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Abstract

We introduce Anderson’s and Livingston’s definition of a zero-divisor graph of a commutative
ring. We then redefine their definition to include looped vertices, enabling us to visualize
nilpotent elements. With this new definition, we examine the algebraic and graph theoretic
properties of different types of Artinian rings, culminating in an algorithm that determines
the corresponding Artinian rings to a zero-divisor graph. We also will explore and develop
an algorithm for the specific case of Artinian rings of the form Zn, and we will conclude by
examining the uniqueness of zero-divisor graphs.
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1 Introduction

Istvan Beck first introduced the idea of a zero-divisor graph of a commutative ring in
1988 [1], where he mostly focused on colorings. In 1998, Anderson and Livingston further
explored the zero-divisor graph of a commutative ring, investigating the interplay between
ring-theoretic properties of R and graph theoretic properties of Γ(R) [2]. The zero-divisor
graph that Anderson and Livingston introduced allows us to visually represent algebraic
properties of a commutative, unital ring through graph theoretic properties. This ability to
use graph-theoretic properties to visualize underlying algebraic properties is applicable to
many different types of rings. Since Anderson’s and Livingston’s initial paper, variations
of zero-divisor graphs of many different types of rings have been studied extensively. De-
Meyer, McKenzie, and Scheider defined a zero-divisor graph for a commutative semi-group
[3], Akbari created a zero-divisor graph of non-commutative rings [4], Axtell, Coykendall,
and Stickles created a zero-divisor graph of polynomials and power series over commutative
rings [5], and Redmond created an ideal-based zero-divisor graph [6]. These are just a few
of the variations of zero-divisor graphs. Mathematicians are constantly looking at new ways
of using zero-divisor graphs to visually represent underlying algebraic properties.

In this paper, we will introduce Anderson’s and Livingston’s zero-divisor graph. We will
then modify their definition in order to visualize nilpotent elements. This will allows us to
visualize an element’s relationship with itself.

Definition 1.1. Zero-Divisor Graph of a Commutative Ring [2]. Let R be a
commutative ring. We associate a simple graph Γ(R) to R with vertices Z(R)∗ = Z(R)−{0},
the set of nonzero zero-divisors of R, and for distinct x, y ∈ Z(R)∗, the vertices x and y are
adjacent if and only if xy = 0.

Throughout this paper, all rings are assumed to be commutative with unity unless explic-
itly stated otherwise. A ring R is said to be reduced if R has no non-zero nilpotent elements.
A ring R is said to be decomposable if it can be written as a direct product R1 ×R2, where
R1 and R2 are nonzero rings, otherwise R is said to be indecomposable. A ring is said to be
a field, denoted F , if it is a commutative ring with unity in which every nonzero element
is a unit. An ideal of a ring is a subring I of a ring R such that for every r ∈ R and a ∈ I
both ar and ra are in I. A maximal ideal of a ring R is an ideal I, not equal to R, such that
if J is an ideal which contains I as a subset, then either J = I or J = R. An annihilator,
denoted AnnR(S), of S is the set of all elements r ∈ R such that for each a ∈ S, ra = 0.
The nilradical of a ring R is the set of all nilpotent elements. The Jacobson radical of R is
the intersection of the maximal ideals in R.

A graph is a complete graph with n vertices if each pair of graph vertices is connected by
an edge, and we denote it by Kn. The degree of a vertex x, denoted as δ(x), is the number
of edges incident to x. This definition does not include the edge when a vertex is adjacent to
itself. The distance between two vertices x and y is the length of the shortest path between
them, declaring the length of each edge to be 1, and is denoted by d(a, b). The diameter
of a graph G is sup{d(x, y) : x and y are distinct vertices of G}. A walk of a graph G is
an alternating sequence of points and lines v0, x1, v1, . . . , vn−1, xn, vn, beginning and ending
with points, in which each line is incident with the two points immediately preceding and
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following it. If the walk is closed, then it is a cycle provided its n points are distinct and
n ≥ 3. The girth of a graph G, denoted g(G), is defined as the length of the shortest cycle.
A graph is a bipartite graph if its graph vertices can be decomposed into two disjoint sets,
with m and n elements, respectively, such that no two graph vertices within the same set are
adjacent. A complete bipartite graph is a bipartite graph where every vertex of the first set
is connected to every vertex of the second set, and is denoted Km,n. The complete bipartite
graph K1,n, is called a star. A graph G is said to be star-shaped reducible if and only if there
exists a g ∈ V (G) such that g is adjacent to all other vertices in G and g2 = 0. This means
that the vertex g in the graph G is looped once.

In this paper, we will first establish a few realizability properties of zero-divisor graphs.
We then will classify zero-divisor graphs of Artinian rings. In approaching this problem, we
will first introduce the basic “building blocks” of Artinian rings, which are local rings and
fields. We will then take direct products of these rings to build more complex Artinian rings,
and we will observe how the structure of the zero-divisor graph reflects these complexities.
We will introduce algorithms to identify the different types of Artinian rings corresponding
to different zero-divisor graphs. We will also generate a specific algorithm classifying Ar-
tinian rings of the form Zn to different zero-divisor graphs. To conclude, we will develop an
overarching algorithm that combines the algorithms we will develop throughout the paper
in order to correspond specific Artinian rings to a zero-divisor graph.

In this algorithm, we first observe the vertices of our zero-divisor graph. If all of the
vertices are looped, then our corresponding Artinian ring is a local ring (that is not a field);
if all of the vertices are not looped, then our corresponding ring is a direct product of fields; if
there exists looped and unlooped vertices, but all of the vertices are either looped or adjacent
to a looped vertex, then the corresponding ring is a direct product of local rings (that are
not fields); and if there exists looped and unlooped vertices and at least one unlooped vertex
is not adjacent to any looped vertex, then the corresponding ring is a direct product of local
rings and fields. After observing the vertices and determining the type of ring associated to
the zero-divisor graph, we follow the specific algorithm for each type of ring to determine a
narrowed set of possible associated rings to the zero-divisor graph. Following this algorithm,
we will observe the uniqueness of our zero-divisor graphs.

This final algorithm that we will develop allows us to visually observe any given zero-
divisor graph of an Artinian ring and determine a small set of possible associated rings to
the zero-divisor graph.

2 Looped Zero-Divisor Graphs

Anderson’s and Livingston’s zero-divisor graph Γ(R) allows us to visualize the zero-
divisors of a ring as well as the relationships between the zero-divisors. However, this def-
inition does not show us relationships of zero-divisors with themselves. The zero-divisor
graphs of many rings are distinguished by nilpotent elements. Therefore, we will modify
Anderson’s and Livingston’s zero-divisor graph definition so that we can visualize nilpotent
elements through looped vertices. We will do this by defining loops in relation to the degree
of nilpotence of an element. Before we do this, however, we want to also distinguish between
the different types of degrees that an element, x, will have in the zero-divisor graph. We
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defined δ(x) in the introduction as the number of vertices incident to x. We also want to
define the degree, or number, of loops a nilpotent element will have in the zero-divisor graph.

Definition 2.1. Degree of Loops. If a vertex, x is a nilpotent element such that
xn = 0 and xn−1 6= 0, then we draw n − 1 loops and define ζ(x) = n − 1, where ζ is the
number of times that the vertex x loops around itself.

With this new definition of ζ(x), we can extend Anderson’s and Livingston’s definition
of the zero-divisor graph to include loops.

Definition 2.2. Zero-Divisor Graph of a Commutative Ring with Loops. Let
us associate a simple graph Γ∗(R) to R with vertices Z(R)∗ = Z(R) − {0}, for distinct
x, y ∈ Z(R)∗, the vertices x and y are adjacent if and only if xy = 0 and a vertex x is
adjacent to itself, with ζ(x) = n− 1, if xn = 0 and xn−1 6= 0 ∀n ∈ Z with n ≥ 0.

Example 2.1. By Anderson’s and Livingston’s zero-divisor graph definition, Γ(Z8)
and Γ(Z6) look the same. However, when we use this new definition that includes looped
vertices, we can see that Γ∗(Z6) and Γ∗(Z8) are actually distinguished by nilpotent elements.
Furthermore, we can see that Γ∗(Z8) contains vertices, x, y, and z with ζ(x) = 1, and
ζ(y) = ζ(z) = 2. Whereas in Γ∗(Z6) the vertices x, y, and z have ζ(x) = ζ(y) = ζ(z) = 0.

Γ∗(Z8) Γ∗(Z6), Γ(Z8), Γ(Z6)

There are some fundamental properties that Anderson and Livingston established in their
definition of a zero-divisor graph that continue to hold in this new definition of a zero-divisor
graph that contains loops. This next theorem establishes restrictions on the diameter and
girth of zero divisor graphs:

Theorem 2.1. ([2], Theorem 2.3.) Let R be a commutative ring. Then Γ∗(R) is con-
nected and diam(Γ∗(R)) ≤ 3. Moreover, if Γ∗(R) contains a cycle, then g(Γ∗(R)) ≤ 7.

Axtell, Stickles, and Trampbachls established an important property about local rings:
([7], Theorem 2.3.)
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Theorem 2.2. Let R be a finite commutative ring with identity. Then the following are
equivalent:

(1) Z(R) is an ideal;
(2) Z(R) is a maximal ideal;
(3) R is local;
(4) Every x ∈ Z(R) is nilpotent;
(5) There exists b ∈ Z(R) such that bZ(R) = 0, and hence Γ(R) is star-shaped
reducible.

This leads to the following facts about local rings:

Fact 2.1. If R is a local ring, then Z(R) =Nil(R).
Proof. If R is local, then every x ∈ Z(R) is nilpotent from Theorem 2.2. The only pos-
sible nilpotent elements of a ring are zero-divisors. Therefore, we have no other nilpotent
elements, so Z(R) = Nil(R). �

Therefore, we can see that if we have a local ring, then every zero-divisor will be nilpotent.
So, if we have a zero-divisor graph where all the vertices are looped, then we can assume
that R is a local ring (that is not a field). The following fact establishes that a local ring
will have a unique maximal ideal, M = Z(R).

Fact 2.2. If R is a finite local ring, then Z(R) is the unique maximal ideal.
Proof. From Theorem 2.2. we know that if R is a finite local ring then Z(R) forms a maximal
ideal. To prove that is must be unique, suppose that we have another ideal, I of R. Then
either I ( Z(R), in which case it is not maximal or I contains a unit, and so it is not proper.
Therefore, if R is local, then it has one maximal ideal. �

We also want to focus on when certain structures of graphs are realizable. Anderson
and Livingston established the following corollary and theorem about complete zero-divisor
graphs.

Corollary 2.1. ([2], Corollary 2.7.) Let R be a finite commutative ring. Then there is
a vertex of Γ∗(R) which is adjacent to every other vertex if and only if either R ∼= Z2 × F ,
where F is a finite field, or R is local.

Theorem 2.3. ([2], Theorem 2.8.) Let R be a commutative ring. Then Γ∗(R) is com-
plete if and only if either R ∼= Z2 × Z2 or xy = 0 for all x, y ∈ Z(R).

When Γ∗(R) is a complete graph, the following theorem shows that all vertices in Γ∗(R)
will be looped once.

Theorem 2.4. Let R be a finite commutative ring. if Γ∗(R) is a complete graph of the
form Kn where n ≥ 2 then every vertex x ∈ Γ∗(R) is looped with ζ(x) = 1. There is an
exception when n = 2, and R ∼= Z2 × Z2. In this case, none of the vertices will be looped.
Proof. Suppose that R is not isomorphic to Z2×Z2. From Corollary 2.1. and Theorem 2.3.,
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Γ∗(R) is complete if and only if R is local with maximal ideal M and M2 = 0. Since R is
a local ring, by Theorem 2.2., M = Z(R). Since M2 = 0, then x2 = 0 ∀x ∈ M . Therefore,
x2 = 0 ∀x ∈ Z(R). Since x2 = 0, then ζ(x) = 1 ∀x ∈ Z(R). Therefore, every vertex
x ∈ Γ∗(R) is looped with ζ(x) = 1.
Now suppose that R ∼= Z2 × Z2. Then Z(R)∗ = {(0, 1), (1, 0)}. Clearly, neither vertex is
looped, since (0, 1)2 = (0, 1) and (1, 0)2 = (1, 0). Since the Γ(R)∗ only has 2 adjacent ver-
tices, it is clearly complete. Therefore, when R ∼= Z2 × Z2 then Γ(R)∗ is complete without
loops, and therefore is an exception to Theorem 2.4. �

With our modified definition of a zero-divisor graph, we can establish the following the-
orem about vertices with δ(x) = 1:

Theorem 2.5. Let R be a finite commutative ring, and let |Γ∗(R)| > 2. For any end
vertex x with δ(x) = 1, x2 6= 0.
Proof. Suppose that x is an end vertex, and suppose, for a contradiction, that x2 = 0. Since
x is an end vertex with δ(x) = 1, then x must be adjacent to another vertex, y ∈ Z(R)∗.
Therefore, we have that xy = 0 and x2 = 0, thus x(x + y) = 0. Since x ∈ Z(R)∗, then
x+ y ∈ Z(R). We have 4 possible cases:
(1) Suppose that x+y = 0. Then −x = y. Since |Γ∗(R)| > 2 and Γ∗(R) is a connected graph,
we know that yz = 0, where z ∈ Z(R)∗/{x, y}. Thus z(−x) = 0. This is a contradiction
since δ(x) = 1. (2) Suppose that x + y = y. Then x = 0, a contradiction since x ∈ Z(R)∗.
(3) Suppose that x + y = x. Similarly to case (2), this is a contradiction. (4) Suppose that
x + y = z. Then xz = 0, a contradiction. Therefore, we have shown that all possible cases
are contradictions. Therefore, it must be the case that x2 6= 0. �

The next theorem states when a complete bipartite graph is realizable as a zero-divisor
graph.

Theorem 2.6. Let R be a finite commutative ring and let Γ∗(R) be a complete bipartite
graph, Km,n, where m,n > 1. Γ∗(R) must contain no looped vertices.
Proof. Suppose that Γ∗(R) is a complete bipartite graph, Km,n, where m,n > 1. We can
split the vertices into two distinct sets, X and Y .
Let X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn}. By definition, ∀xi, xk ∈ X and yj, yl ∈ Y ,
we have xiyj = 0, xixk 6= 0, and yjyl 6= 0.
Suppose, for a contradiction, that the ∀xk ∈ X and ∀yj ∈ Y , xnk = 0 and ynj = 0 for some
n ∈ Z and n > 0. Therefore, there is vertex xi has x2i = 0, therefore ζ(xi) = 1. Then
xi(xi + y1) = 0. Since xi ∈ Z(R)∗, then xi + y1 ∈ Z(R)∗. We have 5 possible cases:
(1) Suppose that xi + y1 = 0. Then y1 = −xi. So, (−xi)xk = 0. This is a contradiction. (2)
Suppose that xi + y1 = xi. Then y1 = 0, a contradiction since y1 ∈ Z(R)∗ (3) Suppose that
xi + y1 = y1. Similarly, to case (2), this is a contradiction. (4) Suppose that xi + y1 = xk.
Then xixk = 0, a contradiction. (5) Suppose that xi + y1 = yl. Then y1 = yl − xi. So
xky1 = xk(yl − xi) = xkyl − xkxi. Since Γ∗(R) is complete bipartite, xkyl = 0, therefore
0− xkxi = 0. Then xkxi = 0, which is a contradiction.
Therefore, we have shown that all possible cases are contradictions. Therefore, it must be
the case that Γ∗(R) contains no looped vertices. �
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In Section 8 of this paper, we will prove restrictions on the value of n and m in a zero-
divisor graph Γ∗(R) of the form Kn,m.

Now that we have established some fundamental properties of zero-divisor graphs, let us
now observe zero-divisor graphs of Artinian rings.

3 The Algebraic Structure of Artinian Rings

We first want to establish the algebraic structure of Artinian rings, which are rings that
satisfy the descending chain condition [8]. In this section, we will establish the algebraic
structure of Artinian rings. This algebraic structure will be reflected in the zero-divisor
graph.

The following theorem states how an Artinian ring can be decomposed:

Theorem 3.1. Structure Theorem for Artinian Rings (Theorem 8.7, [8])
An Artinian ring R is uniquely (up to isomorphism) a finite direct product of Artinian local
rings.

This theorem allows us to understand the basic “building blocks” of Artinian rings, which
we will distinguish as fields and as local rings (that are not fields). In this paper, we will
explore the zero-divisor graphs of both types of local rings. We will then use direct products
to build more complicated Artinian rings, and we will examine how the zero-divisor graph
reflects the more complicated underlying algebraic structure.

We will next establish certain properties about nilradicals of Artinian rings and the ideals
of direct products of rings. The following corollary states a property about the nilradical of
an Artinian ring (Atiyah and Macdonald Corollary 8.2. and Proposition 8.4., [8]):

Corollary 3.1. In an Artinian ring R, the nilradical Nil(R) is equal to the Jacobson
Radical and is nilpotent.

The following theorem allow us to understand how ideals are formed in direct products
of rings.

Theorem 3.2. If Ii is an ideal of Ri for i = 1, . . . , n, then every ideal of R =
∏n

i=1Ri

is of the form I1 × · · · × In.
Proof. We can prove this via induction of n. The case of n = 1 is trivial. It suffices
to prove the assertion for n = 2. Let (x1, x2) ∈ I1 × I2 and (r1, r2) ∈ R1 × R2. Then
(x1, x2)(r1, r2) = (x1r1, x2r2) ∈ I1× I2 and (r1, r2)(x1, x2) = (r1x1, r2x2) ∈ I1× I2. So, I1× I2
is an ideal of R1 × R2. Now let K ⊆ R1 × R2. Let I1 = {x1 ∈ R1|(x1, x2) ∈ K for some
x2 ∈ R2} and I2 = {x2 ∈ R2|(x1, x2) ∈ K for some x1 ∈ R1}. Clearly, K ⊆ I1 × I2. Now
let (x1, x2) ∈ I1 × I2. Then (x1, x

′
2), (x

′
1, x2) ∈ K for some x′1 and x′2. Then, (x1, x2) =

(1, 0)(x1, x
′
2) + (0, 1)(x′1, x2) ∈ K. Therefore, K = I1 × I2. �

Furthermore, we can establish a theorem about the maximal ideals of a direct product
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of rings.

Theorem 3.3. If I = I1 × · · · × In is an ideal of R = R1 × · · · × Rn, then the maximal
ideals of R have all I ′is equal to Ri for i = 1, . . . , n, except one Ij, with Ij 6= Rj and Ij is
maximal.
Proof. From Theorem 3.2., we know that if Ii is an ideal of Ri for i = 1, . . . , n, then
I1× · · · × In is an ideal of R1× · · · ×Rn. Now suppose that I is such that more than one of
the Ii’s is different from Ri. Then we can replace one of these I ′is with Ri and get an ideal
properly containing I. Therefore, a maximal ideal has all I ′is equal to Ri except for one, Ii.
It is clear that the one Ii with Ii 6= Ri is also maximal. �

Primary Decompositions play an important role in Artinian rings because, as the next
propositions and theorems point out, every ideal of an Artinian ring has a primary decom-
position.

Definition 3.1. Primary Ideals An ideal I in a ring R is primary if I 6= R and if
xy ∈ I, then either x ∈ I or yn ∈ I for some n > 0.

Definition 3.2. Primary Decompositions Let I be an ideal of a ring R. A pri-
mary decomposition of I is a finite collection {Q1, Q2, . . . , Qm} of primary ideals such that
I = Q1 ∩Q2 ∩ . . . ∩Qn.

Proposition 3.2. Existence of Primary Decomposition In a Noetherian ring, ev-
ery ideal has a primary decomposition.

Theorem 3.4. (Atiyah and Macdonald Theorem 8.5., [8]). A ring A is Aritnian if and
only if A is Noetherian and dimA = 0.

Therefore, in an Artinian ring, every ideal has a primary decomposition. The following
theorem allows us to distinguish between primary and non-primary ideals in the ideal lattice
of a ring, R.

Theorem 3.5. Suppose that I is an ideal of a ring R and suppose that I is not principal.
Therefore, I can be decomposed into two or more principal ideals.
Proof. Since I is not principal, then by Proposition 3.2. it has a primary decomposition con-
sisting of two or more primary ideals. So I = (x1, . . . , xn) = {a1x1 + . . .+ anxn|a1, . . . , an ∈
R}. Therefore, (x1) 6= (xn). This is because if (x1) = (xn), then x1 generates xn and all
the elements in (xn), so we would not have both x1 and xn written in I = (x1, . . . , xn).
Furthermore, we can see that (x1) = {ax1|a ∈ R} and (xn) = {axn|a ∈ R}, so (x1) ⊂ I and
(xn) ⊂ I. Therefore, we can see that the lattice structure will break into at least two ideals
after I. �

Now that we have established some properties about the algebraic structure of Artinian
rings and their ideals, we will start visualizing how these are reflected in the zero-divisor
graph for local Artinian rings and fields.
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4 Zero-Divisor Graphs of Fields and Other Local Rings

Fields and other local rings will be our basic building blocks in Artinian rings. This is
because all Artinian rings can be decomposed into a direct product of local Artinian rings
(as stated in the Structure Theorem for Artinian rings). First, let us establish that fields
have no zero-divisor graphs.

Theorem 4.1. The field F has no zero-divisor graph.
Proof. By definition, a field F is a ring in which 1 6= 0 and every non-zero element is a unit.
Therefore, since every non-zero element is a unit, there can be no zero-divisors. Therefore,
Γ∗(F ) will be empty. �

The following theorem allows us to identify the ideals of a field. It is also important to
note that the maximal ideal of a field F is (0).

Theorem 4.2. A ring R is a field if and only if (0) and (1) are its ideals.
Proof. ⇒ Suppose that the ring R is a field, and let I be an ideal of R. If I only contains 0,
then I = (0). If I does not only contain 0, then it contains at least one non-zero element x of
R, so x ∈ I. Since R is a field, then by definition every non zero element has a multiplicative
inverse, so x−1 ∈ R. By the definition of an ideal xx−1 = 1 must be in I. Therefore, 1 ∈ I,
so I = R. Hence I = (1). Therefore, if a ring R is a field, then (0) and (1) are its ideals.
⇐ Suppose that we have two ideals of a ring R, (0) and (1). It suffices to show that ev-
ery non-zero element, x ∈ R contains a multiplicative inverse. So let x ∈ r and consider
(x). By assumption, since the only two ideals of R are (0) and (1), then this means that
(x) must be (0) or (1). Since we assumed that x is nonzero, we find that (x) 6= (0). So
(x) = (1). This implies that 1 is a multiple of x, so there exists another nonzero element y
such that xy = 1. This is the definition of x having a multiplicative inverse. Therefore, R is
a field. So we have shown that if (0) and (1) are the only two ideals of R, then R is a field. �

Now we can observe the ideal lattice of local Artinian rings, and the relation between the
structure of the zero-divisor graph and the ideal lattice. We will start by introducing the
following proposition proved by Atiyah and Macdonald (Proposition 8.8, [8])

Proposition 4.1. Let R be an Artinian local ring and k be the residue field R/M . Then
the following are equivalent:

(1) Every ideal in R is principal;
(2) The maximal ideal of M is principal;
(3) dimk(M/M2) ≤ 1.

This leads us to the following result for local Artinian rings (that are not fields).

Proposition 4.2. Suppose that R is a local Artinian ring and that M is the unique
maximal ideal of R and M is also principal. Then every nonzero ideal of R is a power of M .
Proof. Since R is a local Artinian ring, by Corollary 3.1., the nilradical equals the Jacobson
radical, so M is nilpotent. Therefore, given a proper non-zero ideal I of R, since R is local
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and I ⊆M , then there is some r ≥ 1 such that I ⊆M r, but I *M r+1.
Next, we will prove that I = M r. Let us choose y ∈ I such that y 6∈ M r+1. We know that
M is principal, so suppose that M = (x) for some x ∈ R. Then, for some a ∈ I, we have
that y = axr.
But since I * (xr+1), then we have that a 6∈ (x). Since R is a local ring, then (x) = Z(R).
Therefore, if a 6∈ (x), then a is a unit in R. Therefore y = axr which implies that
xr = a−1y ∈ I since y ∈ I and a−1 ∈ R. So M r ⊆ I. �

Proposition 4.3. Suppose that R is a local Artinian ring (not a field) and that M
is a unique maximal ideal of R and M is also principal. Then |M | = pm(n−1), therefore
|Γ∗(R)| = pm(n−1) − 1, where pm is the order of the residue field k and n is the length of the
ideal chain.
Proof. Suppose that R is a local ring with maximal principal ideal M , and let k = R/M be
its residue field. Since R is Artinian, then M is finitely generated, so the images in M/M2

of a set of generators of M will span M/M2 as a vector space, and therefore dimk(M/M2)
is finite, where dimk is the dimension of M/M2 as a vector space over k. From Proposition
4.1., we know that dimk(M/M2) ≤ 1. So we have two cases. If dimk(M/M2) = 0, then
M = M2, implying that M = 0, and therefore R is a field, which which assumed was not
the case. Therefore dimk(M/M2) = 1. We also know by ([9]) that a finite field of order q
exists if and only if the order of q is a prime power, pm (where order is the number of ele-
ments). Therefore, |R/M | = pm, since it is a finite field, and since M/M2 is a 1-dimensional
vector space, then |M/M2| = pm as well. In fact |M i/M i+1| = pm for all 1 ≤ i ≤ n,
where n is the length of the chain of ideals. This is because R/M = {r + M |r ∈ R}
and M i/M i+1 = {mi + M i+1|mi ∈ M i}. Therefore, the R/M scalar multiplication on
M i/M i+1 is (r+M)(mi +M i+1) = rmi, which implies that M i/M i+1 has the structure of a
k−vector space. Therefore, dimk(M

i/M i+1) ≤ 1. If dimk(M
i/M i+1) = 0, this implies that

M i = M i+1 = (0). This implies that M i is the last ideal in our chain, so in this case i = n.
If i 6= n, then dimk(M

i/M i+1) = 1. Since |R/M | = pm, then |M i/M i+1| = pm. So we have
|Mn−1/(0)| = pm, implying that |Mn−1| = pm. Since |M/M2| = pm, then |M | = pm|M2|.
Since |M2/M3| = pm, then |M2| = pm|M3|. This implies that |M | = pmpm|M3|. This
continues until we get to |Mn−2/Mn−1| = pm, implying that |Mn−2| = pm|Mn−1| = pmpm.
Therefore, |M | = pm(n−1), and so |Γ∗(R)| = pm(n−1) − 1. �

Next, we can observe the properties of δ(x) and ζ(x) of a vertex x ∈ Γ∗(R) where R is a
local Artinian ring with a principal maximal ideal.

Proposition 4.4. Suppose that R is a local Artinian ring and that M is a unique prin-
cipal maximal ideal of R. If a vertex, x has the greatest value of ζ(x), then δ(x) = pm − 1.
Proof. Suppose that R is a local Artinian ring and that M is a unique maximal ideal of R
and M is also principal. Let M = (a), and suppose that the index of M is m, so am = 0
for all m ∈ Z where m > 1. Let x ∈ M and suppose that x has the highest value of loop,
ζ(x)=n − 1, where n is the length of the ideal chain. Let xm = 0 and xs 6= 0, ∀s ∈ Z such
that s < m. So only the zero-divisors in the last ideal in the ideal chain, Mn−1 are adjacent
to x. As we saw in the proof of Proposition 4.3., |Mn−1| = pm. However this includes 0,
so in the zero-divisor graph, we will see all vertices of the highest ζ(x) adjacent to pm − 1
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vertices. Therefore, δ(x) = pm − 1. �

In the proof of this proposition, we showed that for all vertices in Γ∗(R) such that x has
the greatest ζ(x) = n−1, only the zero-divisors in the last ideal chain Mn−1 will be adjacent
to x. This implies that in our zero-divisor graph of a local Artinian ring with a principal
maximal ideal, our vertices with the greatest ζ(x) must be adjacent only to the vertices in
our minimal ideal, which we can distinguish as the vertices adjacent to every vertex in Γ∗(R).

Below are examples of the different ideal lattices of local Artinian rings with a principal
maximal ideal.

Example 4.1. Ideal Lattice of a Local Artinian Ring with a Principal Maximal Ideal.
On the far left is the general structure, and then to the right of this there are specific
examples, such as F8/(x

2), Z81, and Z2[x]/(x3).

M

R

M2

. . .

Mm

(0)

(x)

F8/(x
2)

(0)

(3)

Z81

(9)

(27)

(0)

(x)

Z2[x]/(x3)

(x2)

(0)

We can generate the following algorithm that will allow us to identify a zero-divisor graph
correlating to a local Artinian ring with a single ideal chain, and then narrow down a set of
possible associated ring simply by observing the zero-divisor graph:

Algorithm 4.1. Determining a Local Artinian Ring with a Principal Maximal Ideal

1) Determine whether Nil(R) = Z(R), by observing whether all of the ver-
tices in Γ∗(R) are looped. If so, by Theorem 2.2., we know we have a local
ring.
2) For any x ∈ Γ∗(R), determine the greatest value of ζ(x) in Γ∗(R). This
value will be equal to n− 1, where n is the length of the ideal chain.
3) Now count the δ(x) of the vertices with the greatest ζ(x). From Propo-
sition 4.4., we know that δ(x) = pm − 1.
4) Check to see if |M | = pm(n−1). If this is the case, we may have an ideal
lattice that consists of a principal maximal ideal, and so we proceed to Step
5, and if not we have a more complicated ideal lattice.
5) We now observe the vertices with the greatest ζ(x). They must be adja-
cent to only the vertices in the minimal ideal, all of which must be adjacent
to every vertex in Γ∗(R). If this is not the case, then we do not have a
principal maximal ideal. If it is, proceed to step 6.
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6) We can determine that |R| = pmn, and we can determine that the ideal
lattice is a single chain.

From this algorithm, we can determine the order of R, as well as its ideal lattice, so we
can link the zero-divisor graph to a narrowed set of possible rings. We will exclude complete
graphs from this algorithm, because as we will see in Section 7, complete graphs can corre-
spond to ideal lattices that have a principal maximal ideal, as well as ideal lattices that have
a maximal ideal that is not principal.

In an ideal lattice that forms a chain of length 2, Γ∗(R) will be complete since all the
elements in the minimal ideal must be adjacent to all vertices in Γ∗(R), and since the length
of the chain is 2 (and includes (0)), the minimal ideal is also the maximal ideal. We will
prove these statements in Theorem 4.3. and Corollary 4.1.. We can also see that a ring with
a longer chain will maintain this core complete graph structure, corresponding to the mini-
mal ideal, and there will be numerous extensions off this core structure. This is because the
vertices in the other ideals in the ideal chain won’t necessarily be adjacent to one another.
However, every vertex in Γ∗(R) must be adjacent to the minimal ideal.

We can also find the degree of the loop which corresponds to where the ideal is in the
ideal chain. So in the ideal, M j, we expect all vertices x ∈ M j/M j+1 to have all the same
degree of loops, where M j+1 ⊂ M j. This is because if M j = (pr), then (M j)s = (pr)s = (0)
where 1 ≤ r ≤ m, where m is the index of M (the maximal ideal). Therefore, if a ∈ (pr),
then as = (cpr)s = csprs for any c ∈ R. This implies that as = 0 for any s ∈ Z such that
s ≥ m/r, and so the nilpotency of a is the least s ∈ Z such that s ≥ m/r.

The next theorems prove properties about the zero-divisor graphs of local Artinian rings
with a principal maximal ideal.

Theorem 4.3 Suppose that R is a local Artinian ring. If M is a principal maximal ideal,
then the minimal ideal will be adjacent to every vertex x ∈ Γ∗(R).
Proof. Since M is principal then M = (m) for some m ∈ R. Since R is local, then
M = (m) = Z(R) and M is nilpotent, therefore Mn = (m)n = (0) for some n ∈ Z with
n ≥ 2. Since M is a principal maximal ideal, by Proposition 4.2, every nonzero ideal of R is
a power of M . So the minimal ideal will be Mn−1 = (mn−1). If x ∈ (mn−1), then x = amn−1

and y ∈ (m), then y = bm for a, b ∈ R. Therefore, xy = abmn−1m = abmn = 0. Therefore,
every x ∈ (mn−1) is adjacent to every y ∈ Z(R). Therefore, every vertex in the minimal
ideal is adjacent to every vertex x ∈ Γ∗(R). �

Theorem 4.4. Suppose that R is a local Artinian ring. If M is a principal maximal
ideal, then every x ∈ Γ∗(R) with ζ(x) = 1 is adjacent to one another in Γ∗(R).
Proof. Since M is principal then M = (m) for some m ∈ R. Since R is local, then M is nilpo-
tent, therefore Mn = (m)n = (0) for some n ∈ Z with n ≥ 2. Since M is a principal maximal
ideal, by Proposition 4.2, every nonzero ideal of R is a power of M . Therefore, if M2 6= (0),
then Mn = (0) for some n > 2. We will have an ideal Mn−1, and (Mn−1)2 = M2n−2. We
can see that ∀n ≥ 2, we get 2n − 2 ≥ n. Therefore (Mn−1)2 = (0), so we have at least one
ideal that is squared nilpotent. Any element x in a squared nilpotent principal ideal must
be squared nilpotent, so ζ(x) = 1. Now we want to show that all elements in an ideal that
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is squared nilpotent will be adjacent. Suppose that (M j)2 = (0) for some 1 ≤ j ≤ n. If
(M j)2 = (0) then m2j = 0, so 2j ≥ n. Therefore, if x, y ∈ (mj), then x = amj and y = bmj

for some a, b ∈ R. Therefore xy = abmjmj = abm2j = 0. So x and y are adjacent to one
another in Γ∗(R). �

Corollary 4.1. Suppose that R is a local Artinian ring and M is a principal maximal
ideal. If M is also the minimal ideal, then Γ∗(R) is complete.
Proof. If M is both minimal and maximal, then it is the only nonzero ideal in the ideal
lattice of R. Since R is local, M = Z(R) is nilpotent. Therefore, Mn = (0) for some n ∈ Z.
However, if n > 2, then there would be a longer chain of ideals as all powers of M will be
in the ideal chain. Therefore, M2 = (0). So M = (x) = {ax|a ∈ R}. Therefore, there is an
element r = ax ∈ M and s = bx ∈ M . Clearly rs = axbx = abx2 = 0. This implies that all
elements in M are adjacent to one another, so Γ∗(R) is complete. �

We have now established algebraic properties of local Artinian rings and the behaviors of
the zero-divisor graphs that reflect the algebraic properties. We also developed an algorithm
that can be applied to a zero-divisor graph to determine whether we have a local Artinian
ring with a principal maximal ideal. Therefore, now if we are given a zero-divisor graph of
any Artinian ring, we can determine whether we have a local ring with a principal maximal
ideal, and if that is the case, we can narrow down to a set of possible associated rings simply
by observing the structure of the graph. In the next sections, we will demonstrate how it
works by applying it to Zn.

5 The Algebraic Structure of Zn
Rings of the form Zn are examples of Artinian rings. Therefore, to provide a better un-

derstanding of the correspondence between the zero-divisor graph structure and the algebraic
structure of Artinian rings, we will provide specific algorithms for Zn, and we will show how
this is a specific example of a more general Artinian ring structure. We are looking to create
an algorithm in which we can determine the ring simply by the structure of the zero-divisor
graph. In the case of Zn we will create algorithms assuming that we know that we have a
ring of the form Zn.

We will first observe the Fundamental Theorem of Arithmetic, which allows us to realize
that n can be written as a product of one or more primes.

Theorem 5.1. The Fundamental Theorem of Arithmetic [9] Each integer greater
than 1 can be written as a product of primes, and except for the order in which these primes
are written, this can be done in only one way.

We also want to introduce the Chinese Remainder Theorem for Commutative Rings to
understand how and when commutative rings can be decomposed into a direct product of
rings.
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Theorem 5.2. The Chinese Remainder Theorem for Commutative Rings.
([10]) If R is a commutative ring and I1, ..., Ik are ideals of R that are pairwise coprime
(meaning Ii + Ij = R where ∀i 6= j), then the product of I of these ideals is equal to their
intersection, and the quotient ring R/I is isomorphic to the product ring R/I1 × ... × R/Ik
via the isomorphism

f: R/I → R/I1 × ...×R/Ik
f(x+ I) = (x+ I1, ..., x+ Ik)

The following corollary allows us to understand the Chinese Remainder Theorem’s ap-
plication to commutative rings of the form Zn specifically.

Corollary 5.1. If m,n are relatively prime, then Z/mnZ ∼= Z/mZ × Z/nZ as rings.
In particular, if n = pα1

1 p
α2
2 · · · p

αk
k is the prime factorization of n, then Z/nZ ∼= Z/pα1

1 Z ×
· · · × Z/pαkk Z as rings.

From this corollary, we see that Zn can be decomposed into rings of the form Zpαkk ,
which are local rings. Therefore, we see that this corollary is a specific case of the Structure
Theorem of Artinian Rings.

These theorems and corollary allow us to understand when the ring Zn is decomposable
and how it can be decomposed. They also highlight that the prime factorization of n plays
a key role in the ring decomposition. Therefore, we will structure our exploration of the
zero-divisor graphs of Zn into different cases depending on the factorization of n.

6 Zero-Divisor Graphs of Zpm
We will start by observing zero-divisor graphs of Zn where only one prime is involved in

the prime factorization of n. These rings are the “building blocks” of Zn. In fact, we will
see that they are the fields and local rings in Zn. Let us first observe the zero-divisor graph
of Zpm where m = 1, so Zp.

Theorem 6.1. Zn is a field if and only if n is a prime number. In this case, Γ∗(Zn) will
be empty.

Proof. The first part of this theorem is known ([9]). Furthermore, a field F , by defini-
tion, is a ring in which 1 6= 0 and every non-zero element is a unit. Therefore, since every
non-zero element is a unit, there can be no zero-divisors. Therefore, Γ∗(Zn) will be empty. �

Therefore, we know that if we have Zp, we have a field and we will not have a zero-divisor
graph. This corresponds with our proof in Section 3 that a field does not have an associated
zero-divisor graph.

Let us now observe when we have Zpm where m ∈ Z and m > 1. The first thing that we
should note about zero-divisor graphs of Zpm , where m > 1, is that ∀x ∈ Γ∗(Zn) will have 1 ≤
ζ(x) <∞. This means that the Z(Zpm) = Nil(Zpm), implying that Γ∗(Zpm) ∼= Γ∗(Nil(Zpm)).
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Theorem 6.2. Z(Zpm) = Nil(Zpm).
Proof. By the definition of zero divisors, if Zpm contains zero-divisors then we must have two
non-zero elements, x, y ∈ Zpm such that xy = 0. Since we have the ring Zpm , this implies that
pm = 0. Therefore, the ideal (pm) = (0), and it follows that xy ∈ (pm). So, we find xy = rpm

∀r ∈ Zpm . Now suppose, for a contradiction, that x /∈ (p) = {rp|r ∈ R}. This implies that
y ∈ (pm), which implies that y = 0, which is a contradiction because y ∈ Z(R)∗. Therefore,
x ∈ (p). Similarly, we must have y ∈ (p). Therefore, Z(Zpm) = (p). Since pm = 0, then
(rp)m = rmpm = 0, ∀r ∈ Zpm . Therefore, the ideal generated by p is nilpotent, specifically
(p)m = (0). Since x, y ∈ (p), then xm = 0 and ym = 0. Therefore, all zero-divisors must be
nilpotent, so Z(Zpm) = Nil(Zpm). �

Now let us observe some examples of Γ∗(Zp2), enabling us to visualize a pattern that will
form as the value of m gets larger.

Example 6.1. Structure of Γ∗(Zp2)
If we have Γ∗(Zp2), then we will have a complete graph with p− 1 vertices, where (p) is

the maximal ideal, and therefore every vertex is in the set (p). Furthermore, from Theorem
2.4., we know that any vertex x must be looped with ζ(x) = 1.

Γ∗(Z9) = Γ∗(Z32) Γ∗(Z25) = Γ∗(Z52)

If we observe the ideal lattice of the ring, we see that it’s two ideals are (p) and (0), where
(p) is the principal maximal ideal. Therefore, this is an example of Corollary 4.1., as we see
that the associated zero-divisor graph is a complete graph. Algorithm 4.1. does not work
on these zero-divisor graphs, as they are complete. We will generate a specific algorithm for
zero-divisor graphs of Zn, which we can apply to determine the associated rings with these
complete zero-divisor graphs.

Although the structure of Γ∗(Zp2) looks quite simple and discernible (as a complete
graph), the structure of zero-divisor graphs of Γ∗(Zpm) will get more complicated as m
gets greater. As the graphs get more complicated, not all vertices will be adjacent to one
another. Instead, we expect to see a core complete graph structure corresponding to the min-
imal ideal, and we expect to see extensions off this complete graph structure as every vertex
must be adjacent to the minimal ideal, but are not necessarily adjacent to every other vertex.

Example 6.2. Structure of Γ∗(Zp3)
We will observe that Γ∗(Zp3) will look like a complete graph connected to an almost

complete bipartite graph. This is an “almost” complete bipartite graph since we have a
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clear separation of the vertices into two sets, X and Y , where all the vertices of Y are
adjacent to the vertices in X. However, it is not complete bipartite because the vertices
in X are adjacent to one another. We also note that all of the vertices are looped, which
reflects the fact that Z(Zpm)∗ = Nil(Zpm). We want to classify the vertices of the graph
structure, to reflect how they are generated and the degree of loops each have. In Zp3 , we
will classify the vertices as follows:

Let X = {a ∈ (p2)}. Any vertex x ∈ X will have ζ(x) = 1 and |X| = p− 1.
Let Y = {b ∈ (p) − (p2)}. Any vertex y ∈ Y will have ζ(y) = 2, δ(y) = p − 1,
and |Y | = p2 − p.

We can also see that the total number of vertices will be |Γ∗(Zp3)| = p2 − 1.

Γ∗(Z8) = Γ∗(Z23) Γ∗(Z27) = Γ∗(Z33)

Example 6.3. Structure of Γ∗(Zp4)
In Γ∗(Zp4), we see that zero-divisor graph contains loops, where the vertex x has ζ(x) = 3.

We will see a similar structure to the Γ∗(Zp3) graphs, with a complete graph attached to an
almost complete bipartite graph, however the number of elements in each will differ.

Let X = {a ∈ (p3))}. Any vertex x ∈ X will have ζ(x) = 1 and |X| = p− 1.
Let Y = {b ∈ (p2)− (p3)}. Any vertex y ∈ Y will have ζ(y) = 1 and |Y | = p2−p.
Let Z = {c ∈ (p) − ((p2) ∪ (p3))}. Any vertex z ∈ Z will have ζ(z) = 3,
δ(z) = p− 1, and |Z| = p3 − p2.

The vertices in the set X and Y will form the complete graph since ζ(x) = ζ(y) = 1, and
the vertices in the set Z will form the extending complete bipartite graph. We can see that
in total, we have |Γ∗(Zp4)| = p3 − 1.
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Γ∗(Z16) = Γ∗(Z24) Γ∗(Z81) = Γ∗(Z34)

We are starting to get a clear structure for Γ∗(Zpm). We expect to see a complete graph
formed between vertices with loops where ζ(x) = 1, and then an almost complete bipartite
graph being formed out of those vertices that are looped to the greatest degree connected to
the central loops generated by (pm−1). We can also see that we can use the degree of loops
to determine the degree of prime involved in our prime factorization of n.

Example 6.4. Structure of Γ∗(Zp5)
Γ∗(Zp5) is slightly more complicated because we will have more loops of varying degree,

since ((p2)3) = 0, we will have loops with ζ(x) = 1, ζ(y) = 2, and ζ(z) = 4. We again will
classify our vertices as follows:

Let X = {a ∈ (p4)}. Any vertex x ∈ X will have ζ(x) = 1 and |X| = p− 1.
Let Y = {b ∈ ((p3)−(p4))}. Any vertex y ∈ Y will have ζ(y) = 1 and |Y | = p2−p.
Let Z = {c ∈ (p2) − (((p4) ∪ (p3))}. Any vertex z ∈ Z will have ζ(z) = 2 and
|Z| = p3 − p2.
Let W = {d ∈ (p)− ((p2) ∪ (p3) ∪ (p3))}. Any vertex w ∈ W will have ζ(w) = 4,
δ(w) = p− 1, and |W | = p4 − p3.

We expect to see a complete bipartite graph being formed by the vertices in the sets X
and Y . Then there will be almost bipartite structures being formed with vertices in Z and
vertices in W .

Γ∗(Z32) = Γ∗(Z25)

In general, we can see that any vertex x, y ∈ Γ∗(Mm−1), where Mm−1 is the minimal
ideal, will have ζ(x) = 1, ζ(y) = 1, and xy = 0. This will be the core structure in Γ∗(R).
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The zero-divisor graph will get more complicated as the value of m gets greater because
this implies that there are more ideals in the ideal chain. This corresponds to our result in
Theorem 4.4. We also must note the importance of the vertices of greatest degree. This is
because we can use both the values of ζ(x) and δ(x) to determine the values of both m and
p.

Now that we have seen a couple of examples, we see a pattern forming. This we want
to generalize for all Γ∗(Zpm), thereby enabling us to distinguish different rings of the form
Zn correlating to different zero-divisor graph structures. The following theorem allows us to
establish the amount of zero-divisors we expect to find in a zero-divisor graph of Zpm .

Theorem 6.3. |Z(Zpm)∗| = pm−1 − 1.
Proof. In our proof of Theorem 6.2., we showed that Z(Zpm) = (p) = {rp|r ∈ Zpm}. We can
determine |(p)| by examining the total number of r to have rp < pm, therefore r < pm−1.
Since r ∈ Zpm , we have pm−1 choices for r, so |(p)| = pm−1. Since (p) includes 0, we have
pm−1 − 1 non-zero choices for r. Therefore, |Z(Zpm)∗| = pm−1 − 1. �

Theorem 6.4. If a vertex x has the greatest value of ζ(x), then δ(x) = p− 1.
Proof. The vertices with the highest degree of loop must be generated by (p)− ((p2)∪ . . .∪
(pm)). Therefore, the only vertices they are adjacent to in the zero-divisor graph must be
those generated by (pm−1). We know that kpm−1 = 0 if k ≥ p. Therefore, we have p choices
for k. So |(pm−1)| = p. Since 0 does not appear in the zero-divisor graph, the vertices with
the highest degree of loops will be adjacent to p− 1 vertices. Therefore, if vertex x has the
greatest value of ζ(x), then δ(x) = p− 1. �

We can form an algorithm to distinguish the zero-divisor graphs of the ring Zpm . It will
be the following:

Algorithm 6.1 Suppose R ∼= Zpm. Determine R knowing the structure of Γ∗(R)

1) Determine whether Nil(R) = Z(R), by observing whether all of the
vertices are looped.
2) For any x ∈ Γ∗(R), determine the greatest value of ζ(x). This value will
be equal to m− 1.
3) Now count the δ(x). From Theorem 6.4., δ(x) = p− 1
4) We now have the value of p and the value of m, so we can determine the
corresponding ring R = Zpm to the zero-divisor graph.

There are also certain properties that we can realize about the structure of Γ∗(Zpm). The
following theorem states that if we have R ∼= Zpm , then Γ∗(R) must be star-shaped reducible.

Theorem 6.5. When R ∼= Zpm, then Γ∗(R) must be star-shaped reducible.
Proof. If we have R ∼= Zpm , then we must have that Z(R) = Nil(R). Therefore, every
x ∈ Z(R) is nilpotent. Thus, by Theorem 2.2., we know that if every x ∈ Z(R) is nilpotent,
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then there exists b ∈ Z(R) such that bZ(R) = 0, and hence Γ∗(R) is star-shaped reducible. �

By Theorem 2.2., if Γ∗(Zpm) is star-shaped reducible, then Zpm is local. In fact, we can
note that all of rings of the form Zpm have one maximal ideal, (p) and it is principal.

7 Zero-Divisor Graphs of Local Artinian Rings with a

Maximal Ideal that is not Principal

In Sections 5 and 6 we examined the zero-divisor graph properties of local Artinian rings
with a principal maximal ideal. However, not all local Artinian rings have a principal max-
imal ideal. In fact, a local ring R can have a unique maximal ideal M that is generated
by many elements, and therefore breaks down into numerous ideals. This ideal lattice will
get very complicated, and in this section we will attempt to correlate the ideal lattice to
zero-divisor graphs.

We saw in Corollary 4.1. that if we have a local Artinian ring with a principal maximal
ideal, M that is also a minimal ideal, then Γ∗(R) is a complete graph. However, we can
show that the converse of this corollary does not hold. The following example provides a
counterexample.

Example 7.1. Ideal Lattice of Complete Zero-Divisor Graphs.
The following two rings have the same zero-divisor graph, which is a complete graph.

However, the ideal lattice of the rings vary. F4[x]/(x2) has a principal maximal ideal of
order 4 that is generated by one element. In comparison, Z2[x, y]/(x2, xy, y2) has a unique
maximal ideal that is principal and is generated by two elements. In the ideal lattice, this
maximal ideal breaks into three smaller ideals, each of order 2.

Γ∗(F4[x]/(x2))∼=Γ∗(Z2[x, y]/(x2, xy, y2))

(x)

F4/(x
2)

(0)

(x, y)

Z2[x, y]/(x2, xy, y2)

(x+ y)(x) (y)

(0)

This example is significant because it shows us that we do not have a unique zero-divisor
graph for a unique ideal lattice. Our zero-divisor graph does not distinguish between looped
vertices of ζ(x) = 1. Clearly all of the looped vertices annihilate themselves, but if we take
any vertex in the graph of F4[x]/(x2) and set it as the generator of the principal ideal, we
find that it generates all the elements in Γ∗(F4[x]/(x2)). On the other hand, the vertices of
Z2[x, y]/(x2, xy, y2) are such that the each of them forms a principal ideal that consists of
only 0 and the element itself.

This last example also shows us that local Artinian rings ideal lattices are not always
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simple, and the maximal ideal does not need to be principal. If this is the case, then the
ideal chain will break up into three or more chains, which could break up into more if those
subsequent ideals are also not principal. The next example shows zero-divisor graphs that
correspond to more complicated ideal lattices:

Example 7.2. Ideal Lattices of Local Rings with a Maximal Ideal that is not Principal
All of the following rings, R1, R2, and R3 are local Artinian rings each with a maximal

ideal that is not principal.

R1 = Z4[x]/(x2+2x), Z8[x]/(2x, x2+4), Z2[x, y]/(x2, y2−xy), and Z4[x, y]/(x2, y2−
xy, xy − 2, 2x, 2y).
R2 = Z2[x, y]/(x3, xy, y2), Z8[x]/(2x, x2), Z4[x]/(x3, 2x2, 2x).
R3 = Z4[x, y]/(x2, y2, xy − 2, 2x, 2y),Z2[x, y]/(x2, y2),Z4[x]/(x2)

All of these rings are local and have |R| = 16. They are also the only local Artinian rings
with 7 vertices in Γ∗(R) that do not have a principal maximal ideal. ([11])

Γ∗(R1) Γ∗(R2) Γ∗(R3)

We next want to form an algorithm that will allow us to determine the ideal lattice cor-
relating to a more complicated local Artinian ring from the zero-divisor graph. In order to
show how we can determine the ideal lattice from the zero-divisor graph, we first need to
prove that annihilators form ideals.

Theorem 7.1. If R is a commutative unital ring with a ∈ R, then Ann(a) = {xa =
0|x ∈ R} forms an ideal.
Proof. Let x1, x2 ∈ Ann(a) = {xa = 0|x ∈ R}. This implies that x1a = 0 and x2a = 0.
Therefore, it follows that (x1 ± x2)a = x1a ± x2a = 0 ± 0 = 0. Therefore, we have
x1 ± x2 ∈ Ann(a). Also, ∀x ∈ Ann(a) and r ∈ R, we find that (rx)a = r(xa) = r0 = 0.
Therefore, rx ∈ Ann(a). So, Ann(a) forms an ideal of R. �

The zero-divisor graph enables us to visibly spot the annihilators of the ring. This is
because, if we take any vertex in the zero-divisor graph, then we by our definition of a zero-
divisor graph, we know that all the vertices adjacent to it annihilate it, as does 0. Therefore,
all of these vertices form the annihilator ideal. This allows us to visually identify some of
the ideals of a ring. The following algorithm describes an approach to identifying the ideal
lattice of local Artinian rings from zero-divisor graphs.
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Algorithm 7.1. Determining a Local Ring with a Maximal Ideal that is not Principal
from Γ∗(R)

1) Determine whether Nil(R) = Z(R), by observing whether all of the
vertices in Γ∗(R) are looped. If so, by Theorem 2.2., we know we have a
local ring.
2) Determine |M |. Then determine the possible ideal lattices of this order.
3) Follow the Algorithm 4.1. If the value the algorithm gives for |M | does
not equal |M | in Γ∗(R), then we know we do not have a principal maximal
ideal.
4) Since it is assumed that R is a local, commutative, unital ring, we can
also rule out ideal lattices corresponding to non-commutative rings and non-
local rings.
5) Label the vertices and observe the annihilators of each of the vertices.
We know from Theorem 3.1.5. that these annihilators form ideals.
Compare the number of annihilator ideals to the possible lattice structures.
If the number of ideals and the structure of the ideals matches one of the
ideal lattices, then, taking note of the index of each of the ideals, we can
match the ideal lattice to the zero-divisor graph. If this is not the case,
more ideals exist.
In this case, if we know |R|, we can use the First Isomorphism Theorem to
determine the size of the other ideals. Again, we want to take note of the
index of the ideals by observing the ζ(x) of the vertices contained in each
ideal.
6) We can now match the zero-divisor graph with a certain ideal lattice,
narrowing down the possibility of Artinian rings that it could be associated
with.

This algorithm is more convoluted as the ideal lattice gets more complicated. We can
notice that if we cannot visibly identify all of the ideals via annihilators, this algorithm be-
comes harder to follow and we need more information, namely |R|. To get a more concrete
understanding of the algorithm, we will show it applied to Example 7.2.

Example 7.3. Using Algorithm 7.1. on Example 7.2. to determine the ideal lattice of
R from Γ∗(R)

1) Clearly, in all the zero-divisor graphs, all of the elements are looped, therefore
we are dealing with a local ring.
2) |M | = 8. Therefore, we can look at the ideal lattices of rings of order 8 to
determine whether they fit with our zero-divisor graph. Order 8 rings have the
following ideal lattices ([12]):

21



M2

M

M3

M4

(0)

Figure 1

K1

M

K2

I1

(0)

Figure 2

K1

M

I2I1 I3

J1J2 J3 J4 J5
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Figure 3

K1

M

I2I1 I3

J1

(0)

Figure 4

K1

M

I2I1 I3

J1 J2 J3

(0)

Figure 5

3) If we follow Algorithm 4.1., in Γ∗(R1) and Γ∗(R2) we find that n = 3 and
δ(x) = pm = 4, and we find that |M | = 16, which is a contradiction.
In Γ∗(R3), we find that |M | = 8, however we see that the vertices with the great-
est ζ(x) are not adjacent only to the center vertex.
Therefore, we do not have a principal maximal ideal in any of these rings, and so
we cannot have Figure 1 as our ideal lattice corresponding to R1, R2, or R3.
4) We can also rule out the possibilities of Figure 2 and Figure 3 as potential
ideal lattices.
Figure 2 corresponds to a ring that is mixed (field and local ring direct product).
This implies that the maximal ideal is not nilpotent, contradicting the fact that
R is local.
Figure 3 corresponds to a Dihedral group of order 8. Since Dihedral groups are
non-commutative, Figure 3 cannot be the corresponding ideal lattice for R, a
commutative ring.
Therefore, we either have the ideal lattices of Figure 4 and Figure 5 corresponding
to Γ∗(R1),Γ

∗(R2), and Γ∗(R3).
5) Let us start with Γ∗(R1). Label the outside vertices a, b, c, d and the inside tri-
angle x, y, z, with x being the center vertex adjacent to all vertices in the Γ∗(R1).
We want to determine the annihilators in Γ∗(R1), since by Theorem 7.5, these
form ideals.
Let ann(y) = {0, x, y, z} = I1. Therefore, the inner triangle forms an ideal of
order 4, and since they are all looped vertices with ζ(x) = ζ(y) = ζ(z) = 1, we
know that the index of I1 is 2.
Now we can look at the annihilators of the outside vertices: ann(a) = {0, x, b, d} =
I2, and ann(b) = {0, x, a, c} = I3. The index of both I2 and I3 is 3, since the
highest ζ(b) = ζ(a) = 2. We see that all the possible ideal lattices of order 8 have
at most 3 ideals of order 4. Therefore, we have found all possible ideals of order
4.
If Γ∗(R1) corresponds to Figure 5, then it would break down into 3 ideals of order
2. However, this is not the case.
Suppose, for a contradiction, that (y) is an ideal of order 2. We know that
y2 = 0, so we clearly have 0 and y in our ideal. However, ay ∈ Z(R)∗ since both
a, y ∈ Z(R)∗, and ay 6= 0 since they are not adjacent. Therefore, (y) cannot be an
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ideal of order 2. Similarly, (z) cannot be an ideal of order 2. On the other hand,
(x) is an ideal of order 2. It is adjacent to every zero-divisor, so (x) = {0, x}.
We can also prove that this ideal lattice, given the index of the ideals, uniquely
corresponds to the zero-divisor graph Γ∗(R1).
To show this, first look at the ideal J1. It is squared nilpotent, and therefore
clearly annihilates itself.
Next, if we look at I1, we know it has order 4, is squared nilpotent, and is prin-
cipal by Theorem 3.5. This implies that the vertex that generates I1, let us call
it y is such that y2 = 0. Therefore, all vertices in I1 are of the form ry, ∀r ∈ R.
This implies that they are all adjacent, so we can form the interior triangle in the
zero-divisor graph Γ∗(R1).
The index of I1 is 2 , which implies that ann(I1) = I1. Therefore, I1 does not an-
nihilate either I2 or I3. However, I2 and I3 must have annihilators. Furthermore,
these annihilators must have order 4. We know the index of I2 and I3 is degree
3, therefore the ideals do not annihilate themselves.
Since we do not have any other ideals of order 4, this implies that ann(I2) = I3,
which means that I2I3 = (0). Therefore, we can form the remainder of our zero-
divisor graph of Γ∗(R1).
6) Now let us observe Γ∗(R2). Let us similarly label the outside elements a, b, c, d
and the interior triangle x, y, z.
First we can determine ann(a) = {0, x, y, z} = I3.
All the rings in Example 7.2. are such that |R1| = |R2| = |R3| = 16.
From the First Isomorphism Theorem, for some φ : R → Ra where φ(r) = ra.
We find that R/Ker(φ) ∼= Im(φ). In Ra, |Im(φ)| = |(a)|.
Therefore, |ann(a)| = |R2|/|(a)|. So, we find an ideal, |(a)| = 4 = I1. Similarly,
we can find the |(b)| = 4 = I2.
Since we can have at most 3 ideals of order 4 in our ideal lattices of rings with
order 8, we know we have found all possible ideals of order 4. Both the index of
I1 and I3 will be 3, since ζ(a) = ζ(b) = 2.
Up to this point, Γ∗(R1) has the same ideal lattice as Γ∗(R2) and the index of
each of the corresponding ideals in the lattices are equivalent. However, Γ∗(R2)
cannot correspond to Figure 4, since in step 5 we showed that Figure 4, given
the index of ideals I1, I2, and I3 corresponds uniquely to Γ∗(R1). Also, we can
see that in Γ∗(R2), the vertices x, y, z all annihilate themselves and 0, and so are
able to generate three ideals of order 2.
Therefore, we find that Γ∗(R2) corresponds to Figure 5.
7) Now let us observe Γ∗(R3). Let us label the outside vertices a, b, c, d, e, f and
the center vertex x.
Determine that ann(a) = {0, x, a, b} = I1, ann(c) = {0, x, c, d} = I2, and
ann(e) = {0, x, e, f} = I3. Furthermore, the index of I1, I2, and I3 will be 2,
since ∀y ∈ Γ∗(R3) have ζ(y) = 1.
Also, ann(x) = {0, x} = J1, therefore it forms an ideal of order 2. We cannot
have any other ideals of order 2. This is because no outside vertex is adjacent to
all other outside vertices. Therefore, ae ∈ Z(R)∗ and ae 6= 0.
Therefore, the ideal will have order greater than 2. So we can tell that Γ∗(R3)

23



also corresponds to Figure 4, but the index of each of the ideals differs from the
index of each of the ideals in the ideal lattice of Γ∗(R1).
Similarly to step 5, we can prove that this ideal lattice given that the index of
I1, I2, and I3 is 2, corresponds uniquely to Γ∗(R3). We can see that the ideal
|J1| = 2, and the index of J1 is 2, and so corresponds to the center of Γ∗(R1).
We can then look at the annihilators of I1, I2, and I3. We know that |I1| = |I2| =
|I3| = 4, and we find that ann(I1) = I1, ann(I2) = I2, and ann(I3) = I3. There-
fore, they each annihilate themselves and are not adjacent to one another. This
implies the structure Γ∗(R3).

The zero-divisor graphs in Example 7.2. are actually some of the simplest examples of
zero-divisor graphs of local Artinian rings with maximals ideals that are not principal. The
zero-divisor graphs and correlating rings’ ideal lattices do not have long ideal chains and
don’t break into that many separate chains of ideals. However, we could find a plethora of
examples where not only does the maximal ideal break into numerous different chains, but
the ideals following also do. Therefore, our algorithm to determine these rings will get more
complicated as the rings get larger. Algorithm 7.1 works by process of elimination, however
this would be extremely hard in larger cases. Perhaps this method will motivate a more
efficient algorithm for determining local rings with non-principal maximal ideals.

8 Zero-Divisor Graphs of a Direct Product of Fields

We have now examined the ideal lattices and zero-divisor graphs of fields and local rings.
We now want to observe what happens when we take the direct products of different types
of Artinian rings to attain more complicated Artinian rings. First, we will observe the zero-
divisor graphs of a direct product of fields. To examine the properties of the zero-divisor
graphs of these rings, we will use the Chinese Remainder Theorem previously introduced in
Section 5, and we will review some algebraic properties of rings. The first is that any finite
integral domain is a field.

Theorem 8.1. Any finite integral domain is a field
Proof. Suppose that R is a finite integral domain with elements {0, x1, ..., xn}. If xi 6= 0
∀xi such that 1 ≤ i ≤ n, then consider the set xiR = {xix1, ..., xixn} = {xir|r ∈ R}. All n
elements of this set are distinct elements of R because if xiy = xiz, then y = z. Therefore,
xiR = R. In particular, 1 ∈ xiR, so for some r ∈ R, xir = rxi = 1. Thus xi has a multi-
plicative inverse, and R is a field. �

Theorem 8.2. Let R be a finite commutative ring. Then for every prime ideal P , R/P
is a field and P is maximal.
Proof. Suppose that R is a finite commutative ring, and let P be a prime ideal. Since P is
prime, R/P is an integral domain, and since R is finite, then R/P is finite. Therefore, R/P
is a finite integral domain, and so by Theorem 8.1., R/P is a field. Since R/P is a field, P
is maximal. �
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Now we will show that any reduced ring is a finite product of rings.

Theorem 8.3. Let R be a finite reduced ring. Then R ∼= F1 × ... × Fn where F1, ..., Fn
are fields.
Proof. Suppose that R is a finite reduced ring. By Theorem 8.1., we know that any finite
integral domain is a field. Next we want to look at the prime ideals of R. We know from
Theorem 8.2., that the prime ideals are maximal. So in R, the nilradical, which is the
intersection of all prime ideals, is equal to the Jacobson radical, which is the intersection
of all maximal prime ideals, Mi, since every prime ideal is maximal. Then by the Chinese
Remainder Theorem for Commutative rings and since the nilradical of R is zero because R is
reduced and therefore has no nilpotent elements, we find that R ∼= R/M1× ...×R/Mn. Fur-
thermore, R/M1, ...R/Mn are all fields, since in Theorem 8.1. we showed that R/P is a field.
So let, R/M1

∼= F1, ..., R/Mn
∼= Fn. Therefore, if R is a reduced ring, then R ∼= F1× ...×Fn

where F1, ..., Fn are fields. �

This theorem allows us to identify the zero-divisor graphs of rings that are a direct prod-
uct of fields, as they will contain no nilpotent elements.

In Section 2, we proved that complete bipartite graphs with m,n > 1 had no nilpotent
elements. Therefore, by Theorem 8.3., we know that this must be the zero-divisor graph of
a direct product of fields. We will next observe specifically how we form complete bipar-
tite graphs. We will start with star graphs before exploring complete bipartite graphs with
m,n > 2.

We saw in Example 2.1. that in star graphs, such as Γ∗(Z8), it is possible for there to
exist nilpotent elements. Therefore, we want to distinguish when we have nilpotent elements,
and when we do not have nilpotent elements in star graphs.

When approaching this problem, it is important to establish the algebraic properties that
differ with zero divisor graphs of different diameters. We obtain the following result by ([13],
Theorem 2.6):

Theorem 8.4. Let R be a ring.
(1) diam(Γ∗(R)) = 0 if and only if R is (nonreduced and) isomorphic to either Z4 or
Z2[y]/(y2).
(2) diam(Γ∗(R)) = 1 if and only if xy = 0 for each distinct pair of zero divisors and R has
at least two nonzero divisors.
(3) diam(Γ∗(R)) = 2 if and only if either (i) R is reduced with exactly two minimal primes
and at least three nonzero zero divisors, or (ii) Z(R) is an ideal whose square is not (0) and
each pair of distinct zero divisors has a nonzero annihilator.
(4) diam(Γ∗(R)) = 3 if and only if there are zero divisors a 6= b such that (0 : (a, b)) = (0)
and either (i) R is a reduced ring with more than two minimal primes, or (ii) R is nonreduced.

We know that when we have diam(Γ∗(R)) = 1, we have a complete graph. We saw in
Theorem 2.4., that complete graphs contain looped vertices unless it is Γ∗(Z2 ×Z2). There-
fore, in the case of diam(Γ(R)∗)=1, the only Γ(R)∗ that contains no nilpotent elements is a
direct product of two fields, specifically Z2 × Z2.

We will now observe zero-divisor graphs with diam(Γ∗(R)) = 2. We will start with star
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graphs, observing when these types of graphs can be formed without nilpotent elements. An-
derson and Livingston proved when a zero-divisor graph is a star-shaped graph ([2], Corollary
2.7).

Theorem 8.5. Let R be a finite commutative ring. Then there is a vertex of Γ(R) which
is adjacent to every other vertex if and only if either R ∼= Z2×F , where F is a finite field, or
R is local. Moreover, for some prime p and integer n ≥ 1, |Γ∗(R)| = |F | = pn if R ∼= Z2×F ,
and |Γ∗(R)| = pn − 1 if R is local.

From this theorem, we know the possible rings that have star-shaped zero-divisor graphs.
In the next theorem ([3], Theorem 2.8), we will distinguish between the star graphs with
nilpotent elements and star graphs without them.

Theorem 8.6. Let R be a finite commutative ring with identity such that

Γ∗(R) = K1,n

for some n ∈ Z with a vertex x, called the center, such that x is looped with ζ(x) = 1 and
adjacent to all vertices in Γ∗(R). Then the following are equivalent:
(1) Z(R) is an ideal;
(2) x2 = 0;
(3) R ∼= Z4,Z8,Z9,Z2[x]/(x2),Z2[x]/(x3),Z3[x]/(x2), or Z4[x]/(2x, x2 − 2).

From this last theorem, we now know exactly what rings form zero-divisor graphs that
are star-shaped with a looped center, and therefore are not reduced rings. We can also see
that the rings with nilpotent elements whose zero-divisor graph is a star-graph are indecom-
posable.

In the next theorem we will show that decomposable rings of the form Z2 × F will have
star-shaped zero-divisor graphs with no nilpotent elements.

Theorem 8.7. Let R be a finite commutative ring and let R ∼= Z2 × F , where F is a
finite field. Then the zero-divisor graph Γ∗(R) will be star-shaped and will not contain any
loops.
Proof. Suppose that R ∼= Z2 × F . We know from Theorem 8.5. that Γ∗(R) is star-shaped.
Furthermore, we know from Theorem 2.5. that none of the end-vertices of this graph are
looped. Therefore, the only potential looped vertex is the center a. Since R ∼= Z2 × F , the
center of the graph must be (1, 0). Therefore, a = (1, 0), and we can see that a2 6= 0, since
(1, 0)2 = (1, 0). Therefore, a is not looped. �

Corollary 8.1. If Γ∗(R) is star-shaped and contains no loops, then Γ∗(R) = K1,pm−1 for
some prime p where m > 0.
Proof. From Theorem 8.7., if Γ∗(R) is star-shaped and contains no loops then R ∼= Z2 × F .
Since (1, 0) is the center, it must be adjacent to all vertices of the form (0, x), where x ∈ F .
We know that the order of a finite field is pm, therefore we have pm choices for x. However,
our zero-divisor graph only shows non-zero vertices, so we have pm − 1 non-zero choices of
x. Therefore, (1, 0) will be adjacent to pm − 1 vertices, so our zero-divisor graph must be of
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the form K1,pm−1. �

Therefore, we now know that direct products of two fields, one of which is Z2, forms a
star-graph that contains no nilpotent elements.

Example 8.1. Using the same rings as we did in Example 2.1, we can now clearly see
just by looking at the zero-divisor graphs of Γ∗(Z8) and Γ∗(Z6), that Z6 is a decomposable
ring and Z8 is indecomposable, so we can see that Γ∗(Z6) forms a complete bipartite graph
without loops, but Γ∗(Z8) does not. Z6 = Z2 ×Z3, and Z8 is indecomposable because it is
isomorphic to a ring of the form Zpn where p is a prime and n is some positive integer. In
this particular example, Z8 = Z23 .

Therefore, we have shown the following statement about the simplest case of a bipartite
graph:

Theorem 8.8. The only zero-divisor graphs that contain a star graph and contain no
loops is a direct product of fields.

Now that we have observed all star-shaped graphs, we will now look at how zero-divisor
graphs of the form Km,n where m,n > 1 are formed.

In order to observe this, we will first distinguish the type of zero-divisor graph with
diameter 2 that can form complete bipartite graphs. We know from Theorem 8.4., that
diam(Γ(R)∗) = 2 if and only if either (i) R is reduced with exactly two minimal primes and
at least three nonzero zero divisors, or (ii) Z(R) is an ideal whose square is not (0) and each
pair of distinct zero divisors has a nonzero annihilator. Clearly, the first cases (i) is a direct
product of two rings. We will next prove that the case (ii) cannot be a ring that is a direct
product of fields.

In the case (ii), Z(R) forms an ideal. We can use Theorem 2.2. to conclude the following
result:

Corollary 8.2. Let R be a ring such that diam(Γ∗(R)) = 2. If Z(R) is an ideal whose
square is not (0) and each pair of distinct zero divisors has a nonzero annihilator, then Γ∗(R)
cannot be a complete bipartite graph.
Proof. If Z(R) forms an ideal, then, by Theorem 2.2., Γ∗(R) is star-shaped reducible, and
therefore has a looped center, a. Therefore, it contains at least one loop, and Γ∗(R) cannot
be a complete bipartite graph, since Theorem 2.6. proves that a complete bipartite graph
cannot contain loops. �

Therefore, in the case where diam(Γ∗(R)) = 2, the only possible zero-divisor graphs that
could be a complete bipartite graph without loops are zero-divisor graphs of direct products
of fields. In the next theorem, we will prove that complete bipartite graphs can only be
formed by taking the direct product of two fields.
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Theorem 8.9. Let R be a finite commutative ring. Then Γ∗(R) will be a complete bi-
partite graph, Kpn−1,qm−1 with primes p, q and n,m > 1, if and only if R ∼= F1 × F2, where
F1 and F2 are fields.
Proof. ⇐ Suppose that F1 and F2 are fields. Therefore, |F1| = pn and |F2| = qm for some
primes p, q. We know that every field is an integral domain. Therefore, by the definition of
integral domains, F1 and F2 have no zero-divisors. If we take the direct product F1×F2, we
see that Z(F1 × F2)

∗ = {(x1, 0), ..., (xpn−1, 0), (0, y1), ..., (0, yqm−1)}.
We can see that ∀i, j such that 1 ≤ i ≤ pn and 1 ≤ j ≤ qm, we will have (xi, 0)(0, yj) =
(0, 0), and clearly (xi, 0)2 6= (0, 0) since xi ∈ F1 and F1 is an integral domain. Similarly,
(0, yj)

2 6= (0, 0).
Therefore, we have two distinct sets of vertices X and Y , where X = {(x1, 0), ..., (xpn−1, 0)}
and Y = {(0, y1), ..., (0, yqm−1)}, and every graph pair of graph vertices in the two sets, X
and Y are adjacent, and no two graph vertices within the same set, X or Y , is adjacent.
Therefore, we have a complete bipartite graph, and by Theorem 2.6., no graph vertex in
X or Y is looped. Therefore, if R ∼= F1 × F2, where F1 and F2 are fields then Γ∗(R) is a
complete bipartite graph, Kpn−1,qm−1.
⇒ Suppose that the zero-divisor graph of Γ∗(R) is a complete bipartite graph, Kpn−1,qm−1
with n,m > 1. By Theorem 2.6., no graph vertex in Γ∗(R) is looped. Therefore, R contains
no nilpotent elements, so by definition is a reduced ring. By Theorem 8.3., we know that
a reduced ring is a finite product of fields. Since the graph of Γ∗(R) is complete bipartite,
then diam(Γ∗(R))= 2 and it contains no looped vertices. Thus, by Theorem 8.4., we know
that R is reduced with exactly two minimal primes and at least three nonzero zero divisors,
so it is a direct product of two rings. Therefore, if the zero divisor graph Γ∗(R) is a complete
bipartite graph, Kpn−1,qm−1 where p, q are primes and m,n > 1, then R ∼= F1×F2, where F1

and F2 are fields. �

We have now established that a complete bipartite graph will be formed when R is a
direct product of two fields. By Theorem 8.3., we know that a direct product of fields will
be a reduced ring, and therefore its nilradical will be empty.

We now want to create an algorithm for determining a direct product of fields. However,
before doing this, we first want to classify the vertices of Fpα11

× · · · × Fpαnn as follows:

X1 = ((1, 0, . . . , 0)). ∀x1 ∈ X1, ζ(x1) = 0 and δ(x1) = pα2
2 p

α3
3 · · · pαnn − 1.

X2 = ((0, 1, 0, . . . , 0)). ∀x2 ∈ X2, ζ(x2) = 0 and δ(x2) = pα1
1 p

α3
3 · · · pαnn − 1.

...
Xn = ((0, . . . , 0, 1)). ∀xn ∈ Xn, ζ(xn) = 0 and δ(xn) = pα1

1 p
α2
2 · · · p

αn−1

n−1 − 1.
...
Y1 = ((1, . . . , 1, 0)−((1, 0, . . . , 0)∪ . . .∪(0, . . . , 0, 1, 0))). ∀y1 ∈ Y1, ζ(y1) = 0
and δ(y1) = pαnn − 1 vertices.
...
Yn = ((0, 1, . . . , 1)−((0, 1, 0, . . . , 0)∪. . .∪((0, . . . , 0, 1))). ∀yn ∈ Yn, ζ(yn) = 0
and δ(yn) = pα1

1 − 1 vertices.

We can see that for all vertices in Γ∗(R), the prime factorization of δ(x) will consist of
a product of the order of the fields minus 1. We should note that we can have pi = pj. In
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this case, we will find a δ(x) = pαii − 1 and a δ(x) = pαii p
αj
i − 1. Therefore, we can determine

that we have two distinct fields with order pαii .

Example 8.2. The following two rings are direct product of fields. Let R1 = Z2×Z2×Z3.
We will show a method of determining that we have two fields with the same order q = 2 in
R1. Let R2 = Z2×Z2×Z2. We will show a method of determining that there are three fields
of the same order q = 2 in R2. The zero-divisor graphs of Γ∗(R1) and Γ∗(R2) are the following:

Γ∗(R1) Γ∗(R2)

For all vertices in Γ∗(R1), we can count the different values of δ(x). We can find 4 dis-
tinct values for δ(x) = {1, 2, 3, 5}. Therefore, we have a δ(x) = 2 − 1 and a δ(y) = 4 − 1.
Therefore,we must have two fields of the same order, specifically 2. And clearly, since we
also have a δ(x) = 3 − 1, we must also have a field of order 3. Therefore, we find that this
graph is a direct product of F2 × F2 × F3

∼= Z2 × Z2 × Z3.
For all vertices in Γ∗(R2), we can count the different values of δ(x). We can find 2 distinct

values of δ(y) = {1, 3}. Therefore, we have a δ(y) = 2− 1 and a δ(y) = 4− 1. This implies
that there must be at least two fields of the same order, specifically 2, in the decomposition
of R2. Since there are no other values of δ(y), we cannot have any fields of different orders
in our direct product of fields. R2 is not a direct product of 2 fields, since Γ∗(R2) is not
complete bipartite. Therefore, we must have more than 2 fields involved of the same order.
Since we only have δ(y) = 4− 1 and δ(y) = 2− 1, we know that we have 3 fields of order 2.
Therefore we have F2 × F2 × F2

∼= Z2 × Z2 × Z2.

Example 8.2. highlights the complications we have when we have rings that are a direct
product of fields, in which two or more distinct fields have the same order. Now we can
create an algorithm for Γ∗(R), where R is a direct product of fields:

Algorithm 8.1. Determining a Direct Product of Fields

1) Given any Γ∗(R), determine whether Nil(R) = ∅, by observing if none
of the vertices in Γ∗(R) are looped. If so, by Theorem 8.3., we know we
have a direct product of fields.
2) Beginning at the end vertices and moving in the zero-divisor graph, look
at the vertices with δ(x) = pm − 1 for some prime p.
3) Determine the total number of distinct values of δ(x) whose value is
pm− 1. Therefore, we will have a number of distinct values pα1

1 − 1, pα2
2 − 1,

. . ., pαss − 1.
4) In this step, we will examine if we have distinct fields of the same order.
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If we have a complete bipartite graph and one value of δ(x) = pα
i

i − 1, we
can determine that we have a direct product of two fields of the same order.
If our ring consists of a direct product of fields only of the same order and
there are more than 2 distinct fields, then we expect to find δ(x1) = pαii −1,
δ(x2) = p2αii − 1, δ(x3) = p3αii − 1, . . . , δ(xk) = pkαii − 1. In this case, we
have k + 1 distinct fields of the same order.
In the case where we have a direct product of fields, at least two of which
have the same order and at least one field that has a different order. If we
have δ(x1) = pαii − 1, δ(x2) = p2α

i

i − 1, . . . , δ(xk) = pkαii − 1, then we have k
distinct fields of the same order.
This can be seen in Example 8.2.
5) Therefore, we can determine that R ∼= Fpα11

× Fpα22
× · · · × Fpαss

Clearly, when we are dealing with a direct product of more than two rings our graph will
get extremely complicated. We next will look at direct products of fields in rings of the form
Zn.

9 Zero-Divisor Graphs of Zp1···pm

In rings of the form Zn, we will find that our direct product of fields will be Zp1···pm .
Therefore, we can see that we have different restrictions on the order of the fields in the
decomposition of Zn in comparison to the order of the fields in the decomposition of general
Artinian rings. In Zn, the fields will have order p as Zn is a field if and only if n is a prime.
In general Artinian rings, in comparison, we may have fields of order pm. We should also
note that by Corollary 5.1., we can write the ring Zp1...pm as Zp1 × · · · × Zpm for pi 6= pj.

Before creating our algorithm for a direct product of fields in Zn, we will first establish
the properties about the nilradical of Zn in general.:

Theorem 9.1. All nilpotent elements of Zn must contain the same distinct primes in
their prime factorization as the distinct primes in the prime factorization of n.
Proof. By definition of a nilpotent element, x ∈ Zn is nilpotent if xm = 0. Since we are
looking specifically at the case of Zn, this means that xm ≡ 0(mod n). If the prime factor-
ization of n =

∏s
i=1 p

αi
i , then, by the Fundamental Theorem of Arithmetic, the only way to

get xm = (
∏s

i=1 p
αi
i ) is if x ∈ (

∏s
i=1 pi). �

Now we can determine the size of the nilradical of Zn:

Theorem 9.2. If R ∼= Zn, where the prime factorization of n =
∏k

i=1 p
αi
i , then

|Nil(R)| = n/(
∏k

i=1 pi).
Proof. Suppose that m =

∏s
i=1 pi. By Theorem 9.1, we know that if x ∈ Zn is nilpotent,

then x ∈ (m). We can determine |(m)| by observing the total possible number of k to make
km < 0. In Zn, n = 0. Therefore, we need km < n. This means that k < n/m. So, we find
that we have n/m choices for k. Thus, |Nil(R)| = n/m = n/(

∏k
i=1 pi). �
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Now we will explore the zero-divisor graph structures of Zp1···pn .

Example 9.1. Structure of Γ∗(Zpq)
Let us start with the simplest case, Γ∗(Zpq). Using the Chinese Remainder Theorem for
Rings and Corollary 5.1 we can decompose the ring. So we have Zpq ∼= Zp × Zq, implying
that Γ∗(Zpq)∼= Γ∗(Zp × Zq). We determined previously that Zp will be a field for any prime
p. Therefore, both Zp and Zq are fields, and so Zpq is the direct product of two fields. We
see that Γ∗(Zpq) is a complete bipartite graph.

Γ∗(Z15) ∼= Γ∗(Z3 × Z5) Γ∗(Z35)∼= Γ∗(Z5 × Z7)

We also can classify the vertices of these zero-divisor graphs, similarly to how we classified
them in general Artinian rings that are a direct product of fields. By the definition of
complete bipartite graphs, we will have two distinct sets of vertices:

X = {a ∈ (p)} and |X| = q − 1. For every x ∈ X, we have that ζ(x) = 0 and
δ(x) = p− 1.
Y = {b ∈ (q)} and |Y | = p − 1. For every y ∈ Y , we have that every ζ(y) = 0
and δ(y) = q − 1.

With this classification, we can see now that just by looking at the number of elements in
each set, we can easily determine the ring corresponding to the zero-divisor graph. We can
follow Algorithm 8.1. to determine the fields involved in this direct product of fields.

We can also note that this structure will have no nilpotent elements, since it is complete
bipartite, and as we proved in Theorem 2.6., complete bipartite graphs do not contain any
loops. This also is shown by Theorem 9.2., since |Nil(Zpq)| = 1− 1 = 0.

Example 9.2. Structure of Γ∗(Zpqr)
Using the Chinese Remainder Theorem and Corollary 5.1., again we can see that we have
Zpqr ∼= Zp×Zq×Zr. Therefore, we can see that this ring is a direct product of fields. The more
distinct primes that we have involved in the prime factorization of n, the more complicated
the graph will get because this correlates to more fields involved in the decomposition of Zn.

We can classify the vertices of Γ∗(Zpqr) with the following classification:

X = {a ∈ (pq)}. Every vertex x ∈ X will have ζ(x) = 0, δ(x) = pq − 1, and
|X| = r − 1.
Y = {b ∈ (qr)}. Every vertex y ∈ Y will have ζ(y) = 0, δ(y) = qr − 1, and
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Γ∗(Z30)∼= Γ∗(Z2 × Z3 × Z5)

|Y | = p− 1.
Z = {c ∈ (pr)}. Every vertex z ∈ Z will have ζ(z) = 0, δ(z) = pr − 1 and
|Z| = q − 1.
W = {d ∈ (r) − ((pr) ∪ (qr))}. Every vertex w ∈ W will have ζ(w) = 0,
δ(w) = r − 1.
R = {e ∈ (p)−((pq)∪(pr))}. Every vertex r ∈ R will have ζ(r) = 0, δ(r) = p−1.
S = {f ∈ (q)−((qr)∪(qp))}. Every vertex s ∈ S will have ζ(s) = 0, δ(s) = q−1.

The zero-divisor graph will act similarly for a finite amount of primes in the prime fac-
torization of n. We expect to have no nilpotent elements, and we will use δ(x) of a vertex
x, to determine the primes involved in our factorization of n. So now we can now generate
an algorithm for determining if the ring of the form Zn in the zero-divisor graph is a direct
product of fields:

Algorithm 9.1 Let R ∼= Zp1p2···ps. Determine R knowing the structure of Γ∗(R)

1) Determine whether Nil(R) = ∅. If so, by Theorem 8.3., we know that the
corresponding ring is of the form Zp1p2···ps , and we now have to determine
the primes.
2) Beginning at the end vertices and moving in the graph, look at the
vertices that have δ(x) = p− 1 for some prime p.
3) Determine the total number of distinct values of δ(x), whose value is a
prime minus one, which will be p1 − 1, p2 − 1,. . ., ps − 1.
4) Now we can determine R = Zp1p2···ps .

Clearly, this algorithm is very similar to Algorithm 8.1., however there are two significant
diffferences. The first difference is that the order of a field of the form Zn is p, in comparison
to a general Artinian field, which has order pm. Therefore, the values of δ(x), we observe
will be p − 1 in comparison to pm − 1 for some prime p. The second difference is that we
do not have step (4) of Algorithm 8.1.. This is because we will not have pi = pj since
Zp2i p1···pn 6= Zpi × Zpi × Zp1 × · · · × Zpn , so we will not have two distinct fields of the same
order.
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10 The Nilradicals of Direct Products of Local Rings

and Fields

At this point, we have established properties about local rings, fields, and direct products
of fields. Before we explore direct products of local rings and direct products of local rings
with fields, we want to establish the following property about the nilradical of an Artinian
ring. We are especially interested in the nilradical because we can easily identify it in a
zero-divisor graph, and it is simpler and therefore easier to visualize. It also still enables us
to extract information about the ring from the zero-divisor graph.

Proposition 10.1. If R ∼= L1 × · · · × Ln, where L1, . . . , Ln are all local rings, then
Nil(R) ∼= (Z(L1)× · · · × Z(Ln)).
Proof. By Fact 2.2., we know that the maximal ideal for a local ring is Z(L), and so by Theo-
rem 3.3., we know that the maximal ideals of R ∼= L1×· · ·×Ln will be (Z(L1)×L2×· · ·×Ln),
. . ., (L1× · · · ×Ln−1×Z(Ln)). Since the Jacobson Radical equals the Nilradical in Artinian
rings, we find that Nil(R) ∼= (Z(L1)× · · · × Z(Ln)). �

Therefore, since the maximal ideal of a field is (0), we can see that the maximal ideal of
F1 × . . .× Fn is ((0)× · · · × (0)). This result for a direct product of fields is expected since
the product of fields is a reduced ring, and by definition, reduced rings have no nilpotent
elements. In addition, we can see that Γ∗(Nil(L× F1 × · · · × Fn)) ∼= Γ∗(Nil(L)) ∼= Γ∗(L)).
It also allows us to visually identify certain properties about rings immediately from our
zero-divisor graph. For example, if we see a zero-divisor graph with no looped vertices, then
clearly it is corresponding to a ring that is a direct product of fields. We will find similar
results for zero-divisor graphs corresponding to a direct product of local rings, as well as
those corresponding to a direct product of local rings and fields.

11 Zero-Divisor Graphs of a Direct Product of Fields

and Local Rings

We have examined the zero-divisor graphs of fields, local rings (that are not fields), and
the direct product of fields. We now want to examine the zero-divisor graphs of direct prod-
ucts of local rings and fields. Our direct products will get more complicated, therefore we
will use Proposition 10.1. to examine the zero-divisor graph of nilradical of the ring, in
addition to the zero-divisor graph, to extract information.

We first want to create an algorithm for the direct product of local rings (that are all not
fields):

Algorithm 11.1. Determining a Direct Product of Local Rings

1) Determine if |Nil(R)| 6= |Z(R)| and if Nil(R) 6= ∅. If so, look at
Γ∗(Nil(R)) by observing the zero-divisor graph formed by only the looped
vertices.
2) Determine the δ(x) of the vertices that are not looped or adjacent to any
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looped vertices. If there are no such vertices, then we have a direct product
of local rings.
3) Observe |Γ∗(Nil(R))|. By Proposition 10.1., we know that Nil(R) ∼=
(Z(L1)× · · · × Z(Ln)). So, |Nil(R)| = |Z(L1)||Z(L2)| · · · |Z(Lm)|.
We can use Lagrange’s Theorem and observe |Γ∗(R)| to determine |Z(L1)|, · · · , |Z(Lm)|.
This can be seen in Example 11.1.
4) Once we have done this, we can look at the δ(x) of unlooped vertices to
determine |L1|, . . . , |Lm|.
Therefore, we know the size of the zero-divisor graphs of the local rings
involved in the decomposition of R, so |R| = |L1 × · · · × Lm|.

This algorithm is powerful because it enables us to identify zero-divisor graphs of rings that
are a direct product of local rings (that are not fields) by observing that all of the vertices
in Γ∗(R) are looped or adjacent to looped vertices. However, step 3 of Algorithm 11.1 re-
lies on the use of algebraic properties to eliminate possible |Z(Li)|, which can get relatively
convoluted. It also requires us to determine |Γ∗(R)|, which can be difficult when R is large.
We will next provide an example of the application of the algorithm:

Example 11.1. Structure of R = L1 × L2

Suppose that R ∼= Z2[x, y]/(x2, xy, y2) × Z4, we can apply our Algorithm 11.1 to de-
termine that we have a direct product of two local rings, one of order 8, for example
Z2[x, y]/(x2, xy, y2), and the other of order 4, for example Z4.

Γ∗(R) Γ∗(Nil(R))

1) |Nil(R)| 6= |Z(R)|.
2) All of the vertices are looped or adjacent to looped vertices. Therefore, we
have a direct product of local rings (not fields).
3) We can determine that |Γ∗(Nil(R))| = 7, implying that |Nil(R))| = 8. The
size of each of the maximal ideals of the local rings involved in the direct product
must multiply by one another to get 8. So, we either have three local rings with
|Z(L1)| = |Z(L2)| = |Z(L3)| = 2, or we have |Z(L1)| = 4 and |Z(L2)| = 2.
However, we cannot have three local rings each of whose maximal ideal has size
2, because by Lagrange’s Theorem this implies that each |L1|, |L2|, |L3| ≥ 4.
Therefore, there would be at least 36 zero-divisors in R, since any (x, y, z) having
x = 0, y = 0, or z = 0, will be a zero-divisor. This contradicts |Γ∗(R)| = 23.
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Therefore, we must have two rings where |Z(L1)| = 4 and |Z(L2)| = 2. This
would imply that |L1| ≥ 8, |L2| ≥ 4. Therefore, we must have at least 10 vertices
in R, which we do.
4) We can then look at the zero-divisor graph to determine |R| = |L1 × L2|. If
we observe δ(x) of any unlooped vertex, x we find δ(x) = 1, 3, or 7. This implies
that our local rings must have |L1| = 8 and |L2| = 4, since we cannot have a local
commutative, unital ring of order 2. Therefore, |R| = 32.

In this example, we can see that we can determine up to the size of |L1| and |L2|, however
we are unable to specifically identify what ring the zero-divisor graph represents. The power
of this algorithm is that it enables us to narrow down the possibilities of associated rings.

We next want to examine direct products involving local rings (that are not a fields) with
fields. We will use the following algorithm to identify these types of rings:

Algorithm 11.2. Determining a Direct Product of Local Rings with Fields

1) Determine if |Nil(R)| 6= |Z(R)| and if Nil(R) 6= ∅. If so, we will be
primarily interested Γ∗(Nil(R)).
2) Determine the δ(x) of the vertices that are not looped or adjacent to any
looped vertices, these will correspond to the orders of the fields involved
in the direct product. If there are no such values, then we have a direct
product of local rings, so refer to Algorithm 11.1.
If there are such values, determine the total number of distinct values of
δ(x) whose value is pm − 1. We will have distinct values pα1

1 − 1, pα2
2 − 1,

. . ., pαmm − 1.
If we have δ(x1) = pαii − 1, δ(x2) = p2α

i

i − 1, . . . , δ(xk) = pkαii − 1, then we
have k distinct fields of the same order.
3) Observe Γ∗(Nil(R)). Determine the possible methods of constructing
Γ∗(Nil(R)) to narrow down the possible local rings (not fields) involved in
the decomposition of R.
4) For any ring R = L1×· · ·×Ln×Fpα11

×· · ·×Fpαmm , we will have an element

a = (0, . . . , 0, f) where f ∈ Fpαmm . Furthermore, δ(a) = x1 · · ·xnpα1
1 · · · p

αm−1

m−1
where x1, . . . , xn are the respective order of L1, . . . , Ln and pα1

1 , . . . , p
αm−1

m−1
are the respective orders of Fpα11

, . . . ,Fpαm−1
m−1

.

In step 2, we determined the values of pα1
1 , . . . , p

αm−1

m−1 , and so we have (δ(a)+
1)/(pα1

1 · · · p
αm−1

m−1 ) = x1 · · ·xn.
Therefore, we can look at our findings in step 3 and determine the order of
the local rings involved, by also observing the complexity of the structure
of Γ∗(R).
5) Therefore, we can determine that R = L1× · · · ×Ln× Fpα11

× · · · × Fpαmm

This algorithm will be harder to apply to larger rings. Example 11.2. below demon-
strates an application of this algorithm on three different rings that are direct products of
local rings with fields. We will also see examples applying a variation of this algorithm to
Γ∗(Zn), where local rings have a principal maximal ideal. This algorithm also holds for all
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types of local Artinian rings, whether the maximal ideal is principal or not.

Example 11.2. Structure of R1
∼= L1 × F1, R2

∼= L1 × F1, and R3
∼= L1 × L2 × F1

Below we have three direct products of local rings with fields. We will show how our
Algorithm 11.2. can differentiate between each of the zero-divisor graphs. Suppose that:

R1 = Z2[x, y]/(x2, xy, y2)× Z2

R2 = F4[x]/(x2)× Z2

R3 = Z4 × Z4 × Z2.

Therefore, generally our rings are R1
∼= L1 × F1, R2

∼= L1 × F1, and R3
∼= L1 × L2 × F1.

Γ∗(R1) Γ∗(R2)

Γ∗(R3) Γ∗(Nil(R1))∼=Γ∗(Nil(R2))∼=Γ∗(Nil(R3))

1) In all of these zero-divisor graphs, |Nil(R)| 6= |Z(R)|.
2) Without knowing the associated ring to the zero-divisor graph, we can then
look at the δ(x) of the vertices that are not looped or adjacent to any looped
vertices. In Γ∗(R1), Γ∗(R2), and Γ∗(R3), we find one distinct value δ(x) = 1.
Therefore, we have a field of order 2, F2

∼= Z2 involved in our direct product in
all of these rings.
3) The Γ∗(Nil(R1)) ∼= Γ∗(Nil(R2)) ∼= Γ∗(Nil(R3)) is a K3 graph. The only way
of attain this graph structure is if |R| = 8 or |R| = 16 [11]. Therefore, we have
three options: 1) Γ∗(Nil(R)) ∼= Γ∗(L) where |L| = 8, 2) Γ∗(Nil(R)) ∼= Γ∗(L)
where |L| = 16, or 3) Γ∗(Nil(R)) ∼= Γ∗(L1 × L2)) where |L1| = |L2| = 4.
4) In step 2, we found that all of these graphs contain one field, Z2. Therefore,
there will be one vertex y of the form (0, 1) or (0, 0, 1) depending on how many
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local rings are involved in the direct product. In the case of R ∼= L1 × F1, this y
will be adjacent to all the vertices of the form (a, 0) where ∀a ∈ L1. Therefore,
δ(y) = |L1| − 1. In the case of R ∼= L1 × L2 × F2, y will be adjacent to (a, b, 0)
where ∀a ∈ L1 and ∀b ∈ L2. Therefore δ(y) = |L1||L2| − 1.
5) We can see that in Γ∗(R1), this vertex y has δ(y) = 7. This implies that
we have one local ring L1 where |L1| = 8. Therefore, we have determined that
Γ∗(R1) has R1

∼= L1 × F1 where |L1| = 8 and |F1| = 2.
In Γ∗(R2), we see that this vertex y has δ(y) = 15. Therefore, we could have two
local rings of order 4 each, or we could have just one local ring of order 16. When
we look at Γ∗(R2), we see that the extensions from the complete bipartite graph
that is formed by F1 and L, are only adjacent to the looped vertices. Therefore,
this simpler structure implies that we only have one local ring involved in our
direct product. Therefore, we can conclude that R2

∼= L1 × F1 where |L1| = 16
and |F1| = 2.
In Γ∗(R3), we find that δ(y) = 15. However, since the zero-divisor graph structure
is more complicated, we can determine that we have the product of two local rings,
which we previously determined must be order 4. Therefore, we can conclude that
R3
∼= L1 × L2 × F1.

Algorithm 11.2. is powerful as it enables us to conclude that the corresponding ring R to
Γ∗(R) is of the form R = L1×· · ·×Ln×F1×· · ·×Fm if Γ∗(R) contains both looped and not
looped vertices, and there exists at least one vertex that is not looped and not adjacent to
any looped vertex. However, similarly to Algorithm 11.1., this algorithm becomes difficult
to apply when R is large.

12 Zero-Divisor Graphs of Zpα1
1 ···p

αm
m

We now want to observe the direct product of local rings and the direct product of local
rings with fields in rings of the form Zn. We will begin by looking at the simplest example,
Γ∗(Zpmq). This is a direct product of a local ring with a field.

Example 12.1. Structure of Γ∗(Zpmq)
By Theorem 6.2., we know that |Nil(Zpmq)| = pm−1. Immediately, we see a corre-

spondence between this and Γ∗(Zpm) since |Nil(Zpmq)| = |Nil(Zpm)|. In fact, we can ex-
tend this argument, and say that not only is the size of the nilpotent set the same, but
Nil(Zpmq) ∼= Nil(Zpm), and therefore Γ∗(Nil(Zpmq) ∼= Γ∗(Nil(Zpm)) ∼= Γ∗(Zpm).

The difference is that Zpmq is decomposable into Zpm ×Zq by Corollary 5.1, since pm and
q are relatively prime. We can observe the interaction of the vertices in the following sets,
(pq), (q), (p), (p2)− (p), . . . , (pm)− (pm−1). All the vertices in (q) will be adjacent to all of
the vertices in (pm)− (pm−1), since qpm = 0. Therefore, they will form a complete bipartite
structure. However, Γ∗(Zpm) is not a complete bipartite graph because there are vertices
in (pq) are nilpotent elements. Since pqm = 0, these elements in (pq) will also be adjacent
to vertices in (p),(p2)− (p), . . . , (pm−1)− (pm−2). Therefore, we will form extensions off the
complete bipartite graph.
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We will see that the interior complete bipartite graph will have two distinct sets of ver-
tices, X and Y . The classification of vertices is as follows:

X = {b ∈ (q)} and |X| = pm − 1.
Ym = {a ∈ (pm)} and |Ym| = q − 1.
Ym−1 = {c ∈ (pm−1)− (pm)} and |Ym−1| = qs−1 − qs−2.
...
Y1 = {d ∈ (p) − (

⋃n
i=2 p

i)} and |Y1| = q2 − q. Every vertex y1 ∈ Y1 will have
δ(y1) = p− 1.

Similar to in Γ∗(Zpm), this last set of vertices generated by (p)− (
⋃n
i=2 p

i) will enable us
to understand the prime involved, because ∀x ∈ (p)− (

⋃n
i=2 p

i) we find that δ(x) = p− 1.

Γ∗(Z18)∼= Γ∗(Z2 × Z32) Γ∗(Nil(Z18))∼= Γ∗(Z32)

Γ∗(Z24) ∼= Γ∗(Z3 × Z23) Γ∗(Nil(Z24)) ∼= Γ∗(Z23)

Algorithm 12.1. Let R ∼= Zpmp1p2···ps. Determine R knowing the structure of Γ∗(R)

1) Determine whether |Nil(R)| 6= |Z(R)| and that Nil(R) 6= ∅. If so, look
at Γ∗(Nil(R)).
2) If Γ∗(Nil(R)) ∼= Γ∗(Zpm), then we know that we have one prime of degree
greater than 1 involved and some undetermined amount of other distinct
primes. Furthermore, we know that pm will be the prime with the degree
m where m > 1.
3) Beginning at the end vertices and moving in the graph, look at the
vertices that has δ(x) = q − 1 for some prime q.
4) Determine the total number of distinct values of δ(x), whose value is a
prime minus one. Therefore, we will find values p1 − 1, p2 − 1,. . ., ps − 1

38



where pi 6= pj.
5) So we now can determine R ∼= Zpmp1p2···ps .

Example 12.2. Structure of Γ∗(Zpmqs)
The structure of Γ∗(Zpmqs) will get complicated very fast, as we will have larger zero-

divisor graphs with numerous nilpotent elements. By Corollary 5.1., we know that Zpmqs is
decomposable into Zpm × Zqs . We expect to see an interior complete bipartite graph being
formed from sets Xm and Ys. However as opposed to Γ∗(Zpmq) where there was extensions
off of one side, in Γ∗(Zpmqs) there will be extensions and nilpotent elements off of both sides
of this interior complete bipartite graph.

Let us first classify the vertices, so we can better understand how this graph will be
formed.

Xm = {a ∈ (pm)} and |Xm| = qs − 1.
Xm−1 = {c ∈ (pm−1)− (pm)} and |Xm−1| = qs−1 − qs−2.
...
X1 = {d ∈ (p)− (

⋃n
i=2 p

i)} and |X1| = q2 − q.
Ys = {a ∈ (qs)} and |Ys| = pm − 1.
Ys−1 = {e ∈ (qs−1)− ((qs) ∪ (

⋃n
i=2 p

i))} and |Ys−1| = pm−1 − pm−2.
...
Y1 = {f ∈ (q)− ((

⋃n
i=2 q

i) ∪ (
⋃n
i=2 p

i))} and |Y1| = p2 − p.

Γ∗(Z36) ∼= Γ∗(Z32 × Z22) Γ∗(Nil(Z36))

As you can see, the zero-divisor graphs will get extremely complicated the bigger our
zero-divisor graph gets. Therefore, we can look at the behavior of the nilradical zero-divisor
graph instead. We noted before that Γ∗(Nil(Zpmq)) ∼= Γ∗(Nil(Zpm)). Therefore, by looking
at the nilradical graph as well as the zero-divisor graph, we can determine that we are dealing
with a zero-divisor of Zn where n has the prime factorization consisting of one prime to the
degree greater than 1, and some other primes.

In Γ∗(Nil(Zpmqs)), we can determine the prime to the greatest degree based on the struc-
ture of the nilradical graph. For example, in Γ∗(Nil(Z36)), we have a graph structure similar
to the Γ∗(Zp2), so we expect the greatest degree of prime to be 2. However, we also know
that we do not simply have one prime of degree greater than 1 involved for two reasons. The
first is the fact that our graph of Γ∗(Z36) is complicated and has extensions on both sides of
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Γ∗(Z72) ∼= Γ∗(Z32 × Z23) Γ∗(Nil(Z72))

the interior complete bipartite graph. The second is that we can see that in the nilradical
graph we do not have |Γ∗(Nil(Z36))| = p− 1. Instead, we have |Γ∗(Nil(Z36))| = pq − 1.

Similarly, for Γ∗(Nil(Z72)), we can tell that the greatest degree of prime we have involved
is 3, since the graph of the nilradical looks similar to Γ∗(p3). We can also tell that we have
more than one prime of degree greater than 1 involved in the prime factorization of n, since
|Γ∗(Nil(Z72))| = p2q − 1.

Corollary 12.1 If |Z(Zpα11 p
α2
2 ···p

αk
k

)∗| = m− 1, then m = pα1−1
1 pα2−1

2 · · · pαk−1k .

Proof. In Theorem 6.2., we know that if we have the prime factorization n =
∏k

i=1 p
αi
i , then

|Nil(R)| = n/(
∏k

i=1 pi). Therefore, Z(R)∗ = n/(
∏k

i=1 pi)− 1. So, m− 1 = n/(
∏k

i=1 pi)− 1.

So m = n/(
∏k

i=1 pi). Therefore, m = pα1−1
1 pα2−1

2 · · · pαk−1k . �

Algorithm 12.2. Let R ∼= Zpα11 p
α2
2 ···p

αk
k

. Determine R knowing the structure of Γ∗(R)

1) Determine whether |Nil(R)| 6= |Z(R)|, and that Nil(R) 6= ∅. If we have
neither then we can proceed to the next step.
2) If Γ∗(Nil(R)) ∼= Γ∗(Zpm), then we know that we have one prime of degree
greater than 1 involved and some undetermined amount of other distinct
primes, so go back to Algorithm 12.1.. If not, we look at |Γ∗(Nil(R))| =
m− 1.
3) Since m is not a prime, we take the prime factorization of m. This will
be m = pα1−1

1 pα2−1
2 · · · pαk−1k .

4) Beginning at the end vertices and moving in the graph, look at the ver-
tices that has δ(x) = q − 1 for some prime q.
5) Determine the total number of distinct values of δ(x) whose value is a
prime minus 1, so we will get p1 − 1, p2 − 1,. . ., ps − 1 for each pi 6= pj.
6) If there all of these primes are in the prime factorization of m, then we
have n = pα1

1 p
α2
2 · · · p

αk
k . Therefore, R ∼= Zpα11 p

α2
2 ···p

αk
k

Now our last type of Γ∗(Zn) will be when R ∼= Zpα11 ···p
αs
s pr···pt . This is equivalent to

a direct product of local rings (that are not fields) and fields, since by Corollary 5.1.,
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Zpα11 p
α2
2 ···p

αk
k

∼= Zpα11
× · · · × Zpαss × Zpr × · · · × Zpt . This gets very complicated very fast,

in fact the simplest example of this type of ring is Γ∗(Z22 × Z32 × Z5) ∼= Γ∗(Z180).
We can however determine an algorithm for this type of ring. It will be the following:

Algorithm 12.3. Let R ∼= Zpα11 p
α2
2 ···p

αk
k pr···pt. Determine R knowing the structure of

Γ∗(R)

1) Determine whether |Nil(R)| 6= |Z(R)|, and that Nil(R) 6= ∅. If we have
neither then we can proceed to the next step.
2) If Γ∗(Nil(R)) ∼= Γ∗(Zpm), then we know that we have one prime of degree
greater than 1 involved and some underdetermined amount of other distinct
primes, so go back to Algorithm 12.1.. If not, we look at |Γ∗(Nil(R))| =
m− 1.
3) Since m is not a prime, we take the prime factorization of m. This will
be m = pα1−1

1 pα2−1
2 · · · pαk−1k

4) Beginning at the end vertices and moving in the graph, look at the ver-
tices that has δ(x) = q − 1 for some prime q.
5) Determine the total number of distinct values of δ(x) whose value is a
prime minus 1, which will be p1 − 1, p2 − 1,. . ., ps − 1.
6) If there are additional distinct primes that are not in the prime factor-
ization of m, then we have n = pα1

1 · · · p
αk
k pr · · · pt, where pr, . . . , pt are the

distinct primes not in the prime factorization of m.

We have now examined all of the possible types of rings of the form Zn and the behaviors
of their corresponding zero-divisor graphs. We next want to generally apply an algorithm
for Γ∗(Zn) that will allow us to determine the associated ring to a zero-divisor graph.

13 Algorithms for determining the Algebraic structure

of Artinian Rings from the Zero-Divisor Graphs

We have now examined all the cases of Artinian rings. We started by identifying the
zero-divisor graph structures of fields and local rings, and built up to more complicated Ar-
tinian rings using direct products. Now, in order to tie all of this together, we will create a
general algorithm that we can use when approaching a zero-divisor graph of an Artinian ring.

Algorithm 13.1. Determine an Artinian ring R knowing the structure of Γ∗(R)

1) Observe Γ∗(Nil(R))
2). If Γ∗(Nil(R)) ∼= Γ∗(R), then follow Algorithm 4.1.
3) If Algorithm 4.1. fails, but Γ∗(Nil(R)) ∼= Γ∗(R), then follow Algorithm
7.1.
4) If Γ∗(Nil(R)) = ∅, then follow Algorithm 8.1.
5) If ∀x ∈ Γ∗(R) are adjacent to a looped vertex or is looped itself, then
follow Algorithm 11.1.
6) If none of the above steps hold, then follow Algorithm 11.2.
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This algorithm provides an approach for determining the associated rings to a zero-divisor
graph. We saw throughout the paper that our specific Algorithms are unable to always get
a specific ring, however we can find out a lot of information such as order, type of ring, and
the number of rings in the decomposition.

Throughout this paper, we also observed algorithms for specifically identifying rings of
the form Zn given the zero-divisor graph. The following algorithm provides us with a method
of approaching zero-divisor graphs with the knowledge that we have a ring of the form Zn:

Algorithm 13.1. Determine Zn knowing the structure of Γ∗(Zn)

1) Observe Γ∗(Nil(Zn))
2). If Γ∗(Nil(Zn)) ∼= Γ∗(Zn), then follow Algorithm 6.1.
3) If Γ∗(Nil(Zn)) is empty, then follow Algorithm 9.1.
4) If Γ∗(Nil(Zn)) ∼= Γ∗(Zpm), then follow Algorithm 12.1.
5) If Γ∗(Nil(Zn)) is neither of the above and |Γ∗(Nil(Zn))| = m, then follow
Algorithm 12.2. or 12.3.

Both of these algorithms leave us questioning the uniqueness. The next section will
explore whether we can uniquely correspond a ring, or an algebraic structure of a ring, to a
zero-divisor graph.

14 Uniqueness of Zero-Divisor Graphs

We have now determined algorithms that allow us to identify the possible associated
rings to zero-divisor graphs. Ideally we would like to narrow down the set of associated
rings to a zero-divisor graph to as small a set as possible. Therefore, we want to explore
when a zero-divisor graph corresponds to a unique ring. We also want to determine when a
zero-divisor graph does not correspond uniquely to a ring, what other rings have the same
zero-divisor graph.

We will first examine the uniqueness of the zero-divisor graphs corresponding to rings
of the form Zn. The following theorem establishes that for each distinct n, we will have a
distinct zero-divisor graph, Γ∗(Zn).

Theorem 14.1. Γ∗(Zn) ∼= Γ∗(Zm) if and only if m = n.
Proof. ⇒ Suppose that the prime factorizations of n and m are n = pα1

1 · · · pαrr , and
m = qα1

1 · · · qαss . If Γ∗(Zn) ∼= Γ∗(Zm), then |Nil(Zn)| = |Nil(Zm)|. Now, suppose for a
contradiction, that m 6= n. We know from Theorem 9.2. that |Z(Zn)| = n/(

∏k
i=1 pi) and

|Z(Zm)| = m/(
∏l

j=1 qi). Therefore, we must have n/(
∏k

i=1 pi) = m/(
∏l

j=1 qi). If
∏k

i=1 pi =∏l
j=1 qi, then n = m, which is a contradiction. Therefore,

∏k
i=1 pi 6=

∏l
j=1 qi, so there is some

pi 6= qj. Since n/(
∏k

i=1 pi) = m/(
∏l

j=1 qi), we must have pα1−1
1 · · · pαr−1r = qα1−1

1 · · · qαs−1s .
However, since pi 6= qi, this equality is a contradiction by the Fundamental Theorem of
Arithmetic. Therefore, we must have m = n.
⇐ Clearly if m = n, then Γ∗(Zn) ∼= Γ∗(Zm). �
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Theorem 14.1. allows us to understand that the corresponding zero-divisor graphs Γ∗(R)
to a ring R ∼= Zn is unique. Therefore, if we are given that Γ∗(R) is a zero-divisor of a ring of
the form Zn, we can determine the exact ring corresponding to the zero-divisor graph using
simply the graph structure.

However, this uniqueness does not hold when examining zero-divisor graphs of Artinian
rings. In Example 7.1 and Example 7.2., we saw numerous rings corresponding to each of
the zero-divisor graphs. Even when looking at Zn, we cannot associate a ring uniquely to a
zero-divisor graph unless we are given that R is of the form Zn. This is shown in our next
example where we find a multiplicative isomorphism between Z(Zp[x]/(xm)) and Z(Zpm). If
we define a zero-divisor graph that enables us to visualize addition between the elements as
well, then we will be able to distinguish the zero-divisor graphs.

Example 14.1. Existence of a Multiplicative Isomorphism
There exists a multiplicative isomorphism between Z(Zp[x]/(xm)) and Z(Zpm), defined

by ρ : Z(Zp[x]/(xm))→ Z(Zpm) where ρ(x) = p and if a ∈ Zp, then ρ(a) = a.

Therefore, since the zero-divisor graphs only convey the multiplicative relationship be-
tween elements, a multiplicative isomorphism implies that the zero-divisor graphs will be
isomorphic, so Γ∗(Zp[x]/(xm))∼=Γ∗(Zpm).

Example 14.2. Γ∗(Z2[x]/(x3))∼=Γ∗(Z8).
There exists a multiplicative isomorphism from Z2[x]/(x3)→ Z8 which is defined by the

following: ρ(1) = 1, ρ(x) = 2, ρ(x + 1) = 3, ρ(x2) = 4, ρ(x2 + 1) = 5, ρ(x2 + x) = 6,
ρ(x2 + x+ 1) = 7.

Γ∗(Z2[x]/(x3)) ∼= Γ∗(Z8)

We can also see how decomposable rings are also not unique.

Example 14.3. (Example 3, [14]) Γ∗(Z3×Z9) ∼= Γ∗(Z3 × Z3[x]/(x2)).
There exists a multiplicative isomorphism, ρ : Z(Z3 × Z3[x]/(x2)) → Z(Z3×Z9) defined

by the following ρ((a, b)) = (a, β(b)) where β(1) = 1, β(2) = 8, β(x) = 3, β(x + 1) = 4,
β(x+ 2) = 2, β(2x) = 6, β(2x+ 1) = 7, and β(2x+ 2) = 5.
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Γ∗(Z3 × Z9) ∼= Γ∗(Z3 × Z3[x]/(x2))

Conjecture Γ∗(R1) ∼= Γ∗(R2) if and only if there exists a multiplicative isomorphism
between Z(R1) and Z(R2).

In Example 7.1., we saw that the zero-divisor graph was a complete graph and correlated
to two different ideal lattices. However, in Example 7.3., we saw that the zero-divisor graphs
corresponded to a unique algebraic ideal lattice, where the index of each of the ideals was
known. This leads to the following conjecture:

Conjecture Γ∗(R1) ∼= Γ∗(R2) if and only if R1 and R2 have the same structure of ideal
lattice, and for each ideal I ⊂ R1, J ⊂ R2 where I and J are in the same place in each ideal
lattice, the index of I is equal to the index of J .

15 Conclusion

The introduction of a looped zero-divisor graph allowed us to visualize the degree of
nilpotence of vertices in the zero-divisor graph. This, in conjunction with the algorithms
that we developed in this paper, allowed us to visually identify types of Artinian rings from
the zero-divisor graph.

If all of the vertices are looped, then our corresponding Artinian ring is a local ring (that
is not a field); if all of the vertices are not looped, then our corresponding ring is a direct
product of fields; if there exists looped and unlooped vertices, but all of the vertices are
either looped or adjacent to a looped vertex, then the corresponding ring is a direct product
of local rings (that are not fields); and if there exists looped and unlooped vertices and at
least one unlooped vertex is not adjacent to any looped vertex, then the corresponding ring
is a direct product of local rings and fields.

Then, by counting the degrees of the vertices and by processes of elimination, we were
able to extract more information from the zero-divisor graphs, which allowed us to narrow
down a set of possible associated rings.

These algorithms are manageable for smaller Artinian rings, but when we are dealing
with rings whose order is greater than 100, our algorithms become very inefficient. If we
were to continue with this project, we may be motivated to create more efficient algorithms
that could be applied to larger rings.
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