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Abstract 

Understanding the physical and chemical principles governing specificity and 

promiscuity in protein—protein binding is important both for understanding mechanisms 

of molecular recognition and for designing novel biomolecular systems. The goal of this 

project is to identify if the energetic contributions of structural moieties (e.g., side chains 

and backbones of individual residues) are different between promiscuous and specific 

protein—protein interactions. To achieve this goal, we are testing multiple hypotheses; 

for example, we hypothesize that specific proteins, which selectively bind to only one 

partner, preferentially utilize side chains to mediate binding when compared to 

promiscuous proteins, which may utilize the structurally consistent backbone moieties 

more preferentially. Electrostatic contributions of the structural moieties toward binding 

are quantified using component analysis techniques within a continuum electrostatic 

framework that takes solvent effects into account. Van der Waals and surface burial 

contributions are also evaluated. Two sets of protein complexes, identified by the 

literature whenever possible to be either promiscuous or specific, are being analyzed to 

test our hypotheses. Our preliminary results indicate our hypotheses may be partially 

verified in the case of promiscuous proteins. Interestingly, these predictions do not hold 

when considering the binding partners of the promiscuous proteins.  
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1. Background and Introduction	
  

1.1 Protein—Protein Interactions 

   Proteins are the molecular machines of cells. They are important for all cellular 

functions, including maintaining cell structure, facilitating cell transport, catalyzing 

reactions, enabling DNA replication, carrying out the immune response, aiding cellular 

viral entry, and synthesizing new molecules. Most protein functions are mediated 

by protein—protein interactions. For example, the protein erythropoietin binds with its 

receptor to control red blood cell production; perturbations in this interaction can result in 

anemia and other diseases [1]. As another 

example, Hemagglutinin is a glycoprotein 

of the influenza virus and mediates viral 

entry into the cell via its interaction with 

cell membrane glycoproteins [2]. 

Calmodulin binds to multiple target 

proteins to regulate vital cell processes, 

including inflammation and smooth 

muscle contraction [3]. Investigating the 

binding affinity of protein—protein interactions is important for 

understanding mechanisms of molecular recognition between proteins; the consequent 

interactions between these proteins drive biological systems. Furthermore, because 

disturbances in these interactions can bring about diseases such as cancer [4, 5] and 

amyloidosis [6, 7], these principles are important for understanding mechanisms of 

disease and for designing novel biomolecular systems that can regulate these interactions.  

Figure 1.1.1: Amino Acid Structure 
These are the components of an amino acid. The 
backbone atoms (blue) are conserved between each 
amino acid. The side chains (red) are different for 
each amino acid. 
 
   

R
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  Proteins are polymers composed of multiple amino acids. There are 20 different 

amino acids found in nature. Each of them has an identical backbone but a different side 

chain. These side chains can be polar, non-polar, acidic, or basic. The amino acid 

sequence of a protein is called its primary structure. Each amino acid in this sequence is 

called a residue. Interactions between amino acids drive the protein to fold into a three 

dimensional structure. Residues on the surface of different proteins can interact with each 

other. If the three-dimensional 

structure of two proteins is 

complementary, these proteins can 

bind to each other via an interface. 

The residues on a protein that are 

close to or in contact with the 

binding partner are called interfacial 

residues. Interactions between the 

interfacial residues of the binding partners generally drive the formation of a protein—

protein complex.  

  Protein association can be treated as a rapid and reversible process in equilibrium, 

where the binding affinity between the two partners can be obtained experimentally from 

the dissociation constant [8]. In aqueous solvent, water molecules are able to make 

hydrogen bonds with other polar molecules. When nonpolar molecules are present in 

aqueous solvent, the number of potential hydrogen bonds and the entropy of the solvent 

decreases [9]. Consequently, the change in surroundings of nonpolar molecules from 

solvent to other nonpolar molecules results in higher entropy for the solvent. This 

Figure 1.1.2: Interfacial Residues 
Interfacial residues of a protein—protein complex are 
explicitly shown here. In this work, these residues are 
defined as the amino acids within a certain cutoff distance 
from the closest residue on the binding partner.  
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phenomenon is termed the hydrophobic effect. Analogous to its prominent role in protein 

folding, the hydrophobic effect was believed to be the main driving force behind protein-

protein association, because the entropy of solvent is increased upon association of 

macromolecules within it [10-12]. However, further work revealed that hydrophobic 

interactions were disproportionately more favorable for smaller interfaces than for larger 

interfaces and that the hydrophobic effect may not drive the association of complexes 

with larger interfaces [13]. Jones and Thornton found that for complexes comprised of 

proteins that also exist as monomers, the interfacial residues are less hydrophobic when 

compared to the interfacial residues of homodimers [14]. These data imply that 

hydrophobic interactions may not necessarily be the main driving forces of all protein—

protein complexes. Additionally, certain interfacial residues, termed “hot spots”, were 

found to contribute significantly to the binding free energy using an experimental 

technique called alanine scanning, which evaluates the contribution of the side chain to 

the binding free energy by substituting a residue with alanine, thereby eliminating the 

side chain [15]. Hot spots are residues where substitution to alanine increases the binding 

free energy by at least 2.0 kcal/mol [16]. Prior analysis of hot spots revealed tryptophan, 

arginine, and tyrosine as major contributors to binding affinity while leucine, serine, 

threonine, and valine were not usually hot spot residues [17]. Because some of the hot 

spot residues had polar or even charged side chains, this finding implied that such 

residues may contribute to binding affinity due to specific physical mechanisms and that 

forces other than hydrophobicity are also involved in driving protein—protein 

interactions.  

  These forces include electrostatic [14] and van der Waals [18] interactions. The 
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idea of electrostatic complementarity between protein—protein interfaces was confirmed 

in a previous study [19]. A study that compared the interfaces of specific protein—

protein complexes with nonspecific, crystal packing contacts, found van der Waals and 

electrostatic interactions had a greater role in the association of specific complexes, when 

compared to hydrophobic interactions [20]. Additionally, experimental [15] and 

computational [21]  work has identified that most polar and charged interfacial residues 

are hot spots, implying electrostatic interactions are important in driving complex 

formation. Additionally, another study characterized the residues surrounding hot spot 

residues to be unimportant for binding, with the authors suggesting that these residues 

were present near the hot spot residues to shelter them from interacting with solvent [17]. 

This mechanism implies hot spot residues are stabilized upon binding because they are 

involved in more favorable interactions when the complex is bound. Polar and charged 

interfacial residues, when compared to the residues in the core of the protein, experience 

higher electrostatic stabilization upon the formation of the protein—protein complex [22, 

23]. However, it should be noted that this net electrostatic stabilization is controversial 

[24]. Another study found that the pKa shifts for acidic residues upon protein association 

were negative, suggesting that these residues often stabilize the complex when compared 

to a hypothetical complex in which that residue was mutated to an alanine [25]. The 

average pKa shift is an indication of how much the electrostatic interactions compensate 

for the desolvation of interfacial residues. Other studies have shown that a higher amount 

of charged interfacial residues results in higher affinity [26, 27].  

  Van der Waals interactions are also thought to have a substantial energetic 

contribution in driving protein binding. This interaction results from the dispersion 
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attraction between non-polar molecules and the exchange repulsion between nuclei. 

These forces are of a shorter range than electrostatic interactions. However, their 

magnitude increases significantly as the distance between the binding partners decreases 

and are important in driving binding [18]. The van der Waals interactions between non-

polar side chains are also thought to be favorable for binding [28].  

  Taken together, the findings of multiple studies confirm that electrostatics, van 

der Waals, and hydrophobic interactions are important driving forces in protein—protein 

association. 

1.2 Specificity and Promiscuity 

  The specificity of protein—protein interactions can vary widely. Specific proteins 

bind tightly with only one partner and do not bind to other partners [29]. Other proteins, 

known as promiscuous proteins, can bind to multiple partners with ample affinity. A 

particular protein’s tailored recognition of binding partners is due to its biological 

function. For example, calmodulin needs to bind to multiple binding partners to act as a 

“messenger” molecule and regulate multiple physiological processes such as 

inflammation and smooth muscle contraction [3, 30]. On the other hand, erythropoietin 

(Epo) binds specifically to its binding partner, erythropoietin receptor (EpoR), to control 

red blood cell production. Uncontrolled binding to other partners could lead to unwanted 

proliferation of other cell types, and disturbances in the Epo-EpoR interaction lead to 

anemia [1]. Understanding the structural determinants of promiscuity and specificity in 

protein—protein binding can have applications in biomolecular design because these 

findings can be applied to predict protein association [31, 32].  

  Previous studies have sought to investigate the mechanism of promiscuity and 
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specificity in protein—protein interactions. Specific complexes are thought to have 

interfaces that are complementary in terms of hydrogen bonds, steric interactions, and 

ionic interactions [8]. Electrostatics have been identified to be important in driving 

specific protein association, as charged molecules have been shown to be more specific 

binders when compared to hydrophobic molecules [33]. Other experiments have 

identified certain amino acids to be important in mediating specificity. Tyrosine and 

serine were shown to be important for the binding of protein—protein complexes with 

high affinity and specificity [34]. In a study done by Birtalan et al., replacing the tyrosine 

with a tryptophan reduced specificity in different antibody-antigen complexes [35]. 

Promiscuity has been attributed to nonspecific, hydrophobic interactions between binding 

partners. However, James and Tawfik showed that for a particular promiscuous protein, 

each interaction with a partner makes a specific set of hydrogen bonds [36]. Nevertheless, 

promiscuous proteins have been identified to preferentially use common interface 

residues to bind to different binding partners [17, 37, 38]. While certain amino acids have 

been identified to be important in facilitating specificity, the energetic contributions of 

particular structural moieties in mediating specific or promiscuous interactions have not 

been studied to our knowledge.  

1.3 Goals   

The goal of this project is to understand if the energetic contributions of structural 

moieties are different between promiscuous and specific protein—protein interactions. In 

particular, this project will evaluate the following questions: 

1. Are side chains more important in specific protein binding than in promiscuous 

protein binding?   



	
   12	
  

2. Are backbones more important in promiscuous protein binding than in specific 

protein binding? 

A moiety is considered important if it contributes sufficiently favorably to the 

binding free energy. These questions are evaluated in terms of the electrostatic, van der 

Waals, and surface burial free energies. With respect to the first question, we hypothesize 

that specific proteins, which selectively bind to only one partner, may preferentially 

utilize side chains, which vary between different proteins, to recognize their binding 

partner; on the other hand, promiscuous proteins, which bind to multiple partners, are 

predicted to preferentially utilize the conserved backbone to recognize their binding 

partners. This study analyzes 5 promiscuous proteins, each complexed with one or more 

partners, and 8 specific protein—protein complexes. We employ a two sample test of 

proportions to evaluate the statistical significance of our findings.  

The next section will describe the models we use to determine the important 

structural moieties in promiscuous and specific protein binding. 
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1.4 Theory: Background  

 
In this work, we quantify structural determinants of promiscuity and specificity in 

protein—protein interactions by quantifying their contributions toward the binding free 

energy of the protein complexes. Hence, we now outline the theory behind the models we 

use to evaluate the electrostatic, van der Waals, and surface burial binding free energies. 

The binding of two proteins, A and B, associating to form a complex, AB, can be 

represented by the reversible reaction:  

𝐴 + 𝐵 ⇌ 𝐴𝐵 

The change in the Gibbs free energy of binding is a measure of the favorability of 

the interaction between two proteins, i.e., the binding affinity. The binding free energy 

can be broken down into multiple terms, each due to a particular physical aspect: 

Δ𝐺!"#$% = Δ𝐺!"#$ +   Δ𝐺!"!" +   Δ𝐺!"# +   Δ𝐺!"# 

∆GElec is the change in Gibbs free energy due to electrostatic interactions. In the classical 

molecular mechanics model we use in this work, the electrostatic energy is constituted of 

two components: the interactions between pairs of atoms with positive or negative partial 

charges and the interactions between atoms and the aqueous solvent. ∆GSASA results from 

the change in solvent accessible surface area of each binding partner. It coarsely 

quantifies the hydrophobic effect. The van der Waals energy, ∆GvdW , arises from 

interactions between temporary shifts of electron clouds that create dipoles, inducing 

dipoles in neighboring moieties that can favorably interact. ∆Gint is the change in the 

internal conformational energy and entropy of each protein upon binding. For all of our 

systems, we assume ∆Gint is zero because we assume rigid binding. In general, this 

assumption is commonly used [39] and is reasonable for protein complexes that do not 
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experience large conformational changes upon binding. This study focuses on the 

electrostatic, van der Waals, and surface burial interactions because, as summarized in 

the first section, these interactions are thought to largely drive protein—protein binding.  

Below is a description of how we evaluate the electrostatic, van der Waals, and 

surface burial terms. 

1.5 Theory: Continuum Electrostatics 

Electrostatic interactions can be both nonspecific and specific because they have 

long-range and short-range effects [40]. Electrostatic properties depend on interactions 

between electronic wave functions and would ideally be modeled through quantum 

mechanics. However, quantum mechanical models are computationally expensive and 

their accurate application is limited to systems of small size, and so we use a classical 

molecular mechanics model in this work.  

Assessing the electrostatic properties of a biomolecule involves quantifying its 

interaction with the solvent. Explicit solvent models depict interactions made to each 

water molecule and electrolyte ion. These models are used in conjunction with molecular 

dynamics simulations to characterize the changes in each solvent particle upon binding. 

Again, this method is computationally expensive and cannot be efficiently applied to a 

study with a scope as large as ours. For studies such as ours, implicit solvent models are 

often used to investigate electrostatic properties of biomolecules. Implicit models take 

solvent polarization and reorganization into account without explicitly depicting each 

water molecule and ion. They have been shown to give results comparable to explicit 

models in identifying low energy conformations of biomolecules [41].  
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Continuum electrostatic models are a subset of implicit models. In such models, 

the solvent is represented as a highly polarizable bulk medium, with a high dielectric 

constant value of 80 [40]. The protein complex is represented as a low dielectric medium 

containing point charges [42]. The dielectric constant of the biomolecule(s), the protein—

protein complex in our case, can range from 2 to 40, and would ideally depend on the 

physical properties of a particular biomolecule [23, 40]. Our model uses an inner 

dielectric value of 4, which is thought to account for the polarizability of the protein 

backbone [23, 43]. Our model also accounts for the presence of salt ions, and therefore 

employs the Poisson-Boltzmann Equation, which is described in further detail below, to 

find the electrostatic potentials of the protein complex and surrounding solvent.  

The change in the electrostatic binding free energy during protein complex 

formation is the sum of three components. The ligand desolvation penalty is the energetic 

“cost” the protein must pay to interact with its receptor. The “cost” is associated with the 

Figure 1.5.1: Continuum Electrostatics 
(a) This figure is a schematic of an explicit solvent model of protein binding, where each water 
molecule is represented.  
(b) This figure represents an implicit solvent model where the solvent is a highly polarizable 
medium and the proteins as a low dielectric medium with explicit point charges.    
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loss of favorable interactions of the interfacial residues with the surrounding water 

molecules. The receptor desolvation penalty is the unfavorable cost of the interfacial 

residues losing their interactions with solvent. The interaction energy is the solvent-

screened interaction between charges on the binding partners. This energy is often 

favorable. 

  

 

The following explanation of continuum electrostatics follows Michael Gilson’s 

approach and Emma Nechamkin’s (’12) thesis [44, 45]. The electrostatic potential in 

space, ϕ(r), can be found for a known charge density, ρ(r), in a vacuum by solving the 

Poisson equation: 

−∇ ∙ ∇𝜙(𝒓) =   
𝜌(𝒓)
𝜖!

 

(Equation 1) 

where ε0 is the permittivity of free space constant.  

 If we assume a charge distribution of point charges, the solution to the Poisson 

Equation for two point charges in a vacuum is Coulomb’s law:  

Figure 1.5.2: Desolvation Penalty 
(a) This illustration shows both binding partners in solvent and able to interact with water.  
(b) This illustration shows the binding partners interacting with each other and unable to interact 
with solvent at the interface. The difference between panels (a) and (b) represents the desolvation 
“cost” both binding partners pay in order to interact with each other. 
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𝑈 𝑟!" =   
𝑞!𝑞!

4𝜋𝜖!𝑟!"
 

(Equation 2) 

where ε0 is the permittivity of free space constant. This equation can allow us to calculate 

the electrostatic energy due to the two point charges. This value represents the amount of 

work required to move the two infinitely far apart point charges to a mutual distance of 

r12.  

 Biomolecules are often surrounded by an aqueous, highly polarizable solvent. 

Therefore, in order to accurately evaluate the electrostatic energy of biomolecules, we 

cannot assume our charges are interacting in a vacuum. If we assumed the biological 

molecules were free-floating point charges in solvent, we could reasonably model them 

as surrounded by a medium with a uniform dielectric constant (ε). A dielectric constant 

accounts for the polarizability of the medium. The Poisson equation for a charge 

distribution, ρ(r), in a medium with a constant dielectric constant of ε is:  

−∇ ∙ ∇𝜙(𝒓) =   
𝜌(𝒓)
𝜖!𝜀

 

(Equation 3) 

The Poisson Equation assumes a linear response. The field created from solute interaction 

with the solvent is proportional to the charge of the solute. The solution to this equation 

for two point charges in a medium with a dielectric constant of ε is:  

𝑈 𝑟!" =   
𝑞!𝑞!

4𝜋𝜖!𝜀𝑟!"
 

(Equation 4) 

Intuitively, the presence of the dielectric medium weakens the interaction between the 
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two point charges by a factor of 1/ε. This occurrence is termed dielectric screening. The 

electric field due to the point charges is opposed by the induced field of the polarizable 

medium, resulting in an overall, weaker electric field.  

 Furthermore, the charges of interest in our model are surrounded by a non-

uniform dielectric field. The degree of polarizability of surrounding charges in the 

protein—protein complex differs from the degree of polarizability of the solvent. 

Therefore, the dielectric constant can be modeled as a discontinuous function, ε(r), where 

the constant value would change instantaneously at the protein-solvent boundary. The 

Poisson Equation can now be represented as:  

−∇ ∙ [𝜀 𝒓 ∇𝜙 𝒓 ] =   
𝜌(𝒓)
𝜖!

 

(Equation 5) 

The discontinuous boundary alters the surrounding electric field by inducing surface 

charges at the protein-solvent boundary, which induce an electric field. Hence, this 

boundary significantly alters the electrostatic interactions in the system.  

In addition to a highly polarizable medium, biomolecules are also surrounded by 

mobile salt ions. The Poisson equation does not account for the salt ions. This 

necessitates the use of the Poisson-Boltzmann equation, which arises from using Debye-

Huckel theory to implicitly model the salt ions within the solvent. The concentration of 

salt ions, cbulk, is approximated using the Boltzmann factor instead of explicitly 

accounting for each salt ion in the system. The Poisson-Boltzmann equation is: 
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−𝜖!∇ ∙ 𝜀 𝒓 ∇𝜙 𝒓 =   𝜌! 𝒓 +    𝑞!𝑐!,!"#$(𝒓)𝑒!!!!!(𝒓)
!

!!!

 

(Equation 6) 

where ρf are the source charges and 𝑒!!!!! 𝒓  is the Boltzmann factor of ions in 

electrostatic potential. The Linearized Poisson-Boltzmann equation arises when the first 

order term of ϕ of the Taylor expansion of the Boltzmann factor is used. This 

approximation is valid when the value of the exponent is close to zero, which is true 

when the potential is small (e.g., small magnitude charge distributions). The Linearized 

Poisson Boltzmann equation is:  

−𝜖!∇ ∙ 𝜀 𝒓 ∇𝜙 𝒓 =   𝜌! 𝒓 −   𝜖!𝜀 𝒓 𝜅!(𝒓)𝜙(𝒓) 

(Equation 7) 

where 

 𝜅! ≡ !
!!!

𝑐!,!"#$𝑞!! =
!

!!!!"
𝐼!

!  

Here, I= !
!
𝑐𝑞!!! , which represents the ionic strength. The Linearized Poisson Boltzmann 

equation (LPBE) is easier to manipulate and solve than the Poisson Boltzmann Equation. 

The linearity allows us to use matrix representations to calculate the electrostatic energy 

of the entire system by taking the sum of the product of potentials and charges qi at each 

point in space [40]:  

𝐺 =
1
2
𝑞!𝜙!

!

 

(Equation 8) 

The factor of ½ prevents the double counting of contributions for a pair of charges [46]. 
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Additionally, the ½ factor represents the entropic contribution of the solvent upon 

interacting with a given charge [40], and this is why the ultimate energies obtained are 

free energies as opposed to merely energies. 

 We use the Finite Difference Method to numerically solve the LPBE. The protein-

protein complex is digitized onto a three-dimensional grid. The electrostatic potential, 

charge, and ionic strength are all defined at each grid point and the dielectric constant is 

defined on the grid lines [47]. Each atom in the protein complex is assigned a partial 

atomic charge, which is extrapolated onto the grid and therefore approximately 

represented. 

 The potential at each grid point is found by solving the LPBE. The partial second 

derivative along each dimension is found approximately from the finite differences 

between neighboring grid potentials. After the potentials are found, the total electrostatic 

free energy can now be solved for using equation 8. The potentials are calculated for both 

the bound and unbound states. Differences in potentials between the two states are taken 

to cancel out grid energy artifacts and to provide free energy differences. 

1.6 Theory: Component Analysis 

 To quantify the importance of a structural characteristic in the electrostatic 

component of protein—protein binding, we use a technique called component analysis. 

Component analysis quantifies the contribution of a particular moiety to the electrostatic 

binding free energy. A moiety is considered important if the there is a large difference 

between the original electrostatic binding free energy and the electrostatic binding free 

energy without a charge contribution from the certain moiety, i.e., with all partial atomic 

charges on that moiety set to zero.  The moiety can be a particular side chain, backbone, 
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the entire residue, or entire regions of a protein. Component analysis can be represented 

as:  

∆∆𝐺 =   ∆𝐺!"#$"% − ∆𝐺!"#$#%&'  

(Equation 9) 

A positive ∆∆G indicates that the moiety contributes favorably to the electrostatic 

binding of the protein—protein complex.  

 

When considering a side chain moiety, component analysis is similar to alanine scanning, 

which is an experimental technique that evaluates the importance of the side chain to the 

binding free energy by substituting the residue of interest to alanine [15]. However, 

unlike alanine scanning, component analysis does not change the shape of the protein—

protein interface and has no impact on the protein fold in the virtual model. Previous 

researchers have used component analysis to determine the electrostatic energetic 

Figure 1.6.1: Component Analysis 
This figure pictorially represents the component analysis technique.   
(a) Depicts the original system. (b) Shows the system with the charge of a moiety set 
to zero. The change in the electrostatic binding free energy when all partial charges 
within a structural moiety of interest are set to zero quantifies the importance of that 
moiety in binding. 
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contributions of particular structures in protein complexes [26, 46, 48-52].   

1.7 Theory: Van der Waals Energy Calculation  

The CHARMM22 [53, 54] force field is used to evaluate the contribution of a 

structural moiety to the van der Waals binding free energy. The van der Waals interaction 

is modeled using the Lennard-Jones (LJ) potential energy function:  

𝑈 𝒓 =    𝜀!"!"#
𝑅!"!"#

𝑟!"

!"

− 2
𝑅!"!"#

𝑟!"

!

 

(Equation 10) 

The LJ potential accounts 

for both the weak, short-

ranged attractive dispersion 

interactions and the strong, 

shorter-ranged exchange 

repulsion between atomic 

centers, described below. 

𝜀!"!"# is the well depth of the 

LJ potential for interacting 

atoms i and j and is a 

measure of the attraction 

between two atoms. 𝑅!"!"#  is 

the corresponding distance of the LJ potential minimum and rij is the distance between 

atoms i and j. 𝜀!!!"#and 𝑅!!!"# are parameters that are determined for each atom type from 

Figure 1.7.1: Lennard Jones Potential 
This figure shows a graph of the Lennard Jones Potential. The 
well depth of the potential is represented by ε

ij

min 
and is a 

measure of the attraction between two molecules. The 
minimum of the potential corresponds to the R

ij

min
 value.  
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fitting to experimental and theoretical data. 𝜀!"!"# is then found through a geometric mean 

of 𝜀!!!"# and 𝜀!!!"#  [55]. Similarly, 𝑅!"!"# is found through an arithmetic mean of 𝑅!!!"# and 

𝑅!!!"# [55]. The r -12 term represents the short-range repulsion between two molecules due 

to Pauli exchange repulsion. This functional form is chosen empirically, for 

computational convenience, and does not have a quantitative physical basis. The r -6 term 

represents the long-range attraction between molecules that results from the instantaneous 

dipole of the electron cloud of one molecule inducing a dipole of another molecule. 

1.8 Theory: Solvent Accessible Surface Area Calculation  

 Kauzmann suggested long ago that the hydrophobic effect is a major contributor 

in protein association [12]. Other researchers discovered that the binding free energy of a 

complex was linearly proportional to the interfacial buried surface area [56]. However, 

further work showed this metric alone is not entirely predictive of the binding free energy 

and that accounting for other factors, such as the polar or nonpolar nature of each atom 

type, more accurately correlated buried surface area to the binding free energy [57]. 

Nevertheless, the surface area burial model is still commonly used for quantifying 

energetics due to the hydrophobic effect [14, 56, 58, 59], and it is the model used in this 

work as well. 
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2. Methods  

2.1 Workflow 

 

 
 
The workflow of the project is shown in the figure above. The rate-determining step of 

the thesis was finding and preparing the structures studied in this project.  

  

Find	
  promiscuous	
  and	
  speciXic	
  
proteins	
  through	
  a	
  literature	
  search	
  	
  

Prepare	
  the	
  PDB	
  structures	
  for	
  energy	
  
calculations	
  

Evaluate	
  the	
  Electrostatic,	
  vdW,	
  SASA	
  
contributions	
  of	
  structural	
  moieties	
  

Analyze	
  the	
  data	
  using	
  a	
  two	
  sample	
  
test	
  of	
  proportions	
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 2.2 Protein Complex Selection and Crystal Structure Preparation 

The promiscuous and specific protein complexes studied in this project are shown 

in Tables 1 and 2, respectively.   

 
Table 2.2.1: Promiscuous Protein Complexes 

Protein Binding Partner  PDB ID Resolution (Å) 

BPTI [62] Serine protease  3U1J [60] 1.80 
Trypsin  3BTK [61] 1.85 

Trypsin [62]  Protease inhibitor  2XTT [63] 0.93 
Textilinin  3D65 [64] 1.64 
Amyloid beta-protein 
precursor  

1TAW [65] 1.80 

CaM 
[29] 

CaM-dependent protein 
kinase II-alpha  

1CM1 [66] 2.00 

Ryanodine receptor 1 2BCX [67] 2.00 
Voltage-dependent Ca2+ 
channel 

2F3Y [68] 1.45 

Glutamate NMDA 
receptor 

2HQW [69] 1.90 

Neuronal nitric oxide 
synthase 

2O60 [70] 1.55 

Alpha-II spectrin 2FOT [71] 2.45 
CDK2 [72] CksHs1 (regulatory 

protein) 
1BUH [73] 2.60 

TEM1-ß 
lactamase 
[29] 

ß lactamase inhibitory 
protein 

1JTG [74] 1.73 

ß lactamase inhibitory 
protein II 

 

1JTD [74] 2.30 
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Table 2.2.2: Specific Protein Complexes 
  

Protein Binding Partner PDB ID Resolution 
(Å) 

 
Barnase [75] Barstar  1BRS [76] 2.00 
Epo [75] Epo-R 1EER [77] 1.90 
1F9  
 

Apical membrane 
antigen 1 

2Q8B [78] 2.30 

Murin IgG   
 

Interleukin-18 2VXT [79] 1.49 

Lebrikizumab 
 

Interleukin-13 4I77 [80] 1.90 

Angiogenin  Ribonuclease Inhibitor  1A4Y [81] 2.00 

Fab HyHEL-5  Hen egg-white lysozyme   1YQV [82] 1.70 

Lysozyme   VH Single Domain 
antibody  

1MEL [83] 2.50 

 

The complexes were identified as promiscuous or specific through a literature 

search whenever possible (see column 1 of Tables 2.2.1 and 2.2.2). The crystal structures 

were required to contain a complex of two proteins. Because lower resolution structures 

can result in a higher uncertainty in interpretations of the electron density map [84], the 

resolution of the structures was restricted to 3.0 Å or better. The structures contained no 

DNA or RNA elements.  

The crystal structures of the 22 protein complexes were obtained from the Protein 

Data Bank (PDB) [85]. A pairwise sequence alignment algorithm was used to compare 

the primary sequences of the promiscuous proteins’ binding partners. Any binding 

partner that was more than 45% identical in sequence to another binding partner was not 

selected in this study. A subset of the structures were also aligned using the McLachlan 

algorithm [86] as implemented in the ProFit program (Martin, A.C.R., 
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http://www.bioinf.org.uk/software/profit/). These requirements ensured that the binding 

partners considered were not identical or nearly identical (mutant variants, etc.) in 

sequence and structure. 

The protein structures were prepared for computational analyses using the 

following steps. Crystallographically resolved water molecules that did not have 3 or 

more potential hydrogen bonding contacts with protein atoms were eliminated from the 

structures. Non-interfacial solvent ions were also removed from the structures, as salt was 

modeled implicitly. For asparagine (Asn) and glutamine (Gln) side chains, the symmetry 

of the electron density of the amide group makes determination of the likely rotameric 

state experimentally difficult, leading to a chance of selecting the “incorrect” rotamer 

during crystallization [87]. Additionally, the histidine (His) imidazole orientation and 

tautomerization states are also ambiguous in the crystal structures. For Asn, Gln, and His 

residues within 5 Å of each binding interface, the side chains were visually analyzed for 

the number of possible hydrogen bonds, according to distance and geometry, to 

determine the most likely rotameric and His tautomerization state. For residues farther 

from the interface, a C++ program written by Ying Yi Zhang ’13, which also evaluates 

the number of possible hydrogen bonds, was used to determine the likely rotameric or 

His tautomerization state. The CHARMM22 [53, 54] force field was used to build 

hydrogen atoms into the structure, patch missing side chains, and cap blunt ends of 

residues near missing non-interfacial segments of the protein. Hydrogen atoms were built 

using the HBUILD facility [88]. The built-in patches and caps were minimized to 

decrease steric clashes. In one complex, the MODELLER [89] software package was also 

used to build in missing interfacial residues when backbone was also missing. Next, each 



	
   28	
  

protein structure was rotated in space to maximize grid resolution. Finally, PARSE 

atomic radii and charges were used were used for the continuum electrostatics 

calculations [90]. The protein structures were visualized in VMD [91].   

2.3 Continuum Electrostatics Calculations 

 
 The Linearized Poisson-Boltzmann Equation was solved numerically to find the 

electrostatic potential and ultimately, the electrostatic binding free energies. A locally 

built solver [92] that uses the Finite Difference Method (FDM) was used to solve the 

LPBE. Because the grid points at the edges have undefined neighboring potentials, a 

boundary condition is required for a solution. Initially, potentials were therefore solved 

for on a very low resolution grid in which the protein—protein complex constitutes 23% 

of the grid, such that the boundary potentials can be accurately assumed to obey limiting 

behavior, though the protein potentials obtained are very coarse.  The solutions from this 

first iteration were used in the next iteration and the potentials were found for a system in 

which the complex occupies 92%, and ultimately 184% of the grid, resulting in more 

refined potentials for the protein. At the highest focusing, the grid was centered on an 

interfacial residue atom on one of the binding partners. Three translations of the grid 

were used and averaged. The dielectric constant of the solvent was set to 80. The inner 

dielectric constant of the protein complex was set to 4. The ionic strength of the solvent 

was set to 0.145M. The molecular surface was defined by rolling a water-sized (1.4 Å 

radius) sphere around the molecule(s), and the Stern layer probe radius was set to 2Å. 

The Stern layer is a layer around the molecule generated by rolling an ion-sized (here, 2 

Å) sphere around the molecular surface to determine where the ionic strength is nonzero 

(outside the Stern Layer) and where it should still be zero, as those regions of solvent are 
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inaccessible to ions. A 257 X 257 X 257 cubic grid size was used for the FDM, yielding 

grid resolutions of 5.58-10.22 grids/Å at the highest focusing.  

Component analysis calculations were done on all of the residues with at least one 

atom that was within 5 Å of an atom on the other binding partner. The contribution of a 

backbone or side chain moiety of each residue was determined by finding the change in 

the electrostatic binding free energy when the partial atomic charges on all atoms of that 

moiety were set to zero. 

2.4 Van der Waals Calculation 

 
We employed the Lennard Jones potential, using the CHARMM22 force field 

[53, 54], to evaluate the van der Waals energy contributions of each structural moiety. 

Specifically, the van der Waals interaction energy was found between an interfacial 

residue’s backbone or side chain moiety, and the other protein molecule for the protein—

protein complex as a sum of the pairwise LJ interactions between each atom on the 

moiety and each atom on the binding partner.  

 2.5 Surface Burial Calculation 

 
The surface burial upon binding was calculated as the difference in solvent 

accessible surface area upon binding of the two proteins using CHARMM [54]. A 1.4 Å 

probe radius was used to generate the solvent-accessible surface area.  This area can very 

roughly be related to the contribution of a residue, or its backbone or side chain, toward 

hydrophobic entropy-related solvent interactions [90]. 
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2.6 Statistical Analysis 

 
A one tailed, two sample test of proportions was used to evaluate if there was a 

statistically significant difference between the side chain and backbone contributions in 

specific and promiscuous protein complexes. The statistical analyses were performed 

using the R software package [93].  

Additionally, the component analysis results for the promiscuous proteins were 

analyzed using three different perspectives. Promiscuous interactions can result from a 

characteristic present in the promiscuous protein itself, i.e., the protein that binds to 

multiple partners. Perspective #1 therefore considered all of the component analysis 

results from residues within the promiscuous proteins. Alternatively, promiscuity can 

result from a characteristic present on the binding partner. Perspective #2 considered the 

component analysis results from the binding partners of promiscuous proteins. Lastly, 

promiscuity can be a result of characteristics present in both the promiscuous protein and 

the binding partner.  Perspective #3 considered the component analysis results from the 

entire promiscuous protein complex. Because we assume that this potential asymmetry 

does not exist for specific complexes, each perspective considered for the promiscuous 

data set was compared with all of the results from both partners of each specific protein 

binding complex. 
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For the promiscuous protein data set, the same promiscuous proteins were 

considered in complex with different binding partners. Except for cyclin dependent 

kinase 2, multiple structures of each promiscuous protein were examined. Consequently, 

the contributions of their residues were calculated multiple times, once for each binding 

partner. In order to avoid double counting the contributions of each residue, the 

contribution for each residue was chosen randomly from the multiple component analysis 

values that were obtained for that residue. This approach led to the discovery that the 

resulting p-values we observed fluctuated greatly depending on the random residues used. 

In order to mitigate the effect of these fluctuations and better understand the trends 

present in our data set, the random residues were generated a 1000 times for all three 

types of component analysis data, electrostatic, van der Waals, and SASA. The 1000 

random trials were done separately for each perspective and the average proportions were 

used for the T-tests.  

  

Figure 2.6.1: This figure represents how promiscuous proteins are considered in 
each perspective for the statistical analysis. Perspective #1 considered all of the 
promiscuous proteins. Perspective #2 considered all of the promiscuous protein 
binding partners. Perspective #3 considered the entire promiscuous protein complex.     	
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3. Results 

 Component analysis calculations were completed for the interfacial residues of all 

of the specific and promiscuous protein complexes in order to evaluate our hypotheses, 

i.e., if side chains are more important in specific protein binding than in promiscuous  

protein binding and if backbones are more important in promiscuous protein binding than 

in specific protein binding. 

Sections 3.1-3.3 present the raw distributions of the data collected for the 

electrostatic, van der Waals, and SASA component analysis calculations. The plots on the 

left of each figure show the backbone contribution, while those on the right side of each 

figure display the side chain contribution. Three one tailed, two sample tests of 

proportions were done, each to evaluate one of the following hypotheses (termed “Test 

#1”, “Test #2”, and “Test #3” respectively):  

1. Is the relative number of times the side chain contribution is higher than backbone 

contribution higher for specific proteins than for promiscuous proteins?  

2. Is the proportion of substantial side chain contributions higher for specific 

proteins than for promiscuous proteins? 

3. Is the proportion of substantial backbone contributions higher for promiscuous 

proteins than for specific proteins?   

The results of the three statistical tests are discussed in sections 3.4-3.6, for each 

relevant contribution toward free energy in turn (electrostatic, vdW, and SASA). The raw 

proportions are shown in Tables 3.1-3.  

  



	
   33	
  

3.1 Distribution of Electrostatic Component Analysis 

 
 

Figure 3.1.1: This figure shows the distribution of the electrostatic component analysis 
calculations for the interfacial residues of both promiscuous and specific protein 
complexes. 500 specific protein interfacial residues and 516 promiscuous protein 
interfacial residues were analyzed for this study. Note that a positive ∆∆G value 
means that the moiety contributes favorably to binding.    
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3.2 Distribution of van der Waals Component Analysis 

 
  

Figure 3.2.1: This figure shows the distribution of the van der Waals component 
analysis calculations for the interfacial residues of both promiscuous and specific 
protein complexes. 500 specific protein interfacial residues and 516 promiscuous 
protein interfacial residues were analyzed for this study. Note that a negative ∆G value 
means that the moiety contributes favorably to binding.    
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3.3 Distribution of SASA Component Analysis 

 

 
 

Electrostatics  Perspective #1 Perspective 
#2 

Perspective #3 Specific 

Min Max Average Min Max Average 

Test #1 0.373 0.510 0.439 0.443 0.418 0.465 0.441 0.480 

Test #2 0.197 0.293 0.247 0.267 0.242 0.279 0.259 0.308 

Test #3 0.242 0.354 0.293 0.321 0.286 0.329 0.310 0.22 

Sample Size 198 318 516 500 

 

Figure 3.3.1: This figure shows the distribution of the SASA component analysis 
calculations for the interfacial residues of both promiscuous and specific protein 
complexes. 500 specific protein interfacial residues and 516 promiscuous protein 
interfacial residues were analyzed for this study. Note that a negative ∆G value means 
that the moiety contributes favorably to binding.    
 

Table	
  3.1:	
  This	
  table	
  shows	
  the	
  raw	
  proportions	
  for	
  each	
  perspective	
  for	
  each	
  
statistical	
  test	
  for	
  the	
  electrostatics	
  component	
  analysis	
  data.	
  The	
  minimum,	
  
maximum,	
  and	
  average	
  proportions	
  are	
  shown	
  for	
  perspectives	
  #1	
  and	
  #3	
  
because,	
  as	
  described	
  in	
  section	
  2.6,	
  these	
  proportions	
  were	
  observed	
  to	
  vary	
  for	
  
different	
  random	
  residues.	
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van der Waals Perspective #1 Perspective 
#2 

Perspective #3 Specific 

Min Max Average Min Max Average 

Test #1 0.5152 0.6364 0.5640 0.572 0.5446 0.5911 0.5692 0.556 

Test #2 0.2071 0.2980 0.2531 0.405 0.3295 0.3643 0.3470 0.320 

Test #3 0.1919 0.2828 0.2365 0.374 0.3043 0.3391 0.3215 0.290 

Sample Size 198 318 516 500 

	
  
	
  
	
  
SASA Perspective #1 Perspective 

#2 
Perspective #3 Specific 

Min Max Average Min Max Average 

Test #1 0.5960 0.6768 0.6414 0.773 0.7093 0.7345 0.7228 0.686 

Test #2 0.2020 0.2929 0.2504 0.437 0.3488 0.3818 0.3655 0.300 

Test #3 0.1970 0.2677 0.2324 0.346 0.2888 0.3178 0.3026 0.238 

Sample 
Size 

198 318 516 500 

	
  

Table	
  3.2:	
  This	
  table	
  shows	
  the	
  raw	
  proportions	
  for	
  each	
  perspective	
  for	
  each	
  
statistical	
  test	
  for	
  the	
  van	
  der	
  Waals	
  component	
  analysis	
  data.	
  The	
  minimum,	
  
maximum,	
  and	
  average	
  proportions	
  are	
  shown	
  for	
  perspectives	
  #1	
  and	
  #3	
  
because,	
  as	
  described	
  in	
  section	
  2.6,	
  these	
  proportions	
  were	
  observed	
  to	
  vary	
  for	
  
different	
  random	
  residues.	
  	
  

Table	
  3.3:	
  This	
  table	
  shows	
  the	
  raw	
  proportions	
  for	
  each	
  perspective	
  for	
  each	
  
statistical	
  test	
  for	
  the	
  SASA	
  component	
  analysis	
  data.	
  The	
  minimum,	
  maximum,	
  
and	
  average	
  proportions	
  are	
  shown	
  for	
  perspectives	
  #1	
  and	
  #3	
  because,	
  as	
  
described	
  in	
  section	
  2.6,	
  these	
  proportions	
  were	
  observed	
  to	
  vary	
  for	
  different	
  
random	
  residues.	
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3.4 Do specific proteins have side chain contributing more than backbone 
when compared to promiscuous proteins?   

Do specific proteins have side 
chain contributing more than 
backbone, compared to 
promiscuous proteins?  
(Test #1)  

Perspective 
#1 
 
 
 

Perspective 
#2 
 
 
 

Perspective 
#3 
 
 
 

Electrostatics  
 
Specific: 0.480  

0.186 
 
0.439  

 

0.168 
 
0.443  

 

0.118 
 
0.441  

 

van der Waals 
 
Specific: 0.556  

0.543 
 
0.5640  

0.647 
 
0.572  

0.641 
 
0.5692  

SASA 
 
Specific: 0.686   

0.149 
 
0.6414 

0.996 
 
0.773  

0.890 
 
0.723 

 This table summarizes the results from the two sample test of proportions which 

examined the significance in the difference in the number of times the side chain 

contribution was greater than the backbone contribution between specific and 

promiscuous proteins. The null hypothesis is that the difference is less than or equal to 0, 

i.e., the specific proteins have a similar or lower side chain contribution when compared 

to promiscuous proteins. A low p value for the one tailed t test indicates specific proteins 

have a higher side chain contribution when compared to promiscuous proteins. A p value 

close to 1 suggests that the opposite may be true. 

Table	
  3.4.1:	
  This	
  table	
  shows	
  the	
  p-­‐values	
  (bold)	
  and	
  proportions	
  from	
  the	
  first	
  t	
  
test.	
  500	
  interfacial	
  residues	
  were	
  evaluated	
  for	
  the	
  specific	
  protein	
  data	
  set.	
  198,	
  
318,	
  and	
  516	
  promiscuous	
  interfacial	
  residues	
  were	
  evaluated	
  for	
  perspectives	
  
one,	
  two,	
  and	
  three,	
  respectively.	
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 While most of the p-values are not considered statistically significant if we use 

the arbitrary 0.05 cutoff, the p-values for the electrostatics and SASA calculations from 

perspective #1 are small and may indicate a weak relationship between a higher side 

chain contribution, when compared to backbone contribution, in specific proteins when 

compared to promiscuous proteins. Likewise, the p-values for the SASA calculations for 

perspectives #2 and #3 are large, suggesting that the opposite of our hypothesis might be 

true in this case – that promiscuous proteins may have side chains contributing more than 

backbone, relative to specific proteins, although a two-tailed test of proportions should be 

done to verify this (and will be done as part of future work). 

Note that the p values reported for perspectives #1 and #3 are the average p values 

over 1000 trials in each of which one instance of each residue within a promiscuous 

protein was randomly chosen from the multiple complexes that were modeled. There 

were large fluctuations in p values (for example 0.007*-0.7315 for the electrostatic 

component for Perspective #1), depending on the instances chosen, an issue that is 

discussed further in the Discussion.   
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3.5 Do specific proteins have more side chains that contribute substantially, 
compared to promiscuous proteins?  

Do specific proteins 
have more side chains 
that contribute 
substantially when 
compared to 
promiscuous proteins?  
(Test #2) 

Perspective #1 
 
 
 
 
 
 

Perspective #2 
 
 
 
 
 
 

Perspective #3 
 
 
 
 
 
 

Electrostatics 
 
Specific: 0.308  

0.066 
 
0.247  

0.119 
 
0.267  

0.048* 
 
0.259  

van der Waals 
 
Specific: 0.320  

0.049* 
 
0.2531  

0.992 
 
0.405  

0.801 
 
0.3470  

SASA 
 

Specific: 0.300  

0.112 
 
0.2504  

1 
 
0.437  

0.984 
 
0.3655  

 

This table summarizes the results from the two sample test of proportions which 

examined whether the difference in the proportion of substantially favorable side chain 

contributions was significantly different between the specific and promiscuous protein 

data set. Here, the cutoff value was determined by assuming that the highest 30% of side 

chain contribution of the specific data quantified a substantial contribution. The 

electrostatic cutoff was determined to be 0.1142 kcal/mol. The van der Waals and SASA 

cutoffs were -5.802 and -37.1119 kcal/mol.   

Table	
  3.4.2:	
  This	
  table	
  shows	
  the	
  p-­‐values(bold)	
  and	
  proportions	
  from	
  the	
  second	
  
t-­‐test.	
  500	
  interfacial	
  residues	
  were	
  evaluated	
  for	
  the	
  specific	
  protein	
  data	
  set.	
  
198,	
  318,	
  and	
  516	
  promiscuous	
  interfacial	
  residues	
  were	
  evaluated	
  for	
  
perspectives	
  one,	
  two,	
  and	
  three,	
  respectively.	
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 As can be observed in the table, the electrostatic p values, while not statistically 

significant except for Perspective #3, are small. Additionally, the van der Waals and 

SASA p values from perspective #1 are small as well, although interestingly, the p values 

for perspectives #2 and #3 are close to 1, suggesting that while the promiscuous proteins 

may have less significant side chain contributions than their specific counterparts, their 

binding partners may have more significant contributions than specific proteins (although 

this must be verified with a two-tailed statistical test). 
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3.6 Do promiscuous proteins have more backbones that contribute 
substantially, compared to specific proteins?  

Do promiscuous 
proteins have more 
backbones that 
contribute substantially 
when compared to 
specific proteins?  
(Test #3) 

Perspective 
#1 
 
 
 
 
 

Perspective 
#2 
 
 
 
 
 

Perspective 
#3 
 
 
 
 
 

Electrostatics  
 
Specific: 0.22  

0.026* 
 
0.293  

0.001* 
 
0.321  

0.001* 
 
0.310  

van der Waals 
 
Specific: 0.290  

0.909 
 
0.2365  

0.008* 
 
0.374  

0.154 
 
0.3215  

SASA 
 
Specific: 0.238  

0.523 
 
0.2324  

0.001* 
 
0.346  

0.012* 
 
0.3026  

 

This table summarizes the results from the two sample test of proportions which 

examined whether the proportion of substantial backbone contributions was significantly 

different between the promiscuous and specific protein data set. Again, the cutoff value 

was determined by assuming that the highest 30% of backbone contribution of the 

promiscuous data quantified a substantial contribution. The electrostatic cutoff was 

determined to be 0.2 kcal/mol. The van der Waals and SASA cutoffs were -4.5 and -8.21 

kcal/mol. 

Table	
  3.4.3:	
  This	
  table	
  shows	
  the	
  p-­‐values	
  (bold)	
  and	
  proportions	
  from	
  the	
  third	
  
t-­‐test.	
  500	
  interfacial	
  residues	
  were	
  evaluated	
  for	
  the	
  specific	
  protein	
  data	
  set.	
  
198,	
  318,	
  and	
  516	
  promiscuous	
  interfacial	
  residues	
  were	
  evaluated	
  for	
  
perspectives	
  one,	
  two,	
  and	
  three,	
  respectively.	
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 The p-values from the table above indicate that the promiscuous proteins have a 

substantial backbone contribution when compared to the specific proteins considering the 

electrostatics, van der Waals, and SASA energies, except in the case of perspective #1 

vdW and SASA energies, again suggesting an interesting asymmetry in the energetics of 

recognition. 

Nevertheless, taken together, these data might imply that in a certain subset of our 

tests, the side chain moieties make significantly more substantial contributions in specific 

proteins than in promiscuous proteins. Additionally, we find that in a larger subset of our 

tests, the promiscuous proteins have a significantly more substantial backbone 

contribution when compared to specific proteins, suggesting that the backbones may be 

important in promiscuous interactions. However, we do not find these trends through all 

perspectives and while considering all energies, and these data warrant careful scrutiny 

and further interpretation.  
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4. Discussion 

For specific protein interactions, as predicted by our hypothesis, trends in the data 

reflect that electrostatic and SASA side chain contributions, through the first perspective, 

may be greater on average than the corresponding backbone contributions, although the 

data are not currently statistically significant. Additionally, the specific proteins appear to 

have substantially more side chain electrostatic and vdW contributions, but only when 

compared to certain perspectives of analyzing the promiscuous proteins, while from other 

perspectives, it is possible that the opposite may be true. We also found that from most, 

but not all, perspectives and energetic aspects (electrostatics, vdW, SASA), promiscuous 

proteins have a significantly substantial backbone contribution when compared to 

specific proteins.  Taken together, this suggests that our original hypotheses may be 

partially supported, but there are some interesting subtleties that warrant further analysis. 

For Tests #1 and #2, the first perspective was found to be most significant. This 

may imply the differences in molecular recognition between specific and promiscuous 

proteins may be due to interactions made by the promiscuous proteins. The high p values 

from the second and third perspectives imply the structural moieties of the promiscuous 

binding partners and specific proteins may have similar contributions, and in some cases, 

the promiscuous binding partners may be behaving more in line with our original 

characterization of specific proteins than the specific proteins themselves, although, as 

discussed below, additional statistical tests will need to be done to understand this better.  
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4.1 Limitations of the study 

The goals of this study were to understand if structural characteristics of protein—

protein complexes can preferentially contribute to specificity or promiscuity. The models 

used in this work to address these questions make both physical and situational 

assumptions, and understanding these approximations can help to contextualize our 

findings.  

The protein complexes investigated in this study were identified to be either 

specific or promiscuous based on a literature search whenever possible. In this study, we 

define a specific protein as one that binds to only one partner. To our current knowledge, 

the specific complexes investigated in this study are thought to have one binding partner.  

However, in reality, it is difficult to prove that a protein will not bind to any other binding 

partners, so one must assume that the lack of evidence for binding other partners is 

sufficient to assume specificity, given that the proteins used have been widely studied. 

Furthermore, it is often difficult to quantify energetic contributions for promiscuous 

proteins with multiple partners. This is evidenced through the large fluctuations observed 

with the selection of random residues because the moiety contributions seem to be 

different for the moiety’s interaction with each binding partner, which in itself is an 

interesting result. In this work, we generated selected one instance from each of the 

promiscuous protein residues 1000 times for each perspective and averaged the data to 

account for this shortcoming. In future studies, we hope to better understand whether the 

variations in residue contributions across partners depends on the nature of the 

interaction, and we also will keep the random set of residues for each trial constant across 

perspectives to allow for better interpretation of the results for each perspective. This 

change might allow us to better address whether the structural contributions from the 
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promiscuous protein or the binding partner (or both) are driving the promiscuity. Finally, 

this study was limited to studying protein—protein complexes for which an x-ray 

crystallography model exists. Consequently, the results may be biased toward proteins 

that can be crystallized, which may use a subset of all possible ways to mediate 

recognition, thus limiting the potential scope of the study.  

The binding model used in this study assumes that proteins do not change 

conformation upon association. In reality, there is some change in the internal 

conformations of binding partners. The model implicitly accounts for this in a general 

sense by assuming the protein is polarizable (using a dielectric constant of 4), but large 

structural rearrangements may not be quantified accurately.  

Finally, we employed a two sample test of proportions to analyze our data. One of 

the inherent assumptions made in this test is that the data are independent of each other. 

Consequently, we assumed that the component analysis values of neighboring residues 

were independent of each other. This assumption may be valid because neighboring 

residues in sequence are not necessarily interacting in structure. Accordingly, the 

interactions between neighboring residues may not be coupled. In future work, we can 

test this assumption by obtaining the correlation coefficients between the original dataset 

and the dataset when it is shifted by one residue (or in other ways to account for other 

potential types of coupling), and compare that with correlation coefficients of between 

randomly shuffled permutations of the dataset. Additionally, analysis from the second 

perspective utilized all of the data from the binding partners. Therefore, we assumed 

independence between corresponding residues on different partners in this case as well. 

However, different binding partners may make similar interactions with the promiscuous 
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protein, so relationships between their residues may exist as well. This question will be 

explored further in future work. 

We chose to use a one-tailed t test for this study because we assumed there was a 

particular directionality in the data, i.e. the side chain contribution in specific proteins is 

higher than the side chain contribution in promiscuous proteins. The distributions of the 

data indicate that the trends present may oppose our original hypotheses. Future work 

will include a two-tailed t test to evaluate the significance of the observed opposing 

trends.  

The results of Tests #2 and #3 are dependent on a cutoff that attempts to quantify 

a substantial contribution. We observe a lack of robustness of the results to the cutoff 

chosen: there is a range of p-values for different cutoffs. For example, for a substantial 

electrostatic contribution of 2 kcal/mol, the p-values for Test #2 are 0.02, 0.41, and 0.11 

for perspectives #1, #2, and #3 (compare with table 3.4.2, 1st row). This test sought to 

evaluate how different the side chain contribution is between specific and promiscuous 

data sets. A better approach would be to do a continuous T test to evaluate the numerical 

difference between the side chain and backbone contribution, and this is a high priority in 

the near future.  The lack of robustness also suggests that the distributions for 

promiscuous and specific energetic contributions may have qualitatively different shapes 

and tails. For example, considering the electrostatic, van der Waals, and SASA 

distributions, the variance in specific side chain contributions is higher than the variance 

in promiscuous side chain contributions. Additionally, the variance in the backbone 

contributions of promiscuous proteins appears to be greater when compared to specific 

data, in the van der Waals and SASA data set. Also from the van der Waals and SASA 
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data set, the promiscuous backbone contributions have a longer tail in the favorable 

contribution direction. 

It should be noted that while the thesis was being written, bugs, an inevitable part 

of computational research, were found in the analysis scripts. Hence the p values and 

results presented are still to be considered preliminary.  The next steps in this project will 

be to ensure the results found here can be independently validated by future researchers.  

4.2 Further Analysis of Results: 

 Figure 3.2.1 shows the distributions of the van der Waals component analysis 

data. The distributions show that specific proteins appear to have a longer tail of ∆GSC 

that are favorable when compared to promiscuous proteins. This finding supports our 

hypothesis. Similar to the electrostatics findings, the variance of ∆GBB seems to be lower 

for specific proteins when compared to promiscuous proteins. ∆GBB values appear to be 

more favorable for promiscuous proteins when compared to specific proteins. This 

finding also supports our hypothesis. Interestingly, the latter trend is statistically 

significant only for perspective #2 (p=0.008), with the opposite potentially being the case 

for perspective #1 (p=0.909).   However, through the p-values for Test# 3 from the 

second and third perspectives, we find promiscuous proteins tend to have a higher 

substantial backbone contribution, when compared to specific proteins.   

Figure 3.3.1 shows the distributions of the SASA component analysis data. From 

visually inspecting the distributions, it appears that promiscuous proteins appear to have a 

longer tail of ∆GSC that are favorable when compared to specific proteins. This finding 

does not support our hypothesis. The corresponding p-values for Test #2 indeed seem to 

support the opposite hypothesis using perspectives #2 (p-value=1) and #3 (p-
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value=0.984). ∆GBB values appear to be more favorable for promiscuous proteins when 

compared to specific proteins. This finding supports our hypothesis. This visual trend is 

confirmed through the p-values for Test #3 from perspectives #2 and #3. 	
  

 Some of the p-values from Test #1, including those in the electrostatic analyses, 

while not statistically significant, indicate a potentially differential side chain 

contribution from specific proteins when compared to promiscuous proteins that might 

warrant further study.  For Test #1, the p-values appear to be close to 0.5 for the van der 

Waals data across all three perspectives (p=0.543, 0.647, 0.641). This may be due to the 

fact that the van der Waals calculations were done on the original crystal structure, which 

could have van der Waals clashes according to the CHARMM force field. We are 

currently performing the same calculations on the minimized structures to see if the van 

der Waals (and other) contributions change remarkably. Interestingly, from all three 

perspectives, the electrostatic p-values are lower than the van der Waals and SASA 

values (considering perspectives #2 and #3). This finding matches our expectations 

because electrostatic interactions are thought to drive specificity of protein—protein 

interactions [33]. 

4.2.1 Fluctuation of p-values due to random residue selection. 

 As discussed earlier, if there were multiple component analysis values for the 

same interfacial residue, one value was randomly picked for the statistical analysis in 

order to avoid double counting the contribution from the promiscuous proteins. 

Unexpectedly, we learned the p-values fluctuated greatly depending on the random 

residues used. These fluctuations may indicate that the contribution of the interfacial 

residues is dependent on the binding partner. A different subset of residues may 
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contribute more when binding to different partners. This finding is interesting because 

previous work suggests promiscuous proteins use common interfacial residues to bind 

to different binding partners [17, 37, 38]. An approach to address these fluctuations in 

future work could be to analyze more binding partners for each promiscuous protein and 

take the average residue contribution from multiple interactions.   

4.3 Additional Future Work. 

For the present study, we considered residues within 5 Å of the interface to be 

interfacial residues. It is possible that our cutoff was too high and our component analysis 

results may contain a large number of noncontributing residues, which may affect 

significance. However, the cutoff might be too low for including certain longer-range 

electrostatic interactions, which might play an important role in mediating interactions.  

Future researchers should consider how contribution of residues varies as a function of 

distance from the interface and pick a more appropriate cutoff, if applicable.  

The component analysis results generated for the three types of binding free 

energy can be parsed through to find if certain trends correlate with specificity or 

promiscuity. For example, are polar amino acids or charged amino acids more significant 

in promiscuous proteins or in specific proteins? Additionally, the contribution of different 

structural moieties as a function of side chain length, molar mass, and pi stacking 

interaction can be considered. While it is believed that promiscuous proteins use the same 

set of amino acids to bind with their different partners, the promiscuous data set can also 

be analyzed to determine if there are particular amino acids in this set that are important 

in promiscuous proteins binding with their partners.  
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Another potential structural moiety of interest can be the entire backbone or side 

chain of the protein. Currently, we have started this analysis from the electrostatic 

perspective but future researchers should consider the contributions of the whole side 

chain or backbone of a protein from the van der Waals and electrostatic perspective.  

Finally, in order to obtain a more robust data set, future research will consider 

more specific and promiscuous protein—protein interactions. Adding more data may also 

reduce the fluctuations observed due to picking random residues for promiscuous 

proteins.  
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4.4 Conclusions 

 Our findings suggest the specific proteins may have a higher side chain 

contribution when compared to promiscuous proteins, but only in certain ways. The low 

p-values observed for the electrostatics component analysis data for Test #1 may support 

our hypothesis that specific proteins preferentially use side chains, although the data are 

currently not statistically significant. The p-values from Test #1, perspective #2 suggest 

side chain contribution between specific proteins and promiscuous binding partners is 

similar. This may imply the intriguing result that the molecular recognition of 

promiscuous proteins is asymmetric between the protein itself and its binding partners, 

although further work is necessary to investigate this idea. We observed similar trends 

when considering a substantial side chain contribution (Test #2). Specific proteins appear 

to have more substantial side chain contributions when compared to the promiscuous 

proteins. Again, these trends do not hold for the binding partners. Finally, we find the 

promiscuous binding partners appear to have a substantial backbone contribution when 

compared to specific proteins. Interestingly, we do not find a difference in a substantial 

backbone contribution when we compare specific proteins and the promiscuous proteins 

themselves. This potential asymmetry may have implications regarding promiscuous 

protein molecular recognition.  
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