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Abstract 
 

Antimicrobial peptides (AMPs), which are found in numerous living organisms, are 
active against a wide range of bacteria and other pathogens, making them promising candidates 
for alternatives to conventional antibiotics. While many AMPs inhibit bacterial growth through 
membrane disruption, some AMPs, including buforin II and DesHDAP1, are hypothesized to kill 
bacteria by binding intracellular nucleic acids after translocating across the bacterial cell 
membrane without significant membrane permeabilization. To understand this lesser known 
mechanism, the peptide-DNA binding interactions of these peptides were investigated using 
several computational and experimental methods. Results from analyzing molecular dynamics 
(MD) simulations of buforin II-DNA and DesHDAP1-DNA complexes suggested that the DNA 
binding of buforin II and DesHDAP1 was not base selective as these peptides interacted 
primarily with the phosphate groups of the DNA backbone. Following these simulations, an 
alternative computational method, electrostatic calculations via component analysis, as well as a 
fluorescence intercalator displacement (FID) assay were used to confirm our prediction on the 
lack of base selectivity. This combination of computational and experimental methods was used 
again to explore the effects of arginine residues in DNA binding as previous work has suggested 
arginine’s important role in protein-membrane interactions and antimicrobial activities of buforin 
II and DesHDAP1. In both experiments and calculations, having an increased composition of 
cationic residues that are arginine instead of lysine were shown to promote binding for variants 
of both buforin II and DesHDAP1. These insights regarding DNA binding of buforin II and 
DesHDAP1, paired with a deeper understanding of the peptides’ structures and membrane 
interactions, are necessary for development of more potent analogs which may lead to novel 
pharmaceutical applications. 
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1. Introduction 

1.1 Antimicrobial Peptides (AMPs) 

While antibiotic and antimicrobial agents have treated numerous infectious diseases over 

the years, the rapidly growing resistance to these drugs is becoming a global concern [1-4]. This 

prompts a need for alternatives to conventional antibiotics to provide effective treatments of 

resistant infections and diseases. Fortunately, antimicrobial peptides (AMPs) may be a potential 

class of alternatives to conventional antibiotics as many species of AMPs have been studied and 

shown to be active against a wide range of bacteria, viruses, and other pathogens [5].  

AMPs are generally cationic, amphipathic, and fewer than 100 amino acid residues in 

length. In addition, they are naturally occurring in many organisms, including humans, as part of 

the innate immune system [4]. Thus, a better understanding of these peptides, particularly their 

structure-function relationships, may be crucial for development of novel agents or treatments 

against drug-resistant pathogens.  

 

Peptide  Proposed Mechanism of Action  
Lasioglosin II (LL-II) [4] Membrane destabilization 

pseudin-2 [6] Formation of pores 
Gaegurin 4 [4] Formation of pores 
Cecropin A [4] Formation of pores 
AMP-C10-3 [3] Membrane permeabilization 
Indolicidin [7] Formation of pores 
Magainin-2 [7] Formation of pores 

Tachyplesin I [7] Formation of pores 
 

Table 1. Examples of AMPs that kill bacteria by destabilizing the membrane integrity. 
 
 

According to the literature, many AMPs have been shown to kill bacteria through 

membrane disruption or permeabilization, with some examples shown in Table 1. Several 
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models, including the barrel-stave, toroidal, and carpet models, were proposed to describe this 

permeabilization mechanism [8]. The barrel-stave model involves AMPs binding the membrane 

surface as monomers, followed by aggregation of these peptides that eventually forms 

transmembrane pores. As the concentration of AMPs increases, these pores become larger, 

ultimately causing cell death through leakage [9]. Examples of AMPs that follow this mechanism 

include Gaegurin 4 and Cecropin A [4]. Unlike the former model, according to the toroidal 

model, AMPs insert themselves in the membrane until it becomes interdispersed with peptides. 

This then causes strain and thinning of the membrane, effectively destabilizing the membrane 

integrity. This model well characterizes peptide-membrane interactions as mechanisms of several 

AMPs, such as meganin, protegrin, and melittin, have been shown to follow this model [9]. 

Lastly, unlike the other two models, AMPs following the carpet model do not form any pores or 

channels but instead engage in nonspecific interactions with the membrane as they accumulate 

near the surface due to electrostatic interactions. This accumulation then leads to the loss of 

membrane integrity. Though these mechanisms are different on the small scale, they all 

ultimately kill bacteria by impairing the integrity of the bacterial membrane.  

While many AMPs kill via permeabilization, a smaller subset of AMPs causes cell 

damage or death by translocating across the membrane with minimal permeabilization; once 

inside the cell, these AMPs then interfere with intracellular processes (Figure 1).  
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Figure 1. This lesser known bactericidal mechanism involves (1) translocation across bacterial membrane followed 
by (2) interference with crucial intracellular processes. 

 

These intracellular processes may refer to interactions with specific proteins or nucleic acids. 

Buforin II and DesHDAP1, the two subjects of this study, follow this lesser understood 

mechanism. However, their mechanism of action is not considered unique as several other 

peptides were shown to share at least parts of the proposed mechanism. For example, peptides 

such as polyphemusin I and a 9-amino-acid-long motif with sequence PLIYLRLLR were 

discovered to be translocating peptides, with the latter found to spontaneously translocate across 

membranes carrying polar dyes [7, 10]. An even greater number of peptides that bind nucleic 

acids were identified in Table 2. 

 

Peptide   
Lasioglosin II (LL-II) DNA binding 

pseudin-2 RNA binding 
AMP-C10-3 DNA binding 

LL-37 DNA binding 
PuroB peptides DNA and RNA binding 

Table 2. Examples of peptides that have been proposed to bind nucleic acids. 

It is important to note that while some of these peptides listed in Table 2 may bind nucleic acids 

as part of their mechanism to kill pathogens, some may also have been seen in vitro to bind 

  1 
  

2 
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DNA, which is expected for cationic peptides. Nonetheless, it is important to understand 

alternative mechanisms, which could be useful for development of agents that can deliver drug 

molecules or other desired cargos such as nucleic acids, to target cells [11, 12]. In addition, Table 

1 and Table 2 share common peptides, which means mechanisms of AMPs are not only limited 

to the two mentioned earlier. That is, mechanisms of AMPs may be more complex and 

“multifunctional” [3]. Therefore, our study aims to provide a more thorough characterization of 

the nucleic acid binding step through analysis of buforin II and DesHDAP1. 

 

1.2 Histone-Derived Antimicrobial Peptides (HDAPs) 

Histones are found in eukaryotic cell nuclei, where they package DNA into more 

organized units called nucleosomes. Thus, these proteins are central to processes such as gene 

transcription and regulation in cells. In addition, some of the core histone proteins, as well as 

their fragments, were shown to be active against a wide range of antimicrobial agents. In the 

literature, histones and their fragments extracted from various organisms such as shrimp, fish, 

frog, chicken, and mammals showed potential for use as antimicrobial agents [8]. 

Histone-derived antimicrobial peptides (HDAPs) are generally short peptides (<100 

amino acids in length), derived from histones and/or their fragments. In the literature, examples 

of HDAPS include a potential AMP derived from the histone H2A of the Zhikong scallop 

Chlamys farreri [8] and an active peptide found in coho salmon mucus and blood that shares its 

entire sequence with the N-terminus of trout H1 histone [13]. Buforin II and DesHDAP1, two 

more examples of HDAPs share their entire sequences with sections of histone H2A. 
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1.3 Buforin II  

Buforin II is a well-characterized HDAP active against a wide range of pathogens 

including several Gram-positive and Gram-negative bacteria and fungi without significant 

hemolytic activity [14]. It is a 21-amino acid peptide that is cationic, amphipathic, and α-helical, 

its structure containing an N-terminal random coil region, extended helical region, a hinge, and a 

C-terminal α-helical region as shown in Figure 2 [8, 15, 16].  

 

 
Figure 2. Structure of buforin II. Arginine residues shown in red,  
lysine residue shown in green, and proline residue shown in blue. 

 
 

Buforin II is naturally occurring, derived from its parent AMP, buforin I, which was isolated 

from the stomach tissue of the Asian toad Bufo bufo garagriozans [14]. As a HDAP, buforin II 

shares its complete sequence with the N-terminal region of histone H2A that has been shown to 

interact with nucleic acids [16]. Past studies showed that though buforin II belongs to a class of 

linear α-helical AMPs, it has a unique mechanism of action that involves membrane 

translocation and interaction with intracellular DNA and RNA [14, 17].   

 

Peptide Sequence 
Buforin II TRSSRAGLQWPVGRVHRLLRK 

DesHDAP1 ARDNKKTRIWPRHLQLAVRN 
Table 3. Amino acid sequences of buforin II and DesHDAP1, the subjects of this study. 
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To better understand this lesser known mechanism, buforin II’s membrane translocation and 

interaction with nucleic acids have been investigated in the past. Regarding the translocation step 

of buforin II’s bactericidal mechanism, the proline hinge in the peptide structure was shown to be 

crucial to membrane translocation, which also affected its potency [14, 15, 18]. This proved 

translocation was a major step in buforin II’s overall mechanism of action [15, 19]. Uyterhoeven 

et al. then used molecular modeling as well as a fluorescent intercalator displacement assay to 

better characterize the DNA binding of buforin II. According to this study, buforin II was 

observed to form nonspecific electrostatic interactions with the phosphate backbone of DNA 

while forming interactions with specific arginine residues. In addition, a general correlation 

between relative DNA binding constants and antimicrobial activity for buforin II and its variants 

was noted, supporting the hypothesis that buforin II kills bacteria via DNA binding [17]. Though 

this previous study has provided interesting observations and predictions, the MD simulation 

used to characterize the DNA binding of buforin II was only 10 ns long. While the length of 

simulation will be discussed later, 50 ns appeared to be an optimal amount of simulation time as 

systems in this study equilibrated at around 40 ns. In addition, Lan et al. discussed that the level 

of helical structure in the simulation was not consistent with their experimental results using 

circular dichroism spectroscopy. The single simulation used by Uyterhoeven et al. proposed that 

buforin II maintained an α-helical structure, whereas the result from CD spectroscopy suggested 

a more extended conformation [20]. Therefore, more replicates of extended MD simulations 

were run and analyzed in this study to explore a greater sampling of possible structures. 

Furthermore, not much is known regarding the DNA binding of DesHDAP1, the other peptide 

investigated in this study, though past studies have proposed that DesHDAP1’s mechanism is 

similar to that of buforin II [21].  Therefore, a close study of nucleic acid binding of both 
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peptides is necessary using computational analyses as well as experimental methods to address 

past conclusions and predictions and gain further insight. 

 

1.4 DesHDAP1 

While buforin II is a naturally occurring peptide, DesHDAP1 is a 20-amino acid HDAP 

that was designed based on the crystal structure of the histone H2A subunit. Similar to buforin II, 

DesHDAP1 also shares its sequence identity with a section of the histone subunit H2A [1]. 

DesHDAP1 was designed based on properties of buforin II, and therefore, DesHDAP1 contains 

multiple positive charges and a proline residue in its structure that disrupts a C-terminal helical 

region [21].  

 

 

Figure 3. Structure of DesHDAP1. All arginine residues shown in red,  
lysine residues shown in green, and proline residue shown in blue. 

 

Furthermore, a structural analysis using circular dichroism spectroscopy confirmed that 

DesHDAP1 and buforin II share similar secondary structures [1]. DesHDAP1 also exhibited 

comparable antimicrobial activity, and as mentioned earlier, past DNA binding and translocation 

studies suggested that DesHDAP1 likely shares buforin II’s bactericidal mechanism [1, 21].  
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Because both buforin II’s and DesHDAP1’s modes of action involve nucleic acid binding 

following translocation across bacterial membrane, characterizing nucleic acid binding of these 

peptides may help us better understand this lesser known mechanism as well as provide insight 

such that we can optimize these translocating and binding abilities to engineer more potent 

peptides that can deliver drugs or cargos into target cells.  

 

1.5 Classical Molecular Dynamics (CMD) 

Classical molecular dynamics (CMD) is a computational tool used to investigate structure 

and function of complex biomolecules. CMD does not consider motions of electrons and instead 

uses classical physics to update positions of nuclei over time. Because MD simulations allow for 

close analysis of relatively large systems at the molecular level, it is used for a wide range of 

studies and applications, such as structural determinations of biomolecules.  

Each atom in a MD simulation is assigned an initial value of position and velocity. 

Velocity on each atom is randomly selected from the Maxwell-Boltzmann distribution. The force 

on the atom is evaluated using a force field or classical potential energy function, an empirical 

formula of force on the atom that is effectively divided into bonded and non-bonded terms. The 

bonded terms consider effects of intramolecular interactions, including terms accounting for 

bonds, angles, and dihedrals, whereas the non-bonded terms consider effects of intermolecular 

interactions such as van der Waals and electrostatic interactions. These bonded and non-bonded 

terms use empirically and/or quantum mechanically derived parameters based on a certain set of 

molecules that may be the basis for many molecules, such as methyl groups. It is important to 

note that different force fields, created by collaborative efforts of various research groups, 

contain different terms. No force field is considered “true” or universal that applies to all 
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molecules. However, a particular force field can provide a model that is accurate for certain sets 

of molecules. 

 

 

Equation 1. Generic potential energy equation for the AMBER force field.  
Using this function, we can compute the force on each atom using classical mechanics. 

 

Thus, some force fields are better suited for simulating particular biomolecules, such as proteins 

and nucleic acids. For example, AMBER force fields have been shown to be particularly useful 

for modeling nucleic acids as they include updated parameters for both amino and nucleic acids 

[1, 17, 22-25]. After calculating the force using a force field, the atom moves over a small time 

step, on the order of femtoseconds (10-15 s), following Newton’s laws in classical mechanics to 

its next position. The process of calculating updated positions and forces repeat over and over 

again up to a desired time length, creating a compilation or simulation of atomic movements to 

model the macroscopic behavior or dynamics of the molecule(s) in the system. 

In some MD simulations, to model the effect of solvent, an explicit solvation model is 

used in which every solvent atom is considered in calculations. Though the explicit treatment of 

solvent makes these MD simulations computationally expensive, there are several instances in 
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which explicit solvation produces accurate results [26, 27]. In the literature, modeling 

comparable systems, for example a peptide nucleic acid targeting mRNA molecules, in explicit 

solvent produced results that agreed well with experimental data. For systems containing 

dynamic biomolecules such as proteins, MD appears to be a good technique to explore possible 

conformations to investigate different functions and behaviors. After a MD simulation is run, this 

produces numbers of “snapshots” or frames of the system of interest. With these snapshots, 

various computational analyses can be performed to check for structural stability, energetics, H-

bonds, and other properties of the system.   

 

1.6 Electrostatics 

In biological systems, electrostatic interactions can heavily influence structure and 

dynamics of biomolecules by affecting affinity, specificity, and promiscuity [28]. For many 

biological systems, probing electrostatics can provide insight on function and interactions of 

biomolecules, which can be useful for applications such as drug design. Electrostatic interactions 

are sensitive to environmental factors such as salt concentration, pH, and presence of solvent, 

which are all very relevant in biological settings. To describe such interactions, an implicit 

solvent model can be used, in which the solvent is considered to be a medium with an associated 

dielectric constant. This is different from an explicit solvent model, which considers every atom 

in the solvent to model the effects. Thus, implicit consideration of the solvent involves solving 

the Poisson equation to obtain the electrostatic potential at a point in space, given the charge 

distribution ρ(𝑟) and the dielectric constant 𝜀(𝑟) that vary in space.   
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Equation 2. Poisson Equation. 

 

To implicitly model effects of monovalent, mobile ions in solvent, the Poisson equation becomes 

the Poisson-Boltzmann equation (PBE) after applying Debye-Huckel theory [24]. Given that the 

system of interest is not heavily charged, we can approximate PBE to its linearized version 

(Equation 3) [24].  

 

Equation 3. Linearized approximation to the PBE. 

 

Using the linearized PBE, or LPBE, a free energy can be calculated that represents the 

electrostatic component of the free energy of the system. Total electrostatic binding free energies 

are obtained by summing terms that account for penalties for solvating each binding partner (in 

other words, desolvating the spatial cavities of the binding partners) and solvent-screened 

interactions between the two partners (scheme shown in Figure 4).  

 

Figure 4. Scheme for calculating electrostatic component of binding free energy [28]. 
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The penalty terms were obtained by multiplying one-half the potential differences due to charges 

on a binding partner by those charges. Interaction terms were calculated multiplying bound-state 

potentials due to charges on a binding partner by charges on the other partner [29].  

 

 

 

Equation 4.  Total electrostatic binding free energy is a sum of desolvation  
penalties of partner #1 and #2 and the interactions term. 

 

 

1.7 Component Analysis 

To quantify the contributions of selected portions of a binding partner on the overall 

electrostatic binding free energy, atomic charges of these portions were set to zero followed by a 

recalculation of the binding free energy. The contribution of that portion, or the effect of zeroing 

out the charges of the portion, was reflected by the changes in the electrostatic binding free 

energy, ΔΔG, obtained by subtracting the binding energy with zeroed atomic charges from the 

original binding energy with all initial charges (Equation 5). Therefore, a positive ΔΔG implies 

that the portion or residue that has been zeroed is unfavorable to the overall binding, while a 

negative ΔΔG implies that the residue that was zeroed is favorable to binding.  

 

 

Equation 5. Equation to calculate contribution of a portion of a binding partner on the overall electrostatic 
component of the binding free energy. ΔGbind,orig is the original binding energy, and ΔGbind,zeroed is the binding energy 

after charges of a selected portion of a binding partner have been zeroed. 
 

 
 

�Gelec = DP1 +DP2 + int
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2. Methods and Materials 
 
2.1 Molecular Modeling 
 

To computationally characterize DNA interactions of HDAPs, initial models of buforin II 

and DesHDAP1 were extracted from the histone core particle crystal structure (1AOI) as shown 

in Figure 5, which was used in previous computational studies of buforin II [17, 30]. 

 

 
Figure 5. Crystal structure of histone H2A, where sequence of buforin II is shown in red.  

Adjacent dsDNA used in simulations is shown in blue. (Image created by Donald Elmore) 
 

Each of these peptide-DNA complexes includes a particular section of the histone protein that 

shares an identical sequence as the peptide and an adjacent section of DNA in the original 

histone structure. For the complex containing buforin II, the adjacent section of DNA has 21 

base pairs, and for the complex containing DesHDAP1, the adjacent section of DNA has 20 base 

pairs. All structures from modeling and experiments included a F10W mutation, which has been 

used in many previous studies and does not alter the activity or mechanism of the peptide [17]. 

The F10W mutation exploits tryptophan’s intrinsic fluorescence, which is evidently useful in 

fluorescence spectroscopy. In addition, to study effects of cationic residues, arginine and lysine, 

in peptide-DNA binding, mutants with all cationic residues modified to arginine or lysine, 



 19 

referred to as all-arginine or all-lysine mutants respectively in this study, were designed using 

Swiss-PdbViewer.  

 

2.2 Molecular Dynamics 
 

Buforin II-DNA and DesHDAP1-DNA complexes were refined using MD simulations in 

Gromacs 4.5.5 using the AMBER-03 force field [17]. As mentioned before, the AMBER-03 

force field was used due to its updated parameters for amino acids and nucleic acids. For all 

simulations, TIP4P-Ew waters were used, with Na+ and Cl- added to neutralize overall charges 

and provide an additional salt concentration of 100 mM, which is within the range of widely 

used salt concentrations to represent biological conditions [17, 24, 31]. Arginine and lysine 

residues and the N- and C- termini were ionized, while the single His side chain was left 

uncharged in the HID tautomer. Systems were then subjected to 100 steps of steepest descents 

minimization and heated to 298 K for 20 ps. Each MD trajectory was then extended to a total 

length of 50 ns at constant temperature (298 K) and isotropic constant pressure (1 bar). The 

scheme we used for simulation and computational analysis is shown below in Figure 6.  

 

 

 
Figure 6. Simulation and analysis scheme used in this study. 

 Minimization  Heat Simulation 
(298 K)  Equilibration  

(up to 50 ns) 

 
MD 
Frames 

 
 

MD Analysis  
(H-bond, RMSD, etc.) 

 
Electrostatic Calculation  
via Component Analysis 
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All simulations used a time step of 2 femtoseconds, and long-range electrostatics longer than the 

10-Å cutoff were calculated using PME. Bonds to hydrogen atoms were constrained using 

SHAKE [17]. For each type of peptide (i.e. buforin II, DesHDAP1, and their all-arginine and all-

lysine mutants) bound to DNA, five simulations with identical initial structures were run and 

analyzed. For buforin II, of the five total simulations, three of them were extended to 100 ns, 

though these extensions appeared to show no qualitative differences in averaged properties in 

this study. MD analyses were then performed using tools in the GROMACS package.  

 
 
2.3 Computational Analyses 
 
2.3.1 RMS Deviation (RMSD) 
 

Before analyzing from MD trajectories, it is important to confirm that the system of 

interest has equilibrated. Calculation of the root-mean-square deviation (RMS deviation) of 

atomic positions is a useful analysis to check for system equilibration and to investigate 

conformational changes.  

 

 
Equation 6. Equation to compute the RMS deviation.  

 
 

This analysis involves superimposing of the structure from every saved frame over a reference 

structure (often the initial structure). Then, the RMS deviation between these two structures is 

calculated. According to Equation 6, a major component of calculating the RMS deviation 

involves finding the difference between the distances of a selected atom i’s position at time t and 

the reference atom’s position. For this study, the RMS deviations were calculated by fitting the 

DNA as well as fitting the Cα atoms of the structure of interest at time t and the initial structure. 

RMSD =

vuut 1

N

NX

i=1

kri(t)� ri(0)k2
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Analysis of RMS deviation values helps validate the length of a simulation because when these 

deviation values start stabilizing, the system is not undergoing significant conformational 

changes. Therefore, in this study, different analyses were performed over the last 10 ns of 

simulations (40 ns to 50 ns period) as RMS deviation values stabilized from around 40 ns.   

 
 
2.3.2 Hydrogen Bond Analysis 
 

Hydrogen bonding is involved in interactions of many biomolecules, including DNA 

interactions of buforin II and DesHDAP1. The hydrogen bond analysis used in this study (gmx 

hbond in GROMACS) computes the number of hydrogen bonds formed between two selected 

groups at each saved frame and averages these numbers over a period of time. Thus, this analysis 

provided a simple and efficient way to estimate the interactions between the peptide and DNA.  

 

2.3.3 Continuum Electrostatics Calculations and Component Analysis 
 

Continuum electrostatic calculations were performed by solving the linearized Poisson 

Equation with a single-grid red-black successive over-relaxation finite-difference solver [29] for 

MD frames collected at every nanosecond from 40 ns to 50 ns. A dielectric constant of 4 was 

used for all peptide and DNA atoms, while the solvent was modeled using a dielectric constant 

of 80. Radii and charges of atoms were obtained from AMBER ff03 parameter files, in which 

radii depend only on element. A past study has also used AMBER parameters for electrostatic 

calculations [32]. A probe radius of 1.4 Å was used for defining the surfaces of these dielectric 

boundaries. Potentials were solved on a 301×301×301 grid. A two-tiered focusing procedure was 

used, with the peptide-DNA complex occupying 23% and 92% of the grid. Zero-radius and zero-

charged dummy atoms were placed at identical minimum and maximum points of every 
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calculation for equal grid resolution. The grid spacing used yielded a resolution of approximately 

2.92 grids per angstrom. Though this grids-per-angstrom value is relatively low, higher grid 

calculations were performed for a subset of grid calculations. Because no significant difference 

was observed in ΔΔG values for these higher grid calculations, results from the original grid 

calculations were considered and analyzed in this study. For these calculations, the ionic strength 

was set to 100 mM, which was the same value used in our MD simulations. 

 
 
2.4 Visualization and Computational Details 
 

Visual Molecular Dynamics (VMD) and PyMOL were used to generate images from 

simulations. Simulations and calculations were run with 3000 MHz AMD Opteron processors 

(from Wellesley College) and Intel Xeon Phi coprocessors (provided by XSEDE).  

 
2.5 Fluorescent Intercalator Displacement (FID) Assay 
 
 

        
Figure 7. A FID assay scheme. After loading thiazole orange then nucleic acids into a cuvette, aliquots of a prepared 
peptide solution is added periodically followed by 5 minutes of incubation. As the peptide in the solution displaces 

the thiazole orange, the relative fluorescence decreases. 
  

A fluorescent intercalator displacement (FID) assay (scheme shown in Figure 7) was used 

to experimentally measure relative DNA binding of each peptide and mutant [17]. Chemically 

synthesized wild type and mutant buforin II and DesHDAP1 at >95% purity were obtained from 

NeoScientific (Cambridge, MA) and GenScript (Piscataway, NJ). The double-stranded DNA for 

this experiment was obtained from ITC (Coralville, IA). To test for base selectivity in DNA 
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binding of buforin II and DesHDAP1, different repeating sequences of DNA (Table 4) were used 

to account for various possible combinations of sequences.  

 
 

dsDNA name Sequence 
AC ACA CAC ACA CAC ACA 
CG CGC GCG CGC GCG CGC 
AG AGA GAG AGA GAG AGA 
AT ATA TAT ATA TAT ATA 

Table 4. Repeating sequences of dsDNA used in this study to test for base selectivity. 
 

 
The FID assay, which has been used previously to measure relative DNA binding of HDAPs, 

involved loading of thiazole orange (0.55 µM), an intercalator that fluoresces upon binding 

double-stranded nucleic acids, in STE buffer (10 mM Tris, 50 mM NaCl, 1 mM EDTA, pH 8.0) 

into a quartz cuvette. Fluorescence was measured with 509 nm excitation and 527 nm emission 

and normalized to 0% relative fluorescence. Double-stranded DNA in STE buffer (1.1 μM of 

base pairs) was then added. The solution was equilibrated for 5 minutes followed by 

measurement of fluorescence normalized to 100% relative fluorescence. Aliquots of a prepared 

peptide solution (7.8 x 10-5 M) were added periodically before mixing, with five minutes of 

incubation before subsequent measurements of fluorescence. Concentration of peptide required 

to reduce fluorescence, as peptides displaced thiazole orange bound to DNA, to half its initial 

value, or C50, was determined by a linear curve fit, as shown in Figure 8. All fits for data 

included in averaging had R2 > 0.88. The relative DNA binding constants were expressed as the 

reciprocal of C50, or 1/C50. Thus, a greater 1/C50 implies more favorable binding as less peptide is 

required to reach the half fluorescence point.  For each dsDNA, binding constants for both 

buforin II and DesHDAP1 were measured in at least seven independent experiments. 

 



 24 

 
Figure 8. A sample FID assay experiment. Note that the relative fluorescence decreases as the concentration of 

peptide in solution increases. After the relative fluorescence drops below half of the initial fluorescence value, C50 is 
determined by a linear curve fit. 

 

 

3. Results and Discussion 

3.1 Structural Sampling via MD Simulations 

Due to the structural complexity of the histone H2A protein, the sections corresponding 

to sequences of buforin II and DesHDAP1 after isolation likely do not represent the natural 

conformations of their free peptide counterparts. Therefore, subjecting these structures to MD 

simulations allows them to explore potential peptide conformations and binding orientations.  

To quantify the conformational changes in binding orientations of a peptide, the RMS 

deviation from its initial conformation was computed by superimposing the DNA backbone 

throughout the trajectory. By essentially holding down the position of the DNA backbone, 

relative changes in binding positions on the DNA were observed, as shown in Figure 9. Though 

the dsDNA in each simulation also changed its conformation, these changes were not as 

significant. 
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Figure 9. Changes in binding positions of buforin II (left) and DesHDAP1 (right) on DNA (dsDNA from initial 

structures of peptide-DNA complexes). The initial positions are shown in white. The non-white structures are final 
binding positions (at 50 ns) from five independent simulations after superimposing the DNA backbone. 

 

On the other hand, to observe changes in the peptide structure, the RMS deviation was computed 

again but this time by superimposing or fitting the Cα atoms throughout the trajectory. Below are 

initial conformations of buforin II (shown on the left) and DesHDAP1 (shown on the right) 

before subjecting them to MD simulations: 

      

 

After subjecting these initial structures to MD simulations, changes in peptide conformations 

were evident. The final structures of buforin II taken from the 50 ns frame of each of the five 

total simulations have been superimposed to the initial structure to visualize the changes in 

buforin II’s conformation: 
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The same has been done for DesHDAP1, using the initial structure as reference, to note the 

changes in its conformation: 

 

 

 

The series of snapshots not only provided visual representations of the RMS deviations with 

respect to the initial structure but also helped justify our use of MD to explore potential peptide 

conformations and binding positions as we can see that both peptides changed their 

conformations and positions significantly throughout the trajectories.  

 

 

3.2 System Equilibration 

Before performing computational analyses on sets of frames from our MD simulations, 

the RMS deviations fitting DNA and Cα atoms were computed for each simulation to check for 

system equilibration. Generally, the length of a simulation is considered sufficient if it contains 

frames in which the RMS deviations stabilize, i.e. contains frames that suggest there is 

systematic irreversible movement toward some equilibrium state. For our peptide-DNA systems, 
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we wanted to check that in our simulations, both the RMS deviations fitting the DNA and the Cα 

atoms stabilized by the end.  

 

3.2.1 Structural Equilibration and Sampling of Buforin II 

 

 
Figure 10. A plot of DNA-fitted RMSD vs. time for five simulations of buforin II bound to DNA.  

 

 

According to the Figure 10, all five simulations of buforin II appear to have reached an 

equilibrated conformation of the peptide with respect to DNA, particularly during the last ten-

nanosecond periods as the RMS deviations stabilize about a constant value. This is more evident 

in the figure below, in which we zoom into the last ten-nanosecond period of the simulation.  
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Figure 11. A plot of DNA-fitted RMSD vs. time (40 - 50 ns) for simulations of buforin II. 

 

In addition, the peptide conformation also appeared to have stabilized in this 40 to 50 ns period 

for buforin II, as observed in Figure 12.  

 

 
Figure 12. A plot of Cα-fitted RMSD vs. time for five simulations of buforin II bound to DNA.  
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Again, we zoomed into the last ten nanoseconds of the simulation to highlight the equilibrated 

region: 

 
Figure 13. A plot of Cα-fitted RMSD vs. time (40 - 50 ns) for simulations of buforin II. 

 

From the scale of this figure, we observe that in each simulation, buforin II maintains its 

conformation towards the end of simulations. However, from a previous figure, Figure 9, we 

noted that the final structures of buforin II from each of the five simulations varied relative to the 

initial structure and to each other in both the DNA and Cα-fitted cases. That is, generally, the 

conformational changes primarily increased the interactions between the helical region and the 

DNA backbone, shown in Figure 14, though the positions assumed by helices to increase 

interactions with DNA in these simulations were not identical.  
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Figure 14. Various conformations of buforin II relative to DNA (dsDNA from the initial structure of buforin II-DNA 

complex). Initial structure shown in white. Note the increased the interactions between the helical region and the 
DNA backbone. 

 

3.2.2 Structural Equilibration and Sampling of DesHDAP1 

Similar to buforin II, DesHDAP1 peptides were also shown to have explored a range of 

peptide conformations relative to DNA in all simulations. All five simulations of DesHDAP1 

appeared to have reached equilibrated conformations near the last ten nanoseconds of 

simulations, shown by the RMSD plots below: 
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Figure 15. A plot of DNA-fitted RMSD vs. time for five simulations of DesHDAP1 bound to DNA.  
 

We again zoomed into the last ten nanoseconds to check for equilibration: 

 

 

 

As was with buforin II, simulations of DesHDAP1 maintained peptide conformations relative to 

the DNA, a good indication that the system has equilibrated.  

 

The RMS deviations of peptide conformations relative to the initial structure were also 

computed, as shown in Figure 16. 
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Figure 16. A plot of Cα-fitted RMSD vs. time for five simulations of DesHDAP1 bound to DNA.  
 

Figure 16 as well as the zoomed-in Figure 17 showed that the DesHDAP1-DNA complexes have 

equilibrated. 

 

 
Figure 17. A plot of Cα-fitted RMSD vs. time (40 - 50 ns) for simulations of DesHDAP1. 

 

In addition to noting conformational changes by calculating RMS deviations, snapshots from 

simulations of DesHDAP1 showed that while DesHDAP1’s terminal portions were positioned 

relatively far from the DNA backbone in the histone-based initial structure, all simulations 

adjusted the system to create additional peptide-DNA contacts, as shown below: 
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Figure 18. Various conformations of DesHDAP1 relative to DNA (dsDNA from the initial structure of DesHDAP1-
DNA complex). Initial structure shown in white.  

 

This was reasonable considering the concentration of positive charges in that region of the 

peptide. Four of the simulations placed the N-terminal region in the same major groove, with the 

other simulation (simulation 3 shown in blue) showing the peptide diffusing to an adjacent 

region of DNA. While the C-terminal helix region generally did move towards the peptide, this 

was less consistent between simulations. 
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3.3 RMSD Results 

It was impossible to evaluate the “true” structure of the buforin II-DNA or DesHDAP1-

DNA complex as we observed a range of potential conformations from our simulations. In fact, 

it is more likely that the actual bound systems may assume a variety of different orientations, 

which was supported by our RMSD results. However, though the RMS deviations of our 

simulations for both buforin II and DesHDAP1 converged at different values, each simulation in 

a set shared several similarities in trends regarding peptide-DNA binding with the other four. 

And these similarities gave us increased confidence that our selectivity predictions were not 

biased by considering one potential conformation.  

 

 

3.4 Length of Simulations 

To increase our sampling in conformations, we extended three simulations of buforin II 

to 100 ns. Results from these extended simulations did not have significant changes in averaged 

properties used for analyses of buforin II-DNA binding. For example, Figure 19 shows that the 

average number of hydrogen bonds formed between buforin II and the DNA per time frame for 

50 ns simulations and 100 ns simulations are not significantly different.  
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Figure 19. Average number of H-bonds per time frame for 50 ns and 100 ns simulations of buforin II. 

 

Therefore, 50 ns simulations appeared to be sufficient in length, at least for our systems, in 

which we performed analyses over the last 10 ns of these 50 ns simulations. However, for a more 

thorough analysis on lengths of simulations, we may also extend simulations of DesHDAP1 to 

100 ns to check that there are no significant changes in averaged properties. 

 

3.5 Base Selectivity 

3.5.1 Computational Analyses on Base Selectivity 
   

According to previous work, buforin II peptides were predicted to interact primarily with 

the phosphate groups of the DNA backbone. By extending the study to include DesHDAP1 and 

employing various analyses to quantify DNA interactions, we were able to support past results. 

The first analysis used to quantify DNA interactions of buforin II and DesHDAP1 involved 

computing the percentage of hydrogen bonds formed between a peptide and DNA. While the raw 

numbers of hydrogen bonds between a peptide and DNA fluctuated among the five simulations 

for each peptide, a significant percentage of the bonds involved phosphate groups in all 

simulations. For example, no simulation of buforin II had less than 86.8% of peptide-DNA H-

bonds involving phosphates, and no DesHDAP1 simulation had less than 66.8% of peptide-DNA 
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H-bonds with phosphate groups (Table 5). Because these phosphate groups are identical for any 

nucleic acid sequence, these results imply that there is likely little to no selectivity for particular 

DNA sequences [33, 34]. Interestingly, there was no clear correlation between the extent of 

conformational change observed over the course of a simulation and significantly increased or 

decreased DNA interactions. As an example, we observed noticeable conformational changes 

among simulations of DesHDAP1 relative to the DNA yet the percentages of hydrogen bonds 

with the phosphate groups were still significant.  

 

  BF2 Des1 
Simulations % H-bonds to 

phosphate 
% H-bonds to 

phosphate 
1 98.9 72.2 
2 86.8 86.3 
3 98.1 94.6 
4 100 66.8 
5 100 84.0 

Average ± SE 96.8 ± 2.5 80.8 ± 5.0 
Figure 5. Interaction results from MD simulations of buforin II and DesHDAP1 with DNA.  H-bonding data reports 

the average percentages of all peptide-DNA hydrogen bonds that involved the nucleic acid phosphate groups. All 
values averaged over structures taken from the last 10 ns of simulations. 

 

To provide an energetic consideration of the peptide-DNA interactions, electrostatic calculations 

were used to quantify average peptide-DNA interactions from frames collected over the last 10 

ns of simulations. To consider the portion of overall interactions involving phosphate groups, we 

calculated the ratio, ΔΔGphos :ΔΔGbases (Table 6). ΔΔGphos is essentially the contribution of 

peptide-phosphate group interaction to the overall electrostatic binding energy between the 

peptide and DNA. Similarly, ΔΔGbases is the contribution of peptide-base interaction. The ratios 

found for the simulations, which are greater than 1, further support that the primary interactions 

between both peptides and DNA involve phosphate groups. 
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  BF2 Des1 
Simulations ∆∆Gphos:∆∆Gbases ∆∆Gphos:∆∆Gbases 

1 11.5 7.3 
2 8.2 5.6 
3 23.7 6.4 
4 20.1 3.0 
5 21.8 5.5 

Average ± SE 17.1 ± 3.0 5.6 ± 0.69 
Table 6. Interaction results from MD simulations of buforin II and DesHDAP1 with DNA. ∆∆Gphos:∆∆Gbases is the 

ratio of the free energy involving the phosphate groups compared to other atoms in the nucleic acid bases as 
determined from electrostatic calculations. All values averaged over structures taken from the last 10 ns of 

simulations. 
 
 

Buforin II 1 2 3 4 5 Average ± SE 
ΔΔGphos (kcal/mol) -43.3 -46.5 -51.2 -52.8 -46.6 -48.1 ± 1.7 
ΔΔGbases(kcal/mol) -3.8 -5.6 -2.2 -2.6 -2.1 -3.3 ± 0.7 

ΔΔGphos+ribose (kcal/mol) -23.3 -23.4 -27.1 -28.6 -27.5 -26.0 ± 1.1 

       
       DesHDAP1 1 2 3 4 5 Average ± SE 

ΔΔGphos (kcal/mol) -27.7 -35.4 -19.3 -26.0 -40.4 -29.7 ± 3.7 
ΔΔGbases(kcal/mol) -3.8 -6.3 -3.0 -8.6 -7.3 -5.8 ± 1.0 

ΔΔGphos+ribose (kcal/mol) -12.6 -16.1 -8.2 -11.1 -19.4 -13.5 ± 1.9 
 

Table 7. Raw ΔΔG values referring to contributions of the phosphates, bases, and a combination of phosphate and 
ribose groups. 

 

Raw ΔΔG values were also provided in Table 7 as another way to note the difference in 

contributions of the DNA phosphates and bases to the overall electrostatic binding free energy. 

Interestingly, by zeroing charges of both the phosphate and ribose groups, the corresponding 

ΔΔG values increased. This may be due to the fact that though ribose groups are also part of the 

DNA backbone, they contribute unfavorably to the binding energy. Thus, to confirm this 

hypothesis, calculating ΔΔGribose could be a next potential step. 

To directly test for base selectivity using simulations, we modeled peptide-DNA systems 

containing the repeating DNA sequences from Table 4. For buforin II, we ran four 50 ns 



 38 

simulations, in which each simulation contained one of the four repeating DNA sequences. We 

then repeated the procedure for DesHDAP1. From our previous simulations of buforin II and 

DesHDAP1 bound to the adjacent dsDNA, we had observed that the raw numbers of H-bonds 

between a peptide and DNA fluctuated. Thus, we expected raw numbers for these simulations to 

fluctuate as well, especially considering the fact that we only ran one simulation per repeating 

sequence and could not average any results. This also highlights the fact that while computing 

the number of H-bonds may provide insight and general trends in DNA binding, it certainly is 

not a direct substitution for calculating binding free energies. Therefore, we calculated the 

percentage of H-bonds formed between the peptide and DNA (Table 8). 

 

  BF2 Des1 
Repeating 

Sequence in 
Simulation 

% H-bonds to 
phosphate 

% H-bonds to 
phosphate 

AC 99 86 
AG 98 72 
AT 100 92 
CG 100 74 

Table 8. H-Bonding data from simulations of buforin II and DesHDAP1 with repeating DNA sequences.  
All values averaged over structures taken from the last 10 ns of simulations. 

 

 

As expected, a significant percentage of the bonds involved phosphate groups in all simulations 

shown in Table 8. In addition, comparing percentage values of buforin II and DesHDAP1, values 

for DesHDAP1 were generally less than values for buforin II, which was consistent with our H-

bonding results from Table 5. Thus, this analysis further supported our hypothesis that the DNA 

binding of buforin II and DesHDAP1 had little to no selectivity in base sequence. 
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3.5.2 Experimental Binding Measurement for Base Selectivity 

Our computational analyses suggested that little to no selectivity in base sequence should 

be expected for buforin II and DesHDAP1 binding of DNA, as both peptides interact primarily 

with the phosphate groups of nucleic acids. To experimentally test this observation, a fluorescent 

intercalator displacement (FID) assay was used to measure relative binding constants of buforin 

II and DesHDAP1 bound to one of four different double-stranded DNA sequences (Table 4). The 

1/C50, which is proportional to the binding constant, was compared for the peptides with each 

DNA strand (Figure 20). The uncertainty 1/C50 measurements were overlapping for binding with 

different base sequences, and no significant differences arose in one-way ANOVA analyses of 

these results. Thus, these experiments appear to confirm the predicted lack of sequence 

specificity in the DNA binding for these two peptides. 
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(A) 

 

(B) 

 
Figure 20. Experimentally measured relative binding constants, expressed as 1/C50, for buforin II (A) and 

DesHDAP1(B) with different double-stranded DNA sequences, as given in Table 4. All data reported is averaged 
from at least seven independent binding experiments with error bars shown as standard error. 

 

In addition to the phosphate interactions, we also noted an interesting trend when considering 

which peptide residues were primarily involved in mediating interactions with DNA. Previous 

work has investigated roles of cationic residues, arginine and lysine, in translocation and 
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antimicrobial activity of various HDAPs including buforin II and DesHDAP1 [35]. According to 

this study, higher arginine content appeared to increase translocation for both buforin II and 

DesHDAP1. Interestingly, they noted that while the wild type buforin II and all-arginine mutant 

of buforin II exhibited comparable relative translocating abilities, there was an increased 

antimicrobial activity observed for the all-arginine mutant. This led to a hypothesis that this 

increased activity of the all-arginine mutant may have resulted from altered binding to its 

intracellular target, which is believed to be nucleic acids in the cases of buforin II and 

DesHDAP1.  Thus, simulations of all-arginine and all-lysine mutants were run to investigate the 

effects of arginine and lysine in DNA binding of buforin II and DesHDAP1. 

 

3.6 Arginine vs. Lysine in DNA Binding 

3.6.1 Computational Analyses on Role of Arginine 

For both computational and experimental analyses to investigate effects of having 

cationic residues in peptide composition that are arginine instead of lysine, all-arginine and all-

lysine mutants of buforin II and DesHDAP1 were modeled (Table 7). 

 
Peptide Name Sequence 

Buforin II R (BF2R) TRSSRAGLQWPVGRVHRLLRR 
Buforin II K (BF2K) TKSSKAGLQWPVGKVHKLLKK 

DesHDAP1 R (Des1R) ARDNRRTRIWPRHLQLAVRN 
DesHDAP1 K (Des1K) AKDNKKTKIWPKHLQLAVKN 

Table 9. Sequences of all-arginine and all-lysine mutants of buforin II and DesHDAP1. 
 

When referring to an all-arginine mutant, this corresponds to a peptide in which all lysine 

residues in the original peptide composition has been mutated to arginine. Similarly, an all-lysine 

mutant has had all its original arginine residues mutated to lysine.  
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As one might expect, when subjected to the hydrogen bond analysis, the cationic arginine 

and lysine residues formed the majority of H-bond interactions with DNA in each simulation 

(Figure 21). 

(A) 

 

(B) 

 
Figure 21. Average percentage of total peptide-DNA H-bonds involving each peptide residue in simulations of 

buforin II (A) and DesHDAP1 (B). Percentages for each simulation determined over the last 10 ns, with the error 
bars shown as the standard error from averaging values from the five simulations. 
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According to Figure 21, the only neutral residue that formed DNA interactions in all simulations 

for either peptide was the Thr 7 residue of DesHDAP1, which is flanked on either side by 

cationic residues. However, within cationic residues, arginine residues form notably more DNA 

interactions than lysine residues, with arginine forming over 90% of the cationic residue-DNA 

H-bonds in both buforin II and DesHDAP1 simulations. While arginine residues are more 

prevalent in wild types of these peptides, they are nonetheless overrepresented relative to lysine 

in terms of direct interactions with DNA. This may be due to the ability of the guanidinium 

group in arginine sidechains to form bidentate interactions with the DNA phosphate groups, 

which cannot occur for the primary amine in lysine [11, 25, 36] (Figure 22).  

 

 
Figure 22. Arginine of buforin II (red) forming bidentate interactions 

with the DNA phosphate group (gray). 
 

Following our H-Bond analysis that focused on each arginine and lysine residue in buforin II and 

DesHDAP1, we performed a similar residue-by-residue analysis using continuum electrostatic 

calculations and obtained similar trends (Figure 23). 
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(A) 

 

 

(B) 

 
Figure 23. Average ΔΔG of each residue in (A) buforin II and (B) DesHDAP1. Average for each simulation 

determined over the last 10 ns, with the error bars shown as the standard error from averaging values from the five 
simulations. 
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Again, we observed that arginine residues generally contributed more to the electrostatic binding 

free energy than lysine residues.  

Another H-bond analysis was then performed but this time to directly compare the 

averaged DNA interactions of all-arginine vs. all-lysine mutants. All-arginine mutants for both 

buforin II and DesHDAP1 were shown to have greater average numbers of H-bonds per time 

frame compared to their lysine mutant counterparts (Figure 24), suggesting that having a large 

arginine content in the peptide structure increases the peptide-DNA interaction.  

 

 
Figure 24. Average number of H-Bonds formed between peptide and DNA. All-arginine mutants for both buforin II 
and DesHDAP1 formed greater interactions with the DNA. Average for each simulation determined over the last 10 

ns, with the error bars shown as the standard error from averaging values from the five simulations. 
 

To verify our results from both H-bond analyses, the electrostatic components of the binding 

energies, or ΔGelec, of all-arginine and all-lysine mutants of buforin II and DesHDAP1 were 

determined as shown in Figure 25. 
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Figure 25. Electrostatic components of binding free energies of  

all-arginine and all-lysine mutants of buforin II and DesHDAP1. 
 

Indeed, the electrostatic component of binding energies of arginine mutants of both buforin II 

and DesHDAP1 appeared more energetically favorable, confirming our H-bond analyses. 

Therefore, from past studies and our various computational analyses, having increased arginine 

content in peptide composition appeared to improve translocation as well as DNA binding. 

 

 

3.6.2 Experimental Studies in Role of Arginine  

As was done to verify computational data on base selectivity, the FID assay was used 

again to verify our predictions on the role of arginine in buforin II’s and DesHDAP1’s 

antimicrobial activity. After obtaining all-arginine and all-lysine mutants of buforin II and 

DesHDAP1, relative binding constants were collected, as shown in Figure 26: 
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(A) 

 

(B) 

 
Figure 26. Experimentally measured relative binding constants, expressed as 1/C50, for (A) buforin II and (B) 

DesHDAP1 mutants. All data reported is averaged from at least seven independent binding experiments with error 
bars shown as standard error. 

 

For both buforin II and DesHDAP1, the all-arginine mutants had more favorable DNA 

interactions, confirming our computational results. However, even though our experimental data 

for all-arginine and all-lysine mutants appeared to correspond to computational data, the 
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experimental and computational results for wild type peptides were not consistent. For example, 

in the H-bond results for buforin II and its mutants (Figure 27), simulations containing the wild 

type peptide and the all-arginine mutant showed comparable average numbers of H-bonds 

formed between the peptide and DNA.  

 

 
Figure 27. Average number of H-Bonds formed between peptide 

 and DNA for buforin II (wild type) and its mutants. 
 

Figure 26, however, showed that the all-arginine buforin II mutant had significantly more 

favorable interactions with DNA compared to the DNA interactions of the wild type. These 

relative binding constants shown in Figure 26 were collected by three individuals, and it is 

possible that our experimental data is not representative of what is observed in reality. That is, 

our 1/C50 values for the all-arginine mutants appeared too high in value. To check for accuracy, 

we checked both our computational and experimental data. When I started collecting preliminary 

data for the relative binding constants for buforin II and its mutants, it was noted that the 1/C50 

values from my experiments better corresponded to our computational data (Figure 25 and 28). 

In both data sets, there did not appear to be significant differences in DNA binding for buforin II 
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wild type and its all-arginine mutant. However, it is necessary to collect more data points for 

relative binding constants for buforin II, DesHDAP1, and their mutants. 

 

 

Figure 28. Preliminary relative binding constant results for buforin II and its mutants.  
Though incomplete, this set of experimental data better corresponds to computational data. 

 

 

4. Conclusion 

In this study, the DNA binding of two HDAPs, buforin II and DesHDAP1, was 

characterized using a combination of computational and experimental methods. While many 

antimicrobial peptides were shown to kill pathogens mainly through membrane permeabilization, 

AMPs with alternative mechanisms of action are currently being discovered and better 

characterized for possible therapeutic applications. Therefore, a thorough study and 

understanding of AMPs and their mechanisms of action are necessary. 

Our use of MD was crucial to the study as simulations of buforin II and DesHDAP1 

allowed for initial structures extracted from the histone protein to equilibrate and explore 
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potential conformations. Though the final conformations and positions of peptides from each 

simulation in a set were different, they still provided comparable trends such as showing 

significant interactions with the DNA phosphates. While the differences in final structures did 

not lead to any conclusive structures of buforin II-DNA or DesHDAP1-DNA complex, the fact 

that these different simulations still led to comparable results in base selectivity gave us 

confidence that our results were reasonable and unbiased.  

Then, taking advantage of computational methods and their abilities to focus on the 

system of interest at the molecular level, we were able to show that the DNA binding of buforin 

II and DesHDAP1 is not base selective. Specifically, both buforin II and DesHDAP1 interact 

primarily with the phosphates of the DNA backbone, which are identical for any nucleic acid 

sequences. Using an experimental method, we were then able to confirm our prediction. 

Previous work on DNA binding of HDAPs also focused on the role of cationic residues, 

arginine and lysine. By implementing the computational and experimental methods that we have 

used before to prove the lack of base selectivity in DNA binding, we were able to show that 

having cationic residues that are arginine instead of lysine generally led to enhanced DNA 

binding. This was at least partly due to arginine’s ability to form bidentate interactions with the 

DNA.  

Though this study provided a more comprehensive characterization of DNA binding of 

buforin II and DesHDAP1 using systematic use of computational and experimental methods, 

there is still work to be done to further this study. For example, by our reasoning that the lack of 

base selectivity is due to significant interactions with phosphates, nucleic acid binding of buforin 

II and DesHDAP1 is likely not base selective. In fact, we ran a 50 ns simulation for buforin II 

bound to repeating sequences of AU (AUA UAU AUA UAU AUA) and repeated the procedure 
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for DesHDAP1. When we calculated the percentages of H-bonds to phosphates of the RNA 

backbone (Table 10), these percentages were comparable to those we obtained for peptides 

bound to repeating DNA sequences, which was shown in Table 8. 

 

  BF2 Des1 
Repeating 

Sequence in 
Simulation 

% H-bonds to 
phosphate 

% H-bonds to 
phosphate 

AU 100 92 
Table 10. Preliminary H-Bonding data from simulations of buforin II and DesHDAP1  

bound to repeating RNA sequence AU.  
 

More replicates of these simulations could be run to average results. In addition, it would be 

consistent to collect experimental binding data for buforin II and DesHDAP1 bound to the 

repeating AU sequence.  

 

As mentioned earlier, more experimental data should be collected for 1/C50 values to 

compare these values for each peptide and its all-arginine and all-lysine mutants. This may help 

us address the inconsistencies we have observed between experimental and computational data 

for relative DNA binding interactions of each peptide and its mutants.  

 

With insights from this study and future studies on AMPs such as buforin II and 

DesHDAP1, it may be possible to engineer more potent analogs of currently known peptides. For 

example, a previous study has highlighted the important role of arginine in mediating protein-

membrane interactions [7]. In this study, we also further confirmed arginine’s importance in 

enhancing DNA binding for HDAPs. For peptides similar to buforin II and DesHDAP1, two 

peptides with mechanisms of action that involves both interactions with the target’s lipid 
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membrane and then with the intracellular nucleic acids, these insights on arginine may be 

valuable for designing more effective mutants. Lastly, the systematic approach used in this study 

that involved combining computational and experimental methods appeared to be effective in 

providing insights as well as structural explanations for various observations. Thus, this may be a 

possible approach to characterize structures and/or interactions of similar biomolecular 

complexes. 
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