given set of material. ITSs are distinct from other types of computer-aided

instruction systems since they provide real-time, individualized instruction to students.

Classical ITSs consist of four components: [13]

1. Problem Solving Environment: Students engage in problem-solving activities,

e.g. constructing a DFA or a pumping lemma proof

2. Domain Knowledge Module: The system maintains a representation of the

material, e.g. a framework for generating regular languages or a structure for

pumping lemma proofs

3. Student Model: The system models students’ mastery of a particular skill in

the domain, e.g. choosing the transitions in a DFA or the counterexample string

in a pumping lemma proof

4. Pedagogical Module: The system determines next actions based on the student

model, e.g. promoting students to the next level after the DFA and pumping

lemma skills are mastered

In particular, the student model is important to the tutoring capabilities of a computer-

based educational system. Tutor-Complete uses Bayesian Knowledge Tracing (BKT)

to implement its student model. The details of the BKT student modeling process are

discussed in Chapter 5.

Why use Intelligent Tutoring Systems?

Numerous studies in education have demonstrated the effectiveness of human tutors

[14, 15]. However, the use of human tutors is limited by time, money, tutor availability,

and other resources. Thus, ITSs aim to “capture the effective behaviors of human tu-

tors, thereby creating an optimal educational tool” [15]. The four components of ITSs

described above have been successful in providing individualized instruction in a variety

of domains, including algebra, geometry, basic physics, and introductory programming

[13, 16, 17].

CHAPTER 1. INTRODUCTION 3

(a) CS 111 Resources (b) CS 235 Resources

Figure 1.1: Contrasting CS 111 and CS 235 Resorces

1.3 Motivation

ITSs in their most common domains, listed in Section 1.2, generally emphasize appli-

cations and specific problem-solving skills rather than abstract theoretical concepts. In

addition, most ITSs are directed at elementary, middle, or high school students rather

than college students [13, 16]. Educational games are also, for the most part, made

for introductory rather than advanced courses (see Chapter 2). As a result, students in

introductory courses such as CS 111 (Introduction to Programming) benefit from educa-

tional microworlds and games like BuggleWorld, PacMan, and Minecraft. However, CS

235 (Languages and Automata) students’ primary resources are textbooks, dense mathe-

matical readings, and simulation programs without gaming or tutoring components (see

Figure 1.1).

Tutor-Complete attempts to fill this gap by providing CS 235 students with an engaging

game and tutoring system that presents the abstract, theoretical course material in a

concrete, understandable way. Tutor-Complete includes activities for two fundamental

CS 235 concepts: Deterministic Finite-State Automata (DFAs) and the pumping lemma

for regular languages. In the DFA activities, students build structures to guide the

“hero” character across a terrain to collect a reward. The pumping lemma activities

are structured in an adversarial format, with a back-and-forth style gameplay between

the computerized “villain” character and the student-controlled hero character. This

design was motivated by observing student difficulties with proof by contradiction (the

technique used in pumping lemma proofs). One of the goals of this activity is to clarify

which decisions in the proof are the responsibility of the student and which outcomes

are dictated by the nature of the problem. A complete discussion of Tutor-Complete’s

gameplay and design can be found in Chapter 3.

CHAPTER 1. INTRODUCTION 4

1.4 Educational Goals

The design and implementation of Tutor-Complete are centered on the following educa-

tional goals:

1. Educational Gaming: Tutor-Complete will increase student engagement and

motivation by presenting the DFA and pumping lemma concepts in a concrete

and enjoyable manner.

2. Peer Instruction: Tutor-Complete will leverage the collective knowledge of its

users in order to help students learn from each other and solidify their individual

understanding by explaining concepts to other students.

3. Tutoring: Tutor-Complete will offer hints and feedback to students as they work

on activities, and model students’ knowledge in order to adapt the learning expe-

rience to each student.

To support these goals, Tutor-Complete includes three game levels with activities focus-

ing on DFAs and the pumping lemma. Students write explanations and use a “fave”-

based rating system to foster a peer-learning environment. Hints in the DFA activities

are based on the actions of past students, and Bayesian Knowledge Tracing is used to

track students’ progress.

1.5 Thesis Overview

After reviewing existing educational systems in Chapter 2, Chapter 3 describes Tutor-

Complete’s gameplay and design. We give an overview of Tutor-Complete’s background

story and the DFA and pumping lemma concepts the activities focus on. We discuss the

design considerations of Tutor-Complete, including the goal to make the story and game-

play applicable and enjoyable without distracting from the educational purpose. Each of

the levels is described with its corresponding activities, hero and villain characters, and

reward items. Tutor-Complete’s features are explained in terms of the educational goals

listed above. Chapter 4 describes the algorithms used in the intelligent hint generation

process. Chapter 5 discusses the Bayesian Knowledge Tracing implementation and usage

in Tutor-Complete to model students’ knowledge. The evaluation process and results

are discussed in Chapter 6. Finally, Chapter 7 summarizes the results of the thesis and

outlines the plans for future work.

Chapter 2

Related Work

“If you want to go somewhere, it is best to find someone who has already been there.”

Robert Kiyosaki

Before discussing Tutor-Complete in greater detail, we survey several examples of ex-

isting educational systems. This chapter outlines three categories of existing systems:

microworlds, concept testers, and educational games. Each type of system has some

similarities to Tutor-Complete. However, Tutor-Complete also incorporates different

features or addresses different issues than each of these existing systems.

2.1 Microworlds

Many introductory programming courses use microworlds to boost student enjoyment

while completing homework assignments. Like Tutor-Complete, these systems aim to

present computer science concepts in a concrete and engaging manner, and to provide

a visual, fun environment for students to interact with course content. However, these

systems are not educational games, since they lack the underlying story and reward

system that characterize games. In addition, they are targeted toward introductory

rather than advanced courses.

2.1.1 BuggleWorld, TurtleWorld, and PictureWorld

These three microworlds were developed at Wellesley College for use in CS 111 (Intro-

duction to Programming and Problem-Solving). In the former version of CS 111, taught

in Java, they were used to increase students’ excitement about programming concepts

5

CHAPTER 2. RELATED WORK 6

(a) BuggleWorld (b) TurtleWorld

Figure 2.1: BuggleWorld and TurtleWorld [1]

Figure 2.2: Programmer’s Learning Machine [2]

and provide visual feedback while solving problems, particularly when learning recursion

[1].

2.1.2 Programmer’s Learning Machine

The Programmer’s Learning Machine (PLM) was developed for the CS 1 course at the

Université de Lorraine, France. It is a series of microworlds, including a Buggle Universe

and a Turtle Universe, based on Wellesley’s BuggleWorld and TurtleWorld [2]. PLM

contains a set of over 160 predefined exercises for students to complete. It provides

examples of the goal for each exercise, and a feedback loop while students work on

exercises. PLM is more similar to an educational game in that has a set of goals and

rewards, but it lacks the overarching story typical of true educational games, and the

exercises are meant to enforce content rather than acquire it.

2.1.3 PacMan

Professors at UC Berkeley developed a set of PacMan projects for their CS 188 (In-

troduction to Artificial Intelligence) course, which were also used in Wellesley’s CS 232

(Artificial Intelligence) course in Fall 2015. In these projects, students implement var-

ious AI algorithms in the context of a PacMan game [3]. For example, in one project,

students write a perceptron classifier to help PacMan navigate through a maze. The

authors found that the projects “have boosted enrollment, teaching reviews, and student

engagement”, and describe the projects as a tool to teach AI concepts while “allow(ing)

CHAPTER 2. RELATED WORK 7

Figure 2.3: PacMan [3]

students to visualize the results of the techniques they implement” [18]. The projects

present AI algorithms in a game context, but the projects themselves do not constitute

a game.

2.2 Concept Testers

Intermediate computer science courses such as Data Structures and Algorithms may use

concept testers to allow students to visualize and test abstract concepts. While these

systems are designed for more advanced courses and abstract content, they are typically

not educational games and also lack the tutoring capabilities of an Intelligent Tutoring

System.

2.2.1 JFLAP

JFLAP was developed at Duke University for CPS 140 (Mathematical Foundations of

Computer Science), and was also used in Wellesley’s CS 235 in Fall 2014. JFLAP is a

tool for, among other tasks, constructing and simulating DFAs. It provides immediate

feedback in a step-by-step testing mode, as well as a mechanism for students to exper-

iment with DFA construction [4]. The authors also developed PumpLemma, a tool for

constructing pumping lemma proofs, which is no longer supported and was not tested

by the authors. According to the authors’ user testing, students “found the tools useful

for testing out their answers” [4].

CHAPTER 2. RELATED WORK 8

Figure 2.4: JFLAP [4]

2.2.2 JDSL Visualizers and Testers

JDSL is a group of visualizers and testers developed jointly at Brown Univeristy and

Johns Hopkins University for CS 2 (Data Structures and Algorithms). It is a tool

designed for students to interact with data structures and algorithms [5]. The visualizers

are a set of animations to help students understand and compare different data structures

and algorithms. The testers run student code and compare the output to predefined

correct results.

2.3 Games

In addition to microworlds, introductory programming courses often use games to present

concepts in a friendly and enjoyable manner. These systems leverage game design, sto-

ries and rewards to increase student engagement and motivation, but are typically aimed

at introductory courses and lack tutoring capabilities.

Figure 2.5: JDSL [5]

CHAPTER 2. RELATED WORK 9

(a) Saving Sera (b) Catacombs

Figure 2.6: Game2Learn [6]

2.3.1 Game2Learn

The goal of the Game2Learn lab at North Carolina State University is to “leverage games

in retaining students in computer science” [6]. The lab runs a program in which upper-

level students develop games for introductory courses, thus providing the students with

valuable research experience in addition to the benefits resulting from the introductory

games. During one such program, the authors tested two games. In the first, Saving

Sera, students write simple programs to complete in-quest tasks, e.g. unscrambling a

do-while loop to help a fisherman count his fish. In the second, Catacombs, students

solves programming questions in order to construct “spells”, e.g. writing nested for

loops to construct a bridge.

2.3.2 Dragon Architect

Dragon Architect was developed at the University of Washington for their Introductory

Computer Science course. The goal of Dragon Architect is to teach “computational

thinking”, which the authors break down into concepts, practices, and perspectives [7].

To accomplish this goal, Dragon Architect uses a 3-D game structure in which students

use the Blockly language to program a dragon character to assemble a set of blocks,

similar to Minecraft. As students progress, they are given more complex code blocks to

use.

CHAPTER 2. RELATED WORK 10

(a) Code Blocks (b) Game View

Figure 2.7: Dragon Architect [7]

2.3.3 Minecraft

Minecraft is a popular game in many introductory programming courses. Researchers

at Flinders University of South Australia studied the effect of Minecraft on introductory

programming education by building a set of Minecraft extensions, where students as-

semble block structures using programming concepts (variables, assignment, selection,

looping, etc.) [8]. The researchers’ goal was to extend students’ CS understanding into

higher levels of Bloom’s taxonomy by leveraging the familiarity of Minecraft [8].

Figure 2.8: Minecraft [8]

This chapter concludes the introductory material of the thesis. The next three chapters

describe Tutor-Complete in detail. We begin the description by examining the game as-

pect, including the story, levels, design factors, and specific features. We then consider

the algorithms used to implement the hint generation and Bayesian Knowledge Tracing

processes that form Tutor-Complete’s Intelligent Tutoring System aspect.

Chapter 3

Game Design

“A game is a series of interesting choices.”

Sid Meier

This chapter outlines the game aspect of Tutor-Complete, including basic gameplay,

activities, and features. We give a brief overview of the two fundamental CS 235 concepts

covered in Tutor-Complete (DFAs and the pumping lemma), and discuss the design

factors that arose during the construction of Tutor-Complete’s game structure. We

describe the three game levels and conclude by listing Tutor-Complete’s main features

according to the educational goals of the project.

3.1 Game Overview

Tutor-Complete is an adventure game that contains three “worlds”, each based on a

different part of the natural world: JungleWorld, OceanWorld, and IceWorld. In each

world, students play a “hero” character whose quest is to reclaim the “items” that the

“villain” character has stolen. In order to reclaim the items, students complete two

activities in each world: building DFAs and constructing proofs using the pumping

lemma (see Section 3.3).

The hero, item, and villain for each world are listed below:

Tutor-Complete’s home page displays the three worlds with their hero, item, and villain

underneath them:

11

CHAPTER 3. GAME DESIGN 12

World Hero Item Villain

JungleWorld Butterfly Berry Snake

OceanWorld Fish Pearl Jellyfish

IceWorld Penguin Snowflake Killer Whale

Table 3.1: Heroes, Items and Villains

Figure 3.1: Tutor-Complete Home Page

3.2 CS 235 Concepts

Tutor-Complete’s activities each focus on one major concept from CS 235. The first

activity in each world focuses on DFAs, and the second activity focuses on the pumping

lemma. This section gives a brief overview of these two concepts, before the activities

themselves are discussed in Section 3.3.

3.2.1 Deterministic Finite-State Automata

The formal definition of a DFA as given by Sipser [19] is below:

Definition 3.1. Finite Automaton

A finite automaton is a 5-tuple (Q,Σ, δ, q0, F), where:

1. Q is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. δ : Q× Σ→ Q is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊂ Q is the set of accept states.

CHAPTER 3. GAME DESIGN 13

Furthermore, a finite automaton is deterministic if and only if for each (q, σ) ∈ Q×Σ,

there is exactly one output δ((q, σ)) = q′ ∈ Q (i.e. δ is a function whose domain is all of

Q× Σ).

More informally, a DFA is a machine that takes a string of characters from its alphabet

Σ and either accepts or rejects the string. A DFA M accepts a string s if and only if M

ends on some final state f ∈ F after reading s. If a DFA M recognizes all strings s in

some set L (and rejects all strings not in L), then L is the regular language recognized

by M . A language is regular if and only if it is recognized by some DFA.

3.2.2 The Pumping Lemma for Regular Languages

From Sipser [19]:

Theorem 3.2 (Pumping Lemma). If A is a regular language, then there is a number

p (the pumping length) where, if s is any string in A of length at least p, then s may be

divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i ≥ 0, xyiz ∈ A,

2. |y| > 0, and

3. |xy| ≤ p.

The pumping lemma is frequently used to prove that some language L is not regular

using proof by contradiction: assume that L is regular and give a string s ∈ L for which

the three conditions of the pumping lemma fail, i.e. for each possible parsing of s into

s = xyz where |y| > 0 and |xy| ≤ p, there is some i ≥ 0 such that s′ = xyiz /∈ L.

3.3 Activities

The DFA and pumping lemma concepts in CS 235 are each emphasized in one activity

for each of Tutor-Complete’s three worlds. This section details the gameplay of each

activity and how its corresponding concept is featured. In keeping with Tutor-Complete’s

goal of increasing student engagement by presenting concepts in a concrete and enjoyable

manner, the activities avoid using CS 235 terminology that may be unfamiliar to students

wherever it is feasible and appropriate to do so.

CHAPTER 3. GAME DESIGN 14

3.3.1 DFA Activity

In the DFA activity in each world, students build a structure that allows the hero char-

acter to cross some terrain and collect the reward items. For example, in JungleWorld,

the butterfly hero crosses a network of stepping stones in order to cross a river. This

structure is a DFA, where the states are stepping stones and the alphabet is {Purple,

Orange}. This alphabet is analogous to the {0, 1} or {a, b} alphabets commonly used

in examples from CS 235, but the colors Purple and Orange are used to create a more

visual representation.

During this activity, students are given a regular language to build a DFA structure

for. The language is called a “pattern” in the activity, to avoid using CS 235-specific

terminology. For example, the first pattern in the JungleWorld DFA activity is Purple

Orange Orange Purple Orange (analagous to the finite language {01101} in CS 235).

Students build and test their structures using the following actions:

1. Add node

2. Mark node as final

3. Add Purple transition

4. Add Orange transition

5. Delete node or transition

6. Test

7. Reset

Figure 3.2: DFA Activity Buttons

When a student clicks “TEST”, their DFA structure will be simulated on two different

strings: one that matches the current pattern and one that does not. For example, for

the pattern Purple Orange Orange Purple Orange, the system will first test the student’s

CHAPTER 3. GAME DESIGN 15

DFA on the string Purple Orange Orange Purple Orange, and then test the DFA on a

random string such as Purple Orange Purple Purple. When testing strings, the system

will match the test string character by character against the current pattern. If the

characters match, the system will send out a reward (e.g. a berry in JungleWorld).

Otherwise, the system will send out a villain character (e.g. a snake in JungleWorld).

For the pattern Purple Orange Orange Purple Orange and the test string Purple Orange

Orange Purple Orange,

Pattern Symbol Test Symbol System Sends

Purple Purple Purple reward

Orange Orange Orange reward

Orange Orange Orange reward

Purple Purple Purple reward

Orange Orange Orange reward

Table 3.2: DFA Activity: Test String Matching Pattern

Since the test string matches the pattern, only rewards are sent out.

Figure 3.3: DFA Activity: Testing String Matching Pattern

CHAPTER 3. GAME DESIGN 16

For the pattern Purple Orange Orange Purple Orange and the test string Purple Orange

Purple Purple,

Pattern Symbol Test Symbol System Sends

Purple Purple Purple reward

Orange Orange Orange reward

Orange Purple Orange villain

Purple Purple Purple reward

Orange — —

Table 3.3: DFA Activity: Test String Not Matching Pattern

Since the test string does not match the pattern, at least one villain is sent out.

Figure 3.4: DFA Activity: Testing String Not Matching Pattern

To pass a given pattern, the student’s DFA must accept the test string that matches the

pattern and reject the test string that does not. Students can mark any of their DFA

nodes as final by coloring them green. If the hero character ends on a green node while

testing a string that matches the pattern, the student passes that test and the hero gets

to collect the reward. If the hero character does not end on a green node, the student

fails that test case. On the other hand, if the hero character does not end on a green

node while testing a string that does not match the pattern, the hero character avoids

the villain and the student passes. If the hero does end on a green node, the villain

“attacks” and the student fails. These outcomes are summarized below:

CHAPTER 3. GAME DESIGN 17

Test String Ending Node Outcome Pass/Fail

Matches pattern Green Hero collects reward Pass

Doesn’t match Not green Villain is evaded Pass

Matches pattern Not green Hero doesn’t collect reward Fail

Doesn’t match Green Villain attacks Fail

Table 3.4: DFA Activity: Testing Outcomes

(a) Passed Matching String (b) Passed Non-Matching String

(c) Failed Matching String (d) Failed Non-Matching String

Figure 3.5: DFA Activity: Testing Outcomes

3.3.2 Pumping Lemma Activity

In the pumping lemma activity in each world, the villain character is trying to convince

the hero that a given (nonregular) language is regular. The student, playing the hero

character, must use the pumping lemma to defeat the villain’s argument and prove that

the language is in fact nonregular. Each activity represents the villain’s argument as

some structure that the hero must destroy using a weapon. For example, in Jungle-

World, the villain’s argument is represented as a table held up by pillars, which the hero

knocks down using a bow and arrow. The table holds some reward (e.g. a berry in

JungleWorld) that the hero collects once the villain’s argument is knocked down.

The activity progresses in the following steps:

1. The student chooses a language to prove nonregular.

CHAPTER 3. GAME DESIGN 18

Figure 3.6: Pumping Lemma Activity: Choosing Language

Each activity has a predetermined set of nonregular languages to choose from (see

Section 3.5). For illustration, we will choose the language {0n1n|n ≥ 0}.

2. The villain gives the pumping length p.

Figure 3.7: Pumping Lemma Activity: Pumping Length

The pumping length of a language is not something the student gets to choose

or determine during a pumping lemma proof. Instead, the pumping lemma is

typically represented as an unknown constant p. In the game, this is a choice the

villain character gets to make, and is given to the hero character.

3. The student chooses a string s in the language to pump.

Figure 3.8: Pumping Lemma Activity: Choosing String

Choosing a string in the language (of at least length p) to pump is one of the key

decisions that the student must make in a pumping lemma proof. Not all strings

“break” the pumping lemma, i.e. some strings can be pumped: for all parsings

xyz and all i ≥ 0, xyiz is still in the language. Thus, choosing a correct string is

vital to the rest of proof. In addition, the string choice can either complicate or

simplify the rest of the proof (see Step 5).

4. The villain specifies the ways that he can parse the giving string s into

xyz.

CHAPTER 3. GAME DESIGN 19

Figure 3.9: Pumping Lemma Activity: Possible Parsings

Suppose the student chooses the string 0p/21p/2. The villain character can parse

this string in three different ways: y can consist of only 0s, 0s and 1s, or only

1s. Since there are three possible parsings, the student has to knock down three

“pillars” of the villain’s argument. In the game, the table is now held up by three

pillars.

5. If applicable, the student can choose to go back to Step 3 and choose a

different string s′ in the language to pump.

Figure 3.10: Pumping Lemma Activity: Changing String

A judicious string choice will minimize the number of ways the string can be

parsed, making the rest of the proof simpler. In our example, if the student chooses

0p/21p/2, the villain has three possible parsings. However, choosing the string 0p1p

would give the villain only one possible parsing, simplifying the remainder of the

proof for the student. The activity alerts the student to this fact and gives her the

option to change her string choice. As mentioned in Step 3, choosing a string is

an important skill in pumping lemma proofs, so the activity places a high priority

in improving students’ ability to make wise string choices.

6. Once the student is satisfied with her string, she chooses one of the

villain’s possible parsings in order to prove it is “unpumpable”.

In a pumping lemma proof, the student must show that no matter how the villian

parses the student’s chosen string s, the villain cannot pump the string and stay

in the language, i.e. the parsing is “unpumpable”. Thus, the student must do the

remaining steps for each possible parsing. In this example, suppose the student

chooses to go back and choose the string 0p1p. Since the villain now only has one

CHAPTER 3. GAME DESIGN 20

Figure 3.11: Pumping Lemma Activity: Choosing Parsing

possible parsing, the table is held up by one pillar instead of three. Thus, the

student chooses the parsing where y has only 0s for the remainder of the proof.

7. For the current parsing s = xyz, the student chooses an integer i ≥ 0

such that xyiz is not in the language.

Figure 3.12: Pumping Lemma Activity: Choosing i

The student must choose a value of i such that the villain can’t pump the current

parsing and stay in the language. Not all values of i fulfill this condition. For

example, choosing i = 1 allows the villain to pump xyz and stay in the language:

xyiz = xy1z = xyz, which is in the langugage (since xyz is in the language). If

the student chooses an incorrect i, no weapon (bow and arrow in JungleWorld)

appears.

Figure 3.13: Pumping Lemma Activity: Choosing an Incorrect i

8. The student chooses a reason why her chosen value of i forces xyiz to

not be in the language.

CHAPTER 3. GAME DESIGN 21

Figure 3.14: Pumping Lemma Activity: Choosing Reason

If the student chooses a correct value of i, a weapon appears, but it is not fired.

The student must choose a reason in order to fire the weapon. Suppose the student

chooses i = 2. The student must explain why xy2z is not in the language, using

the fact that, in the current parsing, y contains only 0s. The correct reason in this

case is “xy2z has more 0s than 1s”.

If the student chooses an incorrect reason, the weapon fires at a pillar but misses,

and then resets so the student can choose a different reason.

Figure 3.15: Pumping Lemma Activity: Choosing an Incorrect Reason

However, if the student chooses a correct reason, the weapon fires at a pillar and

knocks it down, and the current parsing is considered complete.

Figure 3.16: Pumping Lemma Activity: Choosing a Correct Reason

CHAPTER 3. GAME DESIGN 22

9. Steps 6-8 repeat for each of the villain’s possible parsings.

Figure 3.17: Pumping Lemma Activity: Completing Language

Once each possible parsing has been shown “unpumpable” by the student, the

student collects the reward and the proof for this language is completed. The

student will not be able to choose this language next time she plays this activity;

instead, she must choose a language she has not yet completed (unless she has

completed all the languages, in which case she may choose any language).

The steps are summarized in Table 3.5, specifying which steps are the responsibility of

the hero character (student) and which are the responsibility of the villain.

Personal experience as both a student and as a tutor for CS 235 suggests that one of the

Step Description Responsibility Of

1 Choose language Hero

2 Give pumping length Villain

3 Choose string ? Hero ?

4 Specify possible parsings Villain

5 Change string Hero

6 Choose parsing Hero

7 Choose i ? Hero ?

8 Choose reason ? Hero ?

9 Repeat Steps 6-8 for each parsing Hero

Table 3.5: Pumping Lemma Activity: Steps

major difficulties students have with pumping lemma proofs is keeping track of which

parts of a proof are the student’s responsibility and which are dictated as part of the

problem. For example, students may erroneously think that they are able to choose how

the “villain” is able to parse their given string, or that the problem dictates the value of

i. Thus, one of the main goals of the pumping lemma activity is to clearly distinguish

CHAPTER 3. GAME DESIGN 23

to the student which choices are her responsibility and which are fixed by the particular

problem (chosen by the villain in the game). There are three key choices made by the

student in a pumping lemma proof: choosing the string, choosing i, and choosing the

reason. These choices are marked with a ? in Table 3.5.

3.4 Design Factors

The design of Tutor-Complete’s story and features had two important goals. First, the

story needed to be applicable to students with a wide variety of interests and back-

grounds. The story was not designed to appeal to any one particular type of student,

but to be readily engaging to students with many personal interests. Second, Tutor-

Complete needed to increase student motivation and engagement without introducing

excessive distractions. One of the main purposes in making Tutor-Complete a game

was to engage students with the material; thus, student engagement was a high priority.

However, Tutor-Complete is first and foremost an educational system, and any unnec-

essary distractions would detract from the educational goals of the project.

There were many possible choices for the background story of the game: robotics, me-

dieval fantasy, outer space, etc. The animal kingdom was chosen as the story theme

since it fits the following descriptions:

1. Neutral: The animal kingdom doesn’t invoke gender or similar personal char-

acteristics, and thus avoids any possible complications of gendered characters or

other demographics concerns. For example, a game with a princess that needs to

be rescued (such as the game Saving Sera - see Section 2.3.1) could involve negative

gender stereotypes.

2. General: The other possible story themes are more tailored to specific interests.

For example, it is less likely that all students would be interested in robotics, and

so that story might be less engaging for more users.

3. Familiar: Similarly, the animal kingdom is, to at least a reasonable extent, famil-

iar to the majority of possible users. Several of the other possible themes rely on

more specific knowledge that would have limited the story’s accessibility for some

users.

4. Efficient: From a development and usability perspective, it is important that the

graphical models can be rendered as quickly as possible. The animal kingdom

involves models that are more performance-compatible than the humans or other

characters in other possible story themes.

CHAPTER 3. GAME DESIGN 24

5. Varied: The animal kingdom allows for the inclusion of a variety of levels. Cur-

rently, the game includes the jungle, the ocean, and the Arctic, and other worlds

could be added in the future. This theme permits many types of exotic environ-

ments while keeping to a unified story.

6. Simple: As mentioned above, Tutor-Complete aims to avoid unncessary distrac-

tions. One potential distraction is an overcomplicated story that has users reading

through long paragraphs of background information. The animal kingdom story

has a simple setup that requires very little preliminary reading, yet is still reason-

ably interesting and engaging.

Another important goal of Tutor-Complete’s design was the balance of student enjoy-

ment and distractions. While designing the story, interface, and features, several aspects

that were intended to boost student enjoyment gave rise to potential sources of distrac-

tion. Below are a few notable enjoyment factors, along with corresponding distraction

sources and how they were mitigated:

1. Graphics and animation: The three-dimensional graphics and animation were

added to increase the enjoyment factor of the game over plain two-dimensional

graphics. In part, the three-dimensional graphics aim to increase the similarity

between Tutor-Complete and other three-dimensional games that students regu-

larly play for fun.

Potential distraction: Some entertainment games have long animation sequences

with no input from the user. If Tutor-Complete included animation simply for

animation’s sake, students would be spending time watching animation sequences

rather than working through the educational activities. With this in mind, Tutor-

Complete only includes animation where it benefits the activity; for example,

animating the hero character between nodes in a DFA while testing or animating

a weapon to knock down the villain’s pumping lemma argument.

2. Styled web interface: Designing the user interface was an important process that

focused on both usability and aesthetics. Many existing educational systems have

minimal interfaces that were not made for aesthetic appeal, but Tutor-Complete’s

interface was designed to be both easy and pleasant to use.

Potential distractions: While the interface should be visually appealing, it should

not be the focus of the system. Flashy CSS styling or an overabundance of popups

could distract students from the educational material. In addition, if the system

allowed too much customization, students could get wrapped up in customizing

their interface (changing the color scheme, choosing an “avatar”, etc.). To avoid

these distractions, the interface includes a limited number of clean popups and

CHAPTER 3. GAME DESIGN 25

minimal CSS animations. Also, while the system does adapt to each student (see

Chapter 5), students cannot customize their interface.

3. Engaging story: As stated above, a primary goal of the game aspect of Tutor-

Complete is to increase student engagement and motivation. Thus, the game

should have an interesting background story.

Potential distraction: An interesting story could have an excessively detailed plot-

line, requiring students to read long descriptions before beginning the activities,

and to remember plot information that could interfere with their ability to focus on

the educational material. As discussed earlier in this section, the animal kingdom

story was chosen in part for its simplicity and minimal background information.

4. Points and rewards: In addition to the story, the game uses points as a motiva-

tion factor. Students earn points for their performance in activities, and use their

points to unlock subsequent levels. The game also includes a competitive aspect

in the explanations feature: students can “fave” each other’s explanations, and

compete to write explanations that earn the most faves (see Section 3.6.1).

Potential distractions: The points and rewards are intended to provide additional

motivation, not to be the primary focus of the game. Activities that focus solely on

accumulating points or earning rewards would detract from the main educational

activities. In addition, an overemphasis on competition could cause students to

use the system primarily to improve their ranking compared to other students,

rather than on improving their understanding of the CS 235 concepts. To avoid

these distractions, the game does not include activities other than the DFA and

pumping lemma activities discussed earlier in the chapter. The “fave” system is

a small part of the system, and the faves do not affect a student’s progress in the

educational activities. Students do not have to use the explanations feature at all,

but the fave system is there to encourage students to write explanations.

3.5 Worlds

Tutor-Complete has three levels, or “worlds” as they are referred to in the game: Jun-

gleWorld, OceanWorld, and IceWorld. Each world has a DFA and a pumping lemma

activity, with its own type or set of associated languages. The worlds range in difficulty,

from Easy (JungleWorld) to Medium (OceanWorld) to Hard (IceWorld). The initial

view of each world is shown below.

CHAPTER 3. GAME DESIGN 26

(a) JungleWorld (b) OceanWorld (c) IceWorld

Figure 3.18: World Initial Views

3.5.1 World DFA Activities

Each DFA activity draws its problems from a different type of regular language. In each

activity, the DFA node is a different type of object. The following lists the language

type and node type for each DFA activity.

World Language Type Language Example Node Type

JungleWorld Finite 01101 Stepping Stone

OceanWorld English description Contains at least two 0s Starfish

IceWorld Regular expression 01* Iceberg

Table 3.6: World DFA Activities

(a) River Activity (b) Starfish Activity (c) Iceberg Activity

Figure 3.19: World DFA Activities

Each DFA activity has a set of languages of its corresponding type (e.g. finite languages)

that make up the first few problems. After that, the activity will generate random

languages of its corresponding type for an indefinite number of problems (so the student

can do as many problems from a DFA activity as she wishes).

3.5.2 World Pumping Lemma Activities

Each pumping lemma activity uses a weapon to knock down the villain’s argument,

which is represented using some structure. Each pumping lemma activity also uses a

CHAPTER 3. GAME DESIGN 27

predetermined set of nonregular languages. The following table lists the weapon and

villain argument structure for each pumping lemma activity.

World Weapon Villain Argument

JungleWorld Bow and Arrow Table, supported by Pillars

OceanWorld Trident Net, made up of Strands

IceWorld Spear Tower, made up of Icebergs

Table 3.7: World Pumping Lemma Activities

(a) Table Activity (b) Net Activity (c) Tower Activity

Figure 3.20: World Pumping Lemma Activities

3.6 Features

Each of Tutor-Complete’s features was designed to fit with the educational goals of the

project: educational gaming, peer instruction, and tutoring (see Section 1.4). The major

features are described here in terms of the educational goal(s) that they support.

3.6.1 Educational Gaming

The goal of Tutor-Complete’s game is to increase student engagement and motivation

by presenting the DFA and pumping lemma concepts in a clear and concrete manner.

The following features were designed to support the game.

1. Activity Scores: In addition to a background story, the game aspect of Tutor-

Complete uses a point-based reward system to increase student motivation. Stu-

dents receive scores in each activity that are determined using Bayesian Knowledge

Tracing (see Chapter 5). Each world has a minimum DFA activity score and a

minimum pumping lemma activity score that is required to unlock the world.

CHAPTER 3. GAME DESIGN 28

(JungleWorld has minimum scores of zero, so it is automatically unlocked for all

students). Once a student has reached the minimum scores for both activities in

a world, she unlocks the next world. For example, once a student’s JungleWorld

activity scores meet the minimum OceanWorld scores, she unlocks OceanWorld.

The activity scores are displayed and updated in real time in each activity, and all

activity scores are summarized using progress bars on the student’s dashboard.

Figure 3.21: Activity Scores

2. Faves: Students have the option to write explanations about their ideas and strate-

gies. To encourage high-quality explanations, students can “fave” each other’s

explanations. Students are given three faves per week that they can use to rate

other students’ explanations (students cannot fave their own explanations). Stu-

dents can view explanations they have faved on their dashboard. They can view,

sort, search, and fave explanations on the explanations page of the system.

(a) Student’s Faved Explanations (b) Explanations Page

Figure 3.22: Faves

3. Game Actvities: The DFA and pumping lemma activities discussed in this

chapter form the core of Tutor-Complete’s game aspect. These activities were

designed to be part of a game, while incorporating other educational features such

as hints and knowledge tracing, as discussed below.

CHAPTER 3. GAME DESIGN 29

3.6.2 Peer Instruction

The value of peer instruction has been demonstrated in numerous educational studies,

including in technological environments [20–22]. In particular, peer instruction helps

students to learn from each other as well as improve their own understanding of the

material [22].

1. Explanations: While they are not required to do so, students are encouraged to

write explanations that all students can view. These explanations are intended to

help students benefit from each other’s ideas, and also to help students solidify

their own understanding by explaining concepts to others. Students can view and

edit their own explanations on their dashboard, and they can write new explana-

tions at any time on the explanations page. Explanations can be tagged for quick

searching: for example, a student might tag an explanation about finite languages

(in the river DFA activity) with #river.

(a) Student’s Explanations (b) New Explanation

Figure 3.23: Explanations

2. Hints: During the DFA activities, students can receive up to two hints per problem

(see Chapter 4). These hints are based on the actions that other students have

taken when they were at a similar point in the problem. Thus, these hints help

students learn from each other’s work, and also from each other’s mistakes. Since

past students may not always have taken the correct action, the hints are not

guaranteed to suggest correct actions.

3.6.3 Tutoring

In addition to being a game, Tutor-Complete includes capabilities of a tutoring system.

In particular, the system generates hints and tracks students’ progress using Bayesian

Knowledge Tracing.

CHAPTER 3. GAME DESIGN 30

1. Hints: As stated above, students can receive hints during the DFA activity. This

feature helps support the peer instruction goal, but is also a tutoring feature: one

characteristic of a computer-aided instructional system is the ability to give hints

or feedback to students [13, 23].

2. Bayesian Knowledge Tracing: The ability to model students’ knowledge of

the material is an important characteristic of an Intelligent Tutoring System [13].

Bayesian Knowledge Tracing is used as the student model in Tutor-Complete (see

Chapter 5).

This chapter described the first part of Tutor-Complete; namely, the educational game

aspect. The following two chapters describe the algorithms used in the Intelligent Tu-

toring System aspect, beginning with hint generation and then turning to Bayesian

Knowledge Tracing.

Chapter 4

Hint Generation

“Talk is cheap. Show me the code.”

Linus Torvalds

Hint generation supports both the peer instruction and tutoring educational goals. This

chapter first gives an overview of the hint generation process and the role of hints in the

DFA activities. The algorithms for implementing hint generation are then described in

more detail.

4.1 Overview

Students can request up to two hints per problem in each DFA activity. When a student

requests a hint, the system will return up to three suggested actions based on the actions

that past students have taken at similar points in the problem. Using past student data

to generate hints has been successfully used in existing ITSs [24]. Possible suggested

actions take one of the following forms:

1. Add a stone

2. Delete stone X

3. Add a(n) [purple/orange] transition from stone X to stone Y

4. Delete a(n) [purple/orange] transition from stone X to stone Y

5. Mark stone X as final

6. Mark stone X as not final

31

CHAPTER 4. HINT GENERATION 32

7. Reset

Below is an example of a hint in the iceberg (IceWorld) DFA activity.

Figure 4.1: Iceberg Activity Hint

Note that not all suggested actions are necessarily correct, since not all past students

will have taken the correct action at every point in a problem. In addition, not every

suggested action is guaranteed to be relevant. In the above example, the student had

already taken the second suggested action (“Add an orange transition from stone 1 to

stone 4”). The purpose of the hints is, in part, to support the peer instruction goal by

helping students learn from each other’s actions and mistakes, not to suggest perfectly

optimal and relevant actions every time. However, hints are also intended to be a tutor-

ing feature, so the hint generation process does attempt to suggest at least one helpful

and relevant action per hint request. Student feedback on the hints feature is discussed

in Chapter 6.

When a student requests a hint, the following process occurs:

1. A set of states and actions is generated for the student’s current problem (currently

only implemented for JungleWorld).

2. The student’s DFA is compared with past student DFAs using a graph similarity

algorithm.

3. All past student DFAs and the current student’s DFA are grouped according to

the similarity calculated in the previous step.

4. A Markov Decision Process (MDP) is built using the DFA groups as MDP states.

5. Value iteration is used to construct a ranked list of up to three suggested actions.

6. Graph similarity is used to translate each suggested action to the structure of the

student’s current DFA.

CHAPTER 4. HINT GENERATION 33

The following sections describe the above steps in detail. As an implementation note,

each piece of the hint generation process (graph similarity, MDP, etc.) is represented

using a JavaScript object, where each function that is shown in pseudocode is part of

the object’s prototype.

4.2 Initialization

The first hint request for any given problem will not have any data from past students.

Thus, in order to ensure that the first hint request for a problem has at least some data

to work with, the system generates a set of states and actions for the current problem.

Currently, this functionality is only implemented for JungleWorld, which uses finite lan-

guages for its DFA activity.

The initialization process constructs the solution to a given language probabilistically:

at each step in the solution, the correct next action is taken with probability p and a

random action is taken with probability 1 − p, where p is set to 0.9. This is to ensure

that the first hint request is not guaranteed to suggest perfectly correct actions, so that

the first student to request a hint does not have an advantage over future students.

Subsequent hint requests will have (possibly incorrect) student actions in the database,

so the initial hint request intentionally uses possibly incorrect actions as well.

Algorithm 4.1 Hint Initialization

function Initialize(language)
this.initialStates← [{nodes : [], transitions : {purple : {}, orange : {}}}]
this.initialActions← []
this.addSolution(language)
this.lastState.isCorrect = true

end function

function addSolution(language)
langStr ← language.randomString()
for all s in langStr do
this.addState(s)

end for
for index from 0 to this.initialStates.length do
if Math.random() > p then
this.addCorrectTransition(langStr, index)

else
this.addRandomTransition(langStr, index)

end if
end for

end function

CHAPTER 4. HINT GENERATION 34

The initialization functions are implemented in the Computer object, which main-

tains an array of solution states (this.initialStates) and an array of solution actions

(this.initialActions). The functions addState, addCorrectTransition, and ad-

dRandomTransition manipulate the initialStates and initialActions fields.

4.3 Graph Similarity

A DFA can be represented as a directed graph, with nodes and transitions (edges) be-

tween nodes. In order to find the actions that past students took at a similar point

in the problem to the current student, it is necessary to determine what constitutes a

“similar point” in the problem: in other words, to determine which past student DFAs

are similar to the current student’s DFA. Since a DFA can be represented as a directed

graph, this step is a graph similarity problem.

Tutor-Complete implements a neighbor-matching graph similarity algorithm from meth-

ods developed at the University of Belgrade [25], and adapted from the Java implemen-

tation in [26]. The neighbor matching method is summarized below:

Let A and B be two directed graphs. The similarity between node i in A and node j in

B is iteratively computed for each iteration k by:

xk+1
ij ←

sk+1
in (i, j) + sk+1

out (i, j)

2
(4.1)

where sk+1
in (i, j) and sk+1

out (i, j) are the similarity scores for the incoming nodes and

outgoing nodes for both i and j, respectively. The similarity between i and j is based on

the similarity between all nodes that have edges leading to i and those incoming to j, and

on the similarity between all nodes that have edges starting from i and those outgoing

from j. The incoming and outgoing similarities have equal weight. The similarity scores

are defined as follows:

sk+1
in ← 1

min

nin∑
l=1

xkf in
ij (l)ginij (l) sk+1

out ←
1

mout

nout∑
l=1

xkfout
ij (l)goutij (l) (4.2)

min = max(id(i), id(j)) mout = max(od(i), od(j))

nin = min(id(i), id(j)) nout = min(od(i), od(j))

where id(i) is the in-degree of node i and od(i) is the out-degree of node i (and similarly

for node j). f inij and ginij are the enumeration functions that give the maximum similarity

value for each node in the given node list [26].

CHAPTER 4. HINT GENERATION 35

The graph similarity step in Tutor-Complete is implemented using two objects: Graph-

Similarity and GraphWrapper. The GraphSimilarity object calculates the similarity

between two graphs that contain edges of only one color (purple or orange) using the

neighbor matching algorithms from [25, 26]. The GraphWrapper object calculates the

similarity between two DFAs using the similarity from both purple and orange edges

(transitions), and provides additional functions to map each node a in graph A to its

most similar node b in graph B.

Algorithm 4.2 GraphSimilarity Object

function GraphSimilarity(nodes1, edges1, nodes2, edges2)
this.nodes1← nodes1, this.edges1← edges1
this.nodes2← nodes2, this.edges2← edges2

this.inNodeMap1←this.inNodeMap(this.nodes1, this.edges1)
this.inNodeMap2←this.inNodeMap(this.nodes2, this.edges2)
this.outNodeMap1←this.outNodeMap(this.nodes1, this.edges1)
this.outNodeMap2←this.outNodeMap(this.nodes2, this.edges2)

this.nodeSimilarity ← new Array(this.nodes1.length)
this.inNodeSimilarity ← new Array(this.nodes1.length)
this.outNodeSimilarity ← new Array(this.nodes1.length)
this.initializeSimilarityMatrices()

end function

function getGraphSimilarity
gSim← 0.0
this.measureSimilarity()
if this.nodes1.length == 0 && this.nodes2.length == 0 then
return 1.0

end if
if this.nodes1.length < this.nodes2.length then
gSim← this.enumFncn(this.nodes1, this.nodes2, 0)/this.nodes1.length

else
gSim← this.enumFncn(this.nodes1, this.nodes2, 1)/this.nodes2.length

end if
if this.edges1.length == 0 && this.edges2.length == 0 then
return 1.0 - 0.5 * Math.abs(this.nodes1.length−this.nodes2.length)

end if
return gSim

end function

The pseudocode for the remainder of the GraphSimilarity functions can be found in

Appendix A.

CHAPTER 4. HINT GENERATION 36

Algorithm 4.3 GraphWrapper Object

function GraphWrapper(nodes1, edges1, nodes2, edges2)
this.nodes1← nodes1, this.edges1← edges1
this.nodes2← nodes2, this.edges2← edges2

this.pSim← new GraphSimilarity(nodes1, edges1.purple, nodes2, edges2.purple)
this.oSim← new GraphSimilarity(nodes1, edges1.orange, nodes2, edges2.orange)

this.nodeSimilarity ← new Array(this.nodes1.length)
this.computeNodeSimilarityMatrix()

end function

function getGraphSimilarity
purpleSimilarity ←this.pSim.getGraphSimilarity()
orangeSimilarity ←this.oSim.getGraphSimilarity()
nodesDifference←Math.abs(this.nodes1.length - this.nodes2.length)
return 0.5 ∗ purpleSimilarity + 0.5 ∗ orangeSimilarity − 0.1 ∗ nodesDifference

end function

function setNodeMap
this.nodeMap← {}
for index from 0 to this.nodes1.length do
mostSimilarIndex← maxIndex(this.nodeSimilarity[index], index)
mostSimilarNode← this.nodes2[mostSimilarIndex]
this.nodeMap[this.nodes1[i]]← mostSimilarNode

end for
return this.nodeMap

end function

function computeNodeSimilarityMatrix
for i from 0 to this.nodes1.length do
for j from 0 to this.nodes1.length do
purpleNodeSim← this.purpleGraphSim.nodeSimilarity[i][j]
orangeNodeSim← this.purpleGraphSim.nodeSimilarity[i][j]
this.nodeSimilarity[i][j]← 0.5 ∗ (purpleNodeSim+ orangeNodeSim)

end for
end for

end function

CHAPTER 4. HINT GENERATION 37

The helper function maxIndex(array, index) (not shown) returns the index of the max-

imum element of the given array, starting at the given index and searching in both di-

rections. It is used to find the node with the highest similarity score to each node in

this.nodes1 in setNodeMap.

4.4 Grouping

Since student DFAs can vary widely, the hint generation process considers groups of

student DFAs rather than individual DFAs. After computing the similarity scores be-

tween each past student DFA, the DFAs are grouped together by similarity score. Two

DFAs D1 and D2 are in the same group, or “cluster”, only if the similarity score be-

tween D1 and D2 is greater than or equal to some minimum score MIN SIM , set to 0.9.

The grouping step is implemented using a Cluster object, which maintains an array

of clusters. Each cluster is an array of DFAs (represented as graphs) that are at least

0.9 similar to each other. The Cluster object iteratively builds its clusters by finding

the cluster to which each DFA D is most similar. If D is at least 0.9 similar to the first

DFA M in the existing cluster, D is added to the cluster. Otherwise, a new cluster is

created and D becomes the first DFA in the new cluster.

In addition to building clusters, the Cluster object also computes a reward for each

cluster. Each cluster reward is proportional to the number of correct DFAs it contains.

For example, if a cluster contains 7 correct DFAs and 3 incorrect DFAs, that cluster’s

reward is 0.7 ∗ CORRECT REWARD, where CORRECT REWARD is set to 100.

(Each DFA that is passed to the Cluster object has a field isCorrect, which is deter-

mined while the student is playing the DFA activity). These rewards are used in the

Markov Decision Process to determine which past student actions led to the best out-

come, i.e. to the cluster with the highest reward (see Section 4.5).

The pseudocode for the Cluster object is shown below. The “states” field of a Clus-

ter is an array of DFAs. These states are distinct from the states of each individual

DFA.

CHAPTER 4. HINT GENERATION 38

Algorithm 4.4 Cluster Object

function Cluster(states)
this.states← states
this.clusterArray ← []
this.stateToClusterMap← {}
this.clusterRewards← []
for all state in this.states do
this.clusterState(state)

end for
end function

function clusterState(state)
maxSim← 0
clusterIndex← −1

//find the index of the existing cluster to which state is at least 0.9 similar, if any
for i from 0 to this.states.length do
testState←this.clusterArray[i][0]
graphWrapper ← new GraphWrapper(testState.nodes, testState.transitions,

state.nodes, state.transitions)
testSim← graphWrapper.getGraphSimilarity()
if testSim > maxSim then
maxSim← testSim
if maxSim >= MIN SIM then
clusterIndex← i

end if
end if

end for

//add state to its most similar cluster or create a new cluster if necessary
if clusterIndex == −1 then
this.clusterMap.push[state]
this.stateToClusterMap[state.name]←this.clusterArray.length− 1

else
this.clusterArray[clusterIndex].push(state)
this.stateToClusterMap[state.name]← clusterIndex

end if
end function

function setRewards
for i from 0 to this.clusterArray.length do
correctStates← 0
for j from 0 to this.clusterArray[i].length do
if this.clusterArray[i][j].isCorrect then correctStates← correctStates+ 1
end if

end for
reward←CORRECT REWARD * correctStates/this.clusterArray[i].length
this.clusterRewards[i]← reward

end for
end function

CHAPTER 4. HINT GENERATION 39

4.5 Markov Decision Process

Once a Cluster object has been created to hold an array of clusters of student DFAs,

those clusters become states in a Markov Decision Process (MDP). The MDP is defined

as follows:

• S (States): set of clusters of DFAs - from Cluster object

• A (Actions): set of past student actions

• P (s, s′) (Transition probabilities):

of past student actions leading from state s to state s′

of total past student actions leading from s
(4.3)

• R(s) (Rewards): scaled proportion of correct DFAs in state s - from Cluster object

• γ (Discount factor): 0.9 - to encourage actions that led to a solution more quickly

This step is implemented using an MDP object. The MDP object uses value iteration

to find at most three actions that led from the cluster containing the student’s current

DFA to the highest-valued cluster(s).

Once the actions are found, the MDP translates the actions back to the student’s current

DFA using the nodeMap in the GraphWrapper object that maps each node from a DFA

D1 to its most similar node in another DFA D2. For example, suppose the suggested

action is “Add a purple transition from stone 4 to stone 2”, the past student DFA that

generated the suggested action is the DFA D1, and the current student has the DFA

D2 as shown below:

(a) Past Student DFA D1 (b) Current Student DFA D2

Figure 4.2: Translating Suggested Actions

The GraphWrapper object maps each node in D1 to its most similar node in D2 as

follows:

CHAPTER 4. HINT GENERATION 40

D1 Node Most Similar D2 Node

Stone 1 Stone 1

Stone 2 Stone 3

Stone 3 Stone 2

Stone 4 Stone 4

Table 4.1: Mapping Similar DFA Nodes

As above, suppose the suggested action is “Add a purple transition from stone 4 to

stone 2”. This action was generated from the past student DFA D1, but it cannot be

presented to the current student as it is, since stone 2 in the past student DFA does

not correpond to stone 2 in the current student’s DFA. Instead, the hint is translated

as “Add a purple transition from stone 4 to stone 3”, since the past stone 4 maps to the

current stone 4 and the past stone 2 maps to the current stone 3.

The MDP object constructs an array of hints (suggested actions) for a given student

DFA using the following process. Suppose the MDP state (cluster of DFAs) containing

the student DFA is C.

1. Compute the transition probabilities P (s, s′) for each pair of states s and s′

2. Set the value of each state s based on Bellman value iteration:

Vi+1(s) = max
{∑

s′

P (s, s′)(R(s) + γV (s′))
}

(4.4)

3. Construct an array of states [s1, s2, s3, . . .] such that C contains actions leading to

each si, sorted by decreasing value (s1, s2, and s3 have the highest values)

4. Determine which actions a1, a2, and s3 lead from C to s1, s2, and s3, respectively

5. Translate each action ai to the student DFA

Calling the MDP function getHints on a student DFA returns an array of up to three

actions, translated to the student DFA as discussed above. For a given student DFA,

the MDP may not be able to find three actions: the student DFA could belong to a

state (cluster) with an insufficient number of outgoing actions, depending on the past

student data. The user testing results for the hints feature is discussed in Chapter 6.

This chapter described the first set of Tutor-Complete’s Intelligent Tutoring System algo-

rithms. We now describe the other set of algorithms: those used in Bayesian Knowledge

Tracing.

Chapter 5

Bayesian Knowledge Tracing

“The most important questions of life are, for the most part, really

only problems of probability.”

Pierre Simon, Marquis de Laplace

Modeling the student’s knowledge is an important characteristic of an Intelligent Tutor-

ing Sytem [13]. Tutor-Complete uses Bayesian Knowledge Tracing (BKT) to maintain a

set of probabilities that a student has mastered, or learned, certain skills involved in the

activities. Each activity uses a different implementation of BKT: the pumping lemma

activities use “classical” BKT, based on the original work of Corbett and Anderson [27].

The DFA activites use “contextual” BKT, which has additional functionality to contex-

tually estimate the parameters of the BKT model after every student action. After an

overview of the BKT model, this chapter explains both approaches in detail.

5.1 Theory

In general, the purpose of BKT is to estimate the probability that a student has “mas-

tered” a given skill. In order to model skill acquisition, BKT assumes the following dis-

tinction between declarative knowledge and procedural knowledge: “declarative knowl-

edge is factual and experiential, [while] procedural knowledge is goal-oriented and me-

diates problem-solving behavior” [27]. In Tutor-Complete, the following would be an

example of declarative knowledge:

The pumping lemma states that for a regular language L, every string s ∈ L
that has length ≥ p is pumpable (where p is the pumping length of L).

41

CHAPTER 5. BAYESIAN KNOWLEDGE TRACING 42

The above example could be expressed as an instance of procedural knowledge as follows:

IF the goal is to prove a language L nonregular,

THEN choose a string s of length ≥ p and set a goal to prove s is not

pumpable

This instance of procedural knowledge corresponds to the skill of choosing a string in

Tutor-Complete’s pumping lemma activities.

For a tutoring system activity that has been encoded as a set of skills {s1, s2, . . . sn},
BKT estimates the probability that a student has learned a skill si after the student

takes some action. (This proability will be referred to as the “mastery score” for si.)

The following diagram depicts the BKT process:

Figure 5.1: Bayesian Knowledge Tracing Model

The model uses four parameters. These parameters are computed differently for each

activity (see Section 5.2 and Section 5.3).

Parameter Name Represents Probability That . . .

p(L0) Initial Student has learned a skill prior to starting activity

p(G) Guess Student takes correct action for an unlearned skill

p(S) Slip Student takes incorrect action for a learned skill

p(T) Transition Student learns a previously unlearned skill

Table 5.1: Bayesian Knowledge Tracing Parameters

If the student has made n− 1 actions in the activity, the following equations update the

probability Ln that the student has learned a skill si (the mastery score for si) after the

student takes the nth action Actionn [28]:

P (Ln|Actionn) = P (Ln−1|Actionn) + (1− P (Ln− 1|Actionn) ∗ P (T) (5.1)

where P (Ln−1|Actionn) is the probability that the student had already learned the skill

prior to taking Actionn, given the action Actionn (in particular, whether Actionn was

correct or incorrect. This equation accounts for both the probability that the skill was

CHAPTER 5. BAYESIAN KNOWLEDGE TRACING 43

already learned and the probability that the student learned the skill as a result of taking

Actionn.

If Actionn is correct, as deemed by the activity, then:

P (Ln−1|Correctn) =
P (Ln−1) ∗ (1− p(S))

P (Ln−1) ∗ (1− p(S)) + (1− P (Ln−1)) ∗ p(G)
(5.2)

If Actionn is incorrect,

P (Ln−1|Incorrectn) =
P (Ln−1) ∗ p(S)

P (Ln−1) ∗ p(S) + (1− P (Ln−1)) ∗ (1− p(G))
(5.3)

The following sections detail the two different approaches to BKT that Tutor-Complete’s

activities use to model students’ knowledge.

5.2 Pumping Lemma: Classical BKT

The pumping lemma activites adopt a standard, “classical” BKT approach, where each

activity uses three skills: choosing a string, choosing i, and choosing a reason (explaining

why the pumped string xyiz can’t be in the language).

In the pumping lemma activities, the four BKT parameters take on fixed values:

Parameter Pumping Lemma Value Standard BKT Value

p(L0) 0.05 0.1

p(G) 0.3 0.3

p(S) 0.1 0.1

p(T) 0.1 0.1

Table 5.2: Pumping Lemma BKT Parameters

Each parameter except for p(L0) is set to the value used in most BKT applications

[27, 28]. Since the pumping lemma activities only model three distinct skills, p(L0)

takes a lower value than the standard to prevent students from attaining the minimum

mastery score for the activities too quickly. Each world has minimum mastery scores

for each activity that students must achieve in order to unlock the next world (except

IceWorld, since there is no world after ir). For the pumping lemma activities, students

must achieve a minimum mastery score of 0.9 for each skill (choosing string, i, and rea-

son).

CHAPTER 5. BAYESIAN KNOWLEDGE TRACING 44

Each skill has associated correct and incorrect actions. The mastery score for each

skill is updated after the student takes an action (see Chapter 3 for a detailed discussion

of the pumping lemma actions). If the student is attempting to prove a language L is

nonregular:

Skill Correct Action Incorrect Action

Choosing
String

Choosing a string with the mini-
mum number of possible parsings

Choosing a string with extraneous
possible parsings

Choosing
i

Choosing an i such that xyiz can’t
be in L

Choosing an i such that xyiz could
be in L

Choosing
Reason

Making a true claim about xyiz
that proves xyiz /∈ L

Making a claim about xyiz that is
false or doesn’t prove xyiz /∈ L

Table 5.3: Pumping Lemma BKT Actions

For example, suppose L = {0n1n | n ≥ 0}, with pumping length p. The following table

illustrates some potential correct and incorrect actions for each skill.

Skill Correct Action Example Incorrect Action Example

String 0p1p (one parsing) 0p/21p/2 (three parsings)

i i = 2 (xy2z /∈ L) i = 1 (xy1z = xyz ∈ L)

Reason Claiming xy2z has more 0s than 1s Claiming xy2z has more 1s than 0s

Table 5.4: Pumping Lemma BKT Actions - Examples

For the skill of choosing a string, the “incorrect” action of choosing a string with more

than the minimum number of possible parsings is not strictly incorrect. The proof can

still be completed with, e.g., the string 0p/21p/2 in the above example, and the pumping

lemma activities allow the student to continue without changing to an optimal string.

However, this action is a suboptimal choice and suggests that the student has not yet

learned the skill of choosing a string, which is one of the key skills in writing pumping

lemma proofs. Thus, the action of choosing a suboptimal string is treated as an incor-

rect action and Equation 5.3 is used to update the mastery score. The other actions fit

the ideas of “correct” and “incorrect” in a more straightforward manner: choosing, for

example, i = 1 cannot be used in a correct pumping lemma proof since xyz ∈ L. Simi-

larity, claiming that xy2z has more 1s than 0s in the above example cannot be correct,

since y must consist of only 0s and thus xy2z must in fact contain more 0s than 1s.

CHAPTER 5. BAYESIAN KNOWLEDGE TRACING 45

5.3 DFAs: Contextual BKT

While the pumping lemma activities can be naturally broken down into three distinct

skills (choosing a string, choosing i, and choosing a reason), the DFA activities do not

lend themselves to this categorization as easily. The “classical” BKT approach of skill

breakdown thus is not as suitable for the DFA activities. Instead, these activities only

consider one skill: that of constructing DFAs. Thus, the only “correct” action is passing

both test patterns, and the only “incorrect” action is failing one or more test patterns.

The mastery score for a DFA activity is only updated after the student tests her cur-

rent DFA (correctly or incorrectly). However, rather than using standard values for

p(G) (guess) and p(S) (slip), the DFA activities estimate these parameters after every

student action (adding a node, deleting a transition, etc.). This “contextual” approach

to BKT has been successfully used in past ITSs [28]. The estimation is done using a

method similar to Naive Bayes classification. Using the features listed below, the system

estimates p(G) and p(S) based on a set of training data:

Name Explanation

timeTaken Total time taken on the current language

hintsUsed Number of hints requested

numResets Number of times the DFA was reset

numTests Number of times the DFA was tested

numDeletedTransitions Number of transitions deleted

numChangedTransitions Number of transition whose original destination node
was changed

Table 5.5: DFA BKT Features

Higher values of each feature result in higher values for p(G) and lower values for p(S).

Thus, the student who minimizes each of these features receives higher mastery scores

after each action and completes the activity after fewer problems. Intuitively, higher

values for each feature generally mean the student has less understanding of the DFA

activities. For example, The training data, which was chosen such that the features have

this effect on p(G) and p(S), can be found in Appendix B.

Prob(X) where X ∈ {G,S} is estimated using the following equations:

Prob(X) =
Prior(X)× Likelihood(X)

Evidence(X)
(5.4)

CHAPTER 5. BAYESIAN KNOWLEDGE TRACING 46

where Prior(G) = 0.3 and Prior(Slip) = 0.1 (standard parameter values), and:

Likelihood(X) =
1

n

n−1∑
i=0

likelihood(X, features[i]) (5.5)

Evidence(X) =
1

n

n−1∑
i=0

evidence(X, features[i]) (5.6)

likelihood(X, feature) = P (feature | X) (5.7)

evidence(X, feature) = P (feature) (5.8)

Equations 5.4, 5.6, 5.7, and 5.8 are part of standard Naive Bayes classifiers. The differ-

ence between the standard classifiers and Tutor-Complete’s classifier is in Equation 5.5.

In a standard Naive Bayes classifier, Likelihood is the product of individual probabilities

rather than a sum:

Likelihood(X) =
1

n

n−1∏
i=0

likelihood(X, features[i]) (5.9)

In development, using Equation 5.9 (standard) resulted in very low values for p(G) and

p(S) (on the order of 0.001). However, using Equation 5.5 (revised) resulted in more

accepted values for p(G) and p(S) (approximately in the ranges [0.2, 0.4] and [0.1, 0.2],

respectively). These ranges are close to the values typically used in BKT applications

(0.3 and 0.1, respectively). Thus, Tutor-Complete’s classifier produces p(G) and p(S)

values that fit the general BKT model, but take into account more aspects of the stu-

dent’s actions (time taken, hints used, etc.) than fixed values of p(G) and p(S).

This chapter concludes the description of Tutor-Complete. Having discussed the educa-

tional goals, the design decisions, the game mechanics, and the implemented algorithms,

we now move on to the evaluation of the system with users.

Chapter 6

Evaluation

“It is a capital mistake to theorize before one has data.”

Arthur Conan Doyle

In order to assess Tutor-Complete’s usability and effectiveness in motivating and helping

students learn, user studies were conducted with a mix of Wellesley students studying

Computer Science. This chapter describes the user study methodology and presents the

results of the study.

6.1 User Study Design

Thirteen Computer Science students participated in the user study. The students used

Tutor-Complete during a one-hour period, in groups of one or two students per hour.

The demographics of the students were as follows:

• 7 Seniors

• 4 Juniors

• 2 Sophomores

• 6 Current CS 235 students

• 5 Former CS 235 students (Fall 2014 and Spring 2015)

• 2 Students who had never taken CS 235

47

CHAPTER 6. EVALUATION 48

Each one-hour session proceeded as follows (the complete user study protocol can be

found in Appendix C): Each session began with a brief overview of Tutor-Complete and

its activities. The students were then asked to draw a DFA for the language:

L = {w ∈ {0, 1} | w contains at least two 1s} (6.1)

. This exercise served several purposes: First, to serve as a warm-up for the students,

especially for the students who had taken CS 235 several semesters ago. Second, as a

diagnostic of the students’ initial understanding of DFA construction before they used

Tutor-Complete’s DFA activity, to better gauge the impact the DFA activity had on

students’ understanding. Third, as a chance to give a quick (90-second) explanation of

DFAs for students who had never taken CS 235. This explanation was kept very brief,

since one purpose of the user studies was to assess Tutor-Complete’s effectiveness for

students who are unfamiliar with CS 235 concepts, particularly the DFA activity.

After the pencil-and-paper exercise, the DFA and pumping lemma activities in the first

level (JungleWorld) were demonstrated to the students. The DFA activity was demon-

strated on the finite language L = {Purple Orange Orange Purple Orange}. Students

were able to see how to add and delete nodes (stones in JungleWorld), how to change

the destination of a transition from one stone to another, how to mark a stone as final,

how to request a hint, and how to test their DFA. The pumping lemma activity was

demonstrated on the language L = {0n1n | n ≥ 0}. Students were able to see how to

choose a string, how to change their string in case of a nonoptimal string choice, how to

choose i, and how to choose a reason why xyiz /∈ L.

Students played both activities in any world of their choice - JungleWorld, OceanWorld,

and IceWorld. The students were observed while playing the activities and were free

to ask questions and offer feedback at any point. Most of the questions and feedback

were related to the interface design (see the later sections of this chapter for a detailed

discussion of student feedback). Across the thirteen students, activities from all three

worlds were played (though not all students played activities from all three worlds).

The final features that students interacted with were the dashboard and explanations.

A brief overview of both features was given, and then students were free to explore their

dashboards, write their own explanations and fave past student explanations. Students

also commented on the interface and usability of these features (this feedback is dis-

cussed in Section 6.4).

Finally, after using Tutor-Complete, students completed an anonymous Google form

CHAPTER 6. EVALUATION 49

with a total of fourteen questions about the DFA acvitiy, the pumping lemma activity,

and the system as a whole (including the dashboard and explanations). The questions

asked for the students’ feeback on the interface as well as their thoughts on how Tutor-

Complete impacted their understanding of the material. Out of the thirteen students

who participated in the study, twelve students completed the form. The results of the

form are discussed below.

6.2 DFA Results

The first section of the feedback form consisted of five questions about the DFA activity.

6.2.1 DFA Interface Feedback

The first DFA question asked for students’ feedback on the DFA activity interface:

Figure 6.1: DFA Activity Interface Feedback

For the most part, the DFA interface feedback was positive, and the interface did not

largely hinder the students from completing the activity. Some of the most commonly

requested interface features were:

1. The ability to change node locations by dragging

2. An “undo” button to only undo the last action (separate from the “reset” button

that clears the entire DFA)

3. Increased testing speed for each problem

4. The ability to “deselect” a node after selecting it to add a transition

5. A warning that informs the student when her DFA is not complete, before the

student attempts to test her DFA

CHAPTER 6. EVALUATION 50

6. Additional test cases - not animated as in the first two test cases, but summa-

rized and presented to the student (for more rigorous testing since occasionally an

incorrect DFA could still pass both test cases)

These interface updates are planned for future work.

6.2.2 DFA Understanding Feedback

The second DFA question asked for students’ feedback on the impact of the DFA activity

on their understanding of DFA construction:

Figure 6.2: DFA Activity Understanding Feedback

The DFA understanding feedback was evenly spread across neutral and positive. From

observation, this activity was well accessible to students who had never taken CS 235.

The two such students in the study were able to complete the activity after the 90-

second pencil-and-paper DFA overview. The students were able to play the activities in

OceanWorld and IceWorld in addition to JungleWorld, and gained apparent confidence

in DFA construction over the course of the hour.

6.2.3 DFA Hints Feedback

The third DFA question asked for students’ feedback on the hint generation feature:

The feedback on the hints feature was more varied than that for the preceding questions.

During testing, the hint generation process would freeze, suggest actions the student

requesting the hint had already taken, or suggest non-helpful actions more frequently

than was desirable. One possible reason for this behavior is that students often took non-

straightforward paths to complete their DFA, and made non-optimal actions during their

solution. Since the hint generation algorithms only consider past student actions, they

are not well equipped to handle non-optimal student solutions. Thus, the quality of the

hints decreased as the ratio of optimal student solutions to non-optimal student solutions

CHAPTER 6. EVALUATION 51

Figure 6.3: DFA Activity Hints Feedback

decreased. The hint generation feature provided useful hints for several students, and will

remain a part of Tutor-Complete, but in future work will be complemented by additional

processes to offer guidance to students as they work through the DFA activities.

6.2.4 DFA Activity Score Feedback

The fourth DFA question asked for students’ feedback on their activity scores (calcu-

lated by BKT - see Chapter 5):

Figure 6.4: DFA Activity Score Feedback

The feedback on the activity scores was also more varied than the feedback for the

first two DFA questions. Students indicated that they weren’t sure what the activity

score calculated, and suggested rewording the phrase “activity score” to “mastery level”,

which has been implemented.

The fifth DFA question asked for students’ additional, open-ended feedback on the DFA

activity. Students’ responses have been summarized in the discussion of the first four

DFA questions.

CHAPTER 6. EVALUATION 52

6.3 Pumping Lemma Results

The second section of the feedback form consisted of four questions about the pumping

lemma activity.

6.3.1 Pumping Lemma Interface Feedback

The first pumping lemma question asked for students’ feedback on the pumping lemma

activity interface:

Figure 6.5: Pumping Lemma Activity Interface Feedback

The most commonly requested pumping lemma interface features were:

1. The ability to change the string choice even after choosing an optimal string

2. A progress bar or other indication of the number of choices the student has to

make during the activity

3. An interactive graphical illustration of pumping a string: the student clicks a

button to pump their chosen string, and the graphical representation of their

string grows or shrinks, depending on i. For example, if the student has chosen

the string 0p1p and i = 2 for the language L = {0n1n}, then clicking the “pump”

button would add more purple objects to the left-hand side of the graphical object

that represents the string (the graphical object would appear in the bottom panel

that depicts the other graphics, e.g. the bow and arrow and table in JungleWorld).

These interface updates are also planned for future work.

6.3.2 Pumping Lemma Understanding Feedback

The second pumping lemma question asked for students’ feedback on the impact of the

pumping lemma activity on their understanding of pumping lemma proofs:

CHAPTER 6. EVALUATION 53

Figure 6.6: Pumping Lemma Activity Understanding Feedback

With one outlier, the feedback for this question was mainly positive. One major goal of

the pumping lemma activity was to improve students’ understanding of which parts of

the proof (choosing the string, specifiying the parsings, etc.) are their responsibility and

which parts are given within the problem. For example, it is the student’s responsibility

to choose a string in the language to pump, but the student does not get to choose how

to parse that string. In the game, the parsings are the villain’s choice, not the hero’s

choice. Based on student feedback, both from the form and from observations during

user testing, the pumping lemma activity meets this goal.

While the DFA activity was accessible to students who had never taken CS 235, the

pumping lemma activity was less so. This was anticipated while designing the activities.

The more technical and mathematical nature of the pumping lemma results in a greater

need for mathematical notation in the activity, and assumes at least a certain degree

of familiarity with the pumping lemma before students begin the activity. However,

students who had never taken CS 235 were still able to use the pumping lemma activity

during testing, after a slightly longer (2 minute) overview of the pumping lemma, and

they reported improved understanding after both the overview and the activity. One

of the goals for future work is to reduce the need for prior knowledge of the pumping

lemma for these activities, thus increasing their accessibility.

6.3.3 Pumping Lemma Changing String Feedback

The third pumping lemma question asked for students’ feedback on the ability to change

their string choice:

This feedback was generally positive. Students commented on the usefulness of being

able to choose a different string, and also on the ability to proceed with the activity even

after choosing a non-optimal string (i.e. changing to an optimal string is not required).

Several students did request the ability to choose a different string even after choosing

CHAPTER 6. EVALUATION 54

Figure 6.7: Pumping Lemma Activity Changing String Feedback

an optimal string (see Section 6.3.1), and this is included in the list of future interface

improvements.

The fourth pumping lemma question asked for students’ additional, open-ended feed-

back on the pumping lemma activity. Students’ responses have been summarized in the

discussion of the first three pumping lemma questions.

6.4 Overall Results

The third and final section of the feedback form consisted of five questions about Tutor-

Complete as a whole. These included questions about the explanations feature and the

dashboard.

6.4.1 Explanations Feedback

The first overall question asked for students’ feedback on the explanations feature, specif-

ically the impact of writing explanations on their own understanding:

The explanations feedback was generally positive. Several students requested the fol-

lowing features for explanations:

1. The ability to “unfave” previously faved explanations

2. The ability to delete their own explanations

These changes are planned for future work.

CHAPTER 6. EVALUATION 55

Figure 6.8: Explanations Feedback

6.4.2 Story Feedback

The second overall question asked for students’ feedback on the back story of the game:

Figure 6.9: Story Feedback

Except for one outlier, the story feedback was quite positive. No student brought up

any issues with the story being over-specialized or targeted toward any one particular

demographic, which fits with the design goals of the story (see Section 3.4).

6.4.3 Dashboard Feedback

The third overall question asked for students’ feedback on the dashboard:

The dashboard feedback was generally positive. Students suggested displaying all ac-

tivity scores as percentages (previously, the pumping lemma scores were displayed as

a range from 0 to 0.9), which has been implemented. Some students commented that

the breakdown of the pumping lemma scores (scores for choosing a string, choosing i,

CHAPTER 6. EVALUATION 56

Figure 6.10: Dashboard Feedback

and choosing a reason), helped reinforce which parts of a pumping lemma are their

responsibility.

6.4.4 General Feedback

The fourth overall question asked how students felt about Tutor-Complete as a whole:

Figure 6.11: General Feedback

The majority of the students felt like they were learning while using Tutor-Complete

(the third option from the top in the above figure). A reasonable number of students

also felt challenged, motivated, and happy. Several students felt frustrated or confused

while using the system. They explained their frustration or confusion by making sug-

gestions for interface improvement in the open-ended feedback questions, and many of

these suggestions are in plans for future work. The goal is to reduce frustration and

confusion for future students.

The fifth overall question asked for students’ additional, open-ended feedback on Tutor-

Complete as a whole. Students’ responses have been summarized in the discussion of

the first four overall questions.

CHAPTER 6. EVALUATION 57

This chapter summarized the process and outcomes of evaluating Tutor-Complete with

user studies. Having described the background, design, implementation, and evaluation,

we conclude by summarizing the results of the thesis and discussing future work.

Chapter 7

Conclusions and Future Work

“Research is creating new knowledge.”

Neil Armstrong

As both an educational game and an Intelligent Tutoring System, Tutor-Complete aims

to provide CS 235 students with an engaging and educational system for the abstract

concepts of DFAs and the pumping lemma. User testing suggests that Tutor-Complete

can be effective in helping students learn these concepts. Future work is planned to

increase Tutor-Complete’s educational potential and usability, particularly by remov-

ing causes for frustration or confusion in the interface. This chapter summarizes the

conclusions of this research and the items planned for future work.

7.1 Principal Results

Educational games have many potential advantages for student learning. However, while

students in CS 111 frequently benefit from games and microworlds such as Minecraft

and BuggleWorld, CS 235 students more often learn from dense textbooks and non-

game systems such as JFLAP. Tutor-Complete’s goal is to provide the benefits of an

educational game for students learning the abstract concepts of DFAs and the pumping

lemma in CS 235 or similar courses. By combining an educational game with aspects of

an Intelligent Tutoring System (ITS), Tutor-Complete aims to:

1. Increase student engagement and motivation by presenting the DFA and pumping

lemma concepts in a concrete and enjoyable manner.

58

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 59

2. Leverage the collective knowledge of its users in order to help students learn from

each other and solidify their individual understanding by explaining concepts to

other students.

3. Offer hints and feedback to students as they work on activities, and model students’

knowledge in order to adapt the learning experience to each student.

Tutor-Complete was implemented as a web application, using the Meteor.js framework.

Three.js was used to build the three-dimensional graphics used in the game, and Meteor’s

built-in MongoDB support was used to save students’ progress and store information for

the hint generation process. Tutor-Complete was developed from scratch for this thesis,

with the exception of a small amount of code from the author’s prior and concurrent

projects. Not including external libraries, Tutor-Complete’s implementation took ap-

proximately 18000 lines of code.

As an educational game, Tutor-Complete is modeled as an adventure game set in three

worlds of the animal kingdom (Jungle, Ocean, and Ice). Each world has two activities

that focus on DFAs and the pumping lemma, respectively. In the DFA activity, students

build structures (DFAs) to guide the hero character across a terrain in order to collect a

reward (items) while avoiding the attack of the villain character. In the pumping lemma,

students defeat the villain’s argument that a particular nonregular language is regular

using the pumping lemma. Students make three distinct choices: choosing a string in

the language to pump, choosing a value for i such that the pumped string xyz is no

longer in the language, and choosing a reason why xyiz is not in the language.

As an ITS, Tutor-Complete generates hints for students in the DFA activity using past

students actions. The hint generation compares the student’s current DFA to past stu-

dent DFAs, forms an MDP out of past student DFAs, and solves the MDP to find

which past student actions led to the best outcomes. In addition, Tutor-Complete uses

Bayesian Knowledge Tracing (BKT) to model students’ progress in both activities. The

pumping lemma activities use a “classical” BKT approach, which breaks the activity

down into three skills: choosing a string, choosing i, and choosing a reason. This ap-

proach uses standard values for the guess and slip parameters and computes mastery

scores for each skill separately, which are combined to form the mastery score for the

pumping lemma activity. The DFA activities use a “contextual” BKT approach, which

treats the activity as one skill: constructing DFAs. This approach re-estimates the guess

and slip parameters after each student action, using modified Bayesian classifiers and

certain features of the action: the time taken, the number of hints requested, etc.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 60

In addition to the game and tutoring features, Tutor-Complete also allows students

to write explanations about the concepts they are learning, their approach to the activi-

ties, or any topic they deem appropriate for the system. While students are not required

to write explanations, they are encouraged to do so by the “fave” system. Students have

three faves per week that they can use to rate other students’ explanations. This in-

troduces a mildly competitive aspect to the explanations feature, intended to motivate

students to not only write explanations, but to write high-quality explanations. The

explanations feature supports Tutor-Complete’s peer instruction goal: to help students

learn from each other as well as solidify their own understanding.

In user studies, students generally indicated that the DFA and pumping lemma ac-

tivites improved their understanding of both concepts. The DFA activities were more

accessible to students who had never taken CS 235. The students in the studies were

able to complete the DFA activities after only a brief (90-second) overview of DFAs,

and their apparent understanding improved as they worked through the activities. The

pumping lemma activities were less accessible and required more prior explanation, due

in part to the more mathematical and technical nature of the pumping lemma itself.

However, students with no CS 235 background were still able to complete the pumping

lemma activity after some prior explanation. In addition, the pumping lemma activ-

ities were helpful to students in clarifying which parts of a pumping lemma proof are

their responsibility and which are embedded in the problem. This was one of the major

goals of the pumping lemma activities. Tutor-Complete’s interface was reportedly usable

and did not interfere to a great extent with students’ ability to complete the activities.

Students did provide valuable feedback on the interface, the most common of which is

planned to be addressed in future work.

7.2 Future Work

While Tutor-Complete is a functioning, usable system, there are several improvements

that could be made in the future. These improvements are targeted at reducing the

amount of frustration and confusion by improving the interface according to students’

feedback, augmenting the tutoring and gaming aspects of the system by adding addi-

tional features, and conducting more robust educational study to further assess Tutor-

Complete’s impact on students’ learning. The planned improvements to the interface

are summarized in List 6.2.1, List 6.3.1, and List 6.4.1.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 61

7.2.1 Tips

While Tutor-Complete’s existing hint generation process was reasonably effective during

the user studies, the generated hints were either redundant or otherwise not useful more

often than was desirable. The limitations of the current process lie mainly in its reliance

on past student data, without the ability to reason about the context of the problem

or detect when past student actions will not be helpful to the current student. In part,

this was an intentional feature of the hint generation process, to support the peer learn-

ing goal by helping students learn from each other’s mistakes. However, the tutoring

capabilities of Tutor-Complete could be improved by adding additional support for hints.

The additional hints support would take the form of a new feature, separate from the

existing hints feature, called a “tips” feature. The tips feature would not suggest spe-

cific actions, but would offer comments about the structure of the problem that it deems

useful based on the student’s current DFA. For example, if the student’s DFA is missing

some transitions, the tips feature would remind the student that their DFA must be

complete. If the student has not yet added a dead state to a DFA that could bene-

fit from one (e.g. in a JungleWorld language), the tips feature would provide a brief

explanation of the purpose of a dead state. In addition, the tips feature could search

the database of student explanations for keywords related to the current problem and

present the resulting explanations to the student. As a simple example, in JungleWorld,

the tips feature could fetch all the explanations tagged “#river” (the DFA activity in

JungleWorld).

7.2.2 Custom Challenges

To further strengthen the motivational value of Tutor-Complete, one desirable feature

is the ability for students to create, publish, and play their own custom problems, or

challenges, in a style similar to Minecraft. These custom challenges would be added to

a database that any student could access, to support the peer instruction goal. Simi-

larly to the explanations, students could search the custom challenges by world and by

creator. There would also be a leaderboard of the students whose custome challenges

are played the most, to encourage challenge creation and foster competition in a manner

similar to the “fave” system for explanations.

To create a custom DFA challenge for a world, a student would create her own language

that fits the specifications of the corresponding world (finite languages in JungleWorld,

languages with simple English descriptions in OceanWorld, and regular expressions in

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 62

IceWorld). She would then build a DFA for her language, to give her additional prac-

tice as well as to generate data for hint generation. Optionally, she would write an

explanation about her custom challenge, offering suggestions for solving it or any other

information she wishes to offer.

To create a custom pumping lemma challenge for a world, a student would create her

own language. The language is presumed to be nonregular, but the system would not

verify that it is. Instead, future students would have the opportunity to prove that the

language is in fact regular by creating a DFA for it in the world’s DFA activity. If a future

student can show the language is regular, the language would be marked as regular, but

no other change would be made to the activity, so additional students could also build a

DFA for the language. (The creator of the challenge would be able to see when someone

proves her language regular). This gives students practice in not only building DFAs

for regular languages and using the pumping lemma on nonregular languages, but in de-

terming whether a given language is regular or nonregular (an important skill in CS 235).

After specifying the language for her pumping lemma challenge, the student would

then give at least two strings in the language as string choices. For each string, she

would specify at least one way the string can be parsed into xyz. For each parsing, she

would give at least two choices for i. Finally, for each choice of i, she would give the

correct reason why xyiz is not in the language and at least one incorrect reason. None

of these student-made choices are guaranteed to be correct: for example, the student

may specifiy an incorrect list of parsings for a given string. Future students playing the

challenge would have the opportunity to tag the challenge with any issues that they

find. Only the creator would be able to see the issues that other students have found

with her challenge, so she may edit her challenge to fix the issues if she wishes.

7.2.3 Educational Study

The previously described user studies provided valuable insights about Tutor-Complete’s

educational effectiveness as well as suggestions for future improvement. However, after

the interface has been improved according to said suggestions, further testing is desirable

to more formally study Tutor-Complete’s impact on students’ learning. The planned ed-

ucational study is structured as follows:

Hypothesis: The concrete representation of the abstract concepts in the game, com-

bined with the tutoring features, will result in improved learning for students using

Tutor-Complete. In addition, students who use Tutor-Complete will retain the DFA

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 63

and pumping lemma concepts for longer.

Testing: Tutor-Complete will be tested on two groups of students: students currently

taking CS 235 (Group 1) and students who have taken CS 235 in past semesters (Group

2). Each group will be split into two subgroups: Control and Test. The Control group

will not use Tutor-Complete, while the Test group will. Both groups will receive a

pretest with questions on DFAs and pumping lemmas that students will answer based

on their previous knowledge. They will receive a posttest after a period of study time

(e.g. 2 weeks), and then a retention test after a period of time with no study (e.g. 3

weeks).

7.2.3.1 Group 1: Current CS 235 Students

Pretest: Group 1 students will receive a pretest with questions that draw from the

material that they have learned in class.

Study Period: Group 1 Control students will do regular class activities (textbook

reading, homework, etc.) without using Tutor-Complete. Group 1 Test students will

also do regular class activities, but in addition use Tutor-Complete during the study

period.

Posttest: Group 1 students will receive a posttest with questions that are similar

to the pretest.

Retention Test: Group 1 students will receive a retention test with questions that

are similar to the pretest and posttest.

Advantage: Since Group 1 students are learning the CS 235 material for the first

time, Group 1 data will provide insight into how Tutor-Complete affects the learning

process rather than the recall process.

Disadvantage: Group 1 students will be attending CS 235 helproom and office hours,

and forming study groups. Thus, there is the possibility that Control and Test students

will study together and Control students will benefit from the Test students’ experi-

ences with Tutor-Complete. In addition, the help that Control students receive from

professors and tutors may boost their posttest and retention test scores, decreasing the

difference in scores between the Control and Test groups.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 64

7.2.3.2 Group 2: Former CS 235 Students

Pretest: Group 2 students will receive a brief refresher on DFAs and the pumping

lemma that review the concepts that they had learned in their previous CS 235 course,

and then receive a pretest with questions based on the refresher. These questions will

be similar to the Group 1 pretest.

Study Period: Group 2 Control students will study only texts on DFAs and pumping

lemma proofs during the study period (i.e. complete no hands-on activities, tutoring

systems, or educational games). Group 2 Test students will use Tutor-Complete during

the study period.

Posttest: Group 2 students will receive a posttest with questions that are similar

to the pretest.

Retention Test: Group 2 students will receive a retention test with questions that

are similar to the pretest and posttest.

Advantage: Group 2 students will not attend CS 235 helproom or office hours, or

form study groups, so there is a decreased likelihood that outside factors will influence

their test performance compared to Group 1.

Disadvantage: Tutor-Complete is intended as a tool to help students learn CS 235

concepts for the first time. However, since Group 2 students have already taken CS

235, testing Group 2 will result in data about Tutor-Complete’s effectiveness in helping

students to recall information they have already learned, rather than in helping students

to master new concepts.

7.3 Thesis Conclusion

This thesis described Tutor-Complete, an educational game and Intelligent Tutoring

System for CS 235 (Languages and Automata). Tutor-Complete’s goal is to help stu-

dents learn the abstract concepts of DFAs and the pumping lemma by presenting these

concepts in a concrete and enjoyable game environment, augmented by capabilities of

an ITS. While many educational games and ITSs exist for programming courses, there

are few such systems that target more advanced, abstract courses such as CS 235.

The game aspect of Tutor-Complete includes an adventure-based story set in three

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 65

worlds of the animal kingdom, with activities for DFAs and the pumping lemma in

each world. The ITS aspect includes hint generation, which uses graph similarity and a

Markov Decision Process to suggest actions based on past student data, and Bayesian

Knowledge Tracing, which models students’ knowledge based on the actions they take.

Tutor-Complete was evaluted by user studies with Wellesley Computer Science students.

The studies found that the majority of students felt like they were learning as they used

the system, and that the activities improved students’ understanding of DFA construc-

tion and pumping lemma proofs. While several students felt frustrated or confused while

using the system, plans for future work aim to improve the interface according to stu-

dents’ suggestions to reduce future frustration and confusion. Future plans also include

adding additional educational features: augmenting the hint generation with a “tips”

feature and allowing students to create and play their own custom challenges. Finally,

an educational study is planned to further assess Tutor-Complete’s impact on student

learning.

Appendix A

Hint Generation Functions

Below is the pseudocode to additional functions used in the hint generation feature of

Tutor-Complete; specifially, from the graph similarity step (GraphSimilarity object).

These functions were based on the Java code at [26].

inNodeMap and outNodeMap return an object mapping each node in nodesArr to

its predecessors or successors, respectively.

Algorithm A.1 GraphSimilarity: inNodeMap and outNodeMap

function inNodeMap(nodesArr, edgesObj)
map← {}
for all i in nodesArr do
map[nodesArr[i]]← []
for all j in Object.keys(edgesObj) do
key ← Object.keys(edgesObj)[j]
if edgesObj[key] == nodesArr[i] then
map[nodesArr[i]].push(key)

end if
end for

end for
return map

end function

function outNodeMap(nodesArr, edgesObj)
map← {}
for all i in nodesArr do
map[nodesArr[i]]← []
if edgesObj[nodesArr[i]] then
map[nodesArr[i]].push(edgesObj[nodesArr[i]])

end if
end for
return map

end function

66

APPENDIX A. HINT GENERATION FUNCTIONS 67

initializeSimilarityMatrices initializes this.inNodeSimilarity,

this.outNodeSimilarity, and this.nodeSimilarity using neighbor matching equations

(see Chapter 4).

Algorithm A.2 GraphSimilarity: initializeSimilarityMatrices

function initializeSimilarityMatrices
for i from 0 to this.nodes1.length do
for j from 0 to this.nodes2.length do
//in similarity
inLength1← this.inNodeMap1[this.nodes1[i]].length
inLength2← this.inNodeMap2[this.nodes2[j]].length
maxDegree←Math.max(inLength1, inLength2)
if maxDegree ! = 0 then
this.inNodeSimilarity[i][j]←Math.min(inLength1, inLength2)/maxDegree

else
this.inNodeSimilarity[i][j]← 0

end if

//out similarity
outLength1← this.outNodeMap1[this.nodes1[i]].length
outLength2← this.outNodeMap2[this.nodes2[j]].length
maxDegree←Math.max(outLength1, outLength2)
if maxDegree ! = 0 then
min←Math.min(outLength1, outLength2)
this.outNodeSimilarity[i][j]← min/maxDegree

else
this.outNodeSimilarity[i][j]← 0

end if
end for

end for

//node similarity
for i from 0 to this.nodes1.length do
for j from 0 to this.nodes2.length do
inSim←this.inNodeSimilarity[i][j]
outSim←this.outNodeSimilarity[i][j]
this.nodeSimilarity[i][j]← (inSim+ outSim)/2

end for
end for

end function

measureSimilarity calculates the similarities between nodes until there is little change

(< EPSILON) in the node similarity space.

APPENDIX A. HINT GENERATION FUNCTIONS 68

Algorithm A.3 GraphSimilarity: measureSimilarity

function measureSimilarity
EPSILON ← 0.01
maxDifference← 0.0
terminate← false

while !terminate do
maxDifference← 0.0
for i from 0 to this.nodes1.length do
for j from 0 to this.nodes2.length do
//calculate in-degree similarities
inLength1← this.inNodeMap1[this.nodes1[i]].length
inLength2← this.inNodeMap2[this.nodes2[j]].length
similaritySum← 0.0
maxDegree←Math.max(inLength1, inLength2)
minDegree←Math.min(inLength1, inLength2)
if minDegree == inLength1 then
inNodes← this.inNodeMap1[this.nodes1[i]]
outNodes← this.outNodeMap1[this.nodes2[j]]
similaritySum← this.enumFncn(inNodes, outNodes, 0)

else
inNodes← this.inNodeMap1[this.nodes1[i]]
outNodes← this.outNodeMap1[this.nodes2[j]]
similaritySum← this.enumFncn(outNodes, inNodes, 1)

end if

//repeat the above with outNodeMap to calculate out-degree similarities
end for

end for

//calculate node similarity
for i from 0 to this.nodes1.length do
for j from 0 to this.nodes2.length do
temp← (this.inNodeSimilarity[i][j] + this.outNodeSimilarity[i][j])/2
if Math.abs(this.nodeSimilarity[i][j]− temp) > maxDifference then
maxDifference←Math.abs(this.nodeSimilarity[i][j]− temp)

end if
this.nodeSimilarity[i][j]← temp

end for
end for

if maxDifference < EPSILON then
terminate← true

end if
end while

end function

APPENDIX A. HINT GENERATION FUNCTIONS 69

enumFcn calculates the similarity between two graphs.

Algorithm A.4 GraphSimilarity: enumFcn

function enumFcn(neighborMapMin, neighborMapMax, graph)
similaritySum← 0.0
valueMap← {}
minKeys← Object.keys(neighborMapMin)
maxKeys← Object.keys(neighborMapMax)
for i from 0 to minKeys.length do
minKey ← minKeys[i]
node← neighborMapMin[minKey]
max← 0
maxIndex← −1
if graph == 0 then
for j from 0 to maxKeys.length do
maxKey ← maxKeys[j]
key ← neighborMapMax[maxKey]
if Object.keys(valueMap).indexOf(key) == −1 then
if max < this.nodeSimilarity[minKey][maxKey] then
max← this.nodeSimilarity[minKey][maxKey]
maxIndex← key

end if
end if
valueMap[maxIndex]← max

end for
else
for j from 0 to neighborMapMax.length do
maxKey ← maxKeys[j]
key ← neighborMapMax[maxKey]
if Object.keys(valueMap).indexOf(key) == −1 then
if max < this.nodeSimilarity[minKey][maxKey] then
max← this.nodeSimilarity[minKey][maxKey]
maxIndex← key

end if
end if
valueMap[maxIndex]← max

end for
end if

end for
end function

Appendix B

DFA BKT Training Data

Below is the data used to train the semi-Bayesian classifier for the BKT process in the

DFA activities.

Each feature has a defined set of ranges of values that the feature can take on. These

ranges are mapped to training data (see subsequent tables). For example, a student who

requests a hint after taking 2 minutes will fall in the first range (0 to 3 minutes) of the

timeTaken feature, so the guess evidence for timeTaken will be 0.05 (the first training

guess value for timeTaken).

Feature Ranges

timeTaken (in minutes) 0, 3, 6, 9, 12, Infinity

hintsUsed 0, 1, 2, Infinity

numResets 0, 1, 2, 3, Infinity

numTests 0, 2, 4, 6, Infinity

numDeletedTransitions 0, 2, 4, 6, Infinity

numChangedTransitions 0, 2, 4, 6, Infinity

Table B.1: DFA BKT Training Data - Ranges

Each feature has one training value for the guess parameter per range. For example,

timeTaken has five ranges (0 to 3, 3 to 6, 6 to 9, 9 to 12, and more than 12 minutes),

so timeTaken has five guess values. These values serve as evidence for each feature in

the calculation of the guess parameter. For example, if a student has taken 2 minutes

70

APPENDIX B. DFA BKT TRAINING DATA 71

on a problem when she requests a hint, the evidence suggests that she is guessing with

probability 0.05.

Feature Guess Values

timeTaken 0.05, 0.15, 0.2, 0.25, 0.35

hintsUsed 0.1, 0.35, 0.55

numResets 0.05, 0.2, 0.3, 0.45

numTests 0.1, 0.2, 0.3, 0.4

numDeletedTransitions 0.1, 0.2, 0.3, 0.4

numChangedTransitions 0.1, 0.2, 0.3, 0.4

Table B.2: DFA BKT Training Data - Guess Values

Similar to the guess values, each feature has one training value for the slip parameter

per range. These values serve as evidence for each feature in the calculation of the

slip parameter. For example, if a student has taken 2 minutes on a problem when she

requests a hint, the evidence suggests that she is slipping with probability 0.4.

Feature Slip Values

timeTaken 0.4, 0.3, 0.2, 0.1, 0.05

hintsUsed 0.6, 0.3, 0.1

numResets 0.4, 0.35, 0.15, 0.1

numTests 0.4, 0.3, 0.2, 0.1

numDeletedTransitions 0.4, 0.3, 0.2, 0.1

numChangedTransitions 0.4, 0.3, 0.2, 0.1

Table B.3: DFA BKT Training Data - Slip Values

APPENDIX B. DFA BKT TRAINING DATA 72

Finally, each feature has one total training value per range. These values represent the

presumed total proportion of students who had values within each range. For example,

the data presumes that twenty percent of all students took between 0 and 3 minutes

on each DFA problem. Note that the data assumes that prior students were evenly

distributed across the ranges for each feature, which is a naive assumption. However,

this assumption did not cause the DFA BKT algorithms to calculate any theoretically

degenerate values for guess and slip. (A guess value g outside the range 0 ≤ g < 0.5 or

a slip value s outside the range 0 ≤ s < 0.5 is said to be theoretically degenerate [28]).

Feature Total Values

timeTaken 0.2, 0.2, 0.2, 0.2, 0.2

hintsUsed 0.33, 0.33, 0.33

numResets 0.25, 0.25, 0.25, 0.25

numTests 0.25, 0.25, 0.25, 0.25

numDeletedTransitions 0.25, 0.25, 0.25, 0.25

numChangedTransitions 0.25, 0.25, 0.25, 0.25

Table B.4: DFA BKT Training Data - Total Values

Appendix C

User Study Protocol

C.1 Introduction

Hello! Thank you for volunteering your time to participate in this study. Today you’ll

be using Tutor-Complete, an educational game for CS 235. Tutor-Complete has two

activities that focus on DFAs and the pumping lemma. You’ll be playing these activ-

ities in three different levels of the game. I will be taking notes while you are doing

the activities, and afterward I will ask you for your feedback on the system: how you

thought it impacted your understanding of the material, and how you felt about us-

ing the interface. Please feel free to ask questions at any point. Don’t worry about

making a mistake or doing something “wrong” while playing the game - this is a test of

the system’s design, not your ability to use it. Do you have any questions before we start?

Before we begin, I’d like you to write a DFA for the language

L = {w ∈ {0, 1} | w contains at least two 1s} using pencil and paper.

[Give user pencil and paper for DFA construction]

C.2 Demo

C.2.1 DFA Activity

[Open JungleWorld]

First, I’ll give a brief demo of the DFA activity in the first level.

[Enter River (DFA) Activity]

The goal of this activity is to build a structure (DFA) out of stepping stones that will

73

APPENDIX C. USER STUDY PROTOCOL 74

guide the butterfly character across the river. Your DFA should accept the pattern

shown here [Indicate pattern] and reject all other patterns. If your DFA accepts the

pattern, the butterfly will collect the reward of berries. If your DFA rejects any other

pattern, the butterfly will avoid the attack of the snake character.

[Add stones to DFA (including extra for later deletion)]

Click the gray button to add stepping stones. These are the states of your DFA.

[Add some transitions]

Click the purple and orange pen buttons to add transitions between stones. These indi-

cate the moves the butterfly should make when it sees a Purple or and Orange.

[Click the hint button]

Click the red button to receive a hint. Hints are based on what past students have done.

[Add the remaining transitions]

[Mark the final stone]

Click the green button to mark a stone as final. This makes it an accept state in your

DFA. You can have as many accept states as you want.

[Delete the extra stone]

Click the pink button to delete stones or transitions.

[Test]

Click the yellow button to test your DFA on two test patterns: the first is a pattern

your DFA should accept, and the second is a pattern your DFA should reject.

[Indicate updated BKT score] Since my DFA passed both test cases, I’ve passed

this pattern and my score for the activity has been adjusted. Now you can do the next

pattern.

C.2.2 Pumping Lemma Activity

[Go back to JungleWorld]

Next, I’ll give a demo of the pumping lemma activity.

[Enter the Table (Pumping Lemma) Activity]

APPENDIX C. USER STUDY PROTOCOL 75

First, choose the language that you want to prove is nonregular.

[Choose 0n1n from dropdown]

The villain has indicated the pumping length p. Now, it’s the hero’s job to choose a

string.

[Choose the string 0p/21p/2]

The villain tells me that there are three different ways he can parse my chosen string,

and I can make the proof easier on myself by choosing a different string. I will choose

to go back and make a different choice.

[Go back and choose 0p1p]

Now, the villain says that there is only one way he can parse my chosen string into xyz,

and I know that, in that one parsing, y can contain only 0s. Now I have to show that

the villain can’t pump my string using that parsing

[Click the parsing “y has only 0s”]

I have to choose a value for i such that xyiz is not in the language. First, I’ll try i = 1.

[Choose i = 1]

That value of i didn’t work, since xy1z = xyz is actually still in the language, so my

attempt to knock down the villain’s argument failed and a have to try again. This time,

I’ll choose i = 2.

[Choose i = 2]

Finally, I have to indicate why xy2z is not in the language, i.e. why this value of i

“breaks” the pumping lemma.

[Choose “more 1s than 0s”]

This is incorrect, since repeating y adds more 0s to the pumped string, not more 1s.

This time I’ll pick the correct reason.

[Choose “more 0s than 1s]”

This is correct, so I knock down the villain’s argument and my proof is complete and I

get to collect the reward. My activity score has also been updated [Indicate updated

BKT score]. The language 0n1n is now complete, so you can choose your language to

prove nonregular.

APPENDIX C. USER STUDY PROTOCOL 76

C.3 Explanations

Another feature of Tutor-Complete is student-written explanations, intended to help

students learn from each other as well as reinforce their own understanding. Please

write a short explanation on what you learned or how you felt about using the system.

Your name is not associated with the username of the account you are using on the

system, so while your username will be attached to the explanation, your real name will

not. The reason the username is attached to the explanation is the “fave” system, which

allows users to rate one another’s explanations. The rating system will not be used in

this study, so don’t worry about how your explanation might be rated.

Bibliography

[1] F. Turbak, C. Royden, J. Stephan, and J. Herbst. Teaching recursion before loops

in cs1. Journal of Computing in Small Colleges, 14(4):86–101, May 1999. URL

http://cs.wellesley.edu/~fturbak/pubs/jcsc99.pdf.

[2] M. Quinson and G. Oster. The programmer’s learning machine: A teaching sys-

tem to learn programming. ACM Conference on Innovation and Technology in

Computer Science Education, 1(1):1–6, July 2015. URL http://people.irisa.

fr/Martin.Quinson/Research/Publications/2015-itiCSE-plm.pdf.

[3] J. DeNero and D. Klein. Teaching introductory artificial intelligence with pac-man.

AAAI Conference on Artificial Intelligence, 1(24):1–5, January 2010. URL https:

//www.aaai.org/ocs/index.php/EAAI/EAAI10/paper/viewFile/1954/2331.

[4] A. Bilska, K. Leider, M. Procopuic, O. Procopuic, S. Rodger, J. Salemme, and

E. Tsang. A collection of tools for making automata theory and formal lan-

guages come alive. Proceedings of the twenty-eighth SIGCSE technical sympo-

sium on Computer science education, 29(1):15–19, March 1997. URL https:

//www.cs.duke.edu/csed/rodger/papers/cse97flap.pdf.

[5] R. Baker, M. Boilen, M. Goodrich, R. Tamassia, and B. Stibel. Testers and visual-

izers for teaching data structures. Proceedings of the Thirtieth SIGCSE Technical

Symposium on Computer Science Education, 31(1):261–265, March 1999. URL

http://www.cs.cmu.edu/~rsbaker/sigcse.pdf.

[6] T. Barnes, E. Powell, A. Chaffin, A. Godwin, and H. Richter. Game2learn: Building

cs1 learning games for retention. Proceedings of the 12th annual SIGCSE confer-

ence on Innovation and technology in computer science education, 39(3):121–125,

September 2007. URL https://ncsu.pure.elsevier.com/en/publications/

game2learn-building-cs1-learning-games-for-retention.

[7] A. Bauer, E. Butler, and Z. Popovic. Approaches for teaching computational think-

ing strategies in an educational game: A position paper. Blocks and Beyond

77

http://cs.wellesley.edu/~fturbak/pubs/jcsc99.pdf
http://people.irisa.fr/Martin.Quinson/Research/Publications/2015-itiCSE-plm.pdf
http://people.irisa.fr/Martin.Quinson/Research/Publications/2015-itiCSE-plm.pdf
https://www.aaai.org/ocs/index.php/EAAI/EAAI10/paper/viewFile/1954/2331
https://www.aaai.org/ocs/index.php/EAAI/EAAI10/paper/viewFile/1954/2331
https://www.cs.duke.edu/csed/rodger/papers/cse97flap.pdf
https://www.cs.duke.edu/csed/rodger/papers/cse97flap.pdf
http://www.cs.cmu.edu/~rsbaker/sigcse.pdf
https://ncsu.pure.elsevier.com/en/publications/game2learn-building-cs1-learning-games-for-retention
https://ncsu.pure.elsevier.com/en/publications/game2learn-building-cs1-learning-games-for-retention

BIBLIOGRAPHY 78

Workshop (Blocks and Beyond), 2015 IEEE, 1(1):121–123, October 2015. URL

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7369019.

[8] B. Wilkinson, N. Williams, and P. Armstrong. Improving student understanding,

application and synthesis of computer programming concepts with minecraft. The

European Conference on Technology in the Classroom, 1(1):1–13, 2013. URL http:

//iafor.org/archives/offprints/ectc2013-offprints/ECTC2013_0477.pdf.

[9] M. Ibáñez, Á. Di-Serio, and C. Delgado-Kloos. Gamification for engaging com-

puter science students in learning activities: A case study. IEEE Trans. Learn-

ing Technol. IEEE Transactions on Learning Technologies, 7(3):291–301, June

2014. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=

true&arnumber=6827214.

[10] D. G. Oblinger. The next generation of educational engagement. Journal of Inter-

active Media in Education, 8(1):1–18, May 2004. URL http://www-jime.open.

ac.uk/articles/10.5334/2004-8-oblinger/.

[11] I. M. Devonshire, J. Davis, S. Fairweather, L. Highfield, C. Thaker, A. Walsh,

R. Wilson, and G. J. Hathway. Risk-based learning games improve long-

term retention of information among school pupils. PLoS ONE, 9(7):1–9,

July 2014. URL http://journals.plos.org/plosone/article?id=10.1371/

journal.pone.0103640.

[12] C. Malliarakis, M. Satratzemi, and S. Xinogalos. Designing educational games

for computer programming: A holistic framework. The Electronic Journal of

e-Learning, 12(3):281–298, 2014. URL www.ejel.org/issue/download.html?

idArticle=288.

[13] A. T. Corbett, K. R. Koedinger, and J. R. Anderson. Intelligent tutoring

systems. Handbook of Human-Computer Interaction, 2(37):849–883, September

1997. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

92.5216&rep=rep1&type=pdf.

[14] R. S. Baker, A. T. Corbett, and K. R. Koedinger. Detecting student misuse of

intelligent tutoring systems. Lecture Notes in Computer Science, 3220(1):531–540,

2004. URL http://www.cs.cmu.edu/~rsbaker/BCK2004MLFinal.pdf.

[15] D. C. Merrill, B. G. Reiser, M. Ranney, and J. G. Trafton. Effective tutoring

techniques: A comparison of human tutors and intelligent tutoring systems. The

Journal of the Learning Sciences, 2(3):277–305, November 2009. URL http://www.

jstor.org/stable/1466610?seq=1#page_scan_tab_contents.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7369019
http://iafor.org/archives/offprints/ectc2013-offprints/ECTC2013_0477.pdf
http://iafor.org/archives/offprints/ectc2013-offprints/ECTC2013_0477.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6827214
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6827214
http://www-jime.open.ac.uk/articles/10.5334/2004-8-oblinger/
http://www-jime.open.ac.uk/articles/10.5334/2004-8-oblinger/
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103640
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103640
www.ejel.org/issue/download.html?idArticle=288
www.ejel.org/issue/download.html?idArticle=288
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.5216&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.5216&rep=rep1&type=pdf
http://www.cs.cmu.edu/~rsbaker/BCK2004MLFinal.pdf
http://www.jstor.org/stable/1466610?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/1466610?seq=1#page_scan_tab_contents

BIBLIOGRAPHY 79

[16] K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark. Intelligent

tutoring goes to school in the big city. International Journal of Artificial Intelli-

gence in Education, 8(1):30–43, 1997. URL http://ctat.pact.cs.cmu.edu/pubs/

Koedinger-Anderson.pdf.

[17] J. R. Anderson, C. F. Boyle, A. T. Corbett, and M. W. Lewis. Cog-

nitive modeling and intelligent tutoring. Artificial Intelligence, 42(1):7–49,

1990. URL http://act-r.psy.cmu.edu/wordpress/wp-content/uploads/2012/

12/119CogMod_IntTut.pdf.

[18] Berkeley ai materials. http://ai.berkeley.edu/project_overview.html.

[19] Michael Sipser. Introduction to the Theory of Computation, volume 1 of 1. Course

Technology, 25 Thomson Pl, Boston, MA 02210, 3 edition, 7 2012. ISBN 978-

1133187790.

[20] C. H. Crouch and E. Mazur. Peer instruction: Ten years of experience and results.

American Journal of Physics, 69(9):970–978, September 2001. URL http://dx.

doi.org/10.1119/1.1374249.

[21] N. Lasry, E. Mazur, and J. Watkins. Peer instruction: From harvard to the two-

year college. American Journal of Physics, 76(11):1066–1069, November 2008. URL

http://mazur.harvard.edu/sentFiles/Mazur_61464.pdf.

[22] M. Keppell, E. Au, A. Ma, and C. Chan. Peer learning and learning-oriented assess-

ment in technology-enhanced environments. Assessment & Evaluation in Higher

Education, 31(4):453–464, August 2006. URL http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.515.3600&rep=rep1&type=pdf.

[23] Y. Zhou, R. Freedman, M. Glass, and M. W. Evens J. A. Michael, A. A. Rovick.

Delivering hints in a dialogue-based intelligent tutoring system. Association for

the Advancement of Artificial Intelligence, 16(1):128–134, July 1999. URL https:

//www.aaai.org/Papers/AAAI/1999/AAAI99-019.pdf.

[24] T. Barnes and J. Stamper. Toward automatic hint generation for logic proof tutoring

using historical student data. Intelligent Tutoring Systens, 5091(9):373–382, June

2008. URL http://www.ifets.info/journals/13_1/2.pdf.

[25] M. Nikolić. Measuring similarity of graphs and their nodes by neighbor match-

ing. Intelligent Data Analysis, 16(6):865–878, November 2012. URL http:

//argo.matf.bg.ac.rs/publications/2011/similarity.pdf.

[26] Measuring graph similarity using neighbor match-

ing. https://wadsashika.wordpress.com/2014/09/19/

measuring-graph-similarity-using-neighbor-matching/, 2014.

http://ctat.pact.cs.cmu.edu/pubs/Koedinger-Anderson.pdf
http://ctat.pact.cs.cmu.edu/pubs/Koedinger-Anderson.pdf
http://act-r.psy.cmu.edu/wordpress/wp-content/uploads/2012/12/119CogMod_IntTut.pdf
http://act-r.psy.cmu.edu/wordpress/wp-content/uploads/2012/12/119CogMod_IntTut.pdf
http://ai.berkeley.edu/project_overview.html
http://dx.doi.org/10.1119/1.1374249
http://dx.doi.org/10.1119/1.1374249
http://mazur.harvard.edu/sentFiles/Mazur_61464.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.515.3600&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.515.3600&rep=rep1&type=pdf
https://www.aaai.org/Papers/AAAI/1999/AAAI99-019.pdf
https://www.aaai.org/Papers/AAAI/1999/AAAI99-019.pdf
http://www.ifets.info/journals/13_1/2.pdf
http://argo.matf.bg.ac.rs/publications/2011/similarity.pdf
http://argo.matf.bg.ac.rs/publications/2011/similarity.pdf
https://wadsashika.wordpress.com/2014/09/19/measuring-graph-similarity-using-neighbor-matching/
https://wadsashika.wordpress.com/2014/09/19/measuring-graph-similarity-using-neighbor-matching/

BIBLIOGRAPHY 80

[27] A. T. Corbett and J. R. Anderson. Knowledge tracing: Modeling the acquisition

of procedural knowledge. User Modeling and User-Adapted Interaction, 4(1):253–

278, 1995. URL http://liris.cnrs.fr/~pchampin/2014/m2iade-ia2/_static/

893CorbettAnderson1995.pdf.

[28] R. S. Baker, A. T. Corbett, and V. Aleven. More accurate student modeling through

contextual estimation of slip and guess probabilities in bayesian knowledge tracing.

Proceedings of the 9th international conference on Intelligent Tutoring Systems,

9(1):406–415, 2008. URL http://repository.cmu.edu/cgi/viewcontent.cgi?

article=1006&context=hcii.

http://liris.cnrs.fr/~pchampin/2014/m2iade-ia2/_static/893CorbettAnderson1995.pdf
http://liris.cnrs.fr/~pchampin/2014/m2iade-ia2/_static/893CorbettAnderson1995.pdf
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1006&context=hcii
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1006&context=hcii

	Wellesley College
	Wellesley College Digital Scholarship and Archive
	2016

	Tutor-Complete: An Educational Game and Intelligent Tutoring System for Languages and Automata
	Katherine Kjeer
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	1 Introduction
	1.1 Educational Games
	1.2 Intelligent Tutoring Systems
	1.3 Motivation
	1.4 Educational Goals
	1.5 Thesis Overview

	2 Related Work
	2.1 Microworlds
	2.1.1 BuggleWorld, TurtleWorld, and PictureWorld
	2.1.2 Programmer's Learning Machine
	2.1.3 PacMan

	2.2 Concept Testers
	2.2.1 JFLAP
	2.2.2 JDSL Visualizers and Testers

	2.3 Games
	2.3.1 Game2Learn
	2.3.2 Dragon Architect
	2.3.3 Minecraft

	3 Game Design
	3.1 Game Overview
	3.2 CS 235 Concepts
	3.2.1 Deterministic Finite-State Automata
	3.2.2 The Pumping Lemma for Regular Languages

	3.3 Activities
	3.3.1 DFA Activity
	3.3.2 Pumping Lemma Activity

	3.4 Design Factors
	3.5 Worlds
	3.5.1 World DFA Activities
	3.5.2 World Pumping Lemma Activities

	3.6 Features
	3.6.1 Educational Gaming
	3.6.2 Peer Instruction
	3.6.3 Tutoring

	4 Hint Generation
	4.1 Overview
	4.2 Initialization
	4.3 Graph Similarity
	4.4 Grouping
	4.5 Markov Decision Process

	5 Bayesian Knowledge Tracing
	5.1 Theory
	5.2 Pumping Lemma: Classical BKT
	5.3 DFAs: Contextual BKT

	6 Evaluation
	6.1 User Study Design
	6.2 DFA Results
	6.2.1 DFA Interface Feedback
	6.2.2 DFA Understanding Feedback
	6.2.3 DFA Hints Feedback
	6.2.4 DFA Activity Score Feedback

	6.3 Pumping Lemma Results
	6.3.1 Pumping Lemma Interface Feedback
	6.3.2 Pumping Lemma Understanding Feedback
	6.3.3 Pumping Lemma Changing String Feedback

	6.4 Overall Results
	6.4.1 Explanations Feedback
	6.4.2 Story Feedback
	6.4.3 Dashboard Feedback
	6.4.4 General Feedback

	7 Conclusions and Future Work
	7.1 Principal Results
	7.2 Future Work
	7.2.1 Tips
	7.2.2 Custom Challenges
	7.2.3 Educational Study
	7.2.3.1 Group 1: Current CS 235 Students
	7.2.3.2 Group 2: Former CS 235 Students

	7.3 Thesis Conclusion

	A Hint Generation Functions
	B DFA BKT Training Data
	C User Study Protocol
	C.1 Introduction
	C.2 Demo
	C.2.1 DFA Activity
	C.2.2 Pumping Lemma Activity

	C.3 Explanations

	Bibliography

