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Abstract 
 

In crayfish, neuronal stem cells (NSCs) are not self-renewing, yet adult neurogenesis 

continues throughout an animal’s life without depleting the small stem cell population in the 

neurogenic niche. Thus, NSCs in crayfish must be replenished from a source external to the 

niche. Experiments have demonstrated that hemocytes (blood cells) generated by the immune 

system are competent to become neuronal precursor cells, and are a likely source of the NSCs 

involved in adult neurogenesis in crayfish. While the brain cells derived from these hemocyte 

precursors express neurotransmitters, it is not known whether they are fully functional and form 

neural connections. The aim of the present work, therefore, was to develop methods by which 

newborn neurons can be identified and located for in vivo electrophysiological analysis. The first 

goal was to establish a method for creating transgenic crayfish (Procambarus fallax) expressing 

green fluorescent protein (GFP) in the hematopoietic tissues that generate blood cells, by 

exposing animals to a lentiviral vector at key points in early post-embryonic development. GFP 

expression in tissues of the immune system and in hemocytes was confirmed with confocal 

microscopy. Additional studies are testing approaches for increasing GFP expression. In future 

experiments, GFP+ animals will act as hemocyte donors, providing labeled blood cells to 

recipients that can be visualized in living tissues, as GFP will be expressed in donor cells and 

their descendants. The ultimate goal is to conduct electrophysiological studies on cells derived 

from GFP+ donors in the recipient crayfish, to determine whether these cells create functional 

synapses and gain the electrical properties necessary to act as fully functioning neurons. Our 

hypothesis is that brain cells derived from GFP+ hemocytes will differentiate into fully 

functional neurons. Further, the standard crayfish brain preparation developed for 

electrophysiology accesses brain regions and perfuses blood vessels from the dorsal surface. 
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Therefore, in order to determine an appropriate electrophysiological approach for these 

experiments, a second goal of these studies was to quantitatively assess newborn cell movement 

throughout the brain, from the ventral region where they are initially integrated, to more dorsal 

regions. Seven to eight weeks after the arrival of cells in cluster 10 from the migratory streams, a 

stable, sizable population of newborn cells was found to reside in the dorsal third of the brain, 

suggesting that after this time a dorsal electrophysiological approach may be used. These studies 

therefore address two critical issues related to electrophysiological studies of the newborn 

neurons: (1) generating transgenic crayfish that produce GFP+ blood cells for use in adoptive 

transfers, and (2) tracking the movement of cells within the brain to determine when these are 

accessible using current electrophysiological approaches.  

 
Introduction 

 
Adult Neurogenesis  
 

For decades, it was commonly believed that new brain cells, or neurons, could not be 

produced in humans after development, and that the adult brain contained a static pool of 

neurons that slowly degenerate with age. However, in 1998, a remarkable study demonstrated 

that this process, known as adult neurogenesis, does occur in the human brain (Eriksson et al., 

1998). This phenomenon has been demonstrated in all vertebrate species that have been 

examined, as well as in the majority of non-vertebrates (Kempermann, 2000; Sullivan et al., 

2007). Adult neurogenesis has now become widely accepted as a common occurrence. In the 

mammalian brain, neurogenesis occurs in the subventricular zone, which contributes new 

neurons to the olfactory bulb, and the subgranular zone in the hippocampus (Altman and Das, 

1965; Cameron et al., 1993; Rousselot et al., 1995; Doetsch et al., 1997; Garcia-Verdugo et al., 

2002; Zhao et al., 2008). While these two brain regions experience the highest levels of adult 
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neurogenesis, this process is also thought to occur in other brain areas including the 

hypothalamus and the striatum, although less is known about these pathways (Bédard et al., 

2002; Kokoeva et al., 2007).  

Adult neurogenesis is believed to underlie mechanisms of neural plasticity, learning and 

memory (Parent et al., 1997; van Praag et al., 1999; Magavi et al., 2000). In addition, this 

phenomenon may be critical for regeneration of damaged neural tissue (Liu et al., 1998). 

Dysfunctions in adult neurogenesis have been implicated in several psychiatric and 

neurodegenerative diseases, including clinical depression and epilepsy (Jacobs et al., 2000; Pun 

et al., 2012). Furthermore, neural stem cells, from which adult-born neurons are derived, appear 

to be the basis for many primary brain tumors (Uchida et al., 2000; Dirks, 2010; Germano et al., 

2010). Thus, an understanding of adult neurogenesis is of critical importance, and may lead to 

new medical treatments targeting these diseases.  

 
Invertebrate Models in Neuroscience 
 

The field of neuroscience has made great use of invertebrate systems and the advantages 

they present over more complex mammalian systems. Several studies in invertebrate models 

have elucidated basic neural mechanisms. For example, ionic flow of current across the axonal 

membrane was determined in squid giant axon (Hodgkin and Huxley, 1952), and the synaptic 

basis of learning and memory was discovered in Aplysia californica (Cedar et al., 1972). As 

neural mechanisms are widely conserved across species, these findings have informed us as to 

some of our most basic neural processes and have since been demonstrated in mammalian 

systems including humans (Bear et al., 2007; Kokovay et al., 2008).  

Mechanisms of adult neurogenesis appear to be highly conserved evolutionarily, as there are 

many similarities in fundamental mechanisms across a broad range of species. In all species 
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examined, neural stem cells (NSCs, self-renewing undifferentiated cells with the potential to 

produce neurons and glia) residing in a highly vascularized niche produce a lineage of three to 

four generations of cells (Steiner et al., 2006; Sullivan et al., 2007; Zhao et al., 2008). The final 

generation of this lineage then differentiates into neurons. Precursor cells must migrate from the 

niche to the site of differentiation, where they ultimately integrate into neural circuits. In the 

Beltz lab, crustaceans (e.g., lobsters, crayfish) have been used to study mechanisms of adult 

neurogenesis as they undergo lifelong neurogenesis and offer advantages over more traditional 

models such as rodents (Schmidt and Demuth, 1998; Beltz et al., 2011; Benton et al., 2014). 

Specifically, crayfish (and other invertebrates) have orders of magnitude fewer neurons 

compared to mammals. A small neural population is experimentally advantageous as fewer cells 

are more readily quantifiable, and therefore any manipulations or changes that occur in the 

system are more easily observed. Additionally, as crayfish undergo lifelong neurogenesis and 

have a defined lineage of neuronal precursor cells with generations that are spatially separated in 

the brain, the stage in the neuronal lineage can be determined by cell location (Zhang et al., 

2009). Crayfish are therefore an ideal model for examining mechanisms of adult neurogenesis. 

As processes generating adult-born neurons are conserved across a diverse range of species 

(Kempermann et al., 1997; Nilsson et al., 1999; Sandeman and Sandeman, 2000; Ayub et al., 

2011; Beltz et al., 2011), it is expected that findings in crayfish will have implications for our 

understanding of adult neurogenesis in evolutionarily more advanced species, including humans.  

 
Neurogenesis in the Crayfish Brain 
 

While the anatomical organization of the crayfish brain (Fig. 1A) differs greatly from the 

mammalian brain, at the cellular level neurons are very similar, for example in terms of 

chemistry and biophysics. Like the mammalian brain, the crayfish brain is positioned behind and 
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between the eyes and is bilaterally symmetrical. The crayfish brain contains two prominent 

neural regions, the olfactory lobe, which is analogous to the mammalian olfactory bulb, and the 

accessory lobe, a higher processing area that is 

most closely analogous to the mammalian 

hippocampus. In crayfish, the first generation 

neural precursor cells (NPCs), which are 

functionally analogous to neural stem cells in 

mammals, reside in the neurogenic niche, a highly 

vascularized structure that rests on the ventral 

surface of the accessory lobe, just beneath the 

brain sheath (Schmidt, 2007). However, unlike 

NSCs that undergo asymmetrical divisions, first 

generation NPCs undergo mitosis to produce two 

geometrically symmetrical daughter cells. These 

second generation NPCs then travel out of the 

niche and along tracts (known as migratory 

streams, created by the fibers of bipolar niche 

cells), towards the medial proliferation zone 

(MPZ, cluster 9) and the lateral proliferation zone 

(LPZ, cluster 10) (Fig. 1; Zhang et al., 2009; 

Benton et al., 2011). Once in the proliferation 

zones, the second generation NPCs undergo at 

least one more division producing third and 

A	  

B	  

Figure 1. The crayfish brain and pathway of 
neurogenesis. (A) Schematic of crayfish brain, 
clusters 9 and 10 are indicated with green circles 
(Beltz et al., 2011). (B) Schematic of events 
leading to production of new neurons, matched 
with a corresponding image of the pathway, 
Green – BrdU, Red – Propidium Iodide, Blue – 
Synapsin (Sullivan et al., 2007).  
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subsequent generation cells, before progeny differentiate into neurons (Sandeman et al., 1992; 

Sullivan et al., 2007). New neurons integrate into brain cell clusters 9 and 10, and project to the 

olfactory and accessory lobes (Sandeman et al., 1992; Sullivan and Beltz, 2005). 

 
Tools for Examining Adult Neurogenesis 
 
 Neurons do not divide, and are dependent on stem cells to maintain their population. 

Neural precursors undergo a series of divisions before their progeny differentiate into neurons. 

Therefore, it is possible to label newborn neurons with mitotic markers. Bromodeuoxyuridine 

(BrdU) and 5-ethnyl-2’-deoxyuridine (EdU) are both thymidine analogues and act as nucleoside 

labels, as they incorporate into cells during the S phase of the cell cycle. Cells containing either 

BrdU or EdU can be visualized with confocal microscopy, after tissues treated with either 

marker have been processed immunohistochemically (BrdU) or chemically (EdU). In crayfish, as 

the clearing time of BrdU and EdU is 48 hours (Benton et al., 2011), both of these markers label 

cells that have gone through S phase within 48 hours of injection. As a result, one can determine 

how many NPCs have divided within a 48-hour time period and can examine the rate at which 

neurogenesis occurs. The ability to label and subsequently quantify newborn neurons creates the 

opportunity to experimentally examine how rates of neurogenesis change when manipulations 

are introduced into the system, and to track cells within the neural precursor lineage as they 

progress towards differentiation. 

 
Mind the Gap 
 

In vertebrates, neural stem cells are thought to be self renewing (Zhao et al., 2008), 

meaning that they divide asymmetrically so that one daughter cell remains an undifferentiated 

stem cell and the other gives rise to a differentiating (neuron-producing) lineage. One piece of 
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the stem cell hypothesis is the long-term self-renewal of NSCs, such that a lifetime supply of 

NSCs is stored in the brain from birth (NIH, 

http://stemcells.nih.gov/info/basics/pages/basics2.aspx). However, while long-term self-

renewing divisions are a hallmark of NSCs in vitro (Suh et al., 2007), there is no evidence that 

long-term self-renewal occurs in vivo. In fact, recent studies have shown very limited self-

renewal among NSCs in both the subgranular and subventricular zones (Encinas et al., 2011; 

Calzolari et al., 2015; Fuentealba et al., 2015). In crayfish, neural precursor cells are not self-

renewing, as first generation NPCs undergo divisions in which both daughter cells migrate away 

from the niche and give rise to subsequent differentiating generations (Zhang et al., 2009; Benton 

et al., 2011; Benton et al., 2013). Neural precursor cells were demonstrated to be non self-

renewing by Benton et al. (2013) with a double nucleoside labeling experiment in which 

freshwater crayfish Procambarus clarkii were treated with BrdU and then EdU 3.5-7 days later. 

First generation NPCs in the niche did not retain a BrdU label as they would have if they 

underwent asymmetrical divisions in which one cell migrated away and the other cell remained 

in the niche. Instead, first generation NPCs were only labeled with the second nucleoside, EdU, 

and BrdU labeling was found selectively in the second generation NPCs along the migratory 

streams and in later generations in brain cell clusters where differentiation occurs. These results 

demonstrate that first-generation NPCs do not self-renew. Despite this fact, the neural precursor 

cell population in the neurogenic niche (which is approximately 300 cells in large adult crayfish 

[Zhang et al., 2009]), is not depleted, and adult neurogenesis continues throughout the animal’s 

long life, which can span from fifteen to twenty years. Importantly, NPCs undergo one division 

every 48 hours, indicating that 300 NPSs are inadequate to sustain lifelong adult neurogenesis in 
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crayfish (Benton et al., 2011). Thus, NPCs must be replenished from a source external to the 

niche (Zhang et al., 2009; Benton et al., 2013).  

The existence of an external source of NPCs was demonstrated by the Beltz lab through 

studies in which animals were injected with BrdU and the presence of labeled cells in the niche 

was examined at various time points up to 21 days after injection (Fig. 2; Benton et al. 2014). 

First generation precursor cells residing in the niche were labeled with BrdU on days 1-4 after 

injection. No labeled cells were observed in the niche from days 5-7 after injection. This result 

was expected, as the cell cycle time for niche precursor cells is 48 hours at minimum (Benton et 

al., 2011). Therefore, 5-7 days post injection falls after the 48 hour clearing time of BrdU and the 

additional 48 hours required for any BrdU-labeled first generation precursors to complete the cell 

cycle and migrate from the niche (Benton et al., 2011).  However, on days 8-14 after injection, 

BrdU-labeled cells were again observed in the niche, long past the BrdU clearing time. As BrdU 

is no longer readily available to label cells residing in the niche, these labeled cells must have 

incorporated BrdU in their source tissues at the time of the initial injection and then migrated to 

the niche. It has been concluded that the time between BrdU injection and the arrival of labeled 

Figure 2. BrdU cells appear in the niche after a 
“gap” period, days after the BrdU clearing 
time. BrdU-labeled cells were quantified in the 
niches of crayfish that were sacrificed at 
varying intervals after BrdU injection. The 
likelihood of BrdU-labeled cells residing in the 
niche was plotted over time, for each of the 
sampling days post injection. BrdU-labeled 
cells were observed in the niche between days 
1-4, none were observed from days 5-7, and 
between days 8-14, BrdU-labeled cells were 
again observed in the niche. Images of niches 
on days 1, 6, and 8 are displayed below the 
graph, propidium iodide - cyan, glutamine 
synthetase – blue, BrdU – red, scale bars 
represent 50um (Benton et al., 2014). 
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cells in the niche, including the delay or “gap” period from days 5-7, reflects the time required 

for cells in the source tissue to complete their lineages, be released, and travel to and incorporate 

into the niche (Benton et al., 2014).  

 
Cells from the Immune System Generate Adult-Born Neurons in Crayfish 
 

Recent work in the Beltz lab has outlined the functional relationship between the immune 

system and adult neurogenesis in crayfish (Benton et al., 2014). Unlike mammalian immune 

systems that are comprised of innate and adaptive responses, crayfish only possess an innate 

immune system in which hemocytes, or blood cells, are an integral player (Benton et al., 2014). 

There are two distinct tissues that form the crayfish immune system, the hematopoietic tissue 

(HPT) and the anterior proliferation center (APC), which generate hemocytes and release them 

into circulation (Noonin et al., 2012; da Silva et al., 2013). In vitro studies aimed at identifying 

the extrinsic source of the precursor cells examined the affinity of cells from various tissues for 

the niche, including green gland, hepatopancreas, hematopoietic tissue, and hemocytes (Benton 

et al., 2011). Of the tissues examined, hemocytes were strongly attracted to the niche and were 

the only cell type to demonstrate any such affinity. This result suggests that hemocytes produced 

by tissues from immune system may contribute the labeled NPCs appearing after the “gap” 

period.  

To examine whether hemocytes contribute to the NPC population in the neurogenic niche 

in vivo, adoptive transfers were performed in which EdU-labeled blood cells were transferred 

from donors to live recipient crayfish (P. clarkii; Benton et al., 2014). EdU-labeled donor cells 

were subsequently found in the neurogenic niche of recipient crayfish, as well as integrated into 

the neuronal cell clusters 9 and 10, where they resembled neurons morphologically. 

Additionally, by seven weeks after the recipient was injected, the cells that had integrated into 
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the neural clusters expressed the expected neurotransmitters for the brain regions into which they 

had been incorporated (orcokinin in cluster 9 and SIFamide in cluster 10) (Benton et al., 2014). 

These experiments suggest that cells of the hematopoietic or immune system are competent to 

become neuronal precursor cells, and are a likely source of the NPCs involved in adult 

neurogenesis in crayfish.  

 
Immune System-Brain Connections in Mammals 
 

 The involvement of the immune system in adult neurogenesis is not restricted to crayfish 

or invertebrates. In fact, there is a great deal of evidence suggesting that immune cells are 

capable of acting as neural precursors and giving rise to adult born neurons in mammalian 

species. Several studies in rodents have demonstrated that bone marrow may be induced to 

express electrophysiological neuronal properties in response to changes in the extracellular 

environment (Sanchez-Ramos et al., 1998; Sanchez-Ramos et al., 2000; Kohyama et al., 2001). 

Additionally, bone marrow cells and their derivatives are known to migrate to the brain and 

express neuronal markers (Kopen et al., 1999; Woodbury et al., 2000; Bonilla et al., 2002; Hess 

et al., 2002; Makar et al., 2002). Bone marrow cells have also been shown to express glial and 

neuronal genes (Goolsby et al., 2003). These findings in rodents are extended by two human 

studies in which bone marrow transplants from male donors were administered to female 

recipients. Cells that had the morphological and molecular characteristics of neurons and that 

carried the Y-chromosome were subsequently found in the brains of female recipients after 

death, further demonstrating the ability of bone marrow to migrate into the brain and 

differentiate into cells that have neuronal properties (Mezey and Chandross, 2000; Cogle et al., 

2004).  
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However, many of these studies have been disputed, as some have argued that while bone 

marrow cells may have the ability to differentiate into neurons, this might not occur under 

normal physiological circumstances. Additionally, radiation is required in all mammalian studies 

of this nature, so that bone marrow transferred from one organism to another is not rejected. 

Some have proposed that this radiation may compromise the integrity of the blood brain barrier, 

allowing bone marrow cells to simply pass into the brain, a phenomenon that they argue would 

not occur in the absence of radiation (van Vulpen et al., 2002; Sirav and Seyhan, 2011). 

However, studies have demonstrated that mesenchymal stem cells, pluripotent stem cells found 

in adipose tissue, bone marrow, and blood, are able to cross the blood brain barrier under healthy 

conditions (Ruster et al., 2006; Steingen et al., 2008; Chamberlain et al., 2012). This evidence 

supports the possibility that immune-derived stem cells migrate to the adult mammalian brain 

where they may become neuronal precursors.  

 
The Present Study: Research Aims and Significance 
 

Current experiments in the Beltz lab are specifically focused on the immune system as a 

possible source of neuronal precursor cells in crayfish. Previous experiments have demonstrated 

that hemocytes act as neural precursors, giving rise to cells that morphologically and chemically 

resemble neurons and that integrate into clusters 9 and 10 (Benton et al., 2014). However, it is 

impossible to definitively state that these immune derived cells differentiate into functional 

neurons without electrophysiological data demonstrating that they share the electrical properties 

of neurons, which are integral to forming functioning neural connections. While nucleoside 

labels such as BrdU and EdU act as selective labels for immune-derived cells in adoptive transfer 

experiments (Benton et al., 2014), they can only be visualized after sacrifice of the animal and 

tissue fixation. This limitation makes it impossible to use these nucleoside labels as in vivo 
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markers, as would be necessary for determining the electrophysiological properties of immune 

derived cells in clusters 9 and 10.  

The present study will examine whether the 

cells arising from blood-derived precursor cells in 

crayfish are fully functional neurons and form 

neural connections by using an in vivo marker, 

green fluorescent protein (GFP). GFP can be 

visualized in vivo with fluorescence microscopy, 

as it spontaneously cyclizes to form a highly 

conjugated molecule, providing a green 

fluorescent emission (Fig. 3). The present study 

aims to develop a transgenic crayfish that 

constitutively expresses green fluorescent protein 

(GFP) in all tissues, though most importantly in the 

hematopoietic tissues that generate blood cells. GFP-expressing blood cells will be adoptively 

transferred to recipients, and their progression followed as with the EdU-labeled cells used 

previously (Benton et al., 2014). The hypothesis is that the GFP-expressing blood cells will 

follow the same path described in Benton et al. (2014) and will be attracted to the niche, and 

generate a lineage of cells whose descendants will be located in brain clusters 9 and 10. 

However, the GFP expression will provide the means for examining the properties of immune-

derived cells in the brain in vivo. Thus, the goal of this thesis project has been to generate 

crayfish that generate GFP-labeled (GFP+) blood cells. These transgenic crayfish will provide a 

Figure 3. Chemical mechanism of 
spontaneous cyclization of green fluorescent 
protein (GFP). This reaction results in the 
production of a highly conjugated system, 
causing the protein to have fluorescent 
properties.  
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means for replicating the studies of Benton et al. (2014), and extending these to include 

electrophysiological analyses of GFP+ cells in brain clusters 9 and 10.  

This thesis project describes two types of studies that were conducted with the final goal of 

doing electrophysiological studies of brain cells that are derived from adoptively transferred 

blood cells. The first study focuses on developing a GFP expressing crayfish by transfection with 

a lentiviral vector. Expression of GFP in the immune tissues will allow for immune-derived cells 

from GFP-expressing donors to be tracked in vivo within the brains of adoptive transfer 

recipients. Electrophysiological experiments may then be conducted on these cells to determine 

whether they have the same electrical properties as neurons and form functional neural 

connections. A dorsal approach has been established for electrophysiological studies of the 

crayfish brain (Sandeman et al., 2009). However, immune derived cells integrate into the brain 

ventrally through the neurogenic niche. Little is known regarding the timeline of cell movement 

from the ventral surface to the dorsal surface of the brain within cluster 10. In order to determine 

whether a dorsal approach may eventually be used for electrophysiological experiments or 

whether a new ventral approach must be developed, a second study was conducted in which the 

movement of newborn cells was tracked from ventral to dorsal regions of cluster 10. Together, 

these two studies lay the foundation for future electrophysiological examination of immune 

derived cells integrated into cluster 10 of the crayfish brain.  

 
Materials and Methods 

 
I. Animals: Experiments were conducted with either crayfish Procambarus clarkii or 

Procambarus fallax. Animals were maintained in the Wellesley College Animal Care Facility at 

room temperature on a 12/12 light/dark cycle. Aquariums contained artificial pond water 

consisting of double distilled water, trace minerals, and sodium bicarbonate.  



	  

	   18	  

 
II. Lentiviral Transfection: Transgenic GFP+ crayfish were developed by soaking the 

parthenogenic crayfish species Procambarus fallax in a lentiviral GFP vector during critical 

post-embryonic developmental stages. Using a parthenogenic (asexually reproducing) model is 

advantageous as GFP transfection may be passed down to future generations. The lentiviral 

particle achieves transfection by inserting its DNA into the DNA of cells it infects, so that the 

cells themselves transcribe and translate it along with their own DNA, in this case causing cells 

to produce GFP. The viral DNA is additionally replicated along with the host DNA during 

cellular division cycles, so that descendants of all transfected cells will also contain the GFP 

gene (Craigie and Bushman, 2012). The transduction particle is promoterless and is 

constitutively expressed once the vector has been incorporated (Sigma-Aldrich). Therefore, this 

particle is ideal for transfecting a wide range of cell types, including those in the immune tissues 

as well as hemocytes, and is appropriate for the present study.  

Shortly after hatchlings separated from the mother, crayfish (P. fallax) were soaked in the 

Sigma MISSION TurboGFP Lentiviral Transduction Particles (Sigma Aldrich) for 10 hours at a 

concentration of 2:100 in crayfish saline (205 mM NaCl, 5.4 mM KCl, 34.3 mM CaCl2, 1.2 mM 

MgCl2, and 2.4mM NaHCO3), and again during stages 4 and 5 of juvenile development (Figure 

4; Vogt et al., 2004). These post-embryonic stages were strategically chosen in order to 

maximize probability of transfecting the ovaries and later developing a line of GFP transfected 

progeny. Transfection of immune tissues and hematopoietic cells was confirmed with confocal 

microscopy following either dissection of the HPT and APC or blood draws, in which 100-200ul 

of blood was drawn per animal and mounted on poly-L lysine treated slides. Tissues and blood 

samples were subsequently fixed with 4% paraformaldehyde in 0.1 phosphate buffer (PB; 20mM 

NaH2PO4, 80 mM Na2HPO4; pH 7.4) and processed with Hoechst (a nuclear stain). A subset of 
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hemocytes was additionally processed following standard immunohistochemical methods (see 

immunohistochemistry methods below) using an anti-GFP primary antibody. 

 

 

Figure 4. Timeline of Procambarus fallax exposure to lentiviral GFP construct during post-embryonic development. 
Animals were exposed to a lentiviral GFP vector at stages 2, 4, and 5 of post-embryonic development. 
Developmental stage was determined based on the length of the animal.  
 
 
 
III. Confirmation of GFP Transfection Using Western Blot: 
 
Tissue Homogenization and Protein Isolation: Tissues including brain, HPT, green gland, 

ovary, APC, and hepatopancreas were dissected from GFP-transfected P. fallax in crayfish 

saline. HPT and hepatopancreas were additionally dissected from control animals. Tissues were 

then homogenized in a 4oC cold room with 1µl of protease inhibitor per 20mg of tissue in 500µl 

of homogenization buffer (10mM Tris(base), 10% glycerol, 400mM NaCl, 1mM DTT, 1mM 

EDTA, pH = 7.4 at 4oC). Homogenates were centrifuged at 12,000 revolutions per minute at 4oC 

for ten minutes, and the supernatants were collected and stored were stored at -80oC.  

 

Bradford Assay: Protein concentrations of homogenized tissue samples were quantified using 

the colorimetric Quickstart Bradford Protein Assay (BioRad). A 2mg/ml bovine serum albumin 

(BSA) standard was used, and was diluted to 1.5 mg/ml, 1 mg/ml, 750 ug/ml, 500 ug/ml, 250 

ug/ml, and125 ug/ml in order to establish a standard curve for protein concentration. 20 uL of 

either standard or sample was combined with 1mL of ambient 1x Bradford Dye Reagent 
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(BioRad), and incubated at room temperature for at least five minutes and up to one hour. 

Absorbance of the standards and samples was then measured with a spectrophotometer at 595 

nm. The spectrophotometer was first zeroed before reading with a blank sample containing 

homogenization buffer that had been incubated with the 1x Bradford dye. A standard curve was 

created by plotting the concentration of protein standards against their 595nm absorbance values.  

This curve was then used to determine the concentration of the protein samples.  

 
 
Western Blot: Proteins from GFP transfected animals as well as controls were loaded into a 

NuPAGE protein gel (Thermofisher) secured in the buffer core filled completely with 1x 

Running Buffer (Thermofisher). The outer buffer chamber was filled 75% with 1x Running 

Buffer. As protein concentrations of the samples were very low, the maximum amount of protein 

possible was loaded per well from each tissue sample. From controls, 7.35 ug of HPT and 20.7 

ug of hepatopancreas, and from GFP transfected animals, 24.4 ug of ovary, 26.38 ug of 

hepatopancreas, 5.72 ug of HPT, 2.99 ug of APC, and 6.98 ug of brain were loaded onto the gel. 

Additionally, 5 ul of rainbow kaleidoscope ladder (BioRad) was loaded. The gel was run at 100V 

for two hours.  

A piece of PVDF membrane the size of the NuPAGE gel was incubated in methanol for 

two minutes, and then incubated in transfer buffer (1x NuPAGE transfer buffer, 1% methanol) 

for twenty minutes. After proteins were run, the gel was aligned with the PVDF membrane and 

assembled into an XCell blot module in transfer buffer, with two blotting pads and a piece of 

filter paper on either side of the gel and transfer membrane. The inner chamber of the blot 

module was filled with transfer buffer, and the outer chamber with deionized water. The transfer 

was then run at 30V for one hour. 



	  

	   21	  

 Following transfer, the PVDF membrane was incubated for one hour at room temperature 

in 3% milk in tris-buffered saline (TBS), and then in 3% milk in tris-buffered saline with tween 

(TBST) and mouse anti-GFP (1:1000, Abcam) at 4o overnight. The membrane was then rinsed 

three times for fifteen minutes in TBST and incubated for one hour at room temperature in Alexa 

fluor 488nm goat anti-mouse (1:2000, Jackson ImmunoResearch Laboratories). The membrane 

was subsequently rinsed in TBST for fifteen minutes, and quickly rinsed in water. The Western 

blot was imaged using a BioRad imager.  

 

IV. Adoptive Transfers: Blood samples from GFP transfected P. fallax were examined for GFP 

expression prior to adoptive transfer. Blood draws were conducted with 25-gauge needles and 25 

ul of anticoagulant buffer (AC buffer, 0.14M NaCl, 10mM EDTA, 30mM trisodium citrate, 

26mM citric acid, 0.1M glucose, pH 4.6) was taken into the syringe before drawing blood. After 

removal, blood was immediately mixed with 50ul of AC buffer, and injected into the recipient 

crayfish (P. fallax) with a clean needle.  

 

V. Quantitative Assessment of Newborn Cell Movement Throughout the Brain 
 
EdU and BrdU injections: P. Clarkii were injected with either 5-bromo-2’deoxyuridine (BrdU; 

0.5ml of 5mg/mL in crayfish saline) or 5-ethynyl-2’deoxyuridine (EdU; 0.5 mL of 0.02-

0.2mg/mL in crayfish saline). P. fallax were injected with EdU.  

 

Sectioning: Following BrdU or EdU injection, brains were dissected from injected P. clarkii at 

several time points: 4 (n=3), 6 (n=2), 8 (n=2), 10 (n=3), and 12 (n=2) weeks after injection, and 

from injected P. fallax at 7 weeks after injection (n = 2). Brains were fixed overnight in 4% 
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paraformaldehyde in 0.1 phosphate buffer. Tissues were subsequently sectioned at 100um with a 

Vibratome and processed with standard immunocytochemical (BrdU) and chemical (EdU) 

methods, as well as with Hoechst.  

 

Cell Counts: The Leica Microsystems TCS SP5 microscope and Leica Microsystems LAS AF 

software (Leica Microsystems GmbH, Wetzlar, Germany) was used to visualize and count all 

cells labeled with either BrdU or EdU and Hoechst in cluster 10 of each brain section. Cells were 

counted by an individual observer. Sections were ordered from ventral to dorsal, and separate 

cell counts were conducted for the ventral, middle, and dorsal thirds of the brain in order to 

evaluate the movement of cells throughout cluster 10 as they differentiate. As individual animals 

undergo varying levels of cell proliferation, the number of cells counted in cluster 10 of each 

third of the brain were normalized and represented as percentages, so that data could be easily 

compared across animals. These percentages were calculated by counting the labeled cluster 10-

cells within each third of the brain sections (ventral, middle, dorsal) and dividing these values by 

the total number of labeled cells in cluster 10. These data therefore indicated the proportion of 

labeled cells residing in each third of the brain for an individual animal. 

 

VI. Immunohistochemistry: Immunohistochemical processing was conducted following 

standard procedures (Zhang et al., 2009). Tissues were rinsed several times with 0.3% Triton X-

100 in PB (PBTx) for 1.5 hours (brains) or 15 minutes (blood cells), and incubated overnight in 

primary antibodies at 4oC. Brains treated with BrdU were additionally incubated in 2NHCl for 

45 minutes prior to treatment with primary antibodies. Samples were again rinsed in PBTx as 

previously indicated and incubated overnight in secondary antibodies and the nuclear stain 
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Hoechst (4’,6-diamidino-2-phenylindole; Molecular Probes) in the dark at 4oC. Tissues were 

then rinsed with PB for 1.5 hours (brains) or 15 minutes (blood cells) and mounted with Fluoro-

Gel (Electron Microscopy Sciences) for viewing and imaging with a Leica TCS SP confocal 

microscope and Leica Microsystems LAS AF software (Leica Microsystems GmbH, Wetzlar, 

Germany).  

The following primary antibodies were used in the present study: rat anti-BrdU (1:50; 

Accurate Chemical) and mouse-anti GFP (1:100, Living Colors). The complementary secondary 

antibodies that were used (Jackson ImmunoResearch Laboratories) were goat anti-rat IgG-CY3, 

goat anti-mouse IgG-CY3, and goat anti-mouse IgG-CY5.  

 

Results & Discussion 
 
 
I. Generation of Transgenic P. fallax as blood donors for adoptive transfers  
 
Results 

 
A. Transfection of P. fallax with GFP 

 
 In order to transfect P. fallax with GFP, animals were exposed to a lentiviral GFP vector 

at key points during post-embryonic development. Immune tissues, including the HPT and APC, 

and hemocytes of transfected and control crayfish were subsequently examined with confocal 

microscopy at eight weeks to six months after initial exposure to the GFP lentiviral transduction 

particle in order to determine levels of GFP transfection. No fluorescence was observed in 

control tissues (Fig. 5 A, D, F). Cytoplasmic labeling in the GFP emission spectrum was 

observed in the HPT, the APC, and in hemocytes of transfected animals, suggesting successful 

GFP transfection (Fig. 5 B, C, E, G). However, the signal was weak and quickly degraded under 

laser excitation, and as a result, was difficult to image.  
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Figure 5. Green fluorescent protein (GFP) expression in Procambarus fallax. APC (A), HPT (D), and hemocytes 
(F) of control animals. GFP expression in the APC (B, C), HPT (E),  and hemocytes (G) of P. fallax, eight weeks 
after exposure to lentiviral transduction particles in vivo. Signal intensity was maximized with the gain and offset 
settings on the microscope in order to illustrate the labeling. Green = GFP, Grey = Hoechst.  
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In order to evaluate the percentage of GFP+ hemocytes in transfected animals, a mouse 

anti-GFP primary antibody was used in conjunction with an Alexa 647nm-labeled goat anti-

mouse secondary antibody to overcome the challenges that rapid signal degradation posed for 

counting cells. Hemocytes treated with this antibody appeared to have a very strong GFP signal 

that did not degrade throughout imaging on the confocal microscope (Fig. 6). Hemocytes from 

control animals were examined at the same time, and were not found to have any labeling in the 

GFP emission spectrum. Upon later examination, however, control samples had strong 

cytoplasmic fluorescent labeling in the green (488nm) emission spectrum, resembling labeling 

observed in transfected animals. The fluorescence observed in control hemocytes suggests that 

the confocal microscope was not functioning properly at the time control samples were originally 

examined.  

An experiment was conducted in order to elucidate the source of the fluorescence in the 

488nm (green) channel in control animals (not transfected with GFP). Blood samples were taken 

from control P. fallax and processed with three separate treatments, (1) Hoechst; (2) Hoechst and 

goat anti-mouse IgG-CY5 secondary antibody alone; and (3) Hoechst, mouse anti-GFP primary 

antibody, and goat anti-mouse IgG-CY5 secondary antibody, as was previously used to process 

hemocyte samples from GFP-transfected animals. Hemocytes were not found to fluoresce when 

treated with Hoechst alone (Fig. 7). However, when hemocytes were treated with Hoechst and 

secondary antibody, cells fluoresced in the far red (647nm), red (549nm), and green (488nm) 

emission spectra, despite the secondary antibody only providing a fluorescent tag in the far red 

range (Fig. 8).  The same result was observed when hemocytes were treated with Hoechst, 

primary, and secondary antibodies (Fig. 9).  When examined in the absence of cells, the 

secondary antibody alone did not cause fluorescence in any channel other than the appropriate 
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far-red range. Therefore, the secondary antibody is somehow inducing autofluorescence in 

hemocytes in channels where the fluorophore does not emit.  

 
 

Additional secondary antibodies were examined in order to determine whether the 

observed autofluorescence effect could be induced by secondary antibodies in general, or 

whether it was specific to the goat anti-mouse IgG-CY5 secondary antibody used in these 

experiments. Hemocytes from P. fallax were processed with Hoechst and either goat anti-mouse 

IgG-CY2 or IgG-CY3 secondary antibody. Cells only fluoresced in the appropriate emission 

spectrum for the antibody used, indicating nonspecific antibody labeling of hemocytes. Unlike in 

previous studies employing goat anti-mouse IgG-CY5, cells did not fluoresce across emission 

spectra. 

 

A 

D C 

B Figure 6. Hemocytes from 
Procambarus fallax 
transfected with Green 
Fluorescent Protein (GFP), 
treated with antibodies. 
Hemocytes were processed 
with Hoechst (A, cyan), 
mouse-anti GFP and goat 
anti-mouse IgG-CY5 (C, 
blue). (D) Overlay of 
panels A-C. Increased 
fluorescence compared 
with controls was observed 
in the 488nm emission 
spectrum (B, green). Smart 
gain 516 for Hoechst, 875 
for 488nm, 484 for 647nm; 
smart offset consistently 
zero.  
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Figure 7. Hemocytes from Procambaras fallax do not fluoresce in the 488nm, 594nm, or 647nm emission spectra 
when treated with Hoechst. Hemocytes were treated with Hoechst and imaged with the confocal microscope.  Cells 
appeared to only have a Hoechst label (A, Cyan). (B) 488nm (green) emission spectrum, (C) 594nm (red) emission 
spectrum, (D) 647nm (far red) emission spectrum, (E) overlay of panels A-D. The smart gain was 714 for Hoechst 
and 800 for all other emission spectra, and the smart offset was consistently zero. 
 

 
Figure 8. Hemocytes from Procambaras fallax fluoresce in the 488nm, 594nm, and 647nm emission spectra when 
treated with Hoechst and goat anti-mouse IgG-CY5. Hemocytes were processed and imaged with the confocal 
microscope.  (A) Cells were labeled with Hoechst (Cyan). (B) Fluorescence was additionally observed in the 488nm 
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(green) emission spectrum, (C) the 594nm (red) emission spectrum, (D) and the 647nm (far red) emission spectrum 
(visualized in blue). (E) Overlay of panels A-D. The fluorescent signal in the 647nm emission spectrum is 
attributable to the IgG-CY5 secondary antibody. The smart gain was 714 for Hoechst and 800 for all other emission 
spectra, and the smart offset was consistently zero. While the signal in the 594nm emission spectrum is difficult to 
visualize, it is clearly visible on the confocal microscope.  
 

 

Figure 9. Hemocytes from Procambaras fallax fluoresce in the 488nm, 594nm, and 647nm emission spectra when 
treated with Hoechst, mouse anti green fluorescent protein, and goat anti-mouse IgG-CY5. Hemocytes were 
processed and imaged with the confocal microscope. (A) Cells were labeled with Hoechst  (Cyan). (B) Fluorescence 
was additionally observed in the 488nm (green) emission spectrum (C) the 647nm (far red) emission spectrum, (D) 
and the 594nm (red) emission spectrum (visualized in blue). (E) Overlay of panels A-D. The fluorescent signal in 
the 647nm emission spectrum is attributable to the IgG-CY5 secondary antibody. The smart gain was 714 for 
Hoechst and 800 for all other emission spectra, and the smart offset was consistently zero. While the signal in the 
594nm emission spectrum is difficult to visualize, it is clearly visible on the confocal microscope. 
 

B. Western blots to confirm GFP expression. 

Western blot was used to test whether the green cytoplasmic label originally observed on 

the confocal microscope in transfected animals was in fact due to GFP expression.  Two separate 

Western blots were run. A Bradford Protein Assay was employed to determine the overall 

E D 

C B A 

	  



	  

	   29	  

protein concentration of tissue samples. For the first blot, the Bradford assay revealed very low 

protein concentrations in tissues homogenized from one animal, due to the small size of crayfish 

tissues. As a result, the amount of protein possible to run on a Western blot was far below the 

recommended value for all tissues except the ovaries. No GFP signal was observed on the blot 

using these samples. Therefore, for a second blot, tissues were pooled from four transfected 

animals. Protein concentrations remained low, however, for hepatopancreas and ovary, it was 

possible to load either 10 ug of protein or above per well, the minimum suggested protein mass 

to use in a Western blot. These two tissues from transfected animals were assayed, along with 

brain, HPT and APC, despite having less than 10ug of protein per well. Additionally, HPT and 

hepatopancreas were examined from control animals. No GFP was detected in either the tissues 

of control or GFP lentiviral treated animals (Figure 10).  

 

 
 

 

C. Adoptive transfers using blood from GFP-transfected crayfish. 

Several adoptive transfers were performed with hemocytes from GFP transfected P. 

fallax. Brains of recipients were examined with confocal microscopy three to four days after in 

order to determine whether GFP+ donor hemocytes had migrated to the niche or the streams. 

Fluorescent green cells were only observed near the niche in the brain of one recipient (Fig. 11). 

Figure 10. Negative western blot evaluation 
of green fluorescent protein (GFP) 
expression in tissues from Procambarus 
fallax transfected with a GFP lentiviral 
vector and control tissues. Western blot 
analysis shows that the GFP antibody 
recognizes the positive control full length 
GFP peptide at 39 kDa, but does not 
recognize protein from loaded samples.  
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Mouse anti-tyrosinated tubulin and goat-anti IgG-Cy5 were used to visualize the niche in 

adoptive transfers. As hemocytes labeled immunohistochemically with goat anti-mouse IgG-

CY5 were found to fluoresce strongly in the 488nm emission spectrum (Fig. 8 and 9), it is 

possible that the signal observed in this experiment was caused by the same effect.  

 
Figure 11. Green fluorescently labeled cells observed near the niche in the brain of Procambarus fallax adoptive 
transfer recipient four days after injection with hemocytes from a green fluorescent protein (GFP) transfected 
donor. The neurogenic niche is outlined in white. (A) Hoechst labeled cells (grey), (B) Anti-tyrosinated tubulin 
labeled cells (blue), (C) Green fluorescently labeled cells, (D) Overlay of panels A-C.  
 
 
 
 
Discussion 

 
A. Transfection of P. fallax with GFP   
 

Green fluorescence in the immune tissues that give rise to hemocytes, as well as in 

hemocytes themselves, was observed in GFP transfected of P. fallax with confocal microscopy.  

GFP transfection was similarly achieved in cell cultures from Daphnia using a viral GFP vector 

(Robinson et al., 2006). However, the green signal observed in the present study is weak and 
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fades rapidly, and therefore is difficult to visualize. As a result, the established transfection 

method is likely not adequate to produce labeled cells that may be visualized clearly after 

adoptive transfer experiments for electrophysiology.  

While employing an anti-GFP antibody in order to more easily quantify the percentage of 

GFP+ hemocytes in treated animals, fluorescence of hemocytes across several emission spectra 

was observed. Initially, in GFP-transfected hemocytes treated with only anti-GFP, the 488nm 

and 647nm emission spectra were examined, in which it was expected to observe GFP and anti-

GFP signals, respectively. The 647nm-labeled secondary antibody was specifically chosen in the 

effort to avoid any signal overlap with green fluorescence, as its emission spectrum is the farthest 

from that of GFP. The fluorescence in the green range was very strong compared to the weak 

signal previously observed in tissues from transfected animals that had not been processed with 

antibodies. This increase in signal strength was interpreted as a sign of increasing GFP 

expression over time since initial transfection. While control samples initially appeared negative, 

later examination showed that these fluoresced identically to the hemocytes from experimental 

GFP-transfected animals, and were also found to fluoresce in the 594nm (red) emission 

spectrum. As this phenomenon also occurred in control animals upon treatment with 647nm-

labeled goat-anti mouse secondary antibody in the absence of primary antibody, and did not 

occur when cells were treated with Hoechst alone, it is likely that treatment with the 647nm-

labeled goat-anti mouse secondary antibody triggers autofluorescence in hemocytes. When 

examined in the absence of cells, the secondary antibody did not did not generate a fluorescent 

signal in any channel other than the appropriate emission wavelength. This result suggests that 

the fluorescence observed in these antibody-treated hemocytes was not due to a bleed-through 

effect of the antibody alone, and further supports the hypothesis that hemocyte autofluorescence 
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was inducted in the presence of the secondary antibody used. The mechanism of this 

autofluorescence and how it may be triggered by the secondary antibody employed is unknown. 

Other secondary antibodies were tested as additional controls for this problem, and treated 

hemocytes only fluoresced in the emission spectrum associated with the secondary antibody 

employed and did not fluoresce across several emission spectra. Therefore, the autofluorescence 

observed is not induced by all secondary antibodies, and may be specific to the goat anti-mouse 

IgG CY5 antibody used. In order to avoid this problem in future experiments, different 

antibodies should be used instead of the goat anti-mouse IgG CY5 from Jackson 

ImmunoResearch Laboratories for immunohistochemical processing of tissues.   

Unfortunately, due to malfunctions with the confocal microscope at the time of 

examining control hemocytes, the strong signal in the green emission spectrum caused by 

autofluorescence was mistaken for a strong GFP signal in the transfected animals. While weak 

transfection had previously been achieved, this strong signal appeared encouraging for future 

experiments. As a result, efforts were focused on pursuing adoptive transfer experiments with 

GFP+ hemocytes instead of improving transfection methods. However, current experiments are 

examining ways in which to increase GFP transfection in order to produce a cellular label that 

may be easily visualized in vivo.  

 

B. Western blots to confirm GFP expression. 

Western blot was conducted as a molecular confirmation of GFP expression in 

transfected animals. It is important to note that Western blot was not used to examine expression 

of GFP in hemocytes, but rather in hepatopancreas, ovary, brain, and the immune tissues (HPT 

and APC). No tissues other than blood cells in the crayfish appear to undergo autofluorescence 
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or to consistently non-specifically label in the presence of secondary antibody, as extensive work 

in the Beltz lab has been performed using immunohistochemistry on various tissues and, 

excluding hemocytes, no such fluorescence has been observed in the past. Additionally, in 

preparing samples for Western blot, cell contents are separated with centrifugation prior to 

loading the gel in order to isolate protein from insoluble cellular materials. As a result, cell 

contents that may autofluoresce or routinely non-specifically label after immunohistochemical 

processing (e.g. granules) may have been removed from samples. Furthermore, goat anti-mouse 

IgG CY2 secondary antibody was used to visualize bands in the Western blot, which did not 

cause any autofluorescent effects across emission spectra in hemocytes. Therefore although 

Western blot, an antibody-based assay, was used to evaluate GFP expression, the results were 

likely not compromised by autofluorescent effects caused by processing with secondary 

antibody.  

While no GFP was detected by Western blot in the tissues examined, this is not 

necessarily indicative of failed transfection. Low amounts of protein were loaded onto the 

Western gel due to the small size of crayfish tissues, despite pooling samples from multiple 

animals. It is suggested to load between 10 and 50 ug of protein onto a Western gel (Novus-

Biologicals, 2015). While 20 ug of protein from the hepatopancreas and 26ug from the ovaries 

were assayed, the amount of protein loaded may still have been increased up to 50 ug, the 

maximum suggested mass of protein to load onto a Western gel, and expression possibly 

detected. Below 10 ug of brain, HPT and APC were loaded onto the gel, and were thus below the 

standard amount of protein suggested for this assay. Additionally, the cytoplasmic label in the 

GFP emission spectrum observed on the confocal microscope was very weak, suggesting that 

GFP expression is low and likely difficult to detect, even with Western blot. Furthermore, only a 
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fraction of cells in transfected tissues were observed to express GFP on the confocal microscope, 

likely increasing the difficulty of detecting the already-weak signal. It is likely that if GFP is 

weakly expressed, it makes up a very small portion of the overall protein measured in each 

sample. While it is possible that the negative Western result may truly indicate an absence of 

GFP, it is also very possible that the GFP concentration was much too low to be detected with 

this method.  

C. Adoptive transfers using blood from GFP-transfected crayfish. 

Several adoptive transfers were conducted with hemocytes from GFP-transfected donors, 

and labeled cells were only found near the niche in the brain of one recipient. This number is 

alarmingly low, as previous studies have observed BrdU labeled donor hemocytes in the niches 

of thirty percent of recipients (J Benton, personal communication). These transfers were 

performed prior to discovering that the GFP label observed on the confocal microscope in cells 

treated with anti-GFP antibodies was artifact, and that the signal was in fact much weaker than 

previously thought. The absence of GFP+ cells observed in the brains of recipients may therefore 

be due to a weak and rapidly degrading GFP signal, rather than an inability of donor hemocytes 

to migrate to the niche.  

In the case of the one recipient in which labeled cells were observed near the niche, it 

cannot be determined whether the green fluorescent signal was truly a GFP+ cell, or whether it 

was artifact, as mouse anti-tyrosinated tubulin and goat anti-mouse IgG-CY5 antibodies were 

used in order to visualize the niche. This adoptive transfer was performed before the 647nm-

labeled goat-anti mouse was discovered to cause fluorescence of hemocytes across emission 

spectra. As a result, the 594nm emission spectrum was not evaluated, which may have provided 

insight as to whether the secondary antibody triggered fluorescence of hemocytes in this case. In 
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future adoptive transfer experiments, the goat anti-mouse IgG-CY5 secondary antibody from 

Jackson ImmunoResearch Laboratories should be avoided to reduce the possibility of hemocytes 

autofluorescing, and other antibodies should be used to visualize the niche.  

 
 
II. Quantitative Assessment of Newborn Cell Movement Throughout the Brain 

 
 

Results 
 

 Nucleoside-labeled cells were tracked in the cluster 10 of the P. clarkii brain, in order to 

establish a timeline of cell movement for newly born neurons. These data will serve as a basis for 

electrophysiological examination of adult-born neurons derived from the adoptive transfer of 

GFP+ blood cells. As neurons initially incorporate into the ventral surface of the brain near the 

site where the migratory streams end and then move dorsally, newborn cells were counted in 

cluster 10 from the ventral to the dorsal surface, to determine at what point a sizable population 

of labeled cells may be found in the dorsal third of the brain. As standard brain preparations used 

for electrophysiology expose the dorsal surface of the brain and are perfused through the dorsal 

artery, it is important to know at what time-point transferred cells may be expected to reside 

dorsally (Sandeman et al., 2009). 

Brains were examined 4, 6, 8, 10, and 12 weeks after injection with either BrdU or EdU 

(Fig. 12). At four weeks after injection, the majority of labeled cells reside in the ventral and 

middle thirds of the brain, and few cells in the dorsal third. By six weeks after injection, cells 

appear to have moved more dorsally, as the majority of labeled cells were found in the middle 

third of the brain rather than the ventral third. At eight weeks post-injection, cells are 

approximately evenly split across the brain, with an average of 32% of cells in the ventral third, 

31% of cells in the middle, and 36% of cells in the dorsal third for all animals examined (n=2). 
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Importantly, the average percentage of cells in the dorsal third remains relatively stable 

throughout weeks ten to twelve for all animals assessed at each time point, as does the general 

distribution of cells throughout the remainder of the brain.  In animals examined at ten weeks, on 

average 47% of labeled cells reside in the ventral third, 24% in the middle, and 28% in the dorsal 

third (n=3). In animals assessed at twelve weeks, an average of 38 % of labeled cells were found 

in the ventral third, 25% in the middle, and 36% in the dorsal third (n=2). Therefore, a few 

dorsally-located labeled cells can be found as early as week 4 post-injection in some animals, but 

these are not found consistently until later time points. However, by eight weeks post injection of 

a mitotic marker, a relatively stable proportion of cells inhabit the dorsal third of the brain in P. 

clarkii.   

In order to determine whether cells newly incorporated into the brain reach a similar 

migratory distribution in P. fallax, the species being used for transfection, cell movement was 

examined seven weeks following BrdU injection in two animals. The full study (as above in P. 

clarkii) was not conducted in P. fallax because this colony of crayfish has limited numbers of 

animals that are needed for many types of studies, and this species cannot be acquired from 

commercial vendors. As P. fallax appear to develop more rapidly than P. clarkii, it was 

hypothesized that cells may reach the relatively stable distribution observed at eight weeks in P. 

clarkii sooner, and thus cell movement was evaluated seven weeks after injection. A sizable 

portion of cells were found in the dorsal third of the brain, and cells appeared to be well 

distributed with on average 42% of labeled cells in the ventral third, 22% of cells in the middle, 

and 35% of cells in the dorsal third. By seven weeks, labeled cells in P. fallax seem to have 

reached a distribution very similar to the stable distribution observed by eight weeks in P. 

clarkii.   
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Figure 12. Dorsal Movement of BrdU or EdU labeled cells after incorporation into Cluster 10. (A) 
Procambarus clarkii were injected with EdU or BrdU, and at 4 (n=3), 6 (n=2), 8 (n=2), 10 (n=3), and 12 
(n=2) weeks post injections. (B) Procambarus fallax were injected with EdU (n=2) and at 7 weeks post 
injections. All brains were assessed for how far dorsally EdU or BrdU labeled cells moved through cluster 
10. Each bar represents the total EdU or BrdU labeled cells in cluster 10 of one animal. 
 
 
Discussion 

 
 The positions of newly integrated cells throughout cluster 10 in the brain were evaluated 

in order to determine the timeline during which neurons move from the ventral region of brain 

cluster 10 where the migratory streams insert to more dorsal regions. Past electrophysiological 

techniques have recorded from cells on the dorsal surface of the brain. However, this may pose a 

problem in experiments examining the electrophysiological properties of newborn neurons that 

incorporate into the brain ventrally, as will be the case in future adoptive transfer experiments 

that will be conducted with GFP+ hemocytes. It is therefore important to know at what time-

point labeled cells reach the dorsal surface, if established electrophysiological protocols are to be 

employed. In P. clarkii, 36% of labeled cells were found to move to the dorsal third of the brain 

after eight weeks. Furthermore, this population in the dorsal region of the brain remained 

relatively stable through to twelve weeks, the final time point examined. These results suggest 

that by eight weeks, a sizable proportion of cells move from the ventral surface of the brain to 
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the dorsal surface, and that electrophysiological experiments with a dorsal approach may be 

conducted at that time. As current experiments focusing on GFP+ hemocytes are being 

conducted in P. fallax, it is important to determine whether cells follow the same movement 

pattern and timeline as in P. clarkii. As cells in P. fallax examined at seven weeks after BrdU 

injection reached a similar distribution throughout the brain to cells observed in P. clarkii at 

eight weeks with 35% of cells residing in the dorsal third of the brain, experiments utilizing a 

dorsal approach may be conducted on P. fallax as early as seven weeks after adoptive transfers.  

 Electrophysiological studies assessing whether GFP+ immune derived cells in the brain 

form neural connections must be conducted after cells have differentiated to anatomically and 

chemically to resemble neurons. By three weeks post-BrdU injection, BrdU-labeled cells 

demonstrate anatomical neuronal differentiation, and by eight weeks post-injection, a stable 

population of BrdU-labeled cells in cluster10 expresses SIFamide, a neurotransmitter that is 

found in the majority of cluster 10 cells (Schmidt and Demuth, 1998; Kim et al., 2014). 

Therefore, electrophysiological studies on GFP+ cluster 10 cells may be conducted eight weeks 

after adoptive transfers. By this time-point, a stable and sizable population of labeled cells may 

be expected to reside in the dorsal third of the brain, and thus, eight weeks or later after adoptive 

transfer of hemocytes will be the optimal time for electrophysiological experiments to be 

conducted.   

Future Directions 

The present studies have established a method for GFP transfection of P. fallax with a 

lentiviral vector and assessed the timeline of newborn cell movement from the ventral to dorsal 

regions of cluster 10, creating a foundation for future electrophysiological examination of 

immune-derived cells in the crayfish brain. In the first study, a method for transfection was 
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developed and GFP+ cells in HPT, and APC, and hemocytes were observed with confocal 

microscopy in animals exposed to the lentiviral vector early in post-embryonic development with 

confocal microscopy. This GFP signal was weak and quickly degraded in the majority of 

animals. Western blot did not confirm GFP expression in these crayfish tissues, which may have 

been due to low protein concentrations. In the second study, a timeline of newborn cell 

movement within cluster 10 was established which indicated that a stable population of cells is 

found in the dorsal region of cluster 10 by 7-8 weeks following BrdU-labeling in P. clarkii and 

P. fallax. These data suggest that electrophysiological studies using the standard dorsal approach 

(e.g., Sandeman et al., 2009) can be conducted following this time-point with the expectation 

that cells derived from adoptive transfers would have reached the dorsal regions of cluster 10.  

Current experiments are evaluating whether GFP transfection was truly achieved using 

polymerase chain reaction (PCR) and gel electrophoresis. This method is much more sensitive 

than Western blot, as only one copy of the GFP vector must be incorporated into the DNA for it 

to be amplified by PCR and detected on a gel. As a result, PCR will give a clear indication as to 

whether the GFP vector has been successfully transfected into animals. If a positive result is 

attained, future efforts will be focused on increasing GFP transfection and maximizing 

expression. 

It is unknown whether GFP expression with the established transfection method, if 

confirmed by PCR, is weak due to insufficient copies of the vector incorporating into the host 

DNA, or whether it is due to low levels of expression following incorporation. In order to 

address these possibilities and improve GFP transfection, in vitro experiments are being 

conducted by Kara Banson in the Beltz lab that aim to increase vector incorporation as well as 

protein expression. It is advantageous to conduct trials in vitro, as results can be quickly 
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observed and methods subsequently altered without having to wait several months for animals to 

fully develop before assessing transfection efficacy, as is the case in whole-animal transfection. 

Studies have demonstrated that incubating cells in histone 2A, which has DNA delivery activity, 

can improve the efficiency of lentiviral transfection by increasing the number of copies of DNA 

incorporated into host DNA (Liu and Soderhall, 2006).  Using Histone 2A will not likely prove 

successful for in vivo whole-animal transfection, as it may be difficult to effectively inject 

animals with the protein and ensure that it effectively reaches the immune tissues. However, cells 

used in adoptive transfers need not come from live animals, and labeled cells generated in cell 

cultures may instead be injected into recipient crayfish. Thus, using histone 2A to transfect cells 

in culture with GFP will potentially provide the labeled cells necessary to perform future 

adoptive transfer experiments in order to generate newborn neurons in recipient crayfish for 

electrophysiological analysis.  

It is possible that the weak GFP signal observed is also due in part to low GFP expression 

levels after transfection. The Woodchuck Hepatitis Post Transcriptional Regulatory Element 

(WPRE) has been demonstrated to increase expression of lentiviral transgenes by increasing the 

number of mRNA transcripts exported from the nucleus (Zufferey et al., 1999). In order to 

improve GFP expression, a WPRE vector will be introduced in conjunction with the lentiviral 

GFP vector. This combination of vectors may be used either in whole-animal transfection or to 

transfect cells in culture that may then be used for adoptive transfer experiments. 

In future studies, transgenic crayfish expressing GFP will be used as hemocyte donors to 

repeat the adoptive transfer experiments performed by Benton et al. (2014). The use of GFP as a 

marker will allow for the movement of donor cells to be tracked in the living tissues of GFP 

naïve recipients without requiring animal sacrifice, immunohistochemical processing, and 
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fixation to view labeling, as is necessary with nucleoside labels. Additionally, as GFP will be 

expressed in donor cells and their descendants, cells arising from donor lineages within the 

recipient will retain the GFP label. It will therefore be possible to visualize GFP+ immune 

derived cells integrated into clusters 9 and 10 in the brains of recipient crayfish in vivo, and to 

perform electrophysiological experiments to determine whether these cells create functional 

synapses and acquire the electrical properties of fully functioning neurons. Future evaluation of 

electrophysiological properties will be conducted by comparing activity patterns of GFP+ 

descendants of donor cells with nearby mature neurons native to the recipient’s brain. 

Furthermore, as GFP is expressed throughout the entire cell, the morphology of the GFP+ cells 

can be visualized, and it may be determined whether labeled cells project to and innervate 

normal targets in the recipient crayfish.  

The functionality of new neurons born into the adult mammalian hippocampus was 

examined in a similar study, conducted by van Praag et al. (2002). This study used a retroviral 

GFP vector which labeled dividing cells, and therefore was expressed in all newborn neurons, 

making it possible to visualize them in vivo. The authors performed electrophysiological 

recordings of GFP+ neurons in live hippocampal slices and compared results to recordings from 

mature hippocampal neurons. To assess the ability of cells to fire action potentials, action 

potential thresholds of GFP+ cells were evaluated. To assess whether GFP+ cells had functional 

inputs, spontaneous postsynaptic currents were recorded, which also allowed the authors to 

assess whether neurons were receiving excitatory or inhibitory inputs. To evaluate whether new 

neurons receive appropriate projections, postsynaptic recordings were measured in response to 

extracellular stimulation of the perforant path. Passive membrane properties were also evaluated, 

including capacitance, time constant τm, voltage, and resistance.  
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Future studies will evaluate newborn GFP+ immune-derived cells in clusters 9 and 10 using 

methods similar to van Praag et al. (2002). The same electrophysiological properties that were 

evaluated by van Praag et al. (2002) will be evaluated in GFP+ cells in the crayfish brain, and 

compared to those of mature resident cells in the same cluster.  Additionally, the morphology of 

GFP+ cells will be evaluated, as well the ability of these cells to form synapses, which will be 

determined using immunohistochemistry. As newborn neurons demonstrate different 

electrophysiological properties from mature neurons (van Praag et al., 2002; Schmidt-Hieber et 

al., 2004), electrophysiological recordings will be conducted at different time points following 

adoptive transfers, to determine whether the immune-derived GFP+ cells experience the same 

maturation patterns that are observed in adult mammalian neurogenesis. 
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Appendix A: Method for Quantifying Percentage of GFP Labeled Hemocytes 
 

 
 A method was developed for quantifying the percentage of GFP+ hemocytes in GFP 

transfected P. fallax in order to determine transfection efficacy. Due to weak signal and rapid 

degradation, anti-GFP was used to easily visualize and count GFP+ cells. However, as the 

antibody was later discovered to cause non-specific autofluorescence in some hemocytes, the 

calculated percentages of labeled blood cells became invalid. However, the method established 

to determine the percentage of labeled cells will prove useful for future counting experiments.  

 Blood samples were imaged on the confocal microscope, and six distinct regions on the 

slide were photographed per sample. Regions were selected for imaging based solely on high cell 

density, determined by Hoechst labeling. Following imaging, counting was conducted by a 

blinded individual. The total number of Hoechst labeled cells per image as well as the number of 

cells with cytoplasmic green fluorescent labeling were tabulated. The percentage of green 

fluorescently labeled cells was calculated by dividing the total number of fluorescent cells by the 

total number of Hoechst labeled cells.  The percentage of green fluorescently labeled cells was 

averaged across all six frames photographed per blood sample, yielding an average percentage of 

labeled hemocytes per animal. This method may be improved by increasing the number of 

frames imaged per sample to increase accuracy by expanding the sample size. 
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Appendix B: Protein Concentrations of Tissue Homogenates Determined by the Bradford 
Assay 

 
 
 Western blots were run with tissues from transfected P. fallax in order to confirm GFP 

expression. A Bradford assay was first used to determine the protein concentration of tissue 

samples. The first Western blot that was run was loaded with protein from an individual 

transfected animal and an individual control. The Bradford assay revealed low protein 

concentrations for the majority of these homogenates (Table 1).  

 Due to the extremely low protein concentrations in the first Western blot, a second 

western blot was performed with protein samples pooled from four animals. The Bradford assay 

revealed higher protein concentrations in the pooled samples compared to samples collected 

from individual animals (Table 2). However, protein concentrations remained relatively low for 

the purpose of Western blot.  

Treatment Tissue Protein Concentration 
(ug/mL) 

GFP 
Transfected 

Hepatopancreas 349.3 

 Ovary 2234.3 
 HPT 439.3 
 APC 2.99 
 Brain 176 
 Green Gland 112.6 
Control HPT 5.55 
 Hepatopancreas 744.89 

 
Table 1. Protein concentrations  of Procambaras fallax tissue homogenates determined by Bradford Assay. Tissues 
were dissected and homogenized either from one GFP transfected animal or from one control. Protein 
concentrations  were determined by Bradford assay, and are indicated in ug/mL. 
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Treatment Tissue Protein Concentration 
(ug/mL) 

GFP 
Transfected 

Ovary 2440.75 

 Hepatopancreas 2637.83 
 HPT 572 

 APC 298.87 
 Brain 697.6 
Control HPT 734.5 
 Hepatopancreas 2070.75 

 
Table 2. Protein concentrations  of pooled Procambaras fallax tissue homogenates determined by Bradford Assay. 
Tissues were dissected and homogenized from either four GFP transfected animals or from four control. Protein 
concentrations  were determined by Bradford assay, and are indicated in ug/mL. 
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Appendix C: Determining the Amount GFP Full-Length Peptide to Run on Western Blot 
 

 
 A bright band on a western blot may overpower more subtle bands or make the gel 

difficult to image. In order to ensure that the recombinant full-length GFP peptide that was used 

as a positive control would not overpower potential experimental results, a Western blot was run 

with different amounts GFP loaded per well, ranging from 2000-12.5 ng (Fig. 13). 800ng of 

peptide loaded onto the gel produced a distinctly visible signal that was not overwhelming. This 

amount of peptide was thus used to run the first Western blot examining GFP transfected tissues. 

However, due to the lack of GFP expression in experimental and control samples, 800ug of the 

full-length GFP peptide appeared overly powerful. As a result, the amount of peptide loaded onto 

the second experimental Western blot was reduced to 600ug.  

 
Figure 13. Evaluation of signal strength for a range of 2000-12.5ng of GFP full-length peptide loaded in a Western 
blot. Western blot analysis shows that the GFP antibody recognizes the full length GFP peptide at 39 kDa.  
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