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Abstract

The scale and complexity of human cooperation is an important and unresolved evo-

lutionary puzzle. This article uses the finitely repeated n person Prisoners’ Dilemma

game to illustrate how sapience can greatly enhance group-selection effects and lead

to the evolutionary stability of cooperation in large groups. This affords a simple

and direct explanation of the human “exception.”
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The evolution of human cooperation is a long-standing puzzle that has received

much recent attention. Research has focused on three nested questions. First:

how can altruistic behavior survive evolutionary pressures at all (Hamilton,

1964a,b; Fletcher and Zwick, 2004; Nowak, 2006)? Second: how can cooper-

ation evolve in large groups of unrelated individuals (Boyd and Richerson,

1988; Boyd et al. 2003)? Third: why does large-scale cooperation among un-

related individuals seem to be a distinctly human phenomenon (Bernhard et

al., 2006; Fehr and Fischbacher, 2003; Fehr and Gächter, 2002; Gintis 2000;

Bowles, 2006)?

A number of compelling arguments have been forwarded for resolving the first

two questions. These include: kin selection and inclusive fitness (Hamilton,

1964a,b); reciprocal altruism (Trivers, 1971; Axelrod, 1984); altruistic pun-

ishment (Fehr and Gächter, 2002; Henrich and Boyd, 2001) and reputation

(Rockenback and Milinski (2006)); group and multi-level selection (Maynard-

Smith, 1964; Wilson and Sober, 1994); assortative matching (Wright, 1921;

Bergstrom, 2002); and spatial effects and imitation (Nowak and May, 1992;

Grim, 1995; Nowak and Sigmund, 2004; Boyd and Richerson, 2002; Langer et

al. 2008).

The puzzle of human exceptionalism is a particularly active topic of research

(Gintis, 2000; Bowles, 2006; Boyd, 2006; Wilson and Wilson, 2007; Johnson

et al., 2008). As articulated by Fehr and Fischbacher (2003), a fully successful

resolution requires showing that large-scale cooperation is possible precisely

because of some characteristic “quantitatively, or probably even qualitatively,
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unique” (page 785) to humans. The core of this paper is a very simple model

with precisely this feature.

The paper is structured as follows. Section 2 considers a completely standard

finitely repeated public goods game (n player Prisoners’ Dilemma) model of

evolutionary dynamics. In this game, reciprocal altruists compete with un-

conditional defectors, as in Cohen and Eshel (1976). Evolutionary dynamics

can support cooperation in small groups in this model, but, as in Boyd and

Richerson (1988), cooperation becomes unsustainable as group size grows.

Section 3 then tweaks the model by replacing the unconditional defectors with

non-cooperative agents who are more recognizably human: they are intrinsi-

cally non-cooperative in the sense that they are purely self-interested, but they

play strategically. So, even though they are not intrinsically cooperative, they

can behave cooperatively when it is in their own selfish best interest. This

simple modification completely reverses the standard result: identical evolu-

tionary dynamics not only can support cooperative behavior in large groups,

but cooperative behavior is actually ensured in sufficiently large groups.

This result is similar to Johnson et al.’s (2008) discussion of the consequences of

replacing “Tit for Tat” reciprocators with “continuous” reciprocators in Boyd

and Richerson’s (1988) model, in that it highlights the sensitivity of Boyd

and Richerson’s conclusions to the specification of strategies of the players. It

differs in several important respects, however.

First, the model presented here provides a simple and clean example to illus-
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trate how sapience (specifically: strategic foresight) can greatly enhance the

survival of cooperation in large groups. In this respect, it directly addresses

why large-group cooperation might be particular to humans.

Second, Johnson et al. (2008) interpret the sensitivity of Boyd and Richerson’s

results as evidence in favor of individual rather than group selection as the un-

derlying mechanism for human cooperation. The present results are based on

a model with similar dynamics, but here they can be interpreted as support-

ing group selection mechanisms. Specifically, a particularly intriguing feature

that appears in this model is a stark dichotomy between phenotypically coop-

erative behavior of individuals in groups and the genotypically uncooperative

nature of the majority of those individuals. This is an example of a point em-

phasized by Wilson (2004): in the context of complicated phenotype-genotype

relationships, absolute fitness advantages can fail to translate into relative fit-

ness advantages, even with randomly formed groups. In Section 3’s model,

strategically rational types have an absolute fitness advantage, but, ironically,

their strategic foresight helps ensure the continued survival of genotypically co-

operative non-strategic individuals by facilitating broad cooperation in groups

within which the later represent only a distinct minority. This allows the coop-

erative genotype to maintain a relative fitness advantage despite representing

only a small proportion of the population.

Group or “multi-level selection” explanations for human cooperation espoused,

for example, by Bowles (2006) and Wilson and Wilson (2007) emphasize the

importance of social control and culturally transmitted norms in facilitating
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group or multi-level selection in human populations. Sapience clearly plays an

important, if indirect, role in these sorts of stories. The present results indicate

how sapience can directly enhance the evolution of cooperation in large groups,

even in the absence of complex systems of social control or cultural and moral

norms. Presumably, these direct effects reinforce the cultural norm effects.

The stark reversal of the large-scale survival of cooperative behavior with sapi-

ent actors in place of unconditional defectors is striking. There are a number of

reasons to interpret this result with some caution, however. For example, the

formal results in Section 3 rely on a number of simplifications, including: (i)

the observability of type; (ii) a continuum of individuals; (iii) a zero mutation

rate; and (iv) a significant (though not exorbitant) level of reasoning capacity

for the strategic agents. Section 4 the extent to which these are reasonable

abstractions.

Section 5 offers some brief conclusions. Proofs of key results appear in the

Appendix.

1 The Evolutionary Model

The evolutionary model is a version of the Haystack model (Maynard-Smith,

1964). Each generation t consists of a unit measure of individuals. Individuals

are sorted randomly (non-assortatively) into groups (the haystacks) with n

players. The n individuals within each group play an M times repeated public
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goods game. At the end of the M periods, generation t individuals reproduce

asexually. The fraction of generation t + 1 players who are the offspring of a

given generation t individual is proportional to the generation t individual’s

M-period payoff. The generation t+1 individuals are then assigned randomly

to new groups (haystacks) of size n, play the repeated public goods game,

reproduce... and so on.

In each of the M periods of the public goods, each of the n individuals chooses

whether to cooperate (C) or to defect (D). If j individuals play C in a given

period, those who cooperate and those who defect receive period payoffs of

βj and βj + 1, respectively. The interpretation is that each player has a unit

endowment which she can consume (playing D) or contribute to a public good

(playing C). The latter strategy provides a benefit β to each individual in the

group, including herself. Contributions are assumed to be socially productive

(βn > 1) but individually harmful (β < 1). For technical reasons, β is further

assumed to satisfy the slightly stronger condition: βn ≥ (2 − β) > 1.

Individuals’ strategies are determined by their genetic “type,” which is trans-

mitted without mutation from parent to child. (The no-mutation assumption

is inessential but expositionally convenient.) Specifying the set of “types” de-

termines the play of the game and hence the evolutionary dynamics. The

following two sections analyze these dynamics with two distinct sets of types.

6



2 The Baseline Model

This section considers a model with two types. Uncooperative types (U-types)

are unconditional defectors: they play D each period. Reciprocal altruists,

or “Tit-for-Tats” (T -types), play C as long as all members of their group

cooperated in the preceding period. 2

2.1 Payoffs

Let j index the number of T -types in a given group. All individuals will co-

operate in all n periods in groups with j = n. In groups with j < n, the j

T -types will cooperate in period 1, the (n − j) U-types will defect in period

1, and all individuals will defect in periods 2, · · · , M . Payoffs uT (j) and uU(j)

to T and U types are therefore given as follows:

j = 0 0 < j < n j = n

uT (j) −− βj + M − 1 βMn

uU(j) M βj + M −−

(1)

For notational ease, define uU(n) = 0 and uT (0) = M − 1. Then uU(j) =

2 Boyd and Richerson (1988) consider generalized T -types who cooperate so long

as fewer than a members defected in the preceding period. Allowing for these types

is expositionally more cumbersome, but it does not materially affect the results.
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uT (j) + 1 for all j.

2.2 Dynamics

Let pt denote the fraction of T types in generation t. Random assignment

implies that the fraction of generation t individuals who are in groups with j

T -types is given by the binomial density,

f(n, j, pt) =

(
n

j

)
pj

t (1 − pt)
n−j. (2)

It will also be useful to use the cumulative distribution function (the proportion

of the population in groups with no more than j types):

F (n, j, p) =
j∑

i=0

f(n, j, p). (3)

Evolutionary dynamics are given by the map Dn : [0, 1] → [0, 1] from the pro-

portion pt of T -types in generation t to the proportion pt+1 in the subsequent

generation:

Dn : pt → pt+1 =

∑n
j=0 f(n, j, pt)juT (j)∑n

j=0 f(n, j, pt) [juT (j) + (n − j)uU(j)]
. (4)

(These are simply the “replicator” dynamics described in, e.g., Taylor and

Jonker (1978).) Theorem 1 summarizes the properties of these dynamics.

Theorem 1 (Baseline Dynamics) The mapping Dn described in Equation

(4) has exactly three fixed points: p = 0, p = 1, and p∗ =
(

1−β
(βn−1)(M−1)

) 1
n−1 .

Points p and p are stable. Point p∗ is unstable.
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[Insert figure 1(a) and (b) about here]

The Appendix contains a formal proof of this well known result.

Theorem 1 implies that, for any n, evolutionary dynamics lead (almost surely)

to a homogenous population. The unstable interior fixed point p∗ marks the

cutoff between initial population fractions that will lead to a population with

all defectors (p < p∗) or all Tit-for-Tats (p > p∗). Figure 1 provides an il-

lustration for n = 25 and n = 200. Note that the basin of attraction for

the cooperative steady state is smaller for n = 200. This is an illustration of

evisceration of cooperation in large groups discovered by Boyd and Richerson

(1988) and formalized in the following corollary. The corollary, which uses Dt
n

to denote the t-times iterate dynamics, follows directly from a the observation

that limn→∞ p∗ = 1.

Corollary 2 (Evisceration of Cooperation in Large Groups) For all p < 1

there exists n∗ such that

lim
t→∞Dt

n(p) = 0

for all n ≥ n∗.

Boyd and Richerson view their analog of Corollary 2 as a puzzle in need of

explanation, saying:

This result satisfies the natural historian’s conventional wisdom: large, co-

operative, groups composed of distantly related individuals are unusual in

nature. But it leaves human cooperation unexplained.
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The next section modifies this simple model in order to illustrate a potential

resolution of this puzzle.

3 A Modified Model with Homo Sapiens

The baseline model has two types: the intrinsically cooperative Tit-for-Tats,

and unconditional defectors. The defectors are actively un-cooperative: they

are hard-wired to make anti-social choices even when it runs counter to their

own narrow self-interest. A distinguishing feature of humans is their ability to

reason strategically and avoid such mistakes. This section considers how the

dynamics change when the irrational unconditional defectors from the baseline

model are replaced with selfishly motivated but reasoning players.

3.1 Types

Tit-for-Tat types are exactly as in the baseline model. The new genotypically

non-cooperative types are now strategic (S)-types: they are the perfectly ra-

tional, forward looking players of standard non-cooperative game theory. Type

is common knowledge within a given group. 3

3 Section 4 discusses the robustness of the conclusions to these assumptions. In

particular, it notes that for low numbers of repetitions M , “perfect rationality” is a

much stronger assumption than is necessary for the results to hold.
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3.2 Payoffs

Payoffs are determined by a subgame perfect equilibria (SPE; Selten, 1965).

Define j∗ = min{j|j ≥ (1 − β)/β} and consider the following strategies:

• If j < j∗: defect in every period.

• If j ≥ j∗: cooperate in periods 1, · · · , M − 1; defect in period M .

These strategies describe the highest payoff SPE of the game. To wit: defecting

is clearly a strictly dominant strategy in period M . In period M − 1, S types

who deviate and play D gain 1 − β. This induces the T -types to defect in

period M , reducing the deviator’s utility by βj in groups with j < n T -types.

Cooperation at period M − 1 is thus consistent with a SPE if and only if

βj ≥ 1− β, i.e., if and only if j ≥ j∗. If j ≥ j∗, a similar argument shows that

cooperating in M −2, M −3, · · · , 1 is an SPE strategy if j ≥ j∗. If βj < 1−β,

then backwards induction reveals that “defect in every period” is the unique

SPE strategy for strategic types. Hence, the proposed strategies constitute a

SPE, and no other SPE can involve more cooperation.

Taking this “best” SPE to be outcome of the game, 4 the M-period payoffs as

a function of the number j of T -types in a group are given by:

4 Focusing on the best equilibrium is common, and it has been shown to have firm

theoretical justifications in some contexts (Fudenberg and Maskin, 1990; Kim and

Sobel, 1995). The justification for making it in this particular setting, however, is

purely pragmatic: it makes the argument as clean and simple as possible.
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0 ≤ j < j∗ j∗ ≤ j ≤ n

uT (j) βj + M − 1 (M − 1)βn + βj

uS(j) βj + M (M − 1)βn + βj + 1

(5)

For notational convenience, (5) implicitly uses uT (0) = M−1 and uS(n) = Mβn + 1,

so that uS(j) = uT (j) + 1 for all j.

3.3 Dynamics

Other than the different payoffs to the two types, evolutionary dynamics are

the same as in the baseline model. Let pt denote the fraction of T -types in

generation t, let f(n, j, pt) be defined as in Equation (2), and let D̃n denote

the mapping pt → pt+1, i.e.,

D̃n : pt → pt+1 =

∑n
j=0 f(n, j, pt)juT (j)∑n

j=0 f(n, j, pt) [juT (j) + (n − j)uS(j)]
. (6)

The following theorem summarizes the key properties of this mapping. A for-

mal proof appears in the Appendix.

Theorem 3 (Modified Dynamics) The points p = 0 and p = 1 are fixed

points of the mapping D̃n. Point p is unstable; point p is stable. Furthermore:

(1) For all p0, limt→∞ D̃t
n(p0) exists.
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(2) {D̃t(p)}∞t=0 is monotone in t: the sequence is either non-increasing for all

t or else is non-decreasing for all t.

(3) ∃ N such that for n ≥ N and for all p0 ≥ j∗
n
, limt→∞ D̃t

n(p0) > j∗
n
.

[Insert figure 2 (a) and (b) around here]

Properties (1) and (2) of Theorem 3 state that the evolutionary dynamics are

“nice” in the sense that the fraction of T -types will converge monotonically

to some stable level (which may depend on the initial fraction of T -types).

Panel Figure 2(a) illustrates for n = 25, M = 2, and β = .2. It shows four

fixed points: the stable points 0 and p∗ and the unstable points p′ and 1. The

basin of attraction of the interior fixed point p∗—at which T -types “survive”

evolutionary pressures—is the range (p′, 1). When group size increases to n =

500, as in Figure 2(b), the dynamics are qualitatively similar, but both interior

fixed points have moved left; the basin of attraction for the “T -types survive”

fixed point p∗ has correspondingly increased; and the fraction of T -types at p∗

has decreased.

Simulations suggest that the dynamics for sufficiently large n always have the

same qualitative two-basin-of-attraction structure. They also indicate that the

interior “peak” visible in both panels of Figure 2 occurs near j∗
n

—the “critical

fraction” of T -types required for cooperation—and that the peak gets narrower

and narrower as n grows. 5 It thus appears to be true that there is a unique

5 If −dF (n,j,p)
dp is a single peaked function of p—which seems intuitively correct and

has been borne out by all simulations, but for which there is no obvious proof—then
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stable interior fixed point p∗ with the following properties: (a) for sufficiently

large n it is always to the right of j∗
n

; (b) it converges to zero as group size

grows; and (c) its basin of attraction converges to (0,1).

Lacking a formal proof of this conjecture, Property (3) of Theorem 3 makes a

weaker (but still sufficiently strong) claim: it asserts instead that the interval

[ j∗
n
, 1) is contained within the union of the basins of attraction of all of the

steady states strictly to the right of j∗
n

. Hence, as n grows, the basin of at-

traction of all fixed points with surviving T -types converges to (0, 1), and the

survival of some T -types is ensured.

It follows that the T -types’ survival is ensured in large groups—though ap-

parently only as small fractions of large groups. As the following corollary

establishes, however, the genotypically cooperative T -types survive in suffi-

cient numbers to ensure that cooperative behavior is the norm in large groups.

It asserts formally that, starting from any initial fraction of T -types, most

groups in every generation will be cooperative—in the sense that all individu-

als in these groups will cooperate in periods 1, ..., M −1—so long as the group

size is sufficiently large. The formal proof is provided in the Appendix.

Corollary 4 (Survival of Cooperation in Large Groups) For any p0 > 0

there exists an N such that

n > N ⇒ 1 − F (n, j∗ − 1, D̃t
n(p0)) > 0.5 ∀t ≥ 0.

this topological structure on the dynamics would follow easily.
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Figure 3 illustrates this corollary. It fixes p0 = .95 and computes the limt→∞ pt

for both the baseline dynamics (panel (a)) and the modified dynamics (panel

(b)), and plots this limit as a function of group size. In the baseline dynam-

ics, T -types go extinct when groups are larger than n = 46. In the modified

model, the surviving fraction of T -types also decreases towards zero as group

size grows, but it remains strictly positive. The second curve in panel (b) plots

the limiting fraction of types in cooperative groups—i.e. those with at least j∗

T -types and which therefore cooperate for at least M − 1 periods. It suggests

an even stronger result than Corollary 4 establishes: as group size grows, the

fraction of cooperative groups appears to approach one—so that almost ev-

erybody behaves cooperatively. All simulations have borne this stronger result

out, though a formal proof has remained elusive.

[Insert Figure 3 (a) and (b) around here]

4 Discussion and Caveats

The difference between Corollaries 2 and 4 is striking: for a fixed p0, the former

states that cooperation is completely eviscerated in sufficiently large groups;

the latter states that cooperative behavior becomes the norm in large groups.

The intuition behind this reversal is straightforward. As formalized by Price

(1970), the long-run evolutionary stability of cooperation is determined by a

horse-race between “within group” effects, which favor the genotypically non-

cooperative types and “between group” effects, which favor groups with more
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genotypically cooperative T -types. The evisceration of cooperation formalized

in baseline model obtains because the number of T -types needed to sustain

cooperative behavior in any given group grows with the size of the group.

Groups with sufficiently many T -types become increasingly rare as group size

grows, so the between-group effects become negligible.

In the modified model, by contrast, the fraction of T -types required to sustain

cooperative behavior in a given group decreases with group size. This is because

only a small number (j∗) of T -types in a group is needed to induce strategic

cooperation by the self-interested S-types. Combined with the growing gross

public benefit of cooperation (i.e., βn − 1), this ensures that between-group

evolutionary forces come to dominate as group size grows.

This intuition makes it clear that the reversal is robust to several modifications,

such as allowing Tit-for-Tat types to have some (fixed or slowly growing)

tolerance for the number of defectors, or having the public benefit β decrease

with group size (so long as the gross public benefit of pro-social behavior

grows sufficiently quickly). Similarly, the qualitative results are robust to the

introduction of a small exogenous probability of “mutation” to the opposite

type during reproduction.

A number of other modeling assumptions raise potentially more significant

concerns about the practical interpretation the results. First, one might worry

that invoking subgame perfection requires endowing strategic types with an im-

plausible amount of rationality. Second, Section 3 takes type to be observable.
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Since observability plays a critical role in generating cooperation in groups

with strategic players, it is important explore the extent to which the result

hinges on this assumption. Third, the joint assumptions of a continuum of

individuals and a deterministic environment rule out the possibility of “acci-

dental” extinction of the genotypically cooperative T -types via drift. This is

a particular concern since the fraction of T -types in the interior equilibrium

identified in Theorem 3 shrinks to zero as the group size n grows.

We consider each of these concerns in turn.

4.1 Rationality Assumptions

The baseline model of Section 2 departs from Boyd and Richerson’s (1988)

model by assuming that the number of repetitions of the game M is finite

rather than infinite. With non-rational actors, this distinction is unimportant.

With strategic actors it is.

Although formal results that are qualitatively similar to those in Section 3

could be derived in an infinitely repeated version of the model, the finitely

repeated version relies on substantially less stringent cognitive capability as-

sumptions for equilibrium play. When M = 2, for example, the proposed equi-

librium requires only that strategic types are able to calculate one period ahead

(and second order mutual knowledge of this fact and of rationality). This is far

less restrictive than the “common knowledge of rationality” assumption that

17



would be required to ensure equilibrium in the infinitely repeated version.

Qualitatively, with finite repetitions, strategic types only have to be homo

sapiens, not homo economicus.

4.2 Observability of Type

The assumption that type is perfectly observable is analytically important:

it is what allows strategic types to condition their play on the number of

genotypically cooperative T -types in their group. After discussing the extent

to which it is conceptually important, this section describes how and when

allowing self-reporting can replace the observability assumption.

4.2.1 Consequences of Relaxing Observability

To highlight the importance of the observability assumption, consider a polar

opposite case: type is completely unobservable and strategic types know only

the population fraction p of T -types.

On the one hand, individual behavior here is quite similar to behavior in the

“perfect observability” case: as in Kreps et al. (1982), there is a (Bayesian)

equilibrium with the property that, for sufficiently large p, strategic types

cooperate with high probability in most rounds of the game. Since cooperation

is probabilistic in this equilibrium, cooperation will, on average, be higher in

groups with more cooperative T -types, just as in the perfect observability case.

18



On the other hand, the evolutionary dynamics are much different: they in-

evitably lead to complete evisceration of cooperation. Observability confers a

distinct disadvantage on S-types, since it can lead to the unraveling of cooper-

ative behavior as other S-types anticipate the last-round defections (and then

penultimate round defections, etc...). Removing observability ensures that S-

types will achieve at least weakly, and sometimes strictly higher payoffs than

T -types (since they can always imitate T -types).

Whether or not evolutionary forces with intermediate levels of observability

will generally eviscerate cooperation is an open—and analytically challenging—

question. Suppose, for example, type is observable, but there is some positive

probability of “recognition” errors. Then groups with more T -types will be

more likely to be cooperative than groups with fewer—just as in the “perfect

observability” case. This induces the qualitative correlation between group

composition and group payoff that is necessary for between group forces to

potentially overwhelm within group forces. At the same time, imperfect observ-

ability blurs the sharp cutoff at j∗ between cooperation and the lack thereof,

reducing the quantitative magnitude of this correlation. Monte Carlo simu-

lations indicate that that the “perfect observability” dynamics are robust to

the introduction of modest recognition errors for a fixed group size. Whether

or not a fixed error rate undermines cooperation in sufficiently large groups

remains an open question.
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4.2.2 Self-Revelation of Type

One might hope to rely on self-reporting of type rather than assuming observ-

ability. This can be modeled by looking for a truth-telling equilibrium in a

pre-game round wherein each individual in a group simultaneously states his

type, and where play in the M-round repeated game then follows the equilib-

rium strategies from Section 3 (with the reported number j of T -types). 6

If deception is costless and impossible to observe, then truth telling is not an

equilibrium, since if (and only if) a strategic type happens to be in a group

with exactly j∗−1 T -types, unilateral mis-reporting by an S-types will improve

his payoff by inducing cooperation in rounds 1, · · · , M − 1 by his opponents.

Now suppose deception involves some small cost ε(n) and that there is some

probability P (n, j) of a group successfully “sniffing out” a deception. The gross

benefit of unilaterally misreporting is:

(1 − P (n, j∗ − 1)) [f(n, j∗ − 1, p)] [(M − 1)(βn − 1) + (2 − βj∗).] (7)

Expression (7) assumes that an unsuccessful deception leads the group to

play according to the true rather than the reported j. The first term is the

probability of not being sniffed out. The second term is the probability of being

in a group with exactly j∗ − 1 individuals (the only time successful unilateral

deception matters). The third term is the benefit conditional on being in such

6 Grégoire and Robson (2003) consider a qualitatively similar “pre-play” signalling

game in a model with different dynamics.
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a group and successfully deceiving; it is computed under the assumption that

an S-type who gets away with deception subsequently cooperates in periods

1, ..., M − 2 and defects in M − 1 and M (which is optimal).

Since f(n, j∗ − 1, p) is maximized at p = j∗−1
n

and

lim
n→∞ f

(
n, j∗ − 1,

j∗ − 1

n

)
=

(j∗ − 1)j∗−1

(j∗ − 1)!
e−j∗+1 (8)

is finite, the cost of deception will outweigh the expected benefit in large

groups whenever ε(n)
1−P (n,j)

grows slightly faster than n. In this case, engaging

in deception will be undesirable for sufficiently large n, and the central results

of Section 3 will continue to hold. This condition is plausible. It will hold, for

example, if ε is independent of n and each strategic type has an independent

and arbitrarily small probability η > 0 of sniffing out a defection. Alternatively,

it will hold if deception has a per group member cost and if the likelihood of

detection increases, even arbitrarily slowly, with n.

4.3 Drift

Focusing on a model with a continuum of individuals is analytically conve-

nient. One might reasonably have concerns about the appropriateness of this

abstraction, however, especially since the population fraction of T -types in the

interior fixed point identified in Corollary 4 shrinks zero as group size grows. In

particular, random fluctuations could reduce the realized fraction of T -types

in a given generation into the basin of attraction of the steady state at p = 0
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(viz Figure 2) and lead to their eventual extinction.

A back of the envelope calculation is useful for assessing the quantitative im-

portance of this concern. A generous time-frame for human evolution is on the

order of 100,000 generations. To have a better than 50% chance of surviving

this long, the probability of extinction in any given generation should be less

than approximately 10−5. So if fluctuations large enough to eliminate T -types

in a given generation are “5-sigma” events, then they are not quantitatively

problematic.

Consider mean-zero shocks which cause the realized fraction of p of T -types in

a given generation to be approximately normally distributed around the ex-

pected value p∗ (i.e., the interior equilibrium). If the stochasticity is individual-

specific, the variance of this distribution will scale as η/(p∗N), where N is the

total population size, and η is a measure of the individual-level fluctuations,

which we conservatively take to be 1. 7 (For a concrete example, suppose that

each T -type “birth” has a probability η/2 each of producing twins or of being

stillborn.)

Extinction of T -types will result if random fluctuations lead their population

fraction to fall below (1−α)p∗ for some α. (In Figure 2, α = p′
p∗ .) This will be

7 Focusing on individual-specific shocks is reasonable here since the aggregate pop-

ulation shocks that uniformly both T - and S-types will not affect p.
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a 5-sigma event when:

αp∗√
1/(p∗N)

=
1

2

(
1 − β

βn

) 3
2 √

N ≥ 5. (9)

Or, for small β, approximately when (5/α)2(βn)3 ≤ N. Boyd et al. (2003)

use βn = 2, 4 and 8; these imply robustness to drift if N > 800/α2, 6400/α2,

and 51, 200/α2 for βn = 2, 4 and 8, respectively, so long as the interior steady

state exists. 8 For b = 8, simulations indicate that α ≈ .5 when n = 100

(which Boyd et al. (2003) suggest is reasonable for representing evolution in

small scale societies). Then cooperation is robust to drift as long as the total

population N is on the order of 500, 000. For b = 4 and n = 100 and 1000,

drift is unproblematic even for N = 20, 000 and N = 100, 000, respectively. So

the drift-free model appears to be a reasonable abstraction.

5 Conclusions

Theorem 3 and its corollary show how the received wisdom that cooperative

behavior is evolutionarily unstable in large groups is highly sensitive to model-

ing assumptions: simply replacing the biological automata of standard models

with forward-looking strategic players, cooperation in large groups becomes

the norm, completely overturning standard “impossibility of cooperation large

8 Boyd et al. (2003) fix b ≡ βn instead of β. Theorem 3 assumes a fixed β, so it

does not guarantee an interior steady state for large n; such an interior steady state

will always exist for sufficiently large M .
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groups” results. Though suggestive, the results herein can hardly be regarded

as dispositive regarding the evolutionary causes of human cooperation: the

model on which they are based is simply too stylized. 9

Instead, the central results of this paper are best viewed as illustrative of two

important ideas. First, the potential importance of human facultative reason-

ing skills—arguably the defining characteristic of homo sapiens—should re-

ceive greater emphasis in explanations of why our species is essentially unique

in exhibiting large scale cooperation among unrelated individuals. But this ex-

planation is probably best viewed as a complement to rather than a substitute

for other recently proposed resolutions of the puzzle of human exceptional-

ism. 10 Gintis (2000), for example, argues that the combination of strong reci-

procity (punishment of non-cooperative behavior) and uniquely human abili-

ties which make punishment “cheaper” (such as tool-making, hunting ability,

9 For example, enriching the set of types and interactions would almost certainly

yield a more complex set of evolutionary dynamics and complicate the clean cut

results of this streamlined model. As pointed out by Doebeli and Hauert (2005),

alternative games can yield significantly different results; and actual evolutionary

processes almost certainly involve a multiplicity of different types of “games.” Fur-

thermore, Lindgren’s (1991) tournaments and theoretical studies of complex dy-

namical systems indicate that highly complex and difficult to analyze dynamics are

likely to be the norm in real-world dynamical processes.
10 Even if it were the explanation for large scale human cooperation, sapience would’t

fully resolve the “puzzle” of human exceptionalism; it merely reduces the question

to why our sapience is exceptional.
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and stone throwing) can help to resolve it. 11 It seems likely that strategic pun-

ishment by sapient types—the analog of strategic cooperation—would further

enhance the evolutionary case for strong reciprocity.

Bowles (2006) emphasizes group selection in the context of cultural trans-

mission of reproductive leveling institutions such as monogamy and points out

that this transmission is only possible in light of humans’ cognitive and linguis-

tic abilities. Closely related is Wilson and Wilson’s (2007) and Wilson et al.’s

(2008) strong advocacy for multi-level selection theory. They argue that that

humans have undergone a “major transition” to a fundamentally “groupish”

nature so that human groups effectively behave as evolutionary units. This

major transition was theoretically facilitated by social control mechanisms

associated with moral systems which “suppress[ed] fitness differences within

groups and made it possible for between-group selection to become an impor-

tant evolutionary force” (Wilson and Wilson, 2007, page 343).

There are several ways in which strategically rational players may have been

instrumental in helping humans to undergo such a major transition. For ex-

ample, sapient types’ imitation of genotypic cooperators represents a form of

the reproductive leveling within groups that is central to allowing between-

group forces to become operative. And the non-linear phenotype-genotype

relationship which results as strategic types imitate genotypically cooperative

11 There is some debate over the evolutionary stability. See, e.g., Dreber et al. (2008)

and Gächter et al. (2008).

25



types undermines much of the force of the argument against group selection

(Williams, 1966) and can strongly enhance group-selection pressures (Wilson,

2004). Furthermore, strategic rationality may have been helpful in developing

moral systems or institutions for providing “top-down” rewards (as in Cuesta

et al., 2008).

The second key idea in this paper is the identification and distillation of an

heretofore under-appreciated symbiosis between self-interest and reciprocal

altruism. The literal “prediction” of Section 3’s model—that human societies

will consist of many purely self-interested individuals induced to cooperate by

the presence of a small proportion of intrinsically cooperative individuals—

is not correct; most humans clearly have both cooperative and strategically

self-interested proclivities. But, the model provides a clear illustration of how

these two proclivities can be mutually reinforcing.

The synergy between strategic self-interest and innate cooperativeness indi-

cates the potential utility of reconciling the different modeling conventions used

by economists and evolutionary social scientists. Economists typically assume

the individuals in their models to be rational and ruthlessly self-interested

cognitive supermen (with occasional, if misguided, appeals to evolutionary

metaphors to “justify” this assumption). In contrast, evolutionary social sci-

entists have typically employed evolutionary game theory to show how evolu-

tionary forces affect biological automata sans reasoning skills. The observation

that large groups of unrelated humans frequently cooperate in real-world pub-

lic goods settings poses a puzzle for economists and evolutionary theorists
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alike: in economists’ models, rational self-interest is predicted to undermine

cooperation. Evolutionary social scientists have found that evolutionary mod-

els with automata have been unsupportive of cooperative behavior in large

unrelated groups. The results herein suggest that synthesizing these two ap-

proaches with agents with intermediate cognitive abilities can potentially help

to resolve both sides of the puzzle.
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6 Appendix

PROOF. [Proof of Theorem 1] First note that payoffs are strictly positive.

Define global average payoffs

ūt ≡ (1/n)
n∑

j=0

(juT (j) + (n − j)uU(j)) f(n, j, pt)
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and note that (n − j)uU(j) = (n − j)(uT (j) + 1). Then

(pt+1 − pt) nūt=
∑n

j=0 juT (j)f(n, j, pt)

−pt
∑n

j=0 (juT (j) + (n − j)(uT (j) + 1)) f(n, j, pt)

=
∑n

j=0(j − ptn)uT (j)f(n, j, pt) − pt
∑n

j=0(n − j)f(n, j, pt)

=
∑n

j=0 ((j − ptn) (βj + M − 1) f(n, j, pt))+

(n − ptn) (βMn − (βn + M − 1)) f(n, n, pt) − npt(1 − pt)

(10)

The variance and expected value of j are
∑n

j=0 ((j − ptn)jf(n, j, pt)) = npt(1 − pt)

and
∑n

j=0 (jf(n, j, pt)) = npt, respectively, and f(n, n, pt) = pn
t . We can there-

fore re-write Equation (10) as

(pt+1 − pt)nūt = npt(1 − pt)
(
(βn − 1)(M − 1)pn−1

t − (1 − β)
)

. (11)

Denote the right-hand-side of Equation (11) by Δ(pt). Note that Δ(pt) ≥ 0 ⇔ pt+1 > pt.

Δ(pt) is a continuous function of pt with three real zeros at p = 0, p = 1

and p = p∗. Our assumption that n > (2 − β)/β ensures p∗ ∈ (0, 1). Also,

Δ′(0) = −n(1 − β) < 0; similarly, Δ′(1) < 0 and Δ′(p∗) > 0. Hence, pt+1 < pt

∀p ∈ (0, p∗) and pt+1 > pt ∀p ∈ (p∗, 1), completing the proof.

PROOF. [Proof of Theorem 3] As in the proof of Theorem 1, define global
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average payoffs ūt and note that:

(pt+1 − pt)nūt=
∑n

j=0(j − ptn)uT (j)f(n, j, pt) − pt
∑n

j=0(n − j)f(n, j, pt)

=
∑n

j=0 ((j − ptn) (βj + M − 1) f(n, j, pt)) +

∑n
j=j∗(j − ptn)(M − 1)(βn − 1)f(n, j, pt) − npt(1 − pt)

=(M − 1)(βn − 1)pt(1 − pt)
(
−dF (n,j∗−1,p)

dp

)
− (1 − β)npt(1 − pt),

(12)

where the last step uses the following two observations:

(1)
∑n

j=0 f(n, j, pt)j(j − ptn) is the variance, npt(1− pt), of the binomial dis-

tribution, .

(2) df(n,j,p)
dp

= f(n, j, p) (j−np)
p(1−p)

(as is easily verified by direct computation).

This directly confirms the (obvious) fact that p = 0 and p = 1 are fixed points.

When pt ∈ (0, 1), the sign of pt+1 − pt is equal to the sign of

− 1 − β

(M − 1)(β − 1
n
)

+

[
−dF (N, j∗ − 1, pt)

dp

]
. (13)

The first term is strictly negative, and independent of pt. The second term

is strictly positive. The stability properties will follow by establishing that

−dF (n,j∗−1,p)
dp

→ 0 as p → 0 or p → 1.

Stability properties of p and p: For pt ≈ 1:

F (n, j∗ − 1, p) ≈ n!

(n − j∗ + 1)!, (j∗ − 1)!
(1 − p)n−j∗+1
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(plus higher order terms in (1 − p); intuitively, the tails of the binomial dis-

tribution fall off fast, so the bulk of the mass to the left of j∗ is concentrated

at j∗ − 1.) Since n − j∗ + 1 ≥ 2 (which follows from βn > 2 − β > 1),

dF (n,j∗−1,pt)
dp

→ 0 as p → 1. Similarly, dF (n,j∗−1,pt)
dp

→ 0 as pt → 0. We conclude

that pt+1 − pt is negative as pt → 0 or pt → 1, so that p and p are stable and

unstable, respectively.

Existence of (monotone) limits (Properties (1) and (2)): It is straight-

forward to establish from Equations (5) and (6) (e.g., with some tedious alge-

bra) that

p ≥ q ⇒ D̃np ≥ D̃nq. (14)

Taking any p0 with D̃n(p0) = p1 ≥ p0, this ensures that pt ≡ D̃t
np0 is a non-

decreasing sequence, whereby p∞ ≡ limt→∞ D̃t
n(p) exists. A similar argument

applies if D̃n(p0) < p0.

Convergence to limits greater than j∗
n

(Property (3)). For sufficiently

large N , we will show that D̃n (j∗/n) > j∗
n

for all n ≥ N ; Property (3) will

then follow directly from the monotonicity of the dynamics.

Explicitly computing:

− 1

N

dF (N, j∗ − 1, j∗
N

)

dp
=

N

j∗(N − j∗)

j∗−1∑
j=0

(
N

j

)(
j∗

N

)j (
1 − j∗

N

)N−j

(j∗ − j)

≥ N

j∗(N − j∗)

(
1 − j∗

N

)N

j∗.

Hence, limN→∞− 1
N

dF (N,j∗−1, j∗
N

)

dp
≥ e−j∗, and limN→∞−dF (N,j∗−1, j∗

N
)

dp
= ∞. Us-

ing Equation (13), we can therefore find a sufficiently large N so that D̃n

(
j∗
n

)
> j∗

n
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whenever n ≥ N , completing the proof.

PROOF. [Proof of Corollary 4] From Theorem 3, there exists N̄ such that

whenever n > N̄ there exists an interior fixed point to the right of j∗
N

. Fixing

p0, take N̂ = max{N̄, j∗
p0
}, and any n > N̂ . Then p0 ≥ j∗

n
, and, from Theorem

3, D̃t
np0 > j∗

n
and hence

1 − F (n, j∗ − 1, D̃t
np0) > 1 − F (n, j∗ − 1,

j∗

n
)

for all t. The fraction of cooperative groups is thus greater than the probability

of at least j∗ successes out of n tries with the binomial distribution with p = j∗
n

.

As n → ∞, this binomial distribution converges to the Poisson distribution

with expected value j∗. Adell and Jodrá (2005) show that Gj∗(j
∗ − 1) < 0.5,

where Gj∗(·) is the cumulative density function for the Poisson distribution

with expected value j∗. We conclude:

lim
n→∞

(
1 − F (n, j∗ − 1,

j∗

n
)
)

= 1 − Gj∗(j
∗ − 1) > 0.5,

so there exists N ≥ N̂ such that n > N ensures

1 − F (n, j∗ − 1, D̃t
np0) > 1 − F (n, j∗ − 1,

j∗

n
) > 0.5.
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Fig. 1. Dynamics in the baseline model with β = .2, M = 2 for group sizes (a) n = 25

and (b) n = 200. To the left (right) of p∗, pt+1 < pt (pt+1 > pt), and intrinsically

cooperative T -types (uncooperative U -types) die off over time. Increasing group size

move the cutoff p∗ towards 1.
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Fig. 2. Dynamics in the modified model with β = .2, M = 2 for group sizes (a) n = 25

and (b) n = 500. The points p∗ and p ≡ 0 are stable steady states with basins

of attraction (p′, 1) and (0, p′), respectively, where p′ is an unstable steady state.

Increasing group size moves p∗ towards 0, and increasing p∗’s basin of attraction

(p′, 1).
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Fig. 3. The limiting fraction of genotypically cooperative individuals (i.e., limt→∞ pt)

and cooperative groups (limt→∞ 1−F (n, j∗−1, pt)) when p0 = .95 for various group

sizes in the baseline and modified dynamics. Note that in the baseline dynamics,

the limiting fraction of cooperative groups is identical to the limiting fraction of

genotypically cooperative individuals.
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