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Abstract  

 The negative impacts of plastics on marine life such as fish, seabirds, marine mammals, 

and sea turtles that ingest plastic and become entangled in plastic are well documented. Less is 

known, however, about the potential for plastics to transport organisms, such as invasive species, 

potential pathogens, and harmful algae. Rafting organisms that become attached to plastics in the 

marine environment comprise a new community, known as the Plastisphere. Our results revealed 

that initial colonizers of the Plastisphere in coastal and pelagic regions of the North Atlantic 

Ocean include a variety of heterotrophic bacteria (e.g., Pseudoalteromonas, Alteromonas, 

Marinobacter hydrocarbonoclasticus) that are known to form biofilms and metabolize 

hydrocarbons. We also found that all eleven genera of our initial colonizers (e.g. 

Pseudoalteromonas, Alteromonas, and Vibrio) and even some specific initial colonizer 

oligotypes within these genera are present in much later stages of succession in the Plastisphere. 

Therefore, these initial colonizers remain a part of the community long after introduction into the 

environment, and may therefore continue to play a role in the ecological impacts and ultimate 

fate of plastic in the marine environment. This study offers the first glimpse of the early 

microbial colonizers of the Plastisphere in coastal and pelagic ecosystems. 

 

Introduction 

 

 Plastic products have revolutionized the way we live our lives, from single-use products 

used in medicine and food service, to durable structures used in the construction of our cars and 

houses. However, at the end of the useful life of these products, many are not disposed of 

properly and are discarded into the environment, both on land and into the oceans. An estimated 

4.8 to 12.7 million metric tons of plastic waste enter the ocean each year (Jambeck et al. 2015), 
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equivalent in weight to adding two Empire State Buildings worth of plastic to the ocean every 

week. In fact, plastic pollution has become the primary form of marine debris (Derraik 2002). 

With plastic production increasing at an average rate of 9% since 1950 (GESAMP 2015), the 

amount of plastic marine debris (PMD) will probably continue to increase unless waste 

management methods are improved. 

 Once PMD enters the marine environment, it can be broken down into microplastics, 

which are fragments less than five millimeters in length (Derraik 2002; GESAMP, 2015; Arthur 

et al. 2009; Fig. 1). This can occur by a variety of environmental mechanisms, including 

mechanical breakdown, photodegradation,1 and thermooxidative degradation2 in the marine 

environment (Andrady, 2011). The fate of PMD in the ocean also varies depending on the type 

of polymer from which a plastic, also known as a resin, is made. 

 

    

Figure 1. Microplastics found in a neuston sampling net from a Sargasso Sea surface sample collected from a half 

hour tow, hundreds of kilometers from shore, in April 2015. 

 

                                                        
1 Photodegradation: the breakdown of plastics by UV radiation, often through oxidation reactions.  
2 Thermooxidative degradation: the slow breakdown of plastics at moderate temperatures through oxidation.  
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 The three most frequently occurring resins found floating in the ocean, and examined in 

this study, are polyethylene, polypropylene, and expanded polystyrene (Hidalgo-Ruz et al. 2012). 

These petroleum based plastics have been produced for over 100 years, and can take hundreds of 

years to degrade (Oberbeckmann et al. 2014). An alternative to petroleum-based plastics is 

biobased plastics, such as polylactic acid (PLA) and polyhydroxyalkanoate (PHA). By definition, 

bioplastics or biobased materials are organic materials that use new carbon sources, such as corn 

or sugar cane, as opposed to old fossil carbon (GESAMP, 2010, Narayan 2005). Organic 

materials are defined here according to International Union of Pure and Applied Chemistry 

(IUPAC), and are materials containing carbon-based compounds in which the carbons are 

attached to other carbons, oxygen, hydrogen, or other elements in a chain, ring, or other three 

dimensional structure (Narayan 2005). Therefore, in order to categorize a plastic as biobased, the 

material must be organic and contain recently fixed new carbon from biological sources.  

 Some of the advantages of using biobased over petroleum-based plastics include that they 

are made from renewable materials, and they may be more readily biodegradable (Lörcks 1998; 

Verlinden et al. 2007). Although bioplastics might biodegrade in commercial composting 

environments, these high nutrient, high temperature conditions are very different from the marine 

environment (GESAMP, 2010). In fact, in tests lasting the duration of several weeks to two 

months, bioplastics like PLA did not biodegrade at all in seawater, and PHA only partially 

disintegrated in seawater (CIWMB, 2007). Therefore, though biobased plastics may be a better 

alternative, both petroleum and biobased plastics raise environmental pollution concerns due to 

their persistence if improperly disposed.  

Plastic pollution is a concern throughout the world’s ocean due to their persistence and 

slow degradation, but also because ocean currents transport plastics readily to distant locations. 
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Though discharge of plastics from ships at sea is now prohibited (International Maritime 

Organization, 2011), some loss of plastics at sea still occurs (Jambeck et al. 2015). The vast 

majority of PMD, an estimated 80%, originates from land-based sources (Jambeck et al. 2015), 

which can then be transported by currents. Plastic pollution has now been documented in a wide 

variety of marine environments: along the shorelines of even the most remote islands, floating in 

the open ocean, in the seabed of continental shelves, in the deep sea, and in Arctic sea ice 

(Barnes et al. 2002; Woodall et al. 2014; Obbard et al. 2014).  

 In the open ocean, particularly high concentrations of microplastics accumulate in mid-

ocean gyres (Cole et al. 2011). Since mid-ocean gyres, such as the Sargasso Sea included in this 

study, are substrate-poor pelagic ecosystems, marine microplastics provide a previously 

unavailable habitat for surface-dwelling or attached microorganisms and subsequent colonizers. 

The accumulation of nutrients on plastic surfaces (Zobell and Anderson 1936; Zobell 1943) 

facilitates the colonization of plastics, as does the hydrophobicity of plastics. One hypothesis 

behind this is that since bacteria and microplastics are both hydrophobic and nonpolar, they have 

a tendency to aggregate in water (Rosenberg and Kjelleberg 1986; refer to Appendix Fig. A. for 

more detail). Increasingly prevalent PMD in the ocean could therefore alter the distribution of 

marine microorganisms such as microbes, because solid surfaces are believed to play a 

significant role in the spatial distribution of bacteria in the ocean (ZoBell and Anderson 1936).  

 

Impacts of PMD 

 The negative impacts of PMD on organisms such as marine mammals, sea turtles, 

seabirds, and fish that ingest plastic and become entangled in plastic are well documented 

(Carpenter et al. 1972; Derraik 2002; Laist 1987, 1997; Baird and Hooker, 2000; Denuncio et al. 
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2011). While many studies have focused on the negative impacts of PMD on organisms that can 

ingest and become entangled in plastic debris, less is known about other effects of plastic 

pollution (Derraik 2002).  

 One of these lesser-known effects of plastics is their ability to provide a new means of 

dispersal. For example, plastics have been found to transport persistent organic pollutants (POPs) 

and persistent bioaccumulative toxins such as polychlorobiphenyls and polycyclic aromatic 

hydrocarbons (GESAMP, 2010; Rochman et al. 2013). Since plastic substrates accumulate 

nutrients (ZoBell and Anderson 1936; Zobell 1943) and provide a substrate in an otherwise 

substrate-poor, open ocean environment, plastics can also act as a fomite  (an object capable of 

carrying pathogens and transferring them from one individual to another) for a variety of 

organisms. The community that survives on plastics includes bacteria, protists, and animals 

(Carpenter et al. 1972; Reisser et al. 2014; Masó et al. 2007; Minchin 1996; Gregory 1978). Of 

particular concern is the finding that plastics can transport potential pathogens (Zettler et al. 

2013), harmful algal species (Masó et al. 2007), and invasive species (Barnes 2002).  

 Organisms are able to attach to this artificial substrate and can be transported over long 

distances, since plastic is longer-lived in the environment than most natural substrates (Ilgenfritz 

1975). Natural floating debris such as pumice and wood have always provided a means of 

transportation in the oceans for organisms that are able to hitch a ride (Barnes, 2002). However, 

the recent explosion of anthropogenic debris in the past couple decades, largely in the form of 

plastics, can more than double the rafting opportunities for organisms (Barnes, 2002). Relatively 

little is known about the impacts of this plastic-based biological community, known as the 

Plastisphere (Zettler et al. 2013). 

 



9 

The Microbial Community of the Plastisphere 

 The Plastisphere contains a diverse community of colonizers (Zettler et al. 2013; 

Oberbeckmann et al. 2014), with microbes being the earliest colonizers (Dang and Lovell 2000; 

Webb et al. 2009). Microbes are important in marine ecosystems in general because they drive 

primary production, nutrient cycling, and other ecosystem services. The microbes in the 

Plastisphere, however, are strikingly distinct from microbes found in ambient seawater (Zettler et 

al. 2013; Oberbeckmann et al. 2014). The microbial colonizers of plastics may have significant 

effects on marine ecosystem health and function, and the microbes that colonize may vary 

depending on the type of plastic, season, and location (Oberbeckmann et al. 2014, Amaral-

Zettler et al. 2015). Understanding the composition and ecological significance of marine 

microbial communities on plastics is critical for determining how plastic pollution may alter 

marine and coastal environments.  

 The microbial community of the Plastisphere forms the initial biofilm, an organic, 

matrix-enclosed layer of microbial cells that coats plastics in the marine environment. The matrix 

of biofilms, consisting mainly of polysaccharides, can support a diverse community of microbes 

(Jones et al. 1969). Biofilms may offer protection to the microbial community from biocides or 

antibiotics, and may allow for interactions between members of the biofilm that promote survival 

and the maintenance of homeostasis (Fletcher 1991). Bacteria, which are key players in biofilm 

formation along with other microbes such as diatoms (Wahl 1989), often attach to solid surfaces 

using pili or exude a stalk-like holdfast during attachment, which may aid in the accumulation of 

nutrients near the attached bacteria (ZoBell 1943). Other bacteria use alternative methods, such 

as the extension of polymeric fibrils to the substrate surface (Marshall et al. 1971). In some 

cases, bacteria adhered to substrates have no attachment structures at all, and they are held in 
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place only by an extracellular, polysaccharide matrix layer (Jones et al. 1969).  

 Attachment of planktonic bacteria in seawater to the surface of PMD is the first step in 

biofilm formation (Dang and Lovell 2000). Then, primary colonizers increase in abundance on 

the surface and a biofilm begins to form as the bacteria grow, reproduce, modify the surface of 

the substrate, and produce a polymer matrix (Dang and Lovell 2000). Other planktonic microbes 

are then able to interact with the bacteria in the biofilm (Dang and Lovell 2000). The biofilm 

reaches a mature stage in succession as the community continues to interact competitively and 

synergistically, allowing for further colonizers to establish themselves in the community (Lee et 

al. 2008; Dang and Lovell 2002; Zobell and Anderson, 1936).  

 Biofilm formation is likely the beginning of life in the Plastisphere. The existence of a 

biofilm may also be a requirement for the attachment of larger organisms, such as diatoms and 

benthic invertebrates (Wood 1967; Wahl 1989; Cooksey and Wigglesworth-Cooksey 1995; 

Reisser et al. 2014; personal observation, Fig. 1). A variety of macrofauna, such barnacles (Fig. 

1) and other suspension feeders, have been found to settle on floating marine substrates during 

later stages of succession (Wood 1967; Cooksey and Wigglesworth-Cooksey 1995; Thiel 2003). 

As previously discussed, we know that the Plastisphere can contain a diverse community of 

bacterial and eukaryotic organisms. Succession, however, the manner in which the species 

composition of this community changes over time, is largely unknown for this unique marine 

ecosystem, particularly in the earliest stages of colonization.  
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Figure 2. This plastic bottle (left), floating at the ocean surface in the North Atlantic Ocean and collected in a 

neuston sampling net in April 2015, had relatively large animals attached to it such as barnacles (right).  The initial 

colonizers of plastics may lay the foundation for subsequent colonizers of the Plastisphere.  

 

 

 The earliest colonizers of any uninhabited environment are called pioneer or early 

successional species. Examples of uninhabited environments occurring after a disturbance 

include the slope of a volcano after an eruption, the side of a rock in the intertidal zone after 

wave action or ice has dislodged attached species, or the surfaces of clean plastics that have been 

deposited into the ocean. The pioneers of these inhospitable environments are typically able to 

withstand high physiological stress (Cain et al. 1956), and they are often capable of transforming 

their environment in a way that makes it more habitable for themselves and, subsequently, for 

other organisms (Cain et al. 1956). The concept of succession can also be applied to microbial 

communities. It is important to note, however, that later stages of succession in biofilm 

communities might not be driven by competition for resources or niches as is typical in macro-

organismal communities. This is because later developing, more specialized microbial 

populations in biofilms are able to utilize mutually exclusive carbon sources, including 

carbohydrates such as glucose and cellulose, and derivatives of aromatic polymers such as 
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benzoate (Jackson et al. 2001). The pattern of succession in the earliest stages of microbial 

colonization appears to be somewhat random and difficult to predict precisely (Jackson et al. 

2001). Our limited understanding of early colonization is more developed in a few specialized 

environments, such as in the formation of dental plaque (Kolenbrander 2000). In this 

environment, for example, colonization begins with a group of gram-positive organisms, 

primarily streptococci, and succession culminates with the colonization of gram-negative, 

anaerobic bacteria such as Porphyromonas gingivalis (Xie et al. 2000). We still know very little, 

however, about the role of the initial colonizers in the marine environment.  

Understanding the microbial communities that are the initial colonizers on microplastics is 

important for understanding the succession of life in the Plastisphere (Zettler et al. 2013). 

Previous studies have examined both microbial colonizers of plastics retrieved from the ocean 

and microbial colonizers of clean plastics exposed to marine environments for several weeks or 

months (Webb et al. 2009; Zettler et al. 2013; Oberbeckmann et al. 2014). Although some 

studies examined marine and estuarine microbial colonization of plastics during early stages of 

colonization, such as 1-3 weeks (Lobelle and Cunliffe 2011) or 24-72 hours (Dang and Lovell 

2000), no studies have documented colonization during even shorter time periods in open ocean 

ecosystems.  

 To place our study on early colonization in the greater context of succession in the 

Plastisphere, we compared our results with theoretical models of ecological succession. The 

three general models of ecosystem succession, according to Connell and Slatyer’s foundational 

1977 paper, are the facilitation, tolerance, and inhibition models. In the facilitation model, early 

colonizers arrive to the uninhabited site and modify it in a way that make the environment less 

suitable for subsequent early colonizers to arrive, and help late succession organisms to enter the 
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community. In the tolerance model, the early colonizers still alter the environment to make it 

more difficult for other early colonizers to arrive, but their presence has little or no impact on 

colonization by late stage successors. In ecosystems that follow an inhibition model, early 

colonizers modify their environment in ways that inhibit subsequent colonization of both early 

and late stage colonizers, and only their elimination permits succession to continue. In all three 

models initial colonizers are eliminated as the ecosystem reaches its late succession stage 

(Connell and Slatyer 1977), due to active emigration or predation (Thiel 2003). Characterizing 

the initial colonizers and their presence or absence throughout later stages of succession in the 

Plastisphere will contribute to a better understanding of how this community develops over time.  

 

Applications  

 In addition to contributing to our fundamental knowledge of the stages of succession in 

the Plastisphere, understanding the initial colonizers of virgin plastics is relevant for practical 

reasons. For example, these “plastiphilic” microbes may play an important role in the 

biodegradation3 and ultimate fate of PMD on which they live (Ozaki et al. 2007; Lin et al. 2009; 

Reisser et al. 2014), since bacteria can attack plastic polymers biochemically (Zobell 1943; 

Mergaert et al. 1996; Shrivastav et al. 2011). Also, the microbial community that lives on 

plastics could affect fish and other marine organisms that ingest these plastics. Therefore, 

understanding the role of microbes in degrading plastics is essential to determining the fate of 

plastic in the ocean, for bioremediation projects, and for understanding the ecological impact of 

PMD. This topic is particularly relevant in the marine environment given that the oceans are the 

final destination of a significant portion of the world’s hydrocarbon pollution (Atlas 1981). This 

                                                        
3 Biodegradation: the chemical breakdown of organic molecules by microorganisms such as bacteria. 
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research is also useful to a variety of fields outside the realm of environmental science, such as in 

medicine, the military, and industry.4 

 Virgin plastics are plastic particles that do not yet have microorganisms attached and are 

essentially uninhabited. Plastisphere communities in the earliest stages of succession can develop 

on uncolonized PMD from fishing and shipping vessels (Cole et al. 2011), or from marine 

organisms that ingest and egest these virgin microplastics (Thompson et al. 2004; Cole et al. 

2011), essentially “resetting” the microbial community (Amaral-Zettler et al. 2015). Plastic resin 

pellets, small granules of plastic <5 mm in diameter and generally disk or cylindrical in shape, 

are the raw material used for melting down in the manufacturing of many plastic products (Ogata 

et al. 2009). During both transportation and manufacturing, these resin pellets can be lost to the 

marine environment as virgin plastics (EPA, 1992; Ogata et al. 2009). Therefore, examining the 

colonization of virgin plastics in the marine environment is not only a useful tool for studying 

succession experimentally, but it also models an environment that is in fact found in the oceans 

due to plastic pollution.  

 

Current Study Overview 

 Given our limited understanding of the initial colonizers and the microbial succession 

that takes place in the Plastisphere, the goal of this study was to characterize the earliest stages of 

                                                        
4 Medicine: biofilms that form on devices such as catheters and heart implants with plastic components could 

contribute to opportunistic infections (Rosenberg and Kjelleberg, 1986; Chauhan et al. 2016; Gristina et al. 1988). 

Military: biofilms affect the fouling and hydrodynamics of vessel surfaces and other submerged equipment (Zobell 

1943). Industry: if the microbial community adhering to the surfaces of ships, oilrigs, pipelines, or other submerged 

structures is found to biodegrade or negatively alter those surfaces, proactive measures might be taken to prevent the 

attachment of those microbes.  
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life in this community. In addition to describing some of the initial colonizers, which were 

previously unknown, we expected to find that the initial microbial colonizers would be distinct 

based on location, and to a lesser extent, based on the resin type of the substrate to which they 

attached. This is based on previous studies that have found that microbial communities differ 

based on location but not as strongly on resin type (Pommier et al. 2007; Carson et al. 2014, 

Zettler et al. 2013; Oberbeckmann et al. 2014; Amaral-Zettler et al. 2015).  

 We then investigated whether the initial colonizers persisted in later stages of succession 

in the Plastisphere. We did this by comparing the microbes found in our first colonizer 

experiments with the Plastisphere community found in more established Plastisphere 

communities characterized in previous studies. Though examining the model by which the 

Plastisphere community reaches late stage succession is beyond the scope of this study, each of 

the three major models of succession predicts that early colonizers drop out of the community in 

later stages (Connell and Slatyer 1977). Therefore, we expected that early colonizers would no 

longer be present in the Plastisphere after a few weeks, and that they would certainly be absent 

after several months of exposure to seawater. Though it is unlikely for real communities to 

follow any one model of succession perfectly, it is generally true that early successional species 

give way to later stage successors because as the environment changes over time, different 

species are favored due to the suitability of their life history traits in any given environment 

(McCook 1994). 

 In terms of life history traits, we expected that many of the first colonizers of the 

Plastisphere would have certain adaptations such as the ability to form biofilms, to metabolize 

hydrocarbons, and to be phototrophs. The ability to form biofilms would be useful to these early 

colonizers because biofilms offer protection from grazing predators, provide increased access to 
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nutrients, and facilitate antibiotic resistance through enhanced horizontal gene transfer (Chavez-

Dozal et al. 2013; Fux et al. 2005; Donlan and Costerton, 2002; Rodríguez-Martínez and Pascual 

2006). Bacteria that could metabolize hydrocarbons would be well suited to the early 

Plastisphere ecosystem because they could utilize the hydrocarbons of the resin as a source of 

carbon at a stage when organic material has not yet accumulated on the plastic surface. 

Alternatively, phototrophs that attach to microplastics floating near the sea surface would be able 

to utilize sunlight to create their own carbon sources from dissolved carbon dioxide. Later 

successional stage Plastisphere communities include autotrophs (e.g. cyanobacteria) and 

heterotrophs (Zettler et al. 2013), but phototrophs are particularly well adapted to be pioneers of 

newly settled communities as they generate new organic carbon in carbon-poor environments 

(Frey et al. 2013). We examined the presence or absence of these life history traits among 

pioneers of the Plastisphere once these initial colonizers were identified through our genetic 

analyses.  

 

Methods 

Seawater Sample Collection 

 We performed experiments in three different marine environments: the oligotrophic 

Sargasso Sea (SS),5 the coastal waters of Woods Hole (WH), MA,6 and in the semi-enclosed 

shelf waters of the Gulf of Maine (GOM)7 (Fig. 3; Appendix, Table A). All glass and plasticware 

was cleaned by rinsing with 0.5-1 N hydrochloric acid, 6 rinses of deionized water (DI), 70% 

ethanol, and finally rinsed with 0.22 µm-filtered seawater to minimize contamination. We 

collected water samples from the ocean surface using a cleaned bucket. Approximately 1 L of 

                                                        
5 Conducted by Amalia Alberini, Lena Goss, Caroline Graham, and Helena McMonagle 
6 Conducted by Linda-Amaral-Zettler, Erik Zettler, and Helena McMonagle 
7 Conducted by Erik Zettler 
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collected seawater was then transferred to cleaned polypropylene sealed containers that were 1.0 

to 2.6 L in volume. We measured temperature and salinity at the top of the hour closest to our 

sampling time using a SBE-45 thermosalinograph (SeaBird Electronics, Bellevue, WA USA) for 

open ocean samples, and a YSI 85 hand-held instrument in Woods Hole and the Gulf of Maine. 

Chlorophyll and phosphate concentrations were determined at the closest surface station using 

standard methods (Parsons et al. 1984). Chlorophyll was measured by vacuum filtering 250-500 

mL of seawater through a 0.45 μm membrane filter (GN-6 Metricel, Pall Corporation, USA), 

extracting in 96% acetone, and determining the concentration of chlorophyll-a using a calibrated 

fluorometer (Turner Designs 10-AU) with non-acidification optical filters. Phosphate 

concentrations were determined using the molybdenum blue chemistry and measuring the 

absorbance of the resulting solution at 885 nm using a OOI USB-2000 spectrometer to determine 

the phosphate concentration compared to known standards.  

       

Figure 3. Map of seawater collection sites. Seawater for experiments was collected at six sites total. From south to 

north, sample sites 1, 2, 3, and 4 are in the Sargasso Sea (SS), site 5 is in Woods Hole (WH), and site 6 is in the Gulf 

of Maine (GOM).  
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Marine Microbial Colonizer Trials 

 For all experiments, we prepared 20-25 pellets of different resins types: polyethylene 

(Kristi Galus, Dow Chemical Company), polystyrene (purchased commercially-unknown 

manufacturer), polypropylene (purchased commercially-unknown manufacturer), polylactic acid 

(Ramani Narayan, Michigan State University), and polyhydroxyalkanoate (Scott Tuten, 

Meredian Holdings Group), into each vial. Polyhydroxyalkanoate was not used in the Sargasso 

Sea experiment (Sites 1-4). We then cleaned the pellets by rinsing them with 70% ethanol and 

0.2 µm filtered seawater. Next, we deposited the pellets into each of the five separate containers 

of collected seawater. Incubation start times were staggered by 10-15 minutes for each resin so 

that all could be harvested after 2 hours. Pellets of each plastic resin were incubated in the 

polypropylene plastic containers containing seawater at room temperature (20-25°C) for two 

hours in the light with a gentle mixing after approximately 1.5 hours. For experiments at sea (SS 

and GOM), this additional mixing was not performed because the boats were in constant motion. 

For the SS experiment only, pellets were incubated and streaked8 after time periods of both 30 

minutes and two hours.  

 At the end of the incubation period, we gently removed six pellets from each incubation 

container using cleaned forceps (70% ethanol, air dried) and placed the pellets into 0.2 μm 

filtered seawater to remove any microbes that were not attached to the pellet surface. Pellets 

were then streaked onto agar. For the SS experiment, pellets were streaked onto seawater agar 

(SWA: 75% seawater, 25% DI-iH2O, 20 g/L agar) and tryptone agar (Try: 75% seawater, 25% 

DI-H2O, 1 g/L tryptone, 15 g/L agar). For the WH and GOM experiments, pellets were streaked 

onto tryptone and CHROMagar Vibrio (CaV) agar (CaV: CHROMagar™ Vibrio, VB910, 

                                                        
8 Streaking is a technique used to isolate colonies from a culture, in this case by using sterile forceps to slide 

microplastics along agar surface to transfer microbes onto the agar. 
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Manufacturer, City, State). Samples were monitored for 72 hours and individual colonies were 

picked at 24, 48, or 72 hours and restreaked to confirm they were derived from a single cell and 

to increase biomass for DNA extraction and sequencing. Colonies were systematically selected 

for re-streaking9 (and, ultimately, for DNA sequencing) based on four criteria. First, only 

colonies that were not touching or overgrown by a neighboring colony were re-streaked. Then, 

colonies were chosen based on the time period of growth before they became visible (24, 48, and 

72 hours), assuming that colonies with different growth rates would likely differ genetically. 

Next, whenever possible, colonies with a morphology distinct from other selected colonies were 

chosen, again in an attempt to increase the diversity of the colonies sequenced. Finally, when 

there were still multiple colonies of the same morphotype eligible for re-streaking and DNA 

sequencing, the largest colonies were selected, as these would presumably produce sufficient 

biomass for DNA sequencing. All colonies selected for re-streaking and sequencing were also 

streaked onto multi-well seawater agar plates to archive for future work. We extracted DNA 

from individual cultures established for each plastic resin on each type of agar (TSW and CaV) 

using a Qiagen DNeasy Blood and Tissue kit (Valencia, CA). Following extraction, we measured 

the concentrations of DNA for each sample using a Nanodrop (SS experiment: ND-1000 UV/Vis 

Spectrophotometer, Thermo-Fisher/Life Technologies, Wilmington, DE; WH and GOM 

experiments: NanoDrop 2000/2000c, Thermo-Fisher/Life Technologies, Wilmington, DE) to 

ensure quality and quantity for amplification. We then amplified a portion of the 16S rRNA gene 

through a Polymerase Chain Reaction with forward primer at 10 μM 518F: 

5’CCAGCAGCYGCGGTAAN- 3’ and reverse primer at 10 μM 1046R: 

5’CGACRRCCATGCANCACCT- 3’(Marteinsson et al. 2013) with an expected DNA amplicon 

                                                        
9 Re-streaking was used after streaking microbes from original plastic pellets to transfer individual colonies onto 

separate culture plates to grow up their biomass and isolate them for DNA extraction.   
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size of 528 bp). For the SS experiment, we used gel electrophoresis (E-Gel precast agarose gel, 

1.2% Agarose, Thermo-Fisher/Life Technologies, Wilmington, DE) and we compared the 

resulting band size to a molecular ladder (Quick-load 100bp DNA ladder, New England Biolabs 

Inc.) to ensure that the amplification of our target gene was successful. Following successful 

amplification, we performed a PCR product cleanup using a Qiagen QiaQuick Spin PCR 

Purification kit (Valencia, CA), used a Nanodrop to ensure quantity and quality of the cleaned 

DNA, and sequenced the product using Sanger capillary sequencing. The DNA products from 

the SS experiment were sent to Eurofins (Huntsville, AL) for sequencing. Products from the WH 

and GOM experiments were sequenced at the W. M. Keck Ecological and Evolutionary Genetics 

Facility in the Josephine Bay Paul Center for Comparative Molecular Biology and Evolution at 

the Marine Biological Laboratory in Woods Hole, MA on an ABI 3730XL (Applied Biosystems, 

Foster City, CA) capillary sequencer using the BigDye protocol with either 518F and 1046R or 

just 518F primers according to the manufacturer's instructions.   

 

DNA Extraction, PCR, and DNA Sequencing 

For all experiments, we performed a phylogenetic analysis using sequenced DNA 

products to determine the identity and genetic relationships among colonies sampled. We 

searched for the closest relatives of our sequences using the Basic Local Alignment Search Tool 

(BLAST) algorithm (Altschul et al. 1990). Using the phylogenetic tree building software MEGA 

(Tamura et al. 2013), we then constructed maximum likelihood trees based on the Kimura 2-

parameter model (Kimura 1980). This allowed us to examine the phylogeny among the initial 

colonizers that we found, and to visualize any grouping among initial colonizers by location or 
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by resin type (for example, to see whether a certain genus grew primarily on a certain resin). A 

bootstrap consensus tree was inferred from 100 replicates. Bootstrap values show the percent 

likelihood that the groups in the given phylogenetic tree are as shown given each of the 100 

replicate calculations of the tree (Felsenstein 1985). Branches, corresponding to groups with less 

than 70% of bootstrap values, were collapsed.  The Maximum Likelihood approach was used to 

estimate pairwise distances of a matrix. The Neighbor-Joining method was used to obtain the 

initial tree from this matrix. To model evolutionary rate differences among sites, a discrete 

Gamma distribution was used (5 categories, +G, parameter = 0.6064). A total of 96 initial 

colonizer nucleotide sequences were used to construct the phylogenetic tree. Identical sequences 

from the same resin type and collected from the same location were removed to simplify the 

phylogenetic tree. Positions containing gaps and missing data were excluded from the analysis. 

The final alignment used to built the tree consisted of 445 nucleotide sites. 

Bioinformatics and Genetic Analyses 

 To compare identities of members of the initial microbial communities with those from 

environmentally collected and incubated microplastics, we used the Visual Analysis of Microbial 

Population Structures (VAMPS: vamps.mbl.edu) website and tools hosted at the Josephine Bay 

Paul Center at Marine Biological Laboratory (Huse et al. 2014). First, we ran our genetic 

sequences in a BLAST analysis. The BLAST identified the microbes isolated from the three 

initial colonizer experiments to the highest taxon possible. Then, we compared these microbes to 

those found on plastics that contained microbial communities in later stages of succession.  

 These later stage Plastisphere communities came from two different sets of samples. The 

first set of samples consisted of 43 samples from the Woods Hole Dock Time Series (WHDTS), 

a time series experiment conducted at the Marine Biological Laboratory dock in Woods Hole, 

http://vamps.mbl.edu/
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MA. Macroplastics (>5 mm) made of polyethylene, polypropylene, and polystyrene were 

exposed to coastal seawater for known time periods ranging from 2 weeks to 4 months (WHDTS 

incubated macroplastics; unpublished data). Sampling and sequencing of the Plastisphere 

community was conducted at weekly intervals for the first four weeks and monthly intervals 

thereafter by Linda Amaral-Zettler and Erik Zettler.  

 The second set consisted of samples of the community attached to 31 different 

microplastic (<5 mm) particles collected using a neuston net towed at the surface of the North 

Atlantic Ocean at least 15 km from shore. The microbial communities on these microplastics had 

been exposed to seawater for an undetermined time period (North Atlantic environmentally 

collected microplastics; Zettler et al. 2013 for methods). Microplastics were collected from May 

to June in 2012 and 2013. To our knowledge, there is no reliable way of determining the amount 

of time that environmentally-collected microplastics have been incubating in seawater. We 

estimate, however, that these plastics had been immersed in seawater for several weeks, if not 

several months or years. 

 From both the environmentally collected microplastics from the North Atlantic Ocean 

and the incubated plastics from the WHDTS, microbial communities were characterized using 

next generation sequencing, and these genetic data were compared in an oligotyping analysis 

with first colonizers. Oligotype analysis is a supervised computational method that can be used 

to discover the diversity of closely related but distinct bacteria in environmental samples, which 

we did using  this case from the environmentally collected microplastics and WHDTS incubated 

plastics. Through our oligotype analysis, we determined whether initial colonizer genera 

occurred in any of the 31 environmentally collected samples, or the 43 WHDTS samples. Then, 

after determining whether initial colonizer genera were present in later stages of succession, as 
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represented through these two different sample sets, we used VAMPS to determine the four most 

abundant oligotypes per genus occurring among all 31 environmentally collected samples, and 

then among all 43 WHDTS samples. We used the variable regions, generated by VAMPS, that 

distinguish between these four most abundant oligotypes to search for these oligotypes among 

the sequences of our initial colonizers. This method allowed us to determine whether the specific 

initial colonizer oligotypes remained in later stage succession Plastisphere communities.  

 

 

Results 

 

Identification and Distribution Patterns of Initial Colonizers 

 We found eleven identifiable genera and various unknown initial colonizers of virgin 

microplastics within the first 2 hours of incubation in seawater. Initial colonizers, in decreasing 

order of abundance of sequenced colonies per genus, were as follows: Pseudoalteromonas, 

Vibrio, Halomonas, Idiomarina, Alteromonas, Tenacibaculum, Marinobacter, Micrococcus, 

Enterovibrio, Marixanthomonas, and Polaribacter (Fig. 4). Only one of these genera, 

Pseudoalteromonas, was found in all three locations (SS, GOM, and WHD), and seven genera 

were isolated in one location only (Table 1). For genera wherein we isolated more than one 

colony, almost all attached to more than one resin, with several genera attaching to four of the 

five resins used in our experiments (Table 2). There was more clustering by location (Fig. 5a) 

than by resin (Fig. 5b) among close relatives (bacteria that share common ancestry). A complete 

list of the colonies sequenced at each general location (GOM, WHD, and SS) and their identities 

as determined by the BLAST analysis can be found in the Appendix, Tables B-D).   
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Figure 4. Identity of microbes initially colonizing virgin microplastics at all locations. A total of 129 colonies were 

sequenced and identified using a BLAST analysis. Numbers bordering the pie diagram represent the number of 

colonies identified per genus. Colonies that could not be identified were categorized as “Unknown bacterium” if 

known to be bacteria, or “Unknown” if the BLAST analysis could not determine their identity. 

 

 

 

 

 

 

 
Table 1. Initial colonizers categorized by location in which they occurred on incubated microplastic pellets. Genera 

represented by only a single sequence are indicated with a (1). 

 

Genus 

Number of 

locations in 

genus occurred 

Woods Hole Dock 

(WHD) 

Gulf of Maine 

(GOM) 
Sargasso Sea (SS) 

Pseudoalteromonas 3 X X X 

Vibrio 2 X X  

Alteromonas 2 X  X 

Tenacibaculum 2 X  X 

Polaribacter (1) 1 X   

Enterovibrio (1) 1 X   

Idiomarina 1   X 

Halomonas 1   X 

Marinobacter 1   X 

Micrococcus 1   X 

Marixanthomonas (1) 1   X 
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Table 2. Initial colonizers categorized by the resin where they were isolated. Genera that occurred among identified 

initial colonizers are marked with an “X”. *PHA was used in GOM and WH experiments only. Genera represented 

by only a single sequence are indicated with a (1). 

 

Genus 

Number of 

resins to which 

genus attached 

Polyethylene 

(PE) 

Poly-

propylene 

(PP) 

Polystyrene 

(PS) 

Polylactic 

Acid 

(PLA) 

Polyhydroxy-

alkanoate* 

(PHA) 

Pseudoalteromonas 5 X X X X X 

Vibrio 5 X X X X X 

Idiomarina 4 X X X X  

Halomonas 4 X X X X  

Alteromonas 4 X X  X X 

Marinobacter 3  X X X  

Tenacibaculum 2   X X  

Micrococcus 1 X     

Marixanthomonas (1) 1    X  

Enterovibrio (1) 1    X  

Polaribacter (1) 1     X 

 

 

 Most of the genera occurred in only one or two of the experimental locations (Table 1). 

Only one genus occurred in all three general locations (note that the samples found in the SS 

were collected in four different sites, Fig. 1), and seven genera occurred in only one general 

location (WHD or SS). The BLAST analysis results (Table 1) did not identify any bacteria of the 

genus Vibrio, one of the most common genera found, from the four SS sites (Table 1), although 

they are known to occur there attached to plastic debris (Zettler et al. 2013). Phylogenetic 

analysis, however, suggests that there may have been one isolated Vibrio colony at a SS site 

(Figure 5a). When we categorized the initial colonizers by resin type (Table 2), we found that 

most of the genera attached to at least two different resins. Of the four genera attaching to only 

one resin, three had only one colony isolated and identified belonging to that genus. The 

exception was Micrococcus, which was found only on PE though there were three colonies 

belonging to this genus.  
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Figure 5. Phylogenetic trees show clustering patterns by location (a) and by resin type (b). Neighbor-joining 

consensus trees for 100 bootstrap replicates were constructed from the sequenced 16S rRNA gene of each initial 

colonizer colony using the Maximum Likelihood method. Tree building was based on the Kimura 2-parameter 

model (Kimura 1980) and a discrete Gamma distribution to model evolutionary rate differences among sites (+G, 

parameter = 0.5696). The bootstrap values, indicating the percentage of trees in which the associated taxa clustered 

together, out of 100 randomized replicates, are shown next to the branches. Bootstrap values greater than 70% are 

shown either numerically or with an asterisk next to the corresponding branch. An asterisk represents a bootstrap 

value of 70%-100%. Both trees are drawn to scale, with branch lengths measured in the number of substitutions per 

site. The analysis involved 131 nucleotide sequences, which included both initial colonizers and at least one closest 

neighbor per genus. All positions containing gaps and missing data were eliminated. The alignment included a total 

of 445 nucleotide sites. Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013). Sample IDs include 

sample location (GOM, WH, or SS), resin type (PE, PP, PS, PLA, or PHA), site (for SS samples only, in reference 

to Fig. 1) and incubation time (for SS samples only, 0.5 or 2 hours).  
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Initial Colonizers in Plastisphere Succession 

 

 We expected that initial colonizers might be replaced by other microbes as the 

Plastisphere community changed after a few weeks or months of exposure to seawater. We 

found, however, that all of the initial colonizer genera and even many of the specific oligotypes 

remained in much later stages of succession. Later stages of succession were represented by the 

Woods Hole Dock Time Series (WHDTS) macroplastic communities, collected in a separate 

incubation experiment characterizing Plastisphere communities over a period of four months, 

and the environmentally collected microplastic communities.  

 From our coastal site at WHD (Fig. 1., Site 5), initial colonizers belonged to six different 

genera (Table 1). Our oligotyping analysis found that all of these genera occurred in all 16 of the 

Woods Hole Dock Time Series (WHDTS) samples that were sequenced in the first two weeks of 

exposure to seawater. Furthermore, these genera occurred in almost all of the 43 WHDTS 

samples that were sequenced by the end of the four month-long time series. The only exceptions 

were Enterovibrio and Tenacibaculum, which occurred in 42 of the 43 samples. There were two 

samples that either did not contain Enterovibrio or did not contain Tenacibaculum, but both 

samples were sequenced less than two months into the time series, which does not suggest these 

genera dropped out in later stages of succession. Therefore, the initial colonizer genera at the 

coastal site in Woods Hole remained part of the Plastisphere community after two weeks and 

four months of incubation in seawater.  

 Using a more extensive oligotyping analysis of the 43 WHDTS samples, we compared 

the four most abundant oligotypes of each sample and found that although many of the same 

oligotypes persisted over the course of the WHDTS, there was variation in oligotypes and 

relative abundance of oligotypes over time (Fig. 6a-f). At least two of the four most abundant 
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oligotypes of Pseudoalteromonas (Fig. 6a), Vibrio (Fig. 6b), and Alteromonas (Fig. 6c) matched 

the sequences of our WHD initial colonizer samples. For Polaribacter (Fig. 6d), Tenacibaculum 

(Fig. 6e), and Enterovibrio (Fig. 6f), none of the four most abundant oligotypes matched initial 

colonizer sequences from WHD. The abundance of the oligotypes present in the WHDTS 

samples varied considerably over the time series for all six WHD initial colonizer genera (Fig. 

6a-f). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Stackbars show oligotype distributions among all 43 Woods Hole Dock Time Series (WHDTS) 

samples for each initial colonizer genus found at the Woods Hole Dock (WHD): Pseudoalteromonas (a), Vibrio 

(b), Alteromonas (c), Polaribacter (d), Tenacibaculum (e), and Enterovibrio (f). WHDTS samples consist of 

Plastisphere community sequences from polyethylene, polypropylene, and polystyrene plastics that were incubated 

in seawater for known time periods ranging from 2 weeks to 4 months. Sampling and sequencing of the Plastisphere 

community was conducted weekly for the first four weeks and monthly thereafter. Oligotype analysis was 

performed from 43 samples from the WHDTS for each initial colonizer genus with Oligotyping pipeline version 

0.96 (available from http://oligotyping.org). The four most abundant oligotypes are color coded and listed below in 

stackbars. Sample IDs include location, sample numbers, and date of sampling from plastic surfaces. The numerical 

frequencies of each oligotype, indicating the total number of times the oligotype was found across all samples, is 

listed to the bottom left next to each oligotype sequence. Every oligotype listed is followed by a representative 

sequence of each distinct oligotype. A green checkmark indicates that the sequence was found among initial 

colonizer sequences from WHD, which includes colonizers of microplastics (<5mm) within the first two hours of 

incubation. Alternatively, a red cross means that the sequence was not found among any of the WHD initial 

colonizer sequences. 

http://oligotyping.org/
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f) 

 

 

 From our pelagic sites in the GOM and SS, nine different genera (Table 1) constituted the 

initial colonizers. Our oligotyping analysis revealed that Pseudoalteromonas and Alteromonas 

occurred in all 31 of the Plastisphere communities that were sequenced from environmentally 

collected microplastics found in pelagic regions in the North Atlantic. The remaining seven 



37 

initial colonizer genera occurred in at least two-thirds of the 31 environmentally collected 

Plastisphere communities, with the ratio (number of environmentally collected samples 

containing this genus/number of environmentally collected samples total) given after each genus 

name: Vibrio (30/31), Halomonas (30/31), Marinobacter (30/31), Marixanthomonas (28/31), 

Tenacibaculum (28/31), Idiomarina (27/31), and Micrococcus (21/31). Therefore, initial 

colonizer genera in the North Atlantic from the SS and GOM samples remained intact in later 

stages of the Plastisphere community that occurred on environmentally collected microplastics.   

 For eight of the nine pelagic genera (GOM and SS), with the exception of 

Tenacibaculum, a more detailed oligotyping analysis revealed that at least one of the four most 

abundant oligotypes from environmentally collected microplastics occurred among initial 

colonizers (data not shown). Therefore, not only did initial colonizer genera persist, but even 

some of the same oligotypes remained part of the community. We inferred this because some of 

the most abundant, later stage, pelagic Plastisphere oligotypes matched some of the initial 

colonizer oligotypes of each genera. The exception was the genus Tenacibaculum, for which 

none of the four most abundant oligotypes matched initial colonizer sequences.  

 

 

Initial Colonizer Functional Traits 

 

 Functional trait analysis revealed several similarities among many of the initial colonizer 

genera. The majority of species in all eleven initial colonizer genera are heterotrophic (Table 3). 

Nine of these eleven genera included species that are known biofilm formers. Six of the genera 

contained species that metabolize hydrocarbons, according to previous studies on the metabolism 

of bacteria belonging to these genera (Table 3). 
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Table 3. The majority of initial colonizer genera were heterotrophs, and included species that are known to 

be biofilm formers and hydrocarbon metabolizers. Initial colonizer genera known to consist of species with the 

functional traits listed to the left (heterotrophic, biofilm forming, hydrocarbon metabolizing) are marked in blue. 

Boxes marked white indicate that it is unknown whether any species of the genus possess these functional traits. 

Sources for this information correspond with the numbers within each box: (1) Chang et al. 2016. (2) Sawabe et al. 

2013. (3) Ivanova et al. 2000. (4) Mounier et al. 2014. (5) Anantharaman et al. 2016. (6) Cabaj and Kosakowska 

2009. (7) Weiner et al. 1981. (8) Thompson et al. 2002. (9) Qurashi and Sabri 2012. (10) López et al. 2006. (11) 

Matsuura et al. 2013. (12) Kirchman, D. L. 2008. (13) Mai-Prochnow et al. 2004. (14) Certner and Vollmer 2015 

(15) Yildiz and Visick 2009. (16) Jin et al. 2011. (17) Mnif et al. 2009. (18) Austin et al. 1977 (19) Chronopoulou et 

al. 2015. (20) Grimes et al. 2009.  

 

 

A
lt

er
o

m
o

n
a

s 

E
n

te
ro

vi
b

ri
o

 

H
a

lo
m

o
n

a
s 

Id
io

m
a

ri
n

a
 

M
a

ri
n

o
b

a
ct

er
  

M
a

ri
xa

n
th

o
m

o
n

a
s 

M
ic

ro
co

cc
u

s 

P
o

la
ri

b
a

ct
er

 

P
se

u
d

o
a

lt
er

o
m

o
n

a
s 

T
en

a
ci

b
a

cu
lu

m
 

V
ib

ri
o

 

Genus is primarily heterotrophic 1 2 1 3 4 5 6 1 1 1 1 

Genus includes biofilm-formers 7 8 9 10 4  11 12 13 14 15 

Genus includes hydrocarbon metabolizers 16  17  4  18  19  20 

 

 

Discussion 

Identification and Distribution Patterns of Initial Colonizers 

 Genetic data and initial colonizer identification based on BLAST analysis revealed a 

diverse community of eleven genera of bacteria that attach to virgin microplastics within the first 

two hours of incubation in seawater (Fig.1). Of the 129 unique bacterial colonies that were 

isolated and identified at least to genus level, over half (63 colonies) belong to three genera—

Pseudoalteromonas, Vibrio, and Halomonas (Fig. 1). The next most common genera were 

Idiomarina and Alteromonas. Past Plastisphere studies have found that Vibrio, Alteromonas, and 

Pseudoalteromonas are particularly abundant bacteria in environmentally collected microplastic 

communities (Zettler et al. 2013).  

 Phylogenetic analyses revealed greater clustering among close relatives by location than 
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by resin type (Fig. 5a and Fig. 5b), which supports our original hypothesis and the findings of 

Amaral-Zettler et al., 2015. Many closely related initial colonizers originated from the same 

location (Fig. 5a), while initial colonizers of the different resins were dispersed across the entire 

tree without as much clustering (Fig. 5b). Interestingly, Vibrio, one of the most common genera 

and a well-documented pathogen of humans and marine organisms, did not occur at any of the 

four SS sites. One SS colony, however, that appeared in our phylogenetic tree (Fig. 5a) seemed 

to be closely related to known Vibrio colonies, but its identity could not be confirmed from our 

BLAST analysis. This suggests that open ocean Vibrio may be later colonizers in this 

oligotrophic environment than shelf or coastal Vibrio, since Vibrio are a common Plastisphere 

colonizer in open ocean environments in the North Atlantic Ocean (Zettler et al. 2013).  

 Regarding the geographical distribution of marine microbes, it should also be noted that 

microbes of the same genus have been found in extremely different locations and conditions all 

over the world. For example, the initial colonizer genus Marixanthomonas has also been isolated 

from a deep-sea brittle star from the Fiji Sea (Romanenko et al. 2007), a location that shares little 

in common with our surface sampling in the Sargasso Sea. Nevertheless, our phylogenetic 

analysis shows some clustering among relatives by location even within genera (e.g. WH versus 

GOM clustering in the Vibrio clade). Some Plastisphere colonizers may be differentially 

distributed by location if they are specifically adapted to environmental variables that are 

characteristic to the region wherein they live (e.g. Idiomarina and Halomonas, Fig. 5a), while 

others might be more generalists and able to survive in a variety of environments (e.g. 

Pseudoalteromonas, Fig. 5a).  

 While we could confirm only a single genus that occurred in all three locations, there 

were seven genera identified on all four or all five resins (Table 2). Polyhydroxyalkanoate (PHA) 
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was not deployed in the Sargasso Sea (SS) experiments, so occurrence on four resins was the 

maximum possible for SS colonizers such as Halomonas and Idiomarina, which we only isolated 

from SS sites (Table 1). Of the colonies we sequenced, only Micrococcus, Marixanthomonas, 

Enterovibrio, and Polaribacter were isolated exclusively from one resin, and we only sequenced 

one colony from the latter three genera so they could not have occurred on more than one resin in 

our samples. These results strongly support the hypothesis that colonizers were not differentially 

distributed by resin to as great a degree as by location.  

Most of the initial colonizer genera were ubiquitous across all resin types, showing that 

there are some common microbes that colonize all types of plastic (Oberbeckmann et al. 2014). 

As evident when comparing genera containing the highest number of colonies (Fig. 4) with those 

genera found across each resin (Table 2), our findings suggest that when we selected a high 

number of colonies from a particular genus, we found those bacteria on all or most resins. 

Therefore, if more colonies had been sampled, it is possible that there would be even fewer resin-

specific genera. According to the literature, characteristics of different plastic polymers play an 

essential role in the attachment, abundance, and types of bacteria colonizing the resins (Dang et 

al. 2000; Oberbeckmann et al. 2014). This may have important applications; for example, if 

certain pathogenic microbes are found to attach only to certain resin types, these plastics might 

be avoided for use in plastic-based aquaculture pens, water intake facilities for water 

desalinization, or other uses. One possible explanation why we did not see strong specificity by 

resin is that initial colonizers may be less resin specific than later stage colonizers of plastics 

examined previously. Further experiments testing the ability of various microbes to attach to 

different resins could confirm this. In addition, the surfaces of the microplastic pellets that we 

used may have had very similar surface characteristics at a microscopic scale (e.g. smoothness 
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and hydrophobicity), making the opportunities for attachment to these virgin microplastics 

similar across different resins.  

Our evidence of differential distribution by location, but less so by resin, is consistent 

with previous research. Pommier et al. (2007) found that the composition of marine bacteria 

collected from surface waters world-wide were highly distinct between the different locations, 

showing that few marine bacteria are cosmopolitan and that many are endemic to specific 

locations. This challenges the common assumption that microbes are ubiquitous. Our findings 

also challenge this assumption, since closely related initial colonizers tended to cluster by 

location. Studies looking at other microbes such as diatoms attaching to plastic surfaces have 

also discovered a biogeographical transition of the types of abundant taxa at each location 

(Carson et al. 2013). Results from Zettler et al. (2013) show that certain types of plastic-

colonizing microbes tend to be more abundant at different sampling locations and on different 

resins. In comparing the effect of these two factors, however, Amaral-Zettler et al. (2015) 

reported a greater difference among communities by location than by resin.  

For several reasons, our experimental methods allowed us to detect the presence of initial 

colonizers on each resin type and at each location, but not their absence. First, some of the 

microbes that attached to the incubated microplastics may not have been streaked onto the agar. 

Secondly, any agar used for culturing is likely to select for certain microbes, and Jannasch and 

Jones (2003) found that cultural methods reveal significantly fewer bacteria than direct 

microscopic counts. Also, since we only picked colonies after a maximum of 72 hours of growth 

on the agar, extremely slow-growing colonies may not have been captured in our method. 

Therefore, our experiments allowed us to determine for the first time many of the initial 

colonizers present in extremely early Plastisphere communities originating from five different 
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resins and at six different locations, though we do not yet have a complete picture of the entire 

community at this early stage. Next generation sequencing of the entire initial colonizer 

community would not have been possible at this time, given the limitations of this method to 

sequence the DNA of extremely low biomass samples such as those of the earliest stages of 

colonization on the virgin microplastics.   

 

Initial Colonizers in Plastisphere Succession 

 Though next generation sequencing was not used for initial colonizer sequencing, this 

technique was used to characterize the entire community in the WHDTS and environmentally 

collected microplastics, which were incubated for much greater time durations. Using those older 

communities that were sequencing using next generation techniques, we were able to compare 

our subset of the initial colonizer community with comprehensive community data of colonizers 

in later stages of life in the Plastisphere. We expected to see initial colonizers dropping out of the 

community in later stages of succession. According to the three models of succession presented 

by Connell and Slatyer (1977), a widely accepted, theoretical framework for ecological 

succession, early colonizers drop out of the community in later stages. This occurs because late 

colonizers are better adapted to late stage successional stage environments, so they replace initial 

colonizers (McCook 1994). This theoretical model was confirmed in the context of marine 

bacterial succession; for example, Dang and Lovell (2000) looked at early colonizers of various 

surfaces, including plastics, in salt marsh estuaries. According to this study, although bacteria 

within the genus Alteromonas were found after 24 hours of incubation, they were absent on any 

surfaces after 72 hours. Therefore, other microbes may have already replaced Alteromonas even 

at this relatively early stage in succession (Dang and Lovell 2000).  
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 Contrary to our hypothesis, our results suggest that initial colonizers remain intact in 

much later stages of succession in both coastal and pelagic environments. All of the initial 

colonizer genera from the Woods Hole Dock (WHD) remained part of the community after not 

just two weeks but the full, four month long duration of the Woods Hole Dock Time Series 

(WHDTS), and even specific initial colonizer oligotypes occurred in the later stages of 

succession (Fig. 6). This confirms that initial colonizer oligotypes within these genera not only 

remain intact in later successional stage communities, but that they become some of the most 

abundant members of the community within their genera. Since we closely examined only the 

top four most abundant oligotypes of each genus from the WHDTS to determine whether they 

matched initial colonizer oligotypes, other initial colonizers oligotypes may have existed in 

WHDTS samples in lower abundances. Given that the WHDTS consisted of plastics with a 

known time of incubation in seawater, this dataset allowed us to confirm the presence of six 

initial colonizer genera, and initial colonizer oligotypes of three of those genera, on plastics 

incubated for up to four months. Finding initial colonizer oligotypes in the WHDTS samples also 

validated the methods we used to isolate initial colonizers since some of our initial colonizer 

oligotypes (collected in September, 2015) were the same as those in communities sequenced in 

different months and in a different year (July through November, 2013).  

 While the WHDTS provided samples with a known incubation time for comparison with 

initial colonizers collected from the exact same coastal location, it was even more surprising to 

find that of the initial colonizers occurred in the environmentally collected microplastic 

communities. These environmental microplastics were collected from various locations in 

pelagic regions (defined here as >15km from shore) in the North Atlantic from May-June in 

2012 and 2013, yet the majority of the samples contained all of the initial colonizer genera and 



44 

all but one of those genera contained at least one initial colonizer oligotype. Although the precise 

age of these environmental microplastics is unknown, and dating these plastic particles is an area 

for future research, we predict that these plastics ranged in age from several weeks to several 

years old, given that some plastic objects float in the ocean for years (Ebbesmeyer and Ingraham 

1992). It is possible that pieces of the original biofilm growing on these microplastics sloughed 

off and exposed bare polymer surfaces thus resembling again an earlier successional community. 

The least complicated interpretation of these results, however, is that these samples represent 

later successional stages of Plastisphere communities, and that initial colonizers remained 

present, in some cases as relatively abundant members of the community.  

 Although our results do not allow us to explicitly determine whether these Plastisphere 

communities are following a facilitation, tolerance, or inhibition model (Connell and Slatyer 

1977), the community may be following some combination of the facilitation and tolerance 

models. Consistent with the facilitation model, many of the initial colonizers belong to genera 

that are known to alter their environment, as will be discussed shortly, which could be beneficial 

to other organisms that colonize in later stages. Simultaneously, the community may follow the 

tolerance model to some degree, since initial colonizers are able to tolerate later stage colonizers 

according to our results. Defining the specific model of succession for microbial communities is 

difficult because these communities, specifically those forming biofilms, are extremely dynamic, 

unpredictable, complex, and are often characterized by rapidly evolving interactions (Jackson et 

al. 2001; Faust and Raes 2012). To put these findings in context, a comprehensive review of 

fouling in the marine environment (Wahl, 1989) showed that fouling begins with the arrival of 

macromolecules on the newly deposited surface within the first few minutes of exposure, 

followed by the colonization of bacteria after one to several hours, diatoms and protozoa after 



45 

one to two days, and larvae and spores after one to several weeks. Although this review 

concluded that bacteria colonize after about one hour of submersion, we found some initial 

colonizers attached within as short an incubation time as 30 minutes (Appendix, Table A).  

 Microbial succession is well documented in other contexts as well. In the human gut 

microbiome, initial colonizers affect the time it takes for microbial communities to reach a 

stable, late successional equilibrium, but they may not drastically alter the composition of that 

late stage community (Trosvik et al. 2010). In dental plaque, early colonizers generally co-

aggregate with certain other early colonizers, but not with late colonizers (Kolenbrander et al. 

2002). Although these studies suggest that community structure of early microbial communities 

differs from that of late stage communities because initial colonizers disappear due to emigration 

or predation (Jackson et al. 2001), our findings show long-term prevalence of initial colonizers in 

later stage communities.  

 Future research might explore how early and late colonizers impact the settlement of 

larger protists, plants, or animals in the Plastisphere, potentially using methods similar to those 

used in studies of benthic settlement of coral larvae on coral reefs. Such experiments show that 

certain biofilm-forming bacteria, including our most prevalent genus Pseudoalteromonas, are 

sufficient to induce coral settlement, and more specifically that it is the compound 

tetrabromopyrrole that induces this ecological effect (Sneed et al. 2014). On floating, abiotic 

substrates in the ocean, filter feeders are one of the most common organisms to attach (Thiel 

2003, e.g. Fig. 2). Further research might reveal whether bacteria or other microbial colonizers 

facilitate the settlement of filter feeders and other organisms on plastic marine debris (PMD). 

The discovery of any chemical cues that attract or repel organisms to PMD could also be useful, 
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particularly if those organisms are able to biodegrade plastic waste, or if they are undesirable 

colonizers of plastic devices or equipment exposed to the marine environment. 

 

Initial Colonizer Functional Traits 

 Our functional trait analysis revealed several common traits among bacteria, which we 

expected given that certain bacteria are more adapted for colonization than others (Jackson et al. 

2001). First, biofilm formation was a common functional trait exhibited by nine of the initial 

colonizer genera (Table 3). Since surfaces often accumulate higher concentrations of nutrients, 

the biofilm producers are likely to benefit from the existence of hard substrates (Zobell 1943), 

particularly in oligotrophic environments such as the Sargasso Sea. Biofilm formation, studied 

extensively in the biomedical field, provides fitness advantages for the bacteria embedded in the 

biofilm. The inter-cell matrix that composes the biofilm protects bacteria from host defenses in 

the context of the human body, offering protection from white blood cells and antibacterial 

peptides, as well as from antibiotics (Fux et al. 2005). Biofilms in the marine Plastisphere may 

provide similar defense from predators and biocides. 

 Second, all initial colonizer genera were heterotrophic (Table 3), contrary to our 

predictions that early colonizers, in an environment with little nutrient availability, would likely 

be phototrophs. While environmentally collected microplastics contained autotrophs, such as 

cyanobacteria (Zettler et al. 2013; Oberbeckmann et al. 2014), there were no known phototrophs 

among the initial colonizers we collected. This could be explained by methodological limitations.  

There may have been phototrophs present in our cultures that we simply did not select and 

sequence, because we did not sequence entire initial colonizer communities. Furthermore, 

phototrophs near the surface of both coastal and pelagic environments would naturally be 
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exposed to direct sunlight, whereas we cultured our initial colonizers in less intense artificial 

light (a 12:12 hour light/dark incubator for the GOM and WH samples, and a shelf with indirect 

natural sunlight exposure on the ship for the SS samples). Phototroph culturing was possible 

using our methods, but if any phototrophs were present, they may not have been readily cultured 

ex situ. This explanation is consistent with prior research findings that, in low light 

environments, heterotrophic bacteria may actually facilitate colonization by phototrophs in 

biofilms (Roeselers et al. 2007), as this would cause heterotrophs to colonize initially and before 

phototrophs. 

 Another possible explanation for why we did not find phototrophs is that many of the 

initial colonizers of the Plastisphere are adapted to obtain energy through alternative pathways, 

such as by metabolizing hydrocarbons of the resins to which they attach. Six of the eleven initial 

colonizer genera contain species known to utilize hydrocarbons as a source of energy (Table 3). 

It should be noted that bacteria of close relatedness and belonging to the same genus could have 

substantially different function, and given limitations of functional trait literature on these marine 

microbes, our analysis looked for the presence of each trait in any species of each genus. 

Therefore, we cannot confirm that all initial colonizers within these six genera metabolize 

hydrocarbons. With this caveat, we can speculate that the genes for hydrocarbon metabolism 

could have been conserved in many of the initial colonizers, which would allow them to attach in 

the extremely low nutrient environment of clean microplastics. In any case, some of the specific 

species within these genera that are confirmed hydrocarbon metabolizers were in fact the same 

species identified among our initial colonizers, such as Marinobacter hydrocarbonoclasticus. 

This bacterium has been isolated from Mediterranean seawater near a petroleum refinery 
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(Gauthier et al. 1992). It is able to use various hydrocarbons as the sole source of carbon and 

energy (Gauthier et al. 1992), and might therefore be well adapted to living in the Plastisphere. 

 Though one study looking for biodegraders of plastic substrates on polyethylene did not 

find any even after three weeks of incubation in seawater (Lobelle and Cunliffe 2011), our 

results confirm that bacteria that metabolize hydrocarbons are found on PMD within just two 

hours, and even thirty minutes, of incubation (e.g. Marinobacter hydrocarbonoclasticus, 

Appendix, Table A). These microbes could be useful in various applications, such as for waste 

management or bioremediation projects pertaining to the degradation of polymers in the 

environment. For example, Micrococcus is a prevalent marine bacterium capable of 

biodegrading petroleum (Austin et al. 1977), and Pseudoalteromonas may be useful in 

remediating oil spills (Chronopoulou et al. 2014). Halomonas, one of our most prevalent initial 

colonizers, can biodegrade PHA (Shrivastav et al. 2011). The latter example may also strengthen 

the argument for replacing plastics with bioplastics in production. 

 Microplastics are a relatively new but growing source of hard substrate in the marine 

environment, making it important to expand our understanding of the interaction between 

microplastics and the marine community. Our results offer the first picture of the very early 

colonizers of the Plastisphere on various plastics that occur in coastal and open ocean 

ecosystems, which contributes to our knowledge of the dynamics of the Plastisphere. Further 

research could examine the effects of microplastics and their associated Plastisphere on other 

organisms. For example, polystyrene microplastics ingested by oysters, negatively affects their 

energy uptake, fecundity, and offspring development (Sussarellu et al. 2016), but the direct 

impacts of attached microbes and potential pathogens to the oysters are still largely unknown. 

Additionally, this area of research may elucidate how the microbial community affects the 
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plastics themselves. Since microbes are likely to affect degradation and sinking of microplastics 

(Carson et al. 2013), the Plastisphere could play an enormous role in the ultimate fate of PMD in 

the oceans as well as affecting the organisms that interact with the Plastisphere. 

 

Appendix 

 

 

Figure A. When nonpolar bacteria (green rectangle), and microplastics (orange rectangles) adhere to each other, the 

release of water polar molecules (blue circles) previously separating them creates a favorable and spontaneous 

change in configuration. The previously ordered water molecules that separate the nonpolar solutes (i.e., bacteria 

and microplastics) move into the surrounding bulk of water molecules, leading to an increase in entropy (ΔS) and a 

smaller increased in enthalpy (ΔH). This makes the final configuration more favorable (Rosenberg and Kjelleberg, 

1986).  

 

 

Table A. Sampling location information. Site numbers correspond to map of seawater collection sites, Fig. 3. 

  

Site # 1 2 3 4 5 6 

Cruise C-259 C-259 C-259 C-259 From shore 

in Woods 

Hole 

Sorceror II 

Date 24 Apr, 

2015 

28 Apr, 

2015 

10 May, 

2015 

13 May, 

2015 

6 Sept, 

2015 

10 Sept, 

2015 

Coordinates 21°52.8’N 

x 

66°39.6’W 

27°29.4’N 

x 

66°52.6’W 

32°30.0’N 

x 

64°34.3’W 

34°44.1’N 

x 

68°12.4’W 

41°52.5’N 

x 

70°67.2’W 

43°01.5’N 

x 

068°23.3’W 
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Table B. BLAST Data with identities of first colonizers from the Sargasso Sea (cruise SS). 

 

Sample Name Sequence Aided ID 

Cruise-Mic#-Site#-Plastic-Incubation 

Time in Hours-Agar-Colony Genus and species  

SS-MIC#1-Site1-PLA-.5-Try-A Unknown bacterium  

SS-MIC#2-Site1-PLA-.5-Try-B Unknown bacterium  

SS-MIC#3-Site1-PLA-.5-Try-C Marixanthomonas sp. 

SS-MIC#5-Site2-PS-2-Try-I Marinobacter sp. 

SS-MIC#6-Site2-PLA-.5-Try-B Idiomarina baltica 

SS-MIC#7-Site2-PLA-.5-Try-D Idiomarina zobellii 

SS-MIC#8-Site2-PLA-.5-Try-C Marinobacter hydrocarbonoclasticus 

SS-MIC#9-Site2-PE-.5-Try-H Alteromonas sp. 

SS-MIC#11-Site2-PP-2-Try-B Marinobacter hydrocarbonoclasticus 

SS-MIC#12-Site2-PP-2-Try-C Idiomarina baltica 

SS-MIC#13-Site2-PE-2-Try-A Pseudoalteromonas shioyasakiensis 

SS-MIC#14-Site2-PS-2-Try-K Idiomarina sp. 

SS-MIC#15-Site2-PLA-2-Try-B Pseudoalteromonas shioyasakiensis 

SS-MIC#17-Site2-PLA-2-Try-F Idiomarina baltica 

SS-MIC#18-SIte2-PS-.5-Try-A Idiomarina sp. 

SS-MIC#19-Site2-PE-2-Try-B Halomonas sp. 

SS-MIC#20-Site2-PE-2-Try-C Idiomarina baltica 

SS-MIC#21-Site2-PP-.5-Try-B Idiomarina baltica 

SS-MIC#24-Site2-PE-.5-Try-I Idiomarina zobellii 

SS-MIC#25-Site2-PE-.5-Try-J Idiomarina zobellii 

SS-MIC#26-Site2-PS-.5-Try-C Idiomarina sp. 

SS-MIC#27-Site2-PS-.5-Try-E Idiomarina baltica 

SS-MIC#28-Site3-PE-2-Try-A Unknown bacterium  

SS-MIC#29-Site3-PLA-2-Try-A Tenacibaculum sp. 

SS-MIC#30-Site3-PE-.5-Try-B Micrococcus sp. 

SS-MIC#31-Site3-PE-.5-Try-D Micrococcus sp. 

SS-MIC#32-Site3-PE-.5-Try-E Micrococcus sp. 

SS-MIC#33-Site4-PLA-.5-Try-A Halomonas zincidurans 

SS-MIC#34-Site4-PLA.5-Try-B Halomonas zincidurans 

SS-MIC#35-Site4-PLA-.5-Try-C Halomonas zincidurans 

SS-MIC#36-Site4-PLA-2-Try-A Halomonas zincidurans 

SS-MIC#37-Site4-PLA-2-Try-B Halomonas zincidurans 

SS-MIC#38-Site4-PLA-2-Try-C Idiomarina sp. 

SS-MIC#39-Site4-PP-.5-Try-A Halomonas zincidurans 

SS-MIC#40-Site4-PP-.5-Try-B Halomonas zincidurans 

SS-MIC#43-Site4-PP-2-Try-B Halomonas zincidurans 

SS-MIC#44-Site4-PP-2-Try-C Halomonas zincidurans 

SS-MIC#45-Site4-PE-.5-Try-A Halomonas zincidurans 

SS-MIC#46-Site4-PE-.5-Try-B Halomonas zincidurans 



51 

SS-MIC#47-Site4-PE-.5-Try-C Halomonas zincidurans 

SS-MIC#48-Site4-PE-2-Try-A Halomonas zincidurans 

SS-MIC#49-Site4-PE-2-Try-B Halomonas zincidurans 

SS-MIC#51-Site4-PS-.5-Try-A Unknown bacterium  

SS-MIC#52-Site 4-PS-.5-Try-B Halomonas zincidurans strain B6  

SS-MIC#53-Site 4-PS-.5-Try-C Halomonas zincidurans strain B6 

SS-MIC#54-Site4-PS-2-Try-A Unknown bacterium  

SS-MIC#55-Site4-PS-2-Try-B Halomonas zincidurans 

SS-MIC#56-Site 4-PS-2-Try-C Halomonas zincidurans 

SS-MIC#57-Site4-PLA-NC-Try-A Pseudoalteromonas sp. 

SS-MIC#58-Site4-PE-NC-Try-A Unknown bacterium  

SS-MIC#59-Site4-PP-NC-Try-A Pseudoalteromonas sp. 

 

 

 
Table C. BLAST Data with identities of first colonizers from the Gulf of Maine (cruise GOM). 

 

Sample Name Sequence Aided ID 

Cruise-Plastic-Agar-Date-Primer Genus and species  

GOM_PE1_TSW_10Sept15_517F.b.ab1 Vibrio sp. 

GOM_PE2_TSW_10Sept15_517F.b.ab1 Vibrio sp.  

GOM_PE3_TSW_10Sept15_517F.b.ab1 Vibrio sp. 

GOM_PE6_TSW_10Sept15_517F.b.ab1 Uncultured bacterium 

GOM_PHA1_TSW_10Sept15_517F.b.ab1 Vibrio sp.  

GOM_PHA2_TSW_10Sept15_517F.b.ab1 Vibrio sp.  

GOM_PHA3_TSW_10Sept15_517F.b.ab1 Vibrio sp. 

GOM_PHA4_TSW_10Sept15_517F.b.ab1 Bacterium 

GOM_PHA6_TSW_10Sept15_517F.b.ab1 Bacterium  

GOM_PLA1_TSW_10Sept15_517F.b.ab1 Bacterium  

GOM_PLA2_TSW_10Sept15_517F.b.ab1 Vibrio sp.  

GOM_PLA3_TSW_10Sept15_517F.b.ab1 Vibrio sp.  

GOM_PLA4_TSW_10Sept15_517F.b.ab1 Bacterium  

GOM_PLA5_TSW_10Sept15_517F.b.ab1 Vibrio sp.  

GOM_PLA6_TSW_10Sept15_517F.b.ab1 Vibrio sp.  

GOM_PP1_TSW_10Sept15_517F.b.ab1 Pseudoalteromonas atlantica 

GOM_PP2_TSW_10Sept15_517F.b.ab1 Vibrio sp.  

GOM_PP3_TSW_10Sept15_517F.b.ab1 Metagenome  

GOM_PP4_TSW_10Sept15_517F.b.ab1 Uncultured bacterium  

GOM_PP5_TSW_10Sept15_517F.b.ab1 Uncultured bacterium  

GOM_PP6_TSW_10Sept15_517F.b.ab1 Uncultured bacterium 

GOM_PS1_TSW_10Sept15_517F.b.ab1 Vibrio sp.  

GOM_PS2_TSW_10Sept15_517F.b.ab1 Vibrio sp.  

GOM_PS3_TSW_10Sept15_517F.b.ab1 Pseudoalteromonas sp. 

GOM_PS4_TSW_10Sept15_517F.b.ab1 Uncultured Vibrio sp.  
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GOM_PS5_TSW_10Sept15_517F.b.ab1 Vibrio caribbeanicus strain G7C_25m_08  

GOM_PS6_TSW_10Sept15_517F.b.ab1 Vibrio sp.  

 

 

 
Table D. BLAST Data with identities of first colonizers from the Woods Hole Dock (location WH, agar is TSW 

unless specified as CAV). 

 

Sample Name Sequence Aided ID 

Cruise-Plastic-Agar-Date-Primer Genus and species  

WH_PE10_TSW_6Sept15_517F.b.ab1 Uncultured bacterium  

WH_PE1_6Sept15_517F.b.ab1 Uncultured bacterium clone  

WH_PE2_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PE3A_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PE3B_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PE5_6Sept15_517F.b.ab1 Uncultured bacterium 

WH_PE6_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PE9_TSW_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PHA10_TSW_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PHA1_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PHA2_6Sept15_517F.b.ab1 Uncultured bacterium  

WH_PHA3_6Sept15_517F.b.ab1 Vibrio parahaemolyticus strain mer 9  

WH_PHA4_6Sept15_517F.b.ab1 Alteromonas sp.  

WH_PHA5_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PHA6_6Sept15_517F.b.ab1 Vibrio parahaemolyticus strain mer 9  

WH_PHA7_TSW_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PHA8_TSW_6Sept15_517F.b.ab1 Polaribacter sp.  

WH_PHA9_TSW_6Sept15_517F.b.ab1 Alteromonas sp.  

WH_PHA_2_CAV_6Sept15_517F.b.ab1 Vibrio harveyi strain mer 2 

WH_PLA10_TSW_6Sept15_517F.b.ab1 Vibrio parahaemolyticus strain mer 9  

WH_PLA1_6Sept15_517F.b.ab1 Uncultured bacterium  

WH_PLA2_6Sept15_517F.b.ab1 Marine metagenome  

WH_PLA3_6Sept15_517F.b.ab1 Uncultured bacterium  

WH_PLA4_6Sept15_517F.b.ab1 Vibrio coralliilyticus strain F75157  

WH_PLA5_6Sept15_517F.b.ab1 Tenacibaculum sp.  

WH_PLA6_6Sept15_517F.b.ab1 Alteromonas marina strain LAMA 972  

WH_PLA7_TSW_6Sept15_517F.b.ab1 Enterovibrio sp.  

WH_PLA8_TSW_6Sept15_517F.b.ab1 Vibrio sp.  

WH_PLA9_TSW_6Sept15_517F.b.ab1 Vibrio sp.  

WH_PP10_TSW_6Sept15_517F.b.ab1 Alteromonas sp.  

WH_PP1_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PP2_6Sept15_517F.b.ab1 Alteromonas marina strain LAMA 972  

WH_PP3_6Sept15_517F.b.ab1 Uncultured bacterium  
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WH_PP4_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PP5_6Sept15_517F.b.ab1 Uncultured gamma proteobacterium  

WH_PP6_6Sept15_517F.b.ab1 Alteromonas sp.  

WH_PP7_TSW_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PP8_TSW_6Sept15_517F.b.ab1 Vibrio sp.   

WH_PP9_TSW_6Sept15_517F.b.ab1 Alteromonas sp.  

WH_PS10_TSW_6Sept15_517F.b.ab1 Uncultured bacterium  

WH_PS12_TSW_6Sept15_517F.b.ab1 Uncultured bacterium  

WH_PS1_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PS2_6Sept15_517F.b.ab1 Tenacibaculum sp. 

WH_PS3_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PS4_6Sept15_517F.b.ab1 Uncultured bacterium  

WH_PS5_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PS6_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PS7_TSW_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  

WH_PS8_TSW_6Sept15_517F.b.ab1 Tenacibaculum sp.  

WH_PS9_TSW_6Sept15_517F.b.ab1 Pseudoalteromonas sp.  
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Figure 3: Sampling locations plotted at https://www.zeemaps.com/map?group=1712093# 

Figure A: Helena McMonagle, after Rosenberg and Kjelleberg, 1986. 
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