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ABSTRACT 

Leukemia is the most common cancer in children and teens, accounting for about 25% of 

pediatric cancer. The most common type of pediatric leukemia is acute lymphoblastic leukemia 

(ALL), with T-cell acute lymphoblastic leukemia (T-ALL) accounting for 15% to 20% of all 

ALL. While significant progress has been made in the treatment of T-ALL, patients with 

relapsed or refractory disease are unlikely to be cured. Cyclin D3 and CDK6 are two proteins 

that are highly expressed in T-ALL and contribute to this disease mechanism. The development 

of CDK4/6 inhibitors offers a promising treatment for T-ALL. However, combination therapy 

will be needed for the successful integration of CDK4/6 inhibitors in the treatment of human T-

ALL. 

In our study, we evaluated LEE011, a specific CDK4/6 inhibitor, in combination with 

standard chemotherapy or everolimus. We first determined that both NOTCH1 wildtype and 

mutant T-ALL are highly sensitive to LEE011 inhibition. Next, we determined that LEE011 is 

antagonistic with many of the standard chemotherapy that are currently used to treat T-ALL, 

including methotrexate, 6-mercaptopurine, doxorubicin, L-asparaginase, and vincristine. We also 

determined that LEE011 is synergistic with glucocorticoids and everolimus. The combination of 

LEE011 with dexamethasone prolonged survival in an orthotopic mouse model of T-ALL. We 

conclude that LEE011 is active against T-ALL and that combination therapy with LEE011 and 

glucocorticoids or mTOR inhibitors could be effective in treating T-ALL.  
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INTRODUCTION 

The Process of Hematopoiesis 

Hematopoiesis is the process by which all new blood cells form. Hematopoietic stem 

cells (HSCs) reside in the bone marrow and can give rise to all types of blood cells (Orkin and 

Zon, 2008). HSCs give rise to myeloid and lymphoid progenitor cells, which can further 

differentiate to form mature blood cells (Figure 1). The myeloid progenitor leads to the 

production of red blood cells (erythrocytes), megakaryocytes, monocytes, neutrophils, basophils, 

and eosinophils, while the lymphoid progenitor contributes to the production of lymphocytes, 

including B and T cells.  

 
 

Figure 1: Schematic representation of the different stages in hematopoiesis (Cancer.gov). In normal hematopoiesis, 
blood stem cells can develop either along the myeloid or lymphoid lineage. 
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Cell Cycle and Its Controls 

HSCs divide and differentiate (mature) to produce the myeloid and lymphoid progenitor 

cells. The cell cycle, a critically controlled process in hematopoietic cell maturation, is the series 

of events that take place in a cell, leading to the cell duplicating its DNA and dividing to produce 

two daughter cells (Cho et al., 1998; Nasmyth, 1996). In eukaryotes, the cell cycle is divided into 

three periods: interphase, mitosis (M), and cytokinesis. The interphase stage can be further 

divided into the G1 phase, during which the cell grows; synthesis (S) phase, when it duplicates 

its DNA; and G2 phase, when it grows and prepares for division in mitosis (Nasmyth, 1996). The 

cell can also exit the cell cycle (G0 phase) and stop dividing. 

Cell cycle checkpoints ensure that each phase is completed accurately before the cell is 

able to proceed to the next phase (Blagosklonny and Pardee, 2002; Nigg, 1995). The checkpoints 

occur at junctions between cycles, at the G1/S transition, the G2/M transition, and the 

Metaphase/Anaphase transition within the M phase (Figure 2). Cyclins are proteins that are key 

components of this checkpoint machinery. They bind, activate, and provide substrate specificity 

to cyclin-dependent kinases (CDKs), proteins that are critical to this transition (Blagosklonny 

and Pardee, 2002; Nigg, 1995). Different cyclin-CDK complexes mediate the checkpoints by 

phosphorylating appropriate downstream substrates to enable transition through each phase of 

the cell cycle (Figure 3). For example, the CDK4/6-Cyclin D complex is critical for the G1/S 

transition. 
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Figure 2: Three major checkpoints (G1/S, G2/M, and Metaphase/Anaphase) regulate the normal cell cycle (Alberts 
et al., 2007). 

 

 
 

Figure 3: Cell cycle checkpoints are mediated by various CDK-cyclin complexes (Alberts et al., 2007).  
 
 

D-type cyclins are the ultimate recipients of mitogenic and oncogenic signals from the 

environment and other cellular proteins (Sicinska et al., 2003). There are three different D-type 

cyclins (D1, D2, and D3) in mammalian cells with substantial amino acid similarity. These 

cyclins are expressed in a highly overlapping fashion in all proliferating cells (Sherr and Roberts, 

1999). When D-type cyclins are induced, they bind and activate their associated CDKs, namely 

CDK4 and CDK6 (Dowdy et al., 1993; Kato et al., 1993). The CDK4/6-Cyclin D complexes 
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then phosphorylate the retinoblastoma (Rb) tumor suppressor protein (Blagosklonny and Pardee, 

2002; Dowdy et al., 1993; Kato et al., 1993). This phosphorylation cancels growth inhibitory 

functions of Rb, prompting the release of the E2F transcription factors, which allows for the 

induction of E2F target genes that are required for the S phase to proceed (Figure 4; Weinberg, 

1995). Therefore, D-type cyclins and CDK4/6 are critical to proper, controlled cell cycle 

progression.  

 

 
 

Figure 4: CDK4/6-Cyclin D complex initiates the phosphorylation of the Rb protein (Alberts et al., 2007) 
 
 
 
Dysregulation of the Cell Cycle Leads to Cancer 

Consistent with its growth promoting functions, abnormal expression of D-type cyclins is 

believed to be a driving force in several human cancers. Chromosomal abnormalities involving 

Cyclin D loci, resulting in overexpression of Cyclin D proteins, are observed in many 

malignancies. For example, the cyclin D1 gene is rearranged or amplified and the protein is 

overexpressed in breast carcinomas, squamous cell carcinomas of the head and neck, and 

astrocytomas (Bartoka et al., 1995; Dickinson et al., 1995; Lammie et al., 1991; Weinstatat-

Saslow et al., 1995). The cyclin D2 gene is amplified in human testicular tumors, while the 
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protein is overexpressed in a wide range of B cell lymphomas and chronic lymphocytic 

leukemias (Delmer et al., 1995; Houldsworth et al., 1997; Motokura and Arnold, 1993; Sicinski 

et al., 1996). Cyclin D3 is overexpressed in B cell lymphomas, multiple myeloma, and human T-

cell leukemias (Filipits et al., 2002; Shaughnessy et al., 2001; Sicinska et al., 2003). 

Overexpression of Cyclin D leads to the dysregulation of the G1/S transition, causing 

uncontrolled cellular proliferation and contributing to cancer formation.  

 

Introduction to Leukemia  

Leukemia, a cancer of the blood, arises from mutations in hematopoietic stem/progenitor 

cells, myeloid of lymphoid, found in the bone marrow. Abnormal and unregulated proliferation 

and impaired differentiation of cells in the lymphoid lineage, specifically lymphoblasts, cause 

acute lymphoblastic leukemia (ALL). The proliferating lymphoblasts displace the normal 

hematopoietic elements within the bone marrow. This leads to a life threatening decrease in the 

normal production of red blood cells, effective white blood cells, and platelets. The absence of 

normal blood cells and the rapid proliferation of abnormal lymphoblasts lead to death if not 

treated promptly (Kampen, 2012).  

Leukemia is the most common pediatric cancer, represents approximately 25% of all 

pediatric cancer, and is the second most common cause of cancer-related deaths in children and 

young adults (Lls.org). The most common type of pediatric leukemia is ALL. This disease most 

commonly affects children younger than five years of age, usually peaking between the ages of 

two and four (Cancer.net). In 2015, it was estimated that 2,670 children ages 14 and younger and 

410 adolescents between the ages of 15 and 19 were diagnosed with ALL (Cancer.net). 



	 10 

ALL can be subdivided into B-cell ALL (B-ALL) and T-cell ALL (T-ALL), depending 

on the type of lymphoblast from which it is derived. B-ALL is more prevalent, accounting for 

80% to 85% of cases in children with ALL; while T-ALL accounts for 15% to 20% of pediatric 

ALL cases (Cancer.org). In pediatrics, there are several risk stratifications for ALL, depending 

on age, white blood cell count at diagnosis, lineage (T-ALL versus B-ALL), and other molecular 

features (Pui and Evans, 2006). Treatment intensity for ALL is determined by these risk factors.  

The main treatment for childhood leukemia is cytotoxic chemotherapy and sometimes 

cranial radiation, which for ALL is delivered over the span of at least two years. For some 

children with more aggressive leukemia, high-dose chemotherapy may be combined with 

allogeneic stem cell transplantation. Treatment of acute forms of childhood leukemia is very 

intensive, highly toxic, and with numerous potential acute and long-term side effects. Though the 

intensity of treatment is somewhat tailored to the child’s specific leukemia subtype and 

prognostic factors, most chemotherapy affects rapidly proliferating cells and is not specific for 

cancer versus normal dividing cells. Thus, many children pay a steep price during leukemia-

directed therapy, accumulating chemotherapy-associated toxicities if they are to survive their 

disease. 

 

T-ALL and Chemotherapy    

 Current chemotherapy regimens to treat T-ALL are based on using a combination of 

therapies that target different parts of the cell cycle or cellular machinery and coordinate to 

effectively kill the proliferating cells. Since most traditional chemotherapy agents target rapidly 

proliferating cells, cellular mechanisms, such as DNA replication and cell division, are affected. 

Currently, a standard chemotherapy to treat T-ALL includes a combination of six drugs over the 
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span of a two to three year period: methotrexate, 6-mercaptopurine, doxorubicin, L-asparaginase, 

vincristine, and glucocorticoids. Additionally, a targeted therapy with the mTOR inhibitor, 

everolimus, has also shown efficacy against ALL (Baraz et al., 2014). The pathways affected in 

T-ALL and their respective treatments are described below (Figure 5). 

 

Chemotherapy Impairing Nucleotide Synthesis 

Folic acid is required by mammalian cells for the de novo synthesis of purine and 

thymidine nucleotides, which are required for DNA replication and repair (Jackman et al., 2008). 

Proteins of the folate metabolism pathway were therefore identified as anti-cancer drug targets in 

the 1940s, first with the use of aminopterin in the treatment of pediatric ALL (Jackman et al., 

2008).  Subsequently, multiple derivatives, such as methotrexate, were synthesized. 

Methotrexate inhibits dihydrofolate reductase (DHFR), an enzyme essential for maintaining 

folates in the fully reduced tetrahydrofolate form in proliferating tissues. Thus, inhibition of 

DHFR leads to impaired nucleotide biosynthesis. 

Purine nucleotides are also critical for DNA and RNA synthesis, and thus cell division 

and proliferation. Phosphoribosyl pyrophosphate (PRPP) amidotransferase is the enzyme that 

catalyzes the rate-limiting step in purine synthesis. Similar to the function of methotrexate, 6-

mercaptopurine also acts as an antimetabolite. 6-mercaptopurine inhibits purine nucleotide 

synthesis by interfering with PRPP amidotransferase, which catalyzes nucleotide interconversion 

(Dubinsky et al., 2000). 
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Topoisomerase Inhibitors  

Topoisomerase is an essential enzyme that relaxes DNA supercoiling during replication 

and transcription. It controls the changes in DNA structure by catalyzing the breaking and 

rejoining of the phosphodiester backbone in DNA strands. In order to halt cancer cell replication, 

topoisomerase inhibitors block topoisomerase function, resulting in single and double stranded 

DNA breaks that harm the integrity of the genome and lead to cell death. Doxorubicin is one 

such chemotherapy agent that intercalates into DNA, interfering with the action of topoisomerase 

II (Bodley et al., 1989).  

 

Chemotherapy Inhibiting Protein Synthesis 

Cells need L-asparagine, a non-essential amino acid, to support protein synthesis and 

metabolic requirements. Because asparagine is a non-essential amino acid, normal cells 

synthesize it from aspartate and amine via asparagine synthetase, while leukemia cells must rely 

on high levels of exogenous circulating asparagine. L-asparaginase is an enzyme derived from E. 

coli, which breaks down L-asparagine into aspartic acid and ammonia (Piatkowska-Jakubas et 

al., 2008). Depletion of L-asparagine by L-asparaginase leads to the inhibition of protein 

synthesis and other metabolic alterations, resulting in subsequent cell apoptosis (Piatkowska-

Jakubas et al., 2008). 

 

Microtubule Inhibitors 

During mitosis, after DNA replication, chromosomes align and then separate, so each 

daughter cell has one set of chromosomes. Tubulin proteins are critical to chromosome 

separation and form the “railroad” along which they separate. Because leukemia cells require 
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separation of their chromosomes as part of cell division, inhibition of this separation can be an 

effective therapy. Vincristine is an inhibitor that binds to the tubulin proteins, impairing 

chromosome separation during metaphase (Jordan, 2002). This impairs the M phase of the cell 

cycle, leading to cell death.  

 

Glucocorticoid Therapy in ALL 

Induction of cell cycle arrest and apoptosis affects proliferating cells. Glucocorticoids, 

such as dexamethasone and prednisolone, are currently part of the standard backbone of 

chemotherapy for T-ALL and can induce G1 cell cycle arrest in lymphoid cells via the 

glucocorticoid receptor. The mRNA encoding Cyclin D3, a G1 progression factor, is rapidly 

down-regulated when a glucocorticoid is added to T-ALL, leading to the destabilization and 

eventual degradation of the genetic material (Resiman and Thompson, 2013).  

 In addition to cell cycle arrest, glucocorticoids also induce apoptosis by intracellular 

mechanisms controlled by members of the Bcl-2 family and the mitochondria. In turn, this 

directly affects downstream caspases that play an essential role in programmed cell death 

(Schlossmacher et al., 2011). Ausserlechner et al. (2004) found that while Cyclin D3 was 

essential for glucocorticoid-induced G1 cycle arrest in human ALL cells, it was not required for 

apoptosis. Therefore, even though cell cycle arrest and apoptosis are both affected by 

glucocorticoids, these processes act independently of each other in the cell.  

 

Targeted Therapy in T-ALL 

The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of 

rapamycin (mTOR) signaling pathway governs cellular growth, survival, and metabolism. 
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However, it is constitutively active in T-ALL often due to mutations (Fransecky et al., 2015). 

The mTOR inhibitor, everolimus, has shown pre-clinical efficacy against acute lymphoblastic 

leukemia cells by inducing caspase-independent cell death (Baraz et al., 2014). Induction with 

this targeted therapy shows T-ALL cells with morphology consistent with paraptosis, another 

type of programmed cell death (Baraz et al., 2014). Everolimus is currently being tested in 

combination with vincristine, corticosteroids, doxorubicin, and L-asparaginase in a Phase I 

clinical trial for patients with relapsed ALL (Dana-Farber Cancer Institute).  

 

 
 

Figure 5: Chemotherapy and targeted therapy that affect the cell cycle are labeled accordingly (Adapted from 
Alberts et al., 2007).  
	
 
 
Poor Outlook for Pediatric Patients with Relapsed T-ALL 

 While significant progress has been made in the treatment of T-ALL using a 

combination of chemotherapy drugs, approximately 20% of newly diagnosed pediatric and 50% 

of adult patients will experience either induction failure or relapse of their disease often due to 

drug resistance (Gökbuget, et al. 2012). Additionally, fewer than 50% of patients with T-ALL 

who experience a relapse are long-term survivors despite intensive chemotherapy regimens, 
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including stem cell transplantation. The poor outlook for pediatric patients with relapsed T-ALL 

calls for more effective therapy for these patients. 

 

Notch Signaling Mediates G1/S Cell Cycle Progression in T-ALL via Cyclin D3 and 
CDK4/6 
 

In the hematopoietic system, the NOTCH1 receptor functions as a ligand activated 

transcription factor that directly transduces extracellular signals in the cell surface into changes 

in gene expression in the nucleus. NOTCH1 activation and signaling play a critical role at 

multiple stages of T-cell development and function. A constitutively active form of NOTCH1 

causes ectopic T-cell development in the bone marrow of immunodeficient mice and limited B 

lymphocyte production (Tanigaki and Honjo, 2007).  

Activating NOTCH1-mutations, leading to aberrant downstream signaling, have been 

identified in human T-ALL. More than 50% of human T-ALLs bear mutations in NOTCH1, 

indicating a prominent role for NOTCH1 in this malignancy (Joshi et al., 2009). Gamma 

secretase inhibitors (GSI), which block proteolytic activation of Notch receptors, abrogate the 

growth of human and murine T-ALL cell lines bearing NOTCH1 gain-of-function mutations, 

indicating that NOTCH1 is required in established tumors (Joshi et al., 2009; O’Neil et al., 

2006). 

NOTCH1 signaling is also important to the G1/S progression of the cell cycle in T -ALL. 

Cyclin D3 is a direct transcriptional target of activated NOTCH1, so T-ALL often up-regulates 

Cyclin D3. T-ALL cell lines treated with GSI show reduced Cyclin D3 expression compared to 

the control treatment (Joshi et al., 2009). Additionally, CDK4 and CDK6 expressions are also 

reduced by 50% following GSI treatment, suggesting that CDK4 and CDK6 are two putative 

targets of NOTCH1 regulation in T-ALL cell lines (Joshi et al., 2009). The downstream effect of 
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these reductions is also associated with a decrease in Rb phosphorylation (Joshi et al., 2009). 

Therefore, Cyclin D3 and its catalytic partners, CDK4 and CDK6, are NOTCH1-dependent 

targets that are important for T-ALL proliferation. 

 

Requirement of Cyclin D3 in T-cell Development, Mouse T-cell Malignancies, and Human 
T-ALL Cell Lines 
 

Since Cyclin D3 is a direct target of NOTCH1, Cyclin D3 too has a critical role in T-cell 

development. Sicinska et al. (2003) showed that Cyclin D3 is downstream of the pre-TCR and 

drives the proliferation of immature T lymphocytes. In the absence of Cyclin D3, the normally 

assembled pre-TCR fails to drive the expansion of immature thymocytes. Cyclin D3 is therefore 

required for the proliferative burst during development of immature T lymphocytes (Sicinska et 

al., 2003). 

Cyclin D3 also plays a critical role in the maintenance of T-cell ALL and lymphomas. 

Sicinska et al. (2003) showed that Cyclin D3 was required for leukemias induced by the 

activated, intracellular form of NOTCH1. While infection of wild-type bone marrow with 

activated NOTCH1 led to the appearance of T-ALL leukemias in 100% of recipient mice two 

weeks after bone marrow transduction, mice containing NOTCH1-activated Cyclin D3−/− bone 

marrow remained leukemia-free throughout the observation period (Sicinska et al., 2003). These 

results indicate that Cyclin D3 is required for the NOTCH1-mediated oncogenesis that signals 

through the pre-TCR (Sicinska et al., 2003). 

In addition to mouse T cell malignancies, Cyclin D3 expression is also required for the 

oncogenic proliferation of human T-ALL cell lines. In twelve T-ALL cell lines corresponding to 

immature thymocytes, knockdown of Cyclin D3 levels using siRNA impacted cell proliferation 

due to cell cycle arrest (Sicinska et al., 2003). Therefore, Cyclin D3 is required for proliferation 
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of human T-ALL derived from immature T cells, lending to the possibility of novel therapeutic 

approaches to treat T-ALL by inhibiting Cyclin D3.  

 

Inhibition of CDK4/6-Cyclin D Complex Activity Suppresses Human T-ALL Cell Growth  
 

Based on the role of Cyclin D3 and CDK6 in T-ALL, several research groups tested an 

inhibitor of this pathway in mouse T-ALL models. PD0332991 is a CDK4/6 specific small-

molecule inhibitor that blocks Rb phosphorylation, a hallmark of a G0/G1 arrest (Sawai et al., 

2012). This inhibitor also efficiently inhibited S-phase entry of all T-ALL lines carrying 

NOTCH1 mutations within 15 hours, leading to an accumulation of cells in the G0/G1 phase 

(Sawai et al., 2012). After a 4-day exposure to PD0332991, there was a significant increase in 

Annexin V expression in treated cells compared to the controls, indicating progression to cell 

death after treatment (Sawai et al., 2012). Based on its ability to induce cell cycle arrest and 

apoptosis in leukemia cells, PD0332991-mediated inhibition of CDK4/6-Cyclin D3 activity was 

postulated to be an attractive therapy for T-ALL (Choi et al., 2012; Sawai et al., 2012).  

 

PD0332991 versus LEE011  

As with PD0332991, LEE011, developed by Novartis Pharmaceuticals, is an ATP-

competitive inhibitor that interacts with cyclin-dependent kinases within their catalytic ATP-site 

(Mariaule and Belmont, 2014). Both molecules are selective inhibitors of CDK4 and CDK6 at 

clinically achievable doses. The major difference between the two compounds lies in the bicyclic 

core. LEE011 possesses a pyrrolo-pyrimidine, and PD0332991, a pyridopyrimidine (Figure 6; 

shown in black). A crucial step in the development of PD0332991’s selectivity for CDK4/6 was 

the introduction of a 2-aminopyridyl substituent at the C2-position of pyrido[2,3-d]pyrimidin-7-
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one core pharmacophore (Toogood et al., 2005). In enzymatic assays, PD0332991 displays 

potent inhibitory activities against the Cyclin D3 complex with CDK4 at an IC50 value of 11 

nmol/L and with CDK6 at an IC50 value of 16 nmol/L (Sherr et al., 2016). Similarly, LEE011 has 

an IC50 value of 10 nmol/L for CDK4 and 39 nmol/L for CDK6 (Sherr et al., 2016). However, 

there are still also undesirable off-target effects associated with these compounds on other 

kinases, including on CDK1 and CDK2. With PD0332991, the IC50 values associated with 

CDK1 and CDK2 are both around 10 µmol/L, while for LEE011, they are around 100 µmol/L 

and 50 µmol/L, respectively (Sherr et al., 2016). Therefore, the efficacy of LEE011 as a CDK4/6 

inhibitor lies in its low nanomolar inhibition of CDK4 and CDK6 as well as its selectivity over 

the other CDKs. 

 
Figure 6: Comparison of the chemical structures for Novartis’ LEE011 and Pfizer’s PD0332991 structures 
(Mariaule and Belmont, 2014). 
	
	
 
Combination Therapy with CDK4/6 Inhibitors 

Currently, there are numerous clinical trials testing CDK4/6 inhibitors in patients with 

breast cancer, lung cancer, and other solid tumors. Despite pre-clinical evidence for CDK4/6 

inhibition in leukemia, these drugs are not currently being tested in this disease. Given the rapid 

cellular proliferation and progression of acute leukemia, it is unlikely that a single drug that 

causes cell cycle arrest will be effective as a single agent. Additionally, combination therapy, 
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with drugs targeting multiple cellular mechanisms, has been necessary for curative leukemia 

treatment. CDK4/6 inhibitors induce G1 cell cycle arrest, thus combining these drugs with other 

molecules is critical for the successful translation of this drug class for leukemia treatment. 

Historically, new targeted drugs have been introduced to patients in combination on a backbone 

of standard-of-care cytotoxic chemotherapy. The combinations of CDK4/6 inhibitors with 

cytotoxic chemotherapy are predicted to be antagonistic when given concurrently, however, as 

most cytotoxic drugs rely on rapidly proliferating cells, and CDK4/6 inhibition induces cell cycle 

arrest. Combination studies of CDK4/6 inhibitors with other chemotherapy in leukemia have not 

been reported but are critically needed.   

 

Thesis Aim 

Despite significant progress in the treatment of T-ALL,  patients who experience relapsed 

disease or whose disease is refractory to standard therapy, are unlikely to be cured. Since Cyclin 

D3 and CDK6 are both upregulated in T-ALL, CDK4/6 inhibition may be a viable therapeutic 

option for T-ALL treatment. However, single agent therapy is unlikely to be effective in treating 

acute leukemia. In this project, we aim to identify novel synergistic combinations with the 

CDK4/6 inhibitor, LEE011, and standard chemotherapy or everolimus that could be readily 

translated to effectively treat patients with T-ALL. In order to accomplish this goal, we have 

determined the following: 

1. LEE011, Novartis’s CDK4/6 inhibitor, is effective against a panel of T-ALL cell 

lines, regardless of NOTCH1 mutation status. 

2. RB1 loss renders T-ALL cell lines insensitive to CDK4/6 inhibition.  
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3. LEE011 is antagonistic with methotrexate, 6-mercaptopurine, doxorubicin, L-

asparaginase, and vincristine. 

4. LEE011 is synergistic with glucocorticoids and mTOR inhibitors. 

Through the use of combination drug studies, we have developed a better understanding of the 

synergistic and antagonistic drug combinations with LEE011 in T-ALL. Going forward, 

researchers at Dana-Farber Cancer Institute will be working to design a pediatric clinical trial of 

LEE011 in combination with glucocorticoids and mTOR inhibitors for the treatment of relapsed 

or refractory acute lymphoblastic leukemia. 
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EXPERIMENTAL METHODS 

Cell Culture and Cell Viability 

Human T-ALL cell lines were provided by Dr. Jon Aster from the Brigham and Women’s 

Hospital. All the cell lines in our experiments were maintained in RPMI 1640 (Cellgro) 

supplemented with 1% penicillin/streptomycin (Cellgro) and 10% FBS (Sigma-Aldrich) at 37°C 

with 5% CO2. Cell viability was evaluated using CellTiter-Glo Luminescent Cell Viability Assay 

(Promega) to quantify the effects of exposure to the specific drug or combination of drugs on day 

3 and day 6 after treatment. Cell luminescence was measured using FLUOstar Omega 

(microplate reader) from BMG Labtech. The IC50 values were determined using the Prism 

GraphPad software.  

 

Compounds 

LEE011 and everolimus were provided by Novartis. Methotrexate, 6-mercaptopurine, 

dexamethasone, and prednisolone were purchased from Sigma. Doxorubicin was purchased from 

Cell Signaling. L-asparaginase and vincristine were purchased from the Dana-Farber Cancer 

Institute pharmacy. Compound E (GSI) was purchased from Santa Cruz Biotechnology. 

 

Drug Interaction Analysis 

The expected dose-inhibitory fraction relationships for the combination therapy of LEE011 and 

each of the seven compounds (methotrexate, 6-mercaptopurine, doxorubicin, L-asparaginase, 

vincristine, dexamethasone and everolimus) were assessed based on the Bliss independence 

model (Bliss, 1956; Greco et al., 1995). 
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Bliss Independence Model 

The Bliss independence model assumes that the inhibitors have independent mechanisms of 

action so that they can bind simultaneously and mutually non-exclusively (Bliss, 1956; Greco et 

al., 1995). The model predicts that if the individual drugs have the inhibitory effects of  f1   and f2  

then the expected combined effect of the two drugs would be given by the following equation:  

E(f12)  = 1 – (1 – f1 ) (1 - f2) = f1 + f2 – f1 f2.  The difference between the observed combined effect 

f12 and the expected combined effect of the two drugs is called the Excess over Bliss (eob):  

eob = f12  - E(f12).              

 Positive eob values indicate synergistic interaction whereas negative eob values suggest 

antagonistic behavior.  Null eob values mean that there is no drug interaction. For each drug pair, 

the eob scores were depicted as 3D surface plots (Excel MSOffice 10) for all the drug dose 

combinations.  

 

Immunoblotting 

Cells were lysed in Cell Signaling Lysis Buffer (Cell Signaling Technology), containing 

Complete, EDTA-free Protease Inhibitor Cocktail tablets (Roche Diagnostics), and PhosSTOP 

Phosphatase Inhibitor (Roche Diagnostics) (Banerji et al., 2012). Cells were then resolved by gel 

electropheresis using Novex 4-12% Bis-Tris Gel (Invitrogen), transferred to a nitrocellulose 

membrane (Bio-Rad), and blocked for one hour in 5% Bovine Serum Albumin (BSA) (Sigma 

Aldrich) (Banerji et al., 2012). Blots were incubated with primary antibodies to phospho-

RBS780 (Cell Signaling Technology), RB (Cell Signaling Technology), CCND3 (Santa Cruz 

Biotechnology), CDK4 (Neomarkers), CDK6 (Santa Cruz Biotechnology), GAPDH (Santa Cruz 

Biotechnology), or Vinculin (Abcam), followed by the secondary antibodies anti-rabbit HRP 
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(Amersham) or anti-mouse HRP (Amersham). Bound antibody was detected using the Western 

Lightning Chemiluminescence Reagent (Perkin Elmer).   

 

Flow Cytometry Analysis  

MOLT4 (NOTCH1-mutated) and MOLT16 (NOTCH1-wildtype) cell lines were incubated with 

vehicle (DMSO), LEE011, dexamethasone, or the combination of LEE011 and dexamethasone 

and were analyzed after 24 hours (phospho-RB levels, cell cycle, and apoptosis) and 4 days 

(apoptosis) of treatment. For evaluation of phospho-RB levels, cells were fixed in 3.5% 

formaldehyde for 10 minutes, washed with PBS, and incubated in 90% ice-cold methanol for 

permeabilization for 24 hours at -20°C. Cells were then washed with PBS and incubated in 

FACS buffer (4% BSA in PBS) overnight at 4°C. Cells were subsequently stained with pRB-

S780 antibody (Cell Signaling Technology) for FACS analysis (Cooper et al., 2006). For cell 

cycle analysis, cells were washed with PBS, and then incubated in 70% ice-cold ethanol for 24 

hours at -20°C. Cells were then resuspended in a DNA staining master mix solution containing 

propidium iodide (1 mg/mL) and RNase (100 mg/mL) (Abcam) for analysis. The Annexin V 

Apoptosis Staining Kit (e-Bioscience) was used for cell death analysis. Cells were washed with 

PBS and then with 1X binding buffer. Cells were then resuspended with Annexin V-APC and 

propidium iodide staining solution and analyzed by flow cytometry.  

 

In Vivo Studies (Reproduced from Pikman et al. (2015). Synergistic Drug Combinations with a 
CDK4/6 Inhibitor in T-Cell Acute Lymphoblastic Leukemia. Clin Cancer Res unpublished.) 
 
Two million MOLT4 luciferized cells were injected via the tail vein into 8-week-old NSG 

(immunodeficient) mice (The Jackson Laboratory). Leukemia burden was assessed using non-

invasive bioluminescence imaging by injecting mice intraperitoneally with 75 mg/kg d-Luciferin 
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(Promega), anesthetizing them with 2–3% isoflurane, and imaging them on an IVIS Spectrum 

(Caliper Life Sciences). A standardized region of interest (ROI) encompassing the entire mouse 

was used to determine total body bioluminescence, with data expressed as photons/s/ROI 

(ph/s/ROI). Once detectable bioluminescence was achieved, the mice were separated into 

treatment cohorts and drug treatment started. Samples for pathology evaluation were collected in 

a subset of mice after 5 days of drug treatment. This study was conducted according to a protocol 

approved by the Dana-Farber Cancer Institute Animal Care and Use Committee. 
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RESULTS 
 
T-ALL is Highly Responsive to CDK4/6 Inhibitors 
 

Using an independent data set from The Genomics of Drug Sensitivity in Cancer Project, 

we first aimed to validate the previous finding that NOTCH1-mutated T-ALL is sensitive to 

CDK4/6 inhibition. This study profiled 633 cancer cell lines in a viability assay against 138 

compounds using a range of concentrations (Yang et al., 2013). This dataset revealed that T-ALL 

cell lines were very sensitive to treatment with the CDK4/6 inhibitor, PD0332991 (Figure 7A 

and 7B). Additionally, the T-ALL cell lines screened in this study have all been characterized in 

the Catalogue of Somatic Mutations in Cancer database, which includes information on somatic 

mutations in cancer genes, gene amplifications and deletions, and tissue type and transcriptional 

data, to allow for identification of biomarkers in response to drug treatment. From this database, 

NOTCH1 mutations were found to be a biomarker for response to PD0332991 (Figure 7C). 

However, among T-ALL cell lines, both NOTCH1 mutated and wildtype cells were equally as 

responsive to PD0332991, suggesting that NOTCH1 mutations are not necessary for inhibitor 

response in T-ALL lines (Figure 7D).  
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Figure 7: (A, B) The dataset from The Genomics of Drug Sensitivity in Cancer Project profiled 633 cell lines 
against PD0332991. T-ALL cell lines were found to be very sensitive to a CDK4/6 inhibitor. (C) NOTCH1 
mutations were found to be a biomarker of response to PD0332991 in the Catalogue of Somatic Mutations in Cancer 
database. (D) Among T-ALL cell lines, NOTCH1 mutations are not a marker for responsiveness to PD0332991. 
(Reproduced from Pikman et al. (2015). Synergistic Drug Combinations with a CDK4/6 Inhibitor in T-Cell Acute 
Lymphoblastic Leukemia. Clin Cancer Res unpublished.) 
 

 

 
Similar to PD0332991, LEE011 is also a CDK4/6 inhibitor that functions as an ATP 

competitive inhibitor. We tested LEE011 in a panel of nine T-ALL cell lines (Figure 8). The 

cells lines were found to be quite sensitive to the inhibitor since the IC50s ranged between 0.7 µM 

to 2.7 µM after six days of treatment as measured by the CellTiter-Glo ATP-based assay. 

Confirming the analysis from The Genomics of Drug Sensitivity in Cancer Project, we also 

found that the T-ALL cell lines that lacked mutated NOTCH1 were still sensitive to LEE011. 

This suggests that NOTCH1 mutations are not required for a strong response to CDK4/6 
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inhibitors in T-ALL. However, Rb expression was critical to achieve a response to LEE011 in T-

ALL since the cell lines with RB1 loss (HSB2 and SUPT11) did not show a significant response 

to the drug. Overall, LEE011 seemed to be an effective CDK4/6 inhibitor against T-ALL cell 

lines expressing the Rb protein.  

 

 
 

Figure 8: T-ALL cell lines are responsive to LEE011 treatment, dependent on RB1 expression. The red curves 
indicate a NOTCH1-mutated cell line. The black curves indicate a NOTCH1 wildtype cell line. The IC50 values are 
labeled next to each curve in micromolar concentrations. Two of the lines, HSB2 and SUPT11, have RB1 deletion. 
 

 
LEE011 Treatment of T-ALL Cell Lines Leads to a Decrease of Rb Phosphorylation, Cell 
Cycle Arrest, and Cell Death  
 

Since most T-ALL cell lines were found to be sensitive to LEE011, we selected two cell 

lines, MOLT4 (NOTCH1-mutated) and MOLT16 (NOTCH1-wildtype), for further testing. In the 
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MOLT4 and MOLT16 cell lines, after 24 hours of LEE011 treatment, there was decreased 

phosphorylation of Rb and G1 cell cycle arrest in a concentration-dependent manner (Figure 9A 

and 9B). Corresponding to the increase in the percentage of the cells remaining in the G0/G1 

phase, there was also increased cell death as shown by increased Annexin V positive staining 

after 4 days of drug treatment (Figure 9C). Cell death was more prominent in the NOTCH1-

wildtype MOLT16 cell line than NOTCH1-mutated MOLT4 cells. As a single drug, LEE011, 

affected the phosphorylation of Rb, cell cycle, and cell death in T-ALL cell lines.  

 
  A.                B. 

 
 

    C. 

 
Figure 9: MOLT4 and MOLT16 cell lines are sensitive to LEE011 treatment. (A) Immunoblot showed a 
concentration-dependent decrease in pRb level after 24 hours. (B) Cell cycle analysis in MOLT4 and MOLT16 cells 
showed increased cell cycle arrest with increasing concentrations of LEE011. (C) Percent Annexin V positive cells 
increased with increasing concentrations of LEE011 treatment in MOLT4 and MOLT16 cells after 4 days of 
treatment. (Performed in collaboration with Yana Pikman and Andy Furman.) 
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LEE011 is Antagonistic with Methotrexate, 6-mercaptopurine, Doxorubicin, L-
Asparaginase, and Vincristine In Vitro 
 

Since LEE011 was effective against T-ALL cell lines as a single agent, we next tried to 

introduce this CDK4/6 inhibitor in combination with cytotoxic chemotherapy. As shown in 

Figure 9B, LEE011 induces G1 cell cycle arrest, and thus combining this drug with 

chemotherapy agents that induce cell death is critical for the successful translation to leukemia 

treatment. However, standard chemotherapy used in T-ALL treatment relies on rapidly 

proliferating cells for its activity. Therefore, we hypothesized that LEE011 would be antagonistic 

with many chemotherapy agents used to treat T-ALL.  

In order to determine the effects of combination therapy on T-ALL, we first treated T-

ALL cell lines with each chemotherapy drug individually to determine the dose range for 

response. Next, we treated two T-ALL cell lines, MOLT4 and MOLT16, with LEE011 and 

methotrexate, 6-mercaptopurine, doxorubicin, L-asparaginase, or vincristine across a range of 

drug concentrations in a serially 2-fold dilution. For both the individual and combination drug 

treatments, cells were treated in a 384-well format in quadruplicates for each drug combination. 

Viability was assessed after 3 and 6 days of treatment using the CellTiter-Glo ATP-based assay. 

To evaluate synergy between the two drugs, we used the Bliss independence model, 

which assumes that the inhibitors have independent mechanisms of action and can bind 

simultaneously and mutually non-exclusively (Bliss, 1956; Greco et al., 1995). Positive Excess 

above Bliss values are indicative of a synergistic interaction whereas negative values are 

indicative of antagonism. Using this model, the combinations of LEE011 with methotrexate, 6-

mercaptopurine, L-asparaginase, and vincristine were all found to be antagonistic at Day 6 of the 

assessment (Figure 10). Although LEE011 and doxorubicin showed positive Excess over Bliss 

values over a narrow range of concentrations, further analysis using Combination Index showed 
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this combination to be antagonistic (Figure 11). The latter analysis does not assume 

independence between the two drugs tested in combination. Thus Combination Index may be the 

more relevant model for synergy assessment, supporting an antagonistic relationship between 

LEE011 and doxorubicin. In summary, the combinations of LEE011 with methotrexate, 6-

mercaptopurine, L-asparaginase, doxorubicin, or vincristine were antagonistic when used 

simultaneously. 
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LEE011 and Methotrexate 

 
Legend: 

 
 
LEE011 and 6-mercaptopurine 

 
Legend: 

 
 

LEE011 and L-asparaginase 

  
Legend: 

 
 

Figure 10: LEE011 is antagonistic with methotrexate, 6-mercaptopurine, and L-asparaginase. The Bliss 
independence model was used to evaluate the effect of the drug combinations in MOLT4 and MOLT16 cell lines. 
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LEE011 and Doxorubicin  

 
Legend: 

 
     
  C.

 
 
Figure 11: LEE011 is antagonistic with doxorubicin as shown by Combination Index. The Bliss model (A, B) 
assumes independence between LEE011 and doxorubicin, while Combination Index (C) does not. (Combination 
Index analysis reproduced from Pikman et al. (2015). Synergistic Drug Combinations with a CDK4/6 Inhibitor in T-
Cell Acute Lymphoblastic Leukemia. Clin Cancer Res unpublished.) 
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CDK4/6 Inhibitor is Synergistic with Glucocorticoids and mTOR Inhibitors In Vitro 
 

In addition to the five cytotoxic drugs tested above, LEE011 was also further 

characterized in combination with other chemotherapy agents that do not rely on rapidly 

proliferating cells, including glucocorticoids (prednisolone and dexamethasone) and the targeted 

therapy, everolimus, an mTOR inhibitor. MOLT4 and MOLT16 cell lines were treated in 2-fold 

dilution series in quadruplicate with LEE011 in combination with prednisolone, dexamethasone, 

or everolimus. Viability was assessed after 3 and 6 days of treatment using the CellTiter-Glo 

ATP-based assay. The combination of LEE011 with glucocorticoids or everolimus showed 

synergy after 6 days of drug treatment, as demonstrated by a positive Excess over Bliss analysis 

over a large range of doses (Figure 12). Since glucocorticoids are a backbone of standard 

chemotherapy regimens for the treatment of T-ALL, we thus focused on the combination of 

LEE011 with dexamethasone for further study as this combination can be rapidly translated to 

the clinic. 
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LEE011 and Prednisolone 

 
Legend: 

 
 

LEE011 and Dexamethasone 

 
Legend: 

 
 
LEE011 and Everolimus 

 
Legend: 

 
 

Figure 12: LEE011 is synergistic with prednisolone, dexamethasone, and everolimus. The Bliss independence 
model was used to evaluate the effect of the drug combinations in MOLT4 and MOLT16 cell lines. 
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The Combination of LEE011 and Dexamethasone Promotes Cell Cycle Arrest and Cell 
Death More than either Drug Alone  
 

Based on the synergy results using the combination of LEE011 and dexamethasone, we 

next tested its effects on Rb phosphorylation, cell cycle, and cell death. MOLT4 and MOLT16 

cell lines were incubated with LEE011, dexamethasone, and the combination of both drugs. At 

the selected concentrations, combinations of LEE011 with dexamethasone had a greater effect on 

the phosphorylation of Rb than any single drug treatment as assessed by immunoblot and flow 

cytometry after 24 hours (Figure 13A). Additionally, treatment with LEE011 alone led to an 

increase in Cyclin D3 levels, as seen by immunoblot, in both MOLT4 and MOLT16 cell lines, an 

effect tempered by the co-treatment with dexamethasone in the MOLT16 cell line. The levels of 

Rb, CDK4, and CDK6 were consistent across the various treatments with single agents or 

combinations of the drugs (Figure 13A). 

We next analyzed the percent of MOLT4 and MOLT16 cells in each phase of the cell 

cycle for cells treated with LEE011, dexamethasone, or the combination of LEE011 with 

dexamethasone. The combination drug treatment resulted in increased G1 cycle arrest compared 

to the individual drug treatments (Figure 13B). Additionally, the combination treatment resulted 

in increased cell death after 4 days as indicated by increased Annexin V positive staining (Figure 

13C). Cell death was more prominent in the MOLT16 cell line than in the MOLT4 cells. Overall, 

LEE011 and dexamethasone in combination showed greater effects on cell viability than the 

single agents alone. 
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C. 

  
 
Figure 13: Treatments with LEE011 and dexamethasone in MOLT4 and MOLT16 cell lines leads to decreased 
phosphorylation of Rb (24 hours), increased G1 cycle arrest (24 hours), and increased cell death (4 days). MOLT4 
lines were treated with 3µM LEE011 and 5µM dexamethasone; MOLT16 lines were treated with 1µM LEE011 and 
0.02µM dexamethasone. (A) Immunoblot and flow cytometry showed a decrease in the levels of phosphorylated Rb. 
The numbers indicated next to the histogram represent the median.  (B) G1 cycle arrest increased with the 
combination drug treatments compared to the single agents. (C) Annexin V staining revealed greater cell death with 
the combination drug treatment than with either single drug alone. 
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CDK4/6 Inhibitor is Synergistic with Gamma Secretase Inhibitor (GSI) 
 
 Previously we had mentioned that more than 50% of T-ALL has activating mutations in 

NOTCH1. This would render T-ALL cells sensitive to treatment with a gamma secretase 

inhibitor (GSI), such as Compound E, which blocks the proteolytic cleavage of NOTCH1. The 

MOLT4 cell line was tested as above in 2-fold dilution series in quadruplicate with the 

combination of LEE011 with Compound E. Viability was assessed after 3 and 6 days of 

treatment using the CellTiter-Glo ATP-based assay. Treatment with LEE011 and Compound E 

synergistically impaired cell viability (Figure 14). The combination of LEE011 with Compound 

E will be studied in more detail in future experiments.  

 

 
 

Figure 14: LEE011 is synergistic with Compound E (GSI) in the MOLT4 cell line. The Bliss independence model 
was used to evaluate the effect of the drug combination. 
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With all the combination drug studies performed in cell lines, we next extended our 

testing from the laboratory to a MOLT4 orthotopic xenograft model of T-ALL. MOLT4 cells 
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bioluminescence, and were injected into NOD-SCID IL2Rγnull (NSG) mice. Mice were treated in 

four separate groups: vehicle, LEE011, dexamethasone, and the combination of LEE011 and 

dexamethasone. In this study, the combination treatment with LEE011 with dexamethasone 

resulted in a decrease in spleen weight while little change was observed from the single agent 

treatment (Figure 15A) after five days. The combination drug treatment also had the greatest 

effect on survival compared to both the single agent treatments alone (Figure 15B) following 21 

days of treatment.  Histopathology evaluation showed a decrease in the levels of phosphorylated 

Rb, a measure of on-target activity of LEE011 in bone marrow collected after 5 days of drug 

treatment (Figure 15C). Therefore, the in vivo response to the combination of LEE011 with 

dexamethasone seemed most effective. These encouraging results warrant further testing of the 

combination of LEE011 with dexamethasone in other mouse models and possible integration 

into a clinical trial for patients with T-ALL. 
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A.                B. 

     
 
C.  

 
 
Figure 15: LEE011 enhances the effect of dexamethasone in vivo. (A) Weight of spleen significantly decreased 
with the LEE011 and dexamethasone combination treatment in three mice after five days of drug treatment. (B) In a 
group of ten mice following 21 days of treatment, those receiving the LEE011 and dexamethasone combination 
showed the longest survival rate. (C) pRb levels decrease with the combination drug treatment after five days. 
(Reproduced from Pikman et al. (2015). Synergistic Drug Combinations with a CDK4/6 Inhibitor in T-Cell Acute 
Lymphoblastic Leukemia. Clin Cancer Res unpublished.) 
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DISCUSSION 
 
Combination Studies with CDK4/6 Inhibitors  

Although T-ALL only accounts for a small subset of pediatric ALL cases, patients with 

T-ALL often face induction failure or relapse due to drug resistance. Therefore, there is a need 

for more effective therapies. Currently, T-ALL is treated with a combination of six standard 

chemotherapy agents: methotrexate, 6-mercaptopurine, doxorubicin, L-asparaginase, vincristine, 

and glucocorticoids. Most standard chemotherapy drugs work by directly interfering with cell 

division, often at the DNA level, and killing cells in the body that grow and divide quickly. 

Tumors are especially sensitive to these drug treatments since cancer cells are also fast-growing. 

Targeted therapy is a newer type of cancer treatment that can more precisely identify and attack 

cancer cells, sparing normal tissues. Targeted therapy has higher specificity for cancer, targeting 

specific proteins or pathways that are differentially altered in the cancer cells versus normal 

tissues, and thus promises the potential for tumor eradication with decreased toxicity (Masui et 

al., 2013). Because the majority of cancer is still treated with standard chemotherapy, 

specifically with cytotoxic drugs, one approach to integrate targeted therapy into cancer 

treatment is to identify additive or synergistic combinations with cytotoxic chemotherapies.  

When used in combination with other chemotherapy that does not rely on rapid cell 

proliferation, CDK4/6 inhibitors, a type of targeted therapy, have shown promising results in the 

treatment of various cancers. For example, the combination of PD0332991 with letrozole, an 

aromatase inhibitor, was recently approved by the FDA for the treatment of breast cancer after 

significantly improving progression-free survival in women with advanced estrogen receptor-

positive and HER2-negative breast cancer in Phase 2 clinical trial (Finn et al., 2014). 

Additionally, the inhibition of both the anaplastic lymphoma kinase (ALK) and CDK4/6 in 
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neuroblastoma models with LDK378, an ALK inhibitor, and LEE011, demonstrates potent on-

target in vitro synergy and in vivo activity with the inhibition of respective molecular targets, 

resulting in decreased cell proliferation and induction of cell death (Wood et al., 2014). 

Currently, there are also several combination therapies with LEE011 in clinical trials: a Phase 2 

study of LEE011 in combination with LGX818, a BRAF (serine/threonine kinase) inhibitor, and 

MEK162, a MEK (mitogen-activated protein kinase) kinase inhibitor, in adult patients with 

BRAF-dependent advanced solid tumors (Novartis Pharmaceuticals); and a Phase 1b trial of 

LEE011 with everolimus and exemestane in the treatment of ER+ HER2- advanced breast cancer 

(Novartis Pharmaceuticals). However, combination studies of CDK4/6 inhibitors with other 

drugs have yet to be reported for acute leukemia. 

Previously, PD0332991 (palbociclib) has shown promising results in the treatment of T-

ALL cells with decreased phosphorylation of Rb, leading to G1 cell cycle arrest (Choi et al., 

2012; Sawai et al., 2012). In our studies, we tested LEE011, which is structurally and effectively 

similar to PD0332991, against T-ALL cell lines. As a single agent, LEE011 showed promising 

results with decreased Rb phosphorylation, caused G1 cell cycle arrest, and increased cell death 

in T-ALL cell lines. Since LEE011 causes cell cycle arrest and many of the standard 

chemotherapy agents rely on rapidly proliferating cells for activity, combinations of these drugs 

would thus be predicted to be antagonistic and need to be tested in the laboratory first. In our 

combination studies, we found that LEE011 was antagonistic with methotrexate, 6-

mercaptopurine, doxorubicin, L-asparaginase, and vincristine in T-ALL cell lines and synergistic 

with glucocorticoids (dexamethasone and prednisolone) and everolimus.   
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Mechanism of Synergy 

Once the synergistic combinations with LEE011 were determined, we were interested in 

evaluating why there was synergy between certain drug combinations. Based on our studies, the 

combination of LEE011 with dexamethasone was synergistic in T-ALL cell lines. This 

combination treatment led to decreased levels of pRb and increased cell cycle arrest and cell 

death, which are all cellular events that were altered with treatment of LEE011 alone. We 

therefore focused on this synergistic drug combination to characterize the mechanism of synergy. 

Glucocorticoids, such as dexamethasone, have a variety of effects on ALL cells, including cell 

cycle arrest and induction of programmed cell death. One mechanism of glucocorticoid activity 

is through the down-regulation of D-type cyclins, particularly Cyclin D3 (Garcia-Gras et al., 

2000; Rhee et al., 1995; Rogatsky et al., 1997). Treatment of T-ALL cell lines with LEE011 

caused an increase in Cyclin D3 protein levels as seen on western blot analysis, a possibly 

attenuating response to the drug. However, the combination of LEE011 and dexamethasone 

decreased Cyclin D3 levels, especially in the MOLT16 cells, suggesting this as a possible 

mechanism for synergy (Figure 16). This will need to be evaluated more definitely in future 

studies. We plan to use recombinant DNA technology to overexpress Cyclin D3 in MOLT16 

cells and then determine whether Cyclin D3 overexpression attenuates response to LEE011 

treatment. I hypothesize that increasing the levels of Cyclin D3 will make cells more resistant to 

LEE011, increasing the effective IC50.  
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Figure 16: Schematic showing the potential mechanism of synergy for the combination treatment of LEE011 and 
dexamethasone in T-ALL cell lines.  
 

 
Importance of Chemotherapy Sequence 

 When we tested LEE011 in combination with either standard chemotherapy or 

everolimus, the drugs were added concurrently. Adding the drugs simultaneously was the most 

efficient way to evaluate for synergy and antagonism in the combinations. However, we realized 

that the sequence of drug treatment could affect combination outcomes as it had been shown in 

other acute leukemias. For example, in the treatment of acute myeloid leukemia (AML), the 

sequence with which standard cytotoxic chemotherapy and CEP-701, a FLT3 inhibitor that 

induces apoptosis in FLT3/ITD-expressing cell lines, are combined appears to be important. 

Treatment of AML cells with CEP-701 prior to the addition of chemotherapy seemed to 

antagonize the cytotoxic effects of chemotherapy agents such as cytarabine and etoposide (Levis 

et al., 2004). In contrast, when CEP-701 was added simultaneously with or immediately 

following exposure of cells to chemotherapy, synergistic cytotoxicity was observed (Levis et al., 
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2004). Similarly, there is also a sequence-dependent synergy between CEP-701 and 

chemotherapy agents on HB-1119 and SEM-K2 cells lines (Brown et al., 2006). These lines are 

derived from patients with MLL-rearranged ALL, which express activated FLT3 and demonstrate 

pronounced dependence on FLT3 signaling for survival. In this case, treatment with 

chemotherapy first, followed by exposure to CEP-701, showed synergy (Brown et al., 2006). 

Simultaneous exposure to both agents was additive (Brown et al., 2006). However, when cells 

were exposed to CEP-701 first and then chemotherapy, the interaction was antagonistic (Brown 

et al., 2006). For our future experiments, we plan to test two additional sequences of exposure for 

the combination studies of LEE011 and standard chemotherapy or everolimus in T-ALL: 

LEE011 followed by chemotherapy and chemotherapy followed by LEE011 (Figure 17).  
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Figure 17: Schematic illustrating the three sequences of drug addition that should be utilized in characterizing the 
effects of the combination between LEE011 and standard chemotherapy or everolimus. 
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Clinical Relevance for Targeted Therapies 

Based on our study, we have identified a synergistic drug combination of LEE011 and 

glucocorticoid or everolimus when added concurrently. This finding could be translated to the 

clinic to help patients with T-ALL, especially those with the relapsed and refractory disease and 

are in need of new therapies. For effective use of targeted therapy, it will be important to select 

patients who are likely to respond to treatment based on molecular characteristics. When we had 

tested a panel of nine T-ALL cell lines with LEE011, we found that cell lines with RB1 deletion, 

HSB2 and SUPT11, did not respond to LEE011. While RB1 deletion is found in 8-12% of 

patients with T-ALL, effective implementation of this drug in clinical trials will need to exclude 

patients with RB1 mutations (Mansur et al., 2015; Mullighan et al., 2007). Activated NOTCH1 

has previously been reported to be a biomarker of response to CDK4/6 inhibitors. However, 

NOTCH1 mutations did not appear to be a marker of response within the T-ALL subset of cell 

lines we tested, even though this analysis was limited by only three NOTCH1-wildtype cell lines. 

A clinical trial in T-ALL patients with LEE011 will be needed to determine whether clinical 

response is based on NOTCH1 mutational status. Based on our data, NOTCH1 mutation should 

not be a requirement for patients entering the initial clinical trials testing combination drugs 

treatments with LEE011. 

Given prior studies reporting CDK4/6 inhibitor activity in mouse models of T-ALL, we 

have focused our investigation on T-ALL. However, these drug combinations will likely extend 

to the treatment of other acute leukemias. We are currently studying these drug combinations in 

B-ALL. Our initial testing of LEE011 and standard chemotherapy drugs in B-ALL also show a 

similar patter of synergies as in T-ALL. Recent studies have shown CDK6 to be a direct target of 

fusion gene MLL-AF9 in AML and MLL-AF4 in infant ALL (Placke et al., 2014). This suggests 
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that CDK4/6 inhibitors may also be active in these types of acute leukemia. Therefore, the 

discovery of combination therapies with CDK4/6 inhibitors could impact the treatment of acute 

leukemias beyond T-ALL.   

Overall, our work supports the use of combination therapy with CDK4/6 inhibitors in 

treating T-ALL. Successful implementation of a new treatment for leukemia requires effective 

combination therapies. In this study, we have discovered novel synergistic combinations between 

LEE011 with glucocorticoids and LEE011 with mTOR inhibitors that could be readily translated 

to a clinical trial for patients with T-ALL and potentially other leukemias. 
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