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ABSTRACT

A poset P = (X,≺) is a unit OC interval order if there exists a
representation that assigns an open or closed real interval I(x) of unit
length to each x ∈ P so that x ≺ y in P precisely when each point of
I(x) is less than each point in I(y). In this paper we give a forbidden
poset characterization of the class of unit OC interval orders and an
efficient algorithm for recognizing the class. The algorithm takes a
poset P as input and either produces a representation or returns a
forbidden poset induced in P .

1 Introduction

In [9], the authors introduce the class of unit intersection graphs of real intervals
from the set {(a, a + 1) : a ∈ R} ∪ {[a, a + 1] : a ∈ R}. This class, which they
call U±, includes K1,3 and thus is larger than the set of unit interval graphs.
They give a forbidden subgraph characterization of the class. Joos [6] gives a
forbidden graph characterization of the class of unit mixed interval graphs in
which intervals may be open, closed, or half-open. Independently in [12] we also
give a forbidden characterization of this class and additionally an algorithm that
produces a representation when a graph has none of the forbidden subgraphs.
Le and Rautenbach [8] study a version of unit mixed interval graphs in which
the endpoints of intervals must be integers.
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In this paper, we return to the original class in which intervals may be open or
closed (but not half-open) and study it from the perspective of ordered sets. We
give a forbidden poset characterization as well as a quadratic-time recognition
and realization algorithm. Our algorithm accepts any poset as input and either
returns a representation of it or a forbidden subposet.

1.1 Preliminaries

The posets P = (X,≺) in this paper are irreflexive, and we write x ‖ y when
elements (points) x, y ∈ X are incomparable. For more background on ordered
sets, see [13], and for interval graphs see [3]. We denote the left and right
endpoints of a real interval I(v) respectively by L(v) and R(v). An interval is
open if it does not contain its endpoints and closed if it does.

Definition 1 A poset P = (X,≺) is an interval order if each x ∈ X can be
assigned a closed real interval I(x) so that x ≺ y if and only if R(x) < L(y).
The set of intervals I = {I(x) : x ∈ X} is a (closed) interval representation of
P . If in addition, all intervals in the representation have the same length, then
P is a unit interval order and I is a unit (closed) interval representation of P .

It is well-known (e.g., see Lemma 1.5 in [4]) that a set of closed intervals I
representing a poset P can be transformed into another set I ′ of closed intervals
also representing P so that the endpoints of the intervals in I ′ are distinct.
Furthermore, this can be accomplished so that if I is a unit representation of P ,
so is I ′. It follows that the class of interval orders is the same if representations
consist entirely of closed intervals or entirely of open intervals. Likewise, the
class of unit interval orders is the same whether representations consist entirely
of closed intervals or entirely of open intervals. The situation is different if both
open and closed intervals are allowed.

Definition 2 Let R be the set of all intervals on the real line that are either
open or closed. An OC interval representation of a poset P = (X,≺) is an
assignment of an interval I(x) ∈ R to each x ∈ X, so that x ≺ y if and only
if each point in I(x) is less than each point in I(y). We say a poset is an
OC interval order if it has an OC interval representation I. If in addition, all
intervals in I = {I(x) : x ∈ X} have the same length, then P is a unit OC
interval order and we call I a unit OC interval representation of P .

The equivalence of (1) and (2) in the following proposition is well-known
and was shown by Fishburn [2]. The equivalence of (1) and (3) is part of a
similar result given for interval graphs in [9]. A sketch of the latter equivalence
is included here for completeness.

Proposition 3 The following are equivalent for a poset P :

1. P is an interval order.

2. P contains no induced 2 + 2.
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Figure 1: The order 3 + 1 and its unique unit OC representation.

3. P is an OC interval order.

Proof. By definition, interval orders are OC interval orders. For the converse,
let P = (X,≺) have an OC interval representation I. For each pair of incompa-
rable elements u, v ∈ X, pick a point xuv in the set I(u)∩ I(v). For each vertex
v ∈ V , define I ′(v) = [min{xuv : u ‖ v},max{xuv : u ‖ v}]. One can check that
the intervals I ′(v) give a closed interval representation of P , so P is an interval
order. �

Proposition 3 shows that the class of interval orders remains unchanged even
when both open and closed intervals are allowed. However, we will see that the
class of unit interval orders is enlarged when both open and closed intervals are
allowed.

An interval order is proper if it has a closed interval representation in which
no interval is properly contained in another. By definition, the class of unit
interval orders is contained in the class of proper interval orders, and in fact,
the classes are equal, as implied by the work of [11] and written explicity in
terms of graphs in [10]. When both open and closed intervals are permitted in
a representation, we must refine the notion of proper in order to maintain the
inclusion of the unit class in the proper class.

Definition 4 An interval I(u) is strictly contained in an interval I(v) if I(u) ⊂
I(v) and they do not have identical endpoints. An OC interval representation
I is strict if no interval is strictly contained in another, i.e., if the only proper
inclusions allowed are between intervals with the same endpoints.

We will show in Theorem 12 that the classes of unit OC interval orders and
strict OC interval orders are equal and give a forbidden poset characterization
of this class.

1.2 Forbidden posets

Two points in a poset are said to be twins if they have precisely the same com-
parabilities. In an interval representation of a poset, if two points are assigned
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Figure 2: Forbidden posets which, with the dual of Y , comprise the set F .

the same interval then they are twins. A poset is twin-free if no two points are
twins.

In this section we describe the set F of posets that are forbidden for twin-
free unit OC interval orders. We begin with the poset 3 + 1 with ground set
a, b, c, d and comparabilities a ≺ b ≺ c shown in Figure 1. The unique unit OC
interval representation of 3 + 1 is shown to its right. In this and other figures,
we shorten the notation by labeling an interval as x instead of I(x).

In the next proposition, we show that the posets in Figure 2 are forbidden
in twin-free unit OC interval orders. Each of these posets is self dual, except for
Y . Throughout the remainder of this paper we denote the set of posets given
in Figure 2 together with the dual of Y by F .

Proposition 5 If P is a twin-free unit OC interval order then it does not con-
tain any of the five posets in Figure 2 or the dual of Y .

Proof. Suppose the contrary. We consider each of the posets of F in turn.

1. Consider the poset 4 + 1 with ground set {a, b, c, d, x} and comparabili-
ties a ≺ b ≺ c ≺ d. The unique representation of the 3 + 1 induced by
{a, b, c, x} forces I(b) to be an open interval, while the unique representa-
tion of the 3 + 1 induced by {b, c, d, x} forces I(b) to be a closed interval,
a contradiction.

2. Consider the poset 3 + 1 + 1 with ground set {a, b, c, x, y} and compara-
bilities a ≺ b ≺ c. The unique representations of the two 3 + 1’s induced
by {a, b, c, x} and {a, b, c, y} force I(x) = I(y). Thus, x, y would be twins
in any poset containing a 3 + 1 + 1.

3. Consider the poset Z with ground set {a, b, c, d, x, y} and comparabilities
a ≺ b ≺ c ≺ d, x ≺ d, a ≺ y. The unique representation of the 3 + 1
induced by {a, b, c, x} forces I(b) to be an open interval, while the unique
representation of the 3 + 1 induced by {b, c, d, y} forces I(b) to be a closed
interval, a contradiction.
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4. Consider the poset D with ground set {a, b, c, d, x} and comparabilities
a ≺ b ≺ d, a ≺ c ≺ d. The unique representations of the 3 + 1’s induced
by {a, b, d, x} and {a, c, d, x} force I(b) and I(c) to be identical intervals.
Thus b and c would be twins in any poset containing D.

5. Finally consider the poset Y with ground set {a, b, c, d, x} and compara-
bilities a ≺ d ≺ b, a ≺ d ≺ c. The two 3 + 1’s induced by {a, d, b, x}
and {a, d, c, x} force I(b) and I(c) to be identical intervals. Thus, b and c
would be twins in any poset containing Y . The argument for the dual is
similar. �

Observe that in the proof of Proposition 5, the twin-free hypothesis is used
only in the arguments for the posets 3 + 1 + 1, D, and Y . Indeed, these three
posets are unit OC interval orders if twins are allowed. The arguments for the
posets 4 + 1 and Z did not use the twin-free hypothesis, and indeed these are
not unit OC interval orders even when twins are allowed.

2 Representing interval orders

In this section we describe how to obtain an initial closed interval representa-
tion for a given interval order and describe several important properties of this
representation.

Definition 6 Let P = (X,≺) be a poset. For any x ∈ X, the down set of x,
denoted by D(x), is the set {y ∈ X : y ≺ x}. Similarly, the up set of x, denoted
by U(x) is the set {y ∈ X : x ≺ y}. We let D be the set of all down sets of P
and U be the set of all up sets of P .

The following elementary result gives an alternate characterization of interval
orders and appears in [13]. We omit the proof.

Proposition 7 The following are equivalent for a poset P = (X,≺).

1. P has no induced 2 + 2.

2. The down sets of P are ordered by set inclusion.

3. The up sets of P are ordered by set inclusion.

Theorem 8 below is based on work by Greenough [5] and shows how to
construct a representation of an interval order from its down sets and up sets.
A statement of this result appears in [7] and an illustrative example is shown in
Figure 3. We include the proof for completeness.

Theorem 8 Let P = (X,≺) be an interval order. Index the down sets and the
up sets of P as follows:

∅ = D1 ⊂ D2 ⊂ . . . ⊂ D|D| and U1 ⊃ U2 ⊃ . . . ⊃ U|U| = ∅.
For each x ∈ X let L(x) = i where D(x) = Di, and let R(x) = j where
U(x) = Uj. Then the following hold:
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Figure 3: The poset N and its interval representation produced as in Theorem 8.

1. |D| = |U|.

2. L(x) ≤ R(x) for each x ∈ X.

3. The assignment of the interval I(x) = [L(x), R(x)] to each x in X produces
an interval representation of P .

Proof. Start with a closed interval representation of P . We will modify this
representation so that every value that appears as an endpoint of an interval
appears as both a left endpoint of an interval and a right endpoint of an (possibly
the same) interval. Note that some intervals will be reduced to single points
by this process. Suppose there is a real number that appears as a left endpoint
in the representation but not as a right endpoint. Let z be the leftmost of
these values. Let w be the smallest number greater than z for which there is
an interval whose right endpoint is w. We replace each interval of the form
[z, x] by [w, x] to produce a new set of intervals that provides another closed
representation of P . The new representation has one less value that appears as
a left endpoint but not a right endpoint.

Continue sweeping from left to right in this way, modifying the representation
until every value that appears as a left endpoint also appears as a right endpoint.
Then sweep from right to left and modify the representation further until every
value that appears as a right endpoint also appears as a left endpoint. The result
is an interval representation of P in which there are m numbers that appear as
endpoints of intervals and each is both a left endpoint of some interval and the
right endpoint of some (possibly the same) interval. Without loss of generality
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we may assume these m endpoints are labeled 1, 2, . . . ,m. Let I denote this
interval representation.

For each i between 1 and m there exists an x ∈ X whose left endpoint is i
and thus D(x) consists of elements of X (if any) whose intervals lie completely
to the left of i. Since the endpoints satisfy 1 < 2 < . . . < m and there is a right
endpoint at each i, these m down sets are distinct and completely ordered by
inclusion from smallest to largest. Thus Di = D(x) for those x ∈ X whose left
endpoints are labeled i. Furthermore, |D| = m. Similarly, Ui = U(x) for those
x ∈ X whose right endpoints are labeled i and |U| = m. This proves (1).

Every x ∈ X whose left endpoint lies on i has D(x) = Di and thus L(x) = i,
and every x ∈ X whose right endpoint lies on j has U(x) = Uj and thus
R(x) = j. The intervals in our representation I are indeed intervals, thus
L(x) ≤ R(x) for all x ∈ X, proving (2).

The interval assigned to x in I is [i, j] where D(x) = Di and U(x) = Uj ,
thus the interval is also [L(x), R(x)], proving (3). �

Figure 3 illustrates applying Theorem 8 to the poset N . The following
remark is a consequence of the proof of Theorem 8.

Remark 9 The representation given in Theorem 8 has the property that every
value that appears as an endpoint of an interval appears as both a left endpoint
and a right endpoint.

In Theorem 11 we will modify the representation given in Theorem 8 so that
each proper inclusion has the useful property that we define in Definition 10.

Definition 10 Let P = (X,≺) be an OC interval order and fix an interval
representation of it. For x, u, v ∈ X with I(u) ⊂ I(v), we say I(x) (or x)
peeks into vu if I(x) intersects I(v) but not I(u). Furthermore, it peeks into
vu from the left if in addition R(x) ≤ L(u) and peeks into vu from the right if
R(u) ≤ L(x).

Figure 4(a) illustrates this definition, where x peeks into ab from the left
and y peeks into ab from the right. In the following theorem we modify the
representation given in Theorem 8 to have distinct endpoints so that there can
be left and right peekers into each proper inclusion.

Theorem 11 Every twin-free interval order P = (X,≺) has a closed interval
representation satisfying the following peeking property: For each proper
inclusion I(u) ⊂ I(v) there exist x, y ∈ X so that x peeks into vu from the left
and y peeks into vu from the right.

Proof. Given a twin-free interval order P , use the assignment of intervals
in Theorem 8 to produce an interval representation of P . Observe that each
endpoint is an integer. Let I(v) = [j, j + k] be the interval assigned to v where
j, k ∈ Z and k ≥ 0. We modify this representation to produce one with distinct
endpoints.
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Let Î(v) =
[
j − 1

k+3 , j + k + 1
k+3

]
for each v ∈ X. Since P is twin-free the

endpoints in {Î(v) : v ∈ X} are distinct by construction. One can verify that
Î(v) properly contains Î(u) if and only if I(v), I(u) have distinct endpoints and
I(v) properly contains I(u).

Suppose Î(v) properly contains Î(u). Then I(v) properly contains I(u) and
they have distinct endpoints. By Remark 9 there exist x, y ∈ X where the right
endpoint of I(x) equals the left endpoint of I(v) and the left endpoint of I(y)
equals the right endpoint of I(v). It follows that, in both the original and the
modified representations of P, x peeks into vu from left and y peeks into vu
from the the right. �

3 The Main Theorem

We are now ready to state and prove our main theorem.

Theorem 12 Let P = (X,≺) be a twin-free interval order. The following are
equivalent:

(1) P is a unit OC interval order.

(2) P is a strict OC interval order.

(3) P has no induced poset from the forbidden set F consisting of the five orders
in Figure 2 and the dual of Y .

Proof. The proof that (1) ⇒ (3) follows from Proposition 5. We next show
that (2) ⇒ (1).

Let P = (X,≺) be a strict OC interval order and fix a strict OC interval
representation I of P . Take the closure I(v) = [L(v), R(v)] of each interval in
this representation and remove duplicates, i.e., say two elements are equivalent
if their intervals have the same closure and take one representative from each
equivalence class. Let X ′ ⊂ X be the resulting set of elements.

The intervals I(v) for v ∈ X ′ determine a proper representation, I, of an
interval order P ′. Apply the Bogart-West procedure in [1] to this proper rep-
resentation to obtain a unit representation I ′ of P ′ in which element v ∈ X ′

is assigned interval I ′(v) = [L′(v), R′(v)]. As observed in [9], this construction
satisfies

R(u) = L(v) if and only if R′(u) = L′(v), for all u, v ∈ X ′. (∗)
Now extend I ′ to X as follows. For each v ∈ X whose representative in P ′ is

w, let I ′′(v) have the same endpoints as I ′(w) and let I ′′(v) be closed if and only
if I(v) is closed. Each interval in {I ′′(v) : v ∈ X} has unit length, and using (∗)
it is straightforward to show that this set of intervals gives a representation of
P . �

In the remaining subsections, we prove (3) ⇒ (2) of Theorem 12. We begin
by describing certain properties that our initial closed representation will satisfy.
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3.1 Properties of the initial representation

Proposition 13 Let P = (X,≺) be a twin-free, F-free interval order. Then
there exists a closed interval representation I = {I(x) : x ∈ X} of P satisfying
the following:

(1) No interval strictly contains two other intervals.

(2) No interval is strictly contained in two other intervals.

(3) If I(u) ⊂ I(v) then there are unique x, y ∈ X so that x peeks into vu from
the left and y peeks into vu from the right.

Proof. Use the construction in the proof of Theorem 11 to form a closed
interval representation I = {I(x) : x ∈ X} of P satisfying the peeking property.
We show this representation also satisfies (1), (2) and (3).

Proof of (1): Suppose there exist elements u 6= v of X whose intervals
are strictly contained in I(w). We will show that every possible configuration
of these intervals leads to a contradiction.

First consider the case of strictly nested intervals: I(u) ⊂ I(v) ⊂ I(w). Since
I satisfies the peeking property, there exist elements x, y such that x peeks into
vu from the left, and y peeks into vu from the right. In this case, x ≺ u ≺ y
and x, u, y, v, w induce a 3 + 1 + 1 in P , a contradiction since P is F-free.

Next suppose that u and v are not nested. We may assume without loss of
generality that I(u) has the leftmost left endpoint and I(v) has the rightmost
right endpoint of all the intervals strictly contained in I(w).

There exist elements x, y such that x peeks into wu on the left and y peeks
into wv on the right. If I(u) ∩ I(v) = ∅ then x ≺ u ≺ v ≺ y and w, x, u, v, y
induce a 4 + 1 in P , a contradiction. Hence I(u) and I(v) intersect and the
elements w, x, u, v, y induce the forbidden poset D in P , also a contradiction.

Proof of (2): Suppose there exist u, v, w so that I(u) is strictly contained
in both I(v) and I(w). Without loss of generality we may assume that L(w) <
L(v) < L(u). By (1), no three intervals can be nested so R(w) < R(v). Then
there exist elements x, y where x peeks into vu from the left and y peeks into
wu from the right. Now the elements w, v, x, u, y induce a 3 + 1 + 1 in P , a
contradiction.

Proof of (3): Since I satisfies the peeking property, there exist elements
x, y where x peeks into vu from the left and y peeks into vu from the right.
Suppose there exists a second x′ ∈ X that peeks into vu from the left. Then
u, v, x, x′, y induce the dual of Y in P , a contradiction. A similar argument yields
forbidden configuration Y when two intervals peek into vu from the right. �

3.2 Completing the proof of Theorem 12

In this section we complete the proof of Theorem 12 by proving (3)⇒ (2). Let
P = (X,≺) be an interval order with closed interval representation I = {I(z) :
z ∈ X}. Suppose I(u) is properly contained in I(v). We say that I(u) is the
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Figure 4: (a) x peeks into ab from the left and y peeks into ab from the right.
(b) x is retracted to the left, y is retracted to the right and b is expanded to
meet a.

inner interval of this proper inclusion and I(v) is the outer interval. If x peeks
into vu from the left and we redefine I(x) to be Î(x) = [L(x), L(v)], we say
that I(x) (or x) is retracted to the left. Similarly, if y peeks into vu from the
right and we redefine I(y) to be Î(y) = [R(v), R(y)], we say that y is retracted
to the right. Finally, we say that the inner interval I(u) is expanded (to meet v)
if it is redefined to be Î(u) = (L(v), R(v)). Figure 4 illustrates these concepts.
We use these retractions and expansions to convert I into a representation with
no strict inclusions. In this section, we denote the left and right endpoints of
interval Î(v) respectively by L̂(v) and R̂(v).

Proposition 14 Let P = (X,≺) be a twin-free, F-free interval order with
closed interval representation I = {I(z) : z ∈ X} satisfying the three conclu-
sions of Proposition 13. For any proper inclusion, if the left peeker is retracted
to the left and the right peeker is retracted to the right, then the resulting set
of closed intervals is also an interval representation of P and the new represen-
tation also satisfies the three conclusions of Proposition 13 and has the same
proper inclusions as I.

Proof. Let I(u) ⊂ I(v) be a proper inclusion in I. By our hypothesis, there
exists a unique x ∈ X for which I(x) peeks into vu from the left, and thus
L(v) ≤ R(x) < L(u). We retract x to the left and define a new set of intervals
Î as follows: Î(x) = [L(x), L(v)] and Î(w) = I(w) for w 6= x. Let P̂ = (X, ≺̂)
be the interval order represented by Î. We will prove that the orders P and P̂
are equal by showing that any two elements a, b ∈ X have the same relation in
P̂ as in P .

Since retracting I(x) cannot create a new incomparability, we need only
consider the case in which a ‖ b in P but a ≺̂ b in P̂ . Since a ‖ b in P , we know
L(b) ≤ R(a), and since the only change made in defining Î is to R(x), we must
have a = x. Then

L(v) = R̂(x) = R̂(a) < L̂(b) = L(b) ≤ R(a) < L(u) < R(v).

If R(b) ≤ R(v) then I(v) properly contains both I(u) and I(b), contradict-
ing conclusion (1) of Proposition 13. If R(b) > R(v) then I(u) is properly
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contained in both I(v) and I(b), contradicting conclusion (2) of Proposition 13.

We conclude that a ‖̂ b and thus that P = P̂ .
Next we show that no proper inclusions were created or lost in retracting x

to the left. If a proper inclusion were created or lost, there would exist a ∈ X
so that I(x) 6⊂ I(a) and Î(x) ⊂ Î(a) (or I(a) ⊂ I(x) and Î(a) 6⊂ Î(x)). In either
case, both a and x peek into vu from the left in P , contradicting conclusion (3)
of Proposition 13.

After retraction, x continues to peek into vu from the left and so P̂ = P .
Thus the new representation Î continues to satisfy the three conclusions of
Proposition 13. Finally, note that the argument is similar if y peeks into vu
from the right. �

Proposition 15 Let P = (X,≺) be a twin-free interval order with no induced
Z and let I = {I(z) : z ∈ X} be a closed interval representation of it satisfying
the three conclusions of Proposition 13, where all peekers have been retracted in
repeated applications of Proposition 14. If for each proper inclusion, the inner
interval is expanded to meet the outer interval, then the resulting set of intervals
Î is a strict OC interval representation of P .

Proof. Let P̂ = (X, ≺̂) be the OC interval order represented by Î. We will
prove that the orders P and P̂ are equal by showing that any two elements
a, b ∈ X have the same relation in P̂ as in P . For a contradiction, suppose
there exist a, b ∈ X with one relation in P and a different relation in P̂ . Since
expanding intervals cannot cause a new comparability, it must be the case that
a and b are comparable in P but incomparable in P̂ . Without loss of generality,
we may assume a ≺ b in P . There are two cases to consider depending on
whether one or both of I(a), I(b) are inner intervals.

Case 1. Only one of I(a), I(b) is an inner interval. By symmetry, we may
assume it is I(b). Then I(b) ⊂ I(w) for some w ∈ X and b is expanded so that
Î(b) = (L(w), R(w)).

Then L(w) = L̂(b) ≤ R̂(a) = R(a). Thus in I, a is the unique element of X
that peeks into wb from the left and so, by Proposition 14, I(a) was retracted
to the left and R(a) = L(w). But since Î(a) = I(a) is closed and Î(b) is open,
this implies that a ≺̂ b, a contradiction.

Case 2. Both I(a), I(b) are inner intervals. Thus there are v, w ∈ X such
that I(a) ⊂ I(v) and I(b) ⊂ I(w), and both a, b are expanded to open intervals

with the same endpoints as I(v), I(w) respectively. Since a ‖̂ b we have L(w) =
L̂(b) < R̂(a) = R(v). If L(w) ≤ L(v) or R(v) ≥ R(w), the intervals for a, v, w or
b, w, v would be nested in Î, contradicting Proposition 13. Thus L(v) < L(w) <
R(v) < R(w).

If R(v) < L(b) then v peeks into wb from the left and v would have been
retracted in Proposition 14, making R(v) = L(w), a contradiction. So R(v) ≥
L(b), and similarly L(w) ≤ R(a). By Proposition 13, there are unique elements
x, y ∈ X, where x peeks into va from the left and y peeks into wb on the right.
Then the elements x, a, b, y, v, w induce the forbidden graph Z of Figure 2 in P ,
contrary to our hypothesis. �
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The proof that (3) implies (2) in Theorem 12 now follows from Proposi-
tions 13, 14, and 15.

4 Recognition and realization algorithm

In this section we present an efficient algorithm for recognizing the class of strict
OC interval orders. Given a twin-free poset P = (X,≺) as input, the algorithm
returns a strict OC interval representation in the case that P belongs to the
class. Otherwise, it returns a poset from the set F induced in P or indicates
that the poset is not an interval order.

The algorithm proceeds in three stages and, if the algorithm has not ter-
minated, the output of one stage is the input to the next. In Stage 1, either
a 2 + 2 is discovered in P and the algorithm terminates, or a closed interval
representation I of P is constructed that has distinct endpoints and satisfies
the peeking property of Theorem 11. In addition, a storage matrix A is created
and an inclusion matrix B is initialized.

In Stage 2, either a forbidden poset in the set {4 + 1, 3 + 1 + 1, Y , dual
of Y , D} is discovered in P and the algorithm terminates, or otherwise we can
conclude that I also satisfies the three conclusions of Proposition 13. Matrix B
is updated so that it records all strict inclusions of intervals in I. In Stage 3,
either a forbidden poset Z is discovered in P and the algorithm terminates, or
otherwise the representation I is modified to be a unit OC interval representa-
tion of P .

Algorithm: OC Interval Order:

Input: A twin-free poset P = (X,≺).

Output: Either returns a 2 + 2, or a poset from the set F induced in P , or
constructs a strict OC interval representation of P .

We begin with Stage 1, which constructs a closed interval representation
when given an interval order and initializes the necessary data structures.

Stage 1: Find Initial Representation.

Calculate the down sets of P and order them D1, D2, D3, . . . , Dk so that
|D1| ≤ |D2| ≤ |D3| ≤ · · · ≤ |Dk|. Check whether Di is strictly contained in
Di+1, for 1 ≤ i ≤ k − 1. If there is an i for which Di 6⊂ Di+1 then P contains
an induced 2 + 2 which can be found as follows. Find x, y with x ∈ Di\Di+1

and y ∈ Di+1\Di, and a, b for which Di = D(a) and Di+1 = D(b). Then the
elements x, y, a, b induce a 2 + 2 in P , and thus P is not an OC interval order
by Proposition 3. Return these four elements and terminate.

Otherwise, by Propositions 3 and 7, P is an interval order, there are exactly
k up sets, and they can be ordered by set inclusion. Calculate the up sets of P
and order them U1, U2, U3, . . . , Uk by size so that U1 ⊃ U2 ⊃ U3 ⊃ · · · ⊃ Uk.
Use the intervals given in Theorem 8(3) to get an initial interval representation
of P . Modify these intervals as in the proof of Theorem 11 to obtain a closed
interval representation I = {I(x) : x ∈ X} of P that has distinct endpoints and
satisfies the peeking property of Theorem 11.
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Index 1 2 3 4 5 6 7 8 9 10

Element d a d e a b b c e c
L/R L L R L R L R L R R

Other end 3 5 1 9 2 7 6 10 4 8

Table 1: The storage matrix A for the poset N in Figure 3.

Next, create the storage matrix A. Sort the 2|X| interval endpoints of the
representation I from smallest to largest. The index of an endpoint is its po-
sition on this list, thus each element x ∈ X is assigned two indices, those of
its left and right endpoints. Record information about this representation in a
matrix A that has three rows and 2|X| columns, where information about the
endpoint ej with index j is stored in column j:

A1j = x, where x is the element of X that is assigned index j;
A2j = L if ej is a left endpoint of I(x) and A2j = R otherwise;
A3j is the index of the other endpoint of I(x).

Table 1 shows the matrix A for the poset N of Figure 3. The entries in A
will not change as the algorithm proceeds. In addition, create a matrix B with
three rows and |X| columns, one column for each x ∈ X. The first row of B
provides the indices corresponding to each x ∈ X. Fill in these entries using
information in array A as follows:

B1x = < i, j >, where i is the index of L(x) and j is the index of R(x).

The entries in the remaining two rows will later record the sets of elements
whose intervals contain I(x) and are contained in I(x). These entries are ini-
tialized to be empty. This ends Stage 1. Return the interval representation I
and the matrices A and B.

Output of Stage 1: A 2 + 2 induced in P or a closed interval representa-
tion I of P that has distinct endpoints and satisfies the peeking property of
Theorem 11, and matrices A and B.

During Stage 2, we record proper inclusions of intervals in I in matrix B so
that by the end of Stage 2, the entries satisfy the following.

B2x = {y ∈ X : I(x) ⊆ I(y} (i.e., elements whose intervals contain I(x))
B3x = {z ∈ X : I(z) ⊆ I(x)} (i.e., elements whose intervals I(x) contains)

If our representation fails to satisfy one of the three conclusions of Propo-
sition 13, this will be discovered in Stage 2 and a forbidden graph from F
produced. We may need to find up to two left peekers into a proper inclusion
and this is achieved by the subroutine Locate Peekers, which appears just after
Stage 2. Finding right peekers is analogous.

Stage 2: Identify inclusions and peekers.
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Initialize an empty queue Q. For j = 1 to 2|X| perform the following
operations:

If A2j = L, add index j onto the back of Q. Increment j.

Otherwise, index j represents the right endpoint of an interval I(x) and the
index i of L(x) is currently on Q. Using matrices A and B, scan from the front
of Q to find i. One of three things can occur.

1. Index i is at the front of the queue.

In this case, remove i from the queue and increment j. No updates are
made to matrix B.

2. At least two indices are on the queue in front of i. In this case, find the
forbidden poset 3 + 1 + 1 in P as follows and terminate.

Let k1, k2 ∈ Q with k1 < k2 < i and let v1, v2 be the elements of X whose
left endpoints have indices k1, k2 respectively. Let k3 be the index of the
right endpoint of I(v1) and k4 be the index of the right endpoint of I(v2).
Then I(x) is contained in both I(v1) and I(v2) and L(v1) < L(v2). Locate
a left peeker u1 into v2x. Locate a right peeker u2 into v1x (if k3 < k4) or
into v2x (if k4 < k3). The elements u1, x, u2, v1, v2 induce a 3 + 1 + 1 in
P . Return these elements and terminate. If for all j, the algorithm does
not terminate in this case, then the representation satisfies conclusion (2)
of Proposition 13.

3. Exactly one index is on the queue in front of i.

Let k be the index in front of i on the queue and let w ∈ X have index k.
Update B2x to include w and update B3w to include x.

If |B3w| ≥ 2, we find a forbidden poset in P as follows and terminate.
Let y ∈ B3w with y 6= x. Since the algorithm scans endpoints from left
to right, we know L(y) < L(x) and since we are in case 3, we know
I(x) 6⊆ I(y). Locate a left peeker u1 into wy and a right peeker u2 into
wx. The elements u1, y, x, u2, w induce a forbidden poset in P : either a
4 + 1 if I(x), I(y) do not intersect or the poset D if they do. Return these
elements and terminate. If for all j, the algorithm does not terminate in
this case, then the representation satisfies conclusion (1) of Proposition 13.

Otherwise, |B3w| = 1. If there are two right peekers into wx (or two left
peekers), find a forbidden poset in P as follows and terminate. Locate
two right peekers u1, u2 and one left peeker u3 into wx. The elements
u1, u2, x, u3, w induce the poset Y in P . Similarly, if there are two left
peekers, we discover the dual of Y . In either of these cases, return these
elements and terminate. Otherwise, remove index i from the queue (even
though it is not at the front) and increment j. If for all j, the algorithm
does not terminate in this case, then the representation satisfies conclusion
(3) of Proposition 13.
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Output of Stage 2: Either a forbidden poset from the set {4 + 1, 3 + 1 + 1,
Y , dual of Y , D} or else matrix A, the updated matrix B, and a closed interval
representation I of P that satisfies the three conclusions of Proposition 13.

Subroutine Locate Peekers:
Input: x, y ∈ X with I(x) ⊂ I(y).

Output: a set of at most two left peekers into yx.

Use matrix B to find left indices i of x and k of y. By the construction of
Q we know k < i. Any index between k and i representing a right endpoint
corresponds to a left peeker into yx. Start at i and scan back towards k to
locate up to two such indices. Use matrix A to locate the element(s) that are
assigned to these indices, return these element(s) and terminate the subroutine.

At the end of Stage 2, the algorithm has either identified and returned a
forbidden configuration and terminated, or it has identified and recorded in B
all proper inclusions. Furthermore, the algorithm has verified that the closed
interval representation I satisfies the conclusions of Proposition 13. Thus each
entry in the bottom two rows of B is either empty or contains exactly one
element. Furthermore, there is exactly one left peeker and one right peeker into
each inclusion.

In Stage 3, make two passes through the indices, retracting peekers in the
first pass and expanding each inner interval in the second. The left indices
of outer intervals are placed on a queue Q̂, allowing us to keep track of outer
intervals that intersect. The algorithm either verifies that the result is a strict
OC representation of P or returns the forbidden poset Z induced in P . Finding
a forbidden Z is achieved by the subroutine Locate Z, which appears just after
Stage 3.

Stage 3: Retracting Peekers and Expanding Inner Intervals.

3a. Retract Peekers: Initialize an empty queue Q̂. For j = 1 to 2|X| perform
the following operations:

Let v = A1j . If B3v = ∅ (i.e., I(v) does not contain another interval) then
increment j. Otherwise, I(v) contains exactly one other interval I(u), where
u ∈ B3v.

If A2j = L, the next step either finds a forbidden graph Z induced in P , or

else places j on the back of Q̂. Each index i currently on Q̂ is the left endpoint
of an outer interval I(v′) with L(v′) < L(v). For each such i, use matrices A
and B to locate v′ and u′ where I(u′) ⊂ I(v′). If for some i, I(v′)∩I(u) 6= ∅ but
I(u) ∩ I(u′) = ∅, use the subroutine Locate Z to find a forbidden poset Z in P
and terminate. Otherwise, place j on the back of Q̂. If for all j, the algorithm
does not terminate in this case, then we show P does not contain an induced Z
as follows. Suppose poset Z with comparabilities a ≺ b ≺ c ≺ d, a ≺ y, x ≺ d
is induced in P . Then for any closed interval representation of P , when j is the
index of L(y), the index i of L(x) is still on Q̂ and the subroutine Locate Z is
called with the elements u = c, v = y, u′ = b and v′ = x.
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If A2j = R, locate the index of the left endpoint of v and remove it from Q̂.
Locate the left peeker x and the right peeker y into vu. Retract these peekers
by redefining R(x) := L(v) and L(y) := R(v). Increment j. If the algorithm
has not terminated, then the revised set of intervals provides a representation
of P that satisfies the hypotheses of Proposition 15.

3b. Expand Inner Intervals: For each u ∈ X, if B2u 6= ∅ then B2u = {v} for
some v ∈ X. Expand u to meet v by redefining L(u) := L(v) and R(u) := R(v)
and making the interval for u open. By Proposition 15, the resulting set of
intervals is a strict OC interval representation of P .

Output of Stage 3: Either a forbidden graph Z induced in P or otherwise a
strict OC interval representation of P .

Subroutine: Locate Z
Input: Elements u, v, u′, v′ ∈ X with I(u) ⊂ I(v), I(u′) ⊂ I(v′), L(v′) < L(v),
I(v′) ∩ I(u) 6= ∅ and I(u′) ∩ I(u) = ∅.
Output: Elements that induce the forbidden poset Z in P .

Observe that I(v)∩I(u′) 6= ∅, for otherwise there would be two right peekers
into v′u′, namely v and u, a contradiction. Locate the left peeker w1 into v′u′

and the right peeker w2 into vu. Note that I(w1) ∩ I(v) = ∅ for otherwise I(v)
would contain both I(u) and I(u′), a contradiction. Similarly, I(w2)∩I(v′) = ∅.
The elements w1, u

′, u, w2, v
′, v induce the forbidden poset Z in P . Return these

six elements and terminate the subroutine.

It is easy to verify the following run time for our algorithm.

Remark 16 Algorithm OC Interval Order runs in time that is quadratic in
|X|.

5 Forbidden posets characterization when twins
are allowed

Let T be the set of posets 4 + 1, D∗, Z, Y ∗, Y ∗∗ shown in Figure 5, together with
their duals. In this section, we prove the following theorem that characterizes
the class of unit OC interval orders.

Theorem 17 An interval order is a unit OC interval order if and only it has
no induced poset from the forbidden set T .

Proof. In this proof we use the notation and build on the arguments intro-
duced in the proof of Proposition 5. First we show that the posets in T are
not unit OC interval orders. In the proof of Proposition 5, we showed that the
posets 4 + 1 and Z are not unit OC interval orders even if twins are allowed.
Any unit OC interval representation of poset D,Y , or the dual of Y requires
the intervals for b and c to be identical. The posets D∗, Y ∗, Y ∗∗ and their duals
each contain an additional element y comparable to one of b, c but not the other.
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4 + 1 ZD∗ Y ∗ Y ∗∗

Figure 5: Forbidden posets which, with their duals, comprise the set T .

Thus in any unit OC interval representation of D∗, Y ∗, Y ∗∗ or their duals, the
intervals for b and c would not be identical. If the interval for y were removed,
the result would be a unit OC interval representation of D,Y , or the dual of Y
in which the intervals for b and c are not identical, a contradiction.

For the converse, let P = (X,≺), and suppose P is an interval order which
is not a unit OC interval order. We will show it contains a poset from T as an
induced subposet. Let P ′ be the poset obtained from P by removing duplicate
points, that is, from each set of points with the same comparabilities, take one
representative. Poset P ′ is induced in P but is twin-free. If P ′ had a unit
OC interval representation, we could give identical intervals to duplicate points
and form a unit OC interval representation of P , a contradiction. Thus P ′ is a
twin-free interval order that is not a unit OC interval order. By Proposition 5,
we know P ′ contains an induced poset from F . If P ′ contains 4 + 1 or Z then
P ′ (and hence P ) contains a poset from T as desired. We give the argument for
P ′ containing the poset D below. The arguments for P ′ containing 3 + 1 + 1
or Y are similar.

Suppose P ′ contains D with ground set {a, b, c, d, x} and comparabilities
a ≺ b ≺ d, a ≺ c ≺ d. Since b and c are not twins in P , there must exist an
element y comparable to one, say c, but not the other, b. First suppose y ≺ c. If
y ≺ x, poset P contains an induced 2 + 2, and if x ≺ y then transitivity implies
x ≺ c, each giving a contradiction. Thus x ‖ y. If a ≺ y, poset P contains
an induced 4 + 1, which is an element of T . The remaining possibility is a ‖ y
and this results in the poset D∗ induced in P . If instead c ≺ y, we get similar
contradictions or the dual of D∗. �

Acknowledgements: The authors are grateful to Tom Trotter, Mitch Keller, and
David Howard for helpful discussions of the proof of Theorem 8.
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