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Abstract 

Serially homologous systems with high internal differentiation frequently exhibit meristic 

constraints, although the developmental basis for constraint is unknown. Constraints in 

the counts of the cervical and lumbosacral vertebral series are unique to mammals, and 

appeared in the Triassic, early in their history.  Concurrent adaptive modifications of the 

mammalian respiratory and locomotor systems involved a novel source of cells for 

muscularization of the diaphragm from cervical somites, and the loss of ribs from lumbar 

vertebrae. Each of these innovations increased the modularity of the somitic mesoderm, 

and altered somitic and lateral plate mesodermal interactions across the lateral somitic 

frontier. These developmental innovations are hypothesized here to constrain the 

anteroposterior transposition of the limbs along the column, and thus also cervical and 

thoracolumbar count. Meristic constraints are therefore regarded here as the 

nonadaptive, secondary consequences of adaptive respiratory and locomotor traits. 

 

Introduction  

The evolution of adaptive morphology by natural selection is the major theme and 

guiding principle of comparative morphology.  But a strict correlation of structure and 

function is complicated by structures that appear to be resistant to natural selection, 

even over long evolutionary time periods and under extremely different selection 

regimes. The existence of static or poorly adaptive structures is commonly attributed to 

the origin of evolutionary novelties by the modification of already existing structures, a 

process that François Jacob (1977) memorably compared to “tinkering.”  In this 

tinkering, ancestral developmental programs and morphology are incompletely and 

imperfectly re-engineered for new functions. They can therefore exert a bias in the 

production of the phenotypes on which natural selection acts (Brakefield 2006). Here, a 

rich fossil record documenting the synapsid / mammal transition, adaptively diverse 
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living mammalian taxa, and a large body of recent developmental work on axial 

patterning are integrated to propose a synthetic hypothesis for the origin of a well-known 

example of evolutionary stasis, vertebral count in mammals. 

 

Structures composed of multiple serially homologous subunits can provide accessible 

and discrete systems for addressing the imposition of evolutionary stasis.  In many but 

not all cases, the elements of ancestral series are  “primordially similar,” while the 

elements of descendant series have been adapted “to the most diverse purposes” 

(Darwin 1859).  In Materials for the Study of Variation, William Bateson (1894) noted 

that, “on the whole, series containing large numbers of undifferentiated parts more often 

show Meristic Variation than series made up of a few parts much differentiated.” An 

example of the evolutionary transition from undifferentiated segments with high and 

variable counts to differentiated segments with lower and more constrained counts has 

been elegantly traced in arthropods using the 250 million year fossil record of trilobites 

(Hughes 2007).  

 

The developmental link between morphological differentiation and count constraint is 

only poorly understood. A general hypothesis suggests that the same developmental 

program generates each serially homologous subunit ancestrally, identifying the entire 

composite structure as a single morphological and developmental module.  As evolution 

proceeds, downstream developmental steps are added in isolated areas of the series, 

producing regionally unique morphology that is selectively adaptive.  After multiple 

generations of differentiation, each developmentally and morphologically differentiated 

region of the series becomes an internally integrated submodule that is resistant to 

incorporation or expansion into adjacent, differently specialized submodules without 

significant adaptive cost.  This developmental entrenchment leads to stasis of count.  
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Vertebrates vary in the extent of their column regionalization. Minimal morphological 

regionalization and high count variability are found in the columns of ancestral 

vertebrates and many living teleosts (e.g. Ward and Brainerd 2007). The columns of 

tetrapods are regionalized by their integration with limb girdles into cervical, dorsal, 

sacral, and caudal series, but series counts in many taxa are variable (Müller et al. 

2010). In contrast, the axial skeleton of mammals exhibits both high morphological 

differentiation and minimal meristic variation.  Five specialized series (cervical, thoracic, 

lumbar, sacral, caudal), several with intra-regional differentiation, are usually recognized.  

Cervical count is effectively fixed at seven, total thoracolumbar count is more loosely 

constrained at nineteen or twenty, and sacral count is typically three or four. Only the 

caudal series varies widely in count.  The adaptation of mammalian axial anatomy to a 

wide diversity of lifestyles over a long geologic history (Buchholtz 2012) has thus been 

limited primarily to changes in vertebral shape and caudal count.  

 

The historically remote and subcellular origins of the developmental innovations 

responsible for vertebral constraint complicate its analysis.  The reappearance of 

ancestral structures following experimental expansion of Hox gene expression domains 

led Pollock et al. (1995) to hypothesize that morphological differentiation of the vertebral 

column reflects the progressive restriction of expression domains that were originally 

expressed over much, or all, of the column. Although this pattern is not universally 

observed (e.g. Mallo et al. 2010), an evolutionary increase in developmental modularity 

is clear.  On a morphological level, the adaptive clues typically provided by the structure 

/ function paradigm are absent, as count is fixed in mammals with widely different 

adaptations. Additionally, variable counts in non-mammalian taxa argue against the 

adaptive superiority of any particular count.  However, if regionalization was the product 
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of a developmental program that generated a trait with high adaptive value, and  

secondarily also limited changes in vertebral count, stasis could be imposed without any 

inherent adaptive advantage. This scenario demands a developmental tie between the 

adaptive trait and meristic constraint, as well as their synchronous origin. 

 

Below I present a hypothesis for the origin of cervical and thoracolumbar constraints in 

mammalian axial patterning as secondary consequences of developmental innovations 

tied to the highly adaptive mammalian respiratory / locomotor complex. Each innovation 

is associated with increased modularity of the column, has a developmental link to limb 

placement, and first appeared roughly synchronously with constraint imposition. 

 

Mammalian respiration and locomotion 

Living mammals possess a unique suite of integrated characters that enhance 

respiratory and locomotor performance. This character complex includes elevated body 

temperature, a high resting metabolic rate, the capacity for sustained activity, 

parasagittal excursion of the limbs, and dorso-ventral movement of the vertebral column 

(Carrier 1987, Ruben et al. 1987). A muscularized diaphragm located posterior to the 

lungs is a key soft-tissue character that integrates components of the complex. On 

contraction of the diaphragm, thoracic cavity volume increases, reducing intrathoracic 

pressure and enhancing inspiration and gas exchange. The diaphragm also limits 

anterior movement of the viscera into the thorax  (Klein and Owerkowicz 2006). Instead, 

abdominal viscera are displaced outwardly in the rib-free abdominal / lumbar region 

during inspiration (Perry et al. 2010). In contrast to non-mammalian amniotes, whose 

lateral column flexion during locomotion limits costal-based aspiration, the sagittal 

locomotor movements of the mammalian column allow continuous ventilation, supporting 
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the elevated body temperature and aerobic demands of the sustained activity so 

characteristic of mammals (Carrier 1987, Ruben et al. 1987, Perry et al. 2010). 

 

The sequence and antiquity of mammalian respiratory / locomotor traits can be 

estimated by mapping those with osteological correlates onto a consensus phylogeny. 

Respiratory turbinates, heat and moisture conserving structures present only in living 

endotherms, were present in the Middle Triassic cynodont Massetognathus (Hellenius 

and Ruben 2004). The Middle Triassic dicynodont Wadiasuarus (Bandyopadhyay 1988) 

possessed femoral and acetabular morphology interpreted as indicating upright hind 

limb posture; the co-occurrence of elongate vertebral transverse processes that allow 

the separation of respiratory and locomotor muscle groups (Carrier 1987) supports this 

interpretation.  The differentiation of an anticlinal vertebral region typical of dorsoventral 

column movement was present in the Late Triassic morganucodonts Eozostrodon and 

Megazostrodon (Sues and Jenkins 2006). The Early Triassic cynodont Thrinaxodon 

exhibited incipient differentiation of a lumbar vertebral series with shortened, moveable 

ribs (Jenkins 1970). The loss of lumbar ribs and the stabilization of lumbar count at 19-

20 are somewhat later and more variable in occurrence, and likely homoplastic in origin 

(Luo et al. 2007).  Multiple authors (e.g. Brink 1956, Perry et al. 2010) have argued that 

shortened or absent lumbar ribs are indicators of mammalian style locomotion and/or the 

presence of diaphragm-assisted inspiration, and the transition from thoracic to lumbar 

morphology is associated with the location of the diaphragm in almost all living mammals 

(Buchholtz et al. 2012).  What evidence is available therefore indicates that the 

mammalian respiratory / locomotor complex, including a muscularized diaphragm, was 

assembled very early in mammalian history, during the Triassic Period. This transition is 

roughly coincident with the origin of fixed cervical count, seen in Thrinaxodon and all 

more derived synapsids and mammaliamorphs. In contrast, the reduction and loss of 



	
   7 

free ribs on cervical vertebrae are restricted to monotremes and more crownward 

mammalian taxa, and significantly postdate the onset of cervical count stasis (Fig. 1). 

 

Patterning of somitic and lateral plate mesodermal structures. 

The vertebrate postcranial musculoskeletal system is composed of mesodermal tissues 

that have two different developmental origins, the somites and the lateral plate 

mesoderm.  The somitic mesoderm forms as paraxial bands lateral to the neural tube. 

These bands are later subdivided into segments in the process of somitogenesis. 

Segment number is controlled by the speed of a molecular “segmentation clock” (e.g. 

Dequeant and Pourquie 2008), while somite differentiation is controlled by Hox and other 

transcription factors (e.g. Wellik 2009). Expression domains of the Hox genes overlap 

anteroposteriorly along the body axis, and are colinear with respect to their locations on 

the chromosome. In contrast, the laterally located lateral plate mesoderm (LPM) is not 

segmented. Like the somites, it is patterned by Hox genes during development, but LPM 

patterning is independent of that of the somites and is not colinear (McIntyre et al. 2007). 

 

The tissues that comprise the postcranial musculoskeletal system can be placed into 

three categories based on their developmental histories. The axial musculature, 

vertebrae, proximal ribs, and intermediate ribs are somitic in origin, and are patterned in 

a somitic or primaxial environment (Burke and Nowicki 2003). The limb bones, sternum 

and the pelvis have developmental origin in the lateral plate mesoderm, and are 

patterned in a lateral plate or abaxial environment.  A third group of tissues are of somitic 

origin, but enter the abaxial environment during early development and are patterned 

there with tissues of lateral plate origin (Burke and Nowicki 2003). These tissues include 

the distal portions of ribs (origin in the sclerotome of the somites) and the migrating 

muscle precursor cells (MMPs, origin in the dermomyotome of the somites) that enter 
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and differentiate within their destinations as the musculature of the tongue, limbs, and 

diaphragm (Birchmeier and Brohmann 2000). A reporter expressed in the lateral plate 

mesoderm in transgenic Prx1/Cre/Z/AP mice has been used to identify abaxially 

patterned tissues, including those of somitic origin (Durland et al. 2008). 

 

The integration of mesodermal tissues with different developmental histories is critical to 

the construction of the musculoskeletal system, and is accomplished by a complex 

signaling process across their interface, the lateral somitic frontier (Burke and Nowicki 

2003). Components of the signaling system between somitic MMPs and their forelimb 

and diaphragm targets have been studied intensively, and include the ligand SF/HGF 

(scatter factor/hepatic growth factor) and the c-Met tyrosine kinase receptor (Birchmeier 

and Brohmann 2000, Vasyutina and Birchmeier 2006). The morphological interactions 

between the developing distal ribs and the sternal plate (Chen 1952), and between the 

sacrum and the pelvic element (Pomikal and Streicher 2010) have been described, but 

the signaling cascades that direct them have not yet been identified. The known 

examples of integration across the lateral somitic frontier occur between two abaxial 

tissues: a somitic tissue that has been patterned abaxially and a LPM tissue (Chen 

1952, Birchmeier and Brohmann 2000, Burke and Nowicki 2003, Pomikal and Streicher 

2010).  

 

Hypothesis of constraint origins  

The diaphragm and the lumbar vertebral series are key components of the mammalian 

ventilation / respiratory pattern. Examination of the developmental bases of their origins 

suggests that each was also associated with an innovation in somite  / LPM patterning 

and with constraint of a vertebral series count. 
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Origin of the cervical constraint.  Like many tetrapods, mammals possess a post-

pulmonary septum, the septum transversum. This structure is of lateral plate origin, and 

acts as a visceral stabilizer. Uniquely in mammals, however, the septum transversum is 

muscularized, allowing it to enhance changes in thoracic cavity size and thus inspiration. 

The cells that muscularize the diaphragm are somitic MMPs that originate in the 

dermomyotome of cervical somites 3, 4 and 5 and migrate in response to a SF/HGF-

cmet signaling system (Dietrich et al. 1999, Birchmeier and Brohmann 2000). Their 

migration pathway can be visualized by tracking the expression of Lbx1, a transcription 

factor restricted to MMPs (Dietrich et al. 1999).  MMPs destined for the diaphragm travel 

originally with MMPs from immediately adjacent posterior somites that are destined for 

the forelimb.  As the two cell populations migrate they respond to different downstream 

guidance cues, and only MMPs from somites 3, 4 and 5 enter the septum transversum 

to muscularize the diaphragm (Vasyutina et al. 2005). The unique migration and fate of 

the C3-C5 MMPs indicates that they are uniquely patterned, forming a discrete 

developmental module within the cervical series. This interpretation is supported by the 

presence of a unique C3-C5 suite of Hox axial patterning genes, distinct from those of 

the more anterior atlas and axis (C1-C2) and of the immediately posterior cervical 

somites, in Mus (Kessel 1992). 

 

A secondary consequence of the novel patterning of C3-5 is that all mammalian cervical 

segments are committed to specialized fates: skull articulation (C1, C2), diaphragm  (C3-

C5), or forelimb (C6, C7). The presence of a common somitic origin and early migration 

of diaphragm and forelimb MMPs suggests the possibility of developmental interference. 

Such interference has been documented in chicks, where ectopic limb placement diverts 

somitic cells from their default abaxial destinations to the limbs (Liem and Aoyama 

2009).  Any anterior movement of the forelimb from its axial location in mammals may 
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therefore limit myoblast precursors available for the muscularization of the diaphragm, 

the forelimb, or both. Additionally, posterior movement of the limb would displace the 

lateral plate but not the somitic components of the diaphragm’s unique SF/HGF - cmet 

signaling system across the lateral somitic frontier, disrupting myoblast migration and 

therefore diaphragm muscularization (Buchholtz et al. 2012, Fig. 2 A-D). To the extent 

that the muscularized diaphragm is selectively advantageous for ventilation and 

locomotion, both anterior and posterior transposition of the limb field would be 

nonadaptive. 

 

Three mammalian species do have atypical cervical counts, apparently tolerating the 

postulated adaptive cost of forelimb transposition. Detailed study of the tree sloths 

Choloepus and Bradypus suggests that all of their abaxial skeletal tissues (sternum, 

distal ribs, pelvis) are mispatterned either anteriorly or posteriorly in concert, generating 

mismatched structures across the lateral somitic frontier at all segmental levels 

(Buchholtz and Stepien 2009).  This interpretation is challenged by the difficulty of 

identifying the primaxial cervicothoracic boundary without reference to associated 

abaxial structures in non-model taxa. However, vertebral ossification during early 

ontogeny appears to be modular, and preliminary analysis of ossification patterns 

supports the presence of primaxial/abaxial offsets in Bradypus (Hautier et al. 2010). An 

alternative analysis (Varela-Lasheras et al. 2012) identifies homeotic mispatterning as 

the source of sloth cervicothoracic anatomy, and also suggests that cervical ribs are 

associated pleiotropic developmental defects and cancer. The conclusion that cervical 

count is constrained by these pleiotropic effects is supported by the frequent occurrence 

of cervical ribs in perinatal deaths in humans, but challenged by the presence of cervical 

ribs and cervical count stasis over more than 150 million years of early mammalian 

history. Both analyses posit a connection between the low metabolic rates of exceptional 
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taxa and their apparent tolerance for unusual cervical anatomy, and both may be 

consistent with a hypothesis of a diaphragm-linked origin of the cervical constraint. 

Cervical anatomy of the third aberrant genus, the manatee Trichechus, is less well-

studied, but the genus exhibits both a low metabolic rate and a uniquely structured 

diaphragm (Rommel and Reynolds 2000). 

 

Origin of the lumbosacral constraint. In non-mammalian amniotes, each interlimb (or 

dorsal) vertebra articulates with a pair of moveable ribs. In mammals, moveable ribs are 

present only anteriorly, in the thorax. Posterior to the thorax, lumbar vertebrae bear fixed 

transverse process but lack moveable ribs. In Mus, thoracic ribs are derived from the 

sclerotome of somites, but only their proximal and intermediate units are patterned 

primaxially; the distal rib unit, which interacts with the abaxial sternum (Chen 1952) is 

patterned abaxially (Aoyama et al. 2005, Durland et al. 2008). Lumbar transverse 

processes have been variably interpreted as modified ribs or as vertebral outgrowths 

(Filler 2007). Detailed morphological analysis now indicates that, with a few exceptions, 

lumbar transverse processes arose independently from a variety of vertebral processes 

in different mammalian orders (Filler, 2007). Like vertebrae they are therefore somitic 

and developmentally primaxial. Primaxial lumbar transverse process patterning is also 

indicated by the absence of reporter expression in the Prx1/Cre/Z/AP mouse (Durland et 

al. 2008). A secondary consequence of the origin of the lumbar series is thus that axial 

segments lying between the thorax and the sacrum lack not only ribs but any abaxially 

patterned tissues. Lumbar vertebrae are also characterized by a unique (though 

somewhat internally variable) suite of Hox genes (Kessel 1992, Wellik and Capecchi 

2003), and therefore constitute a new modular unit within the mammalian column. 
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Sacral vertebrae, which lie posterior to the lumbar region, have a lateral ala that 

articulates with the abaxial pelvis. Although sometimes identified as a transverse 

process, both paleontological and molecular evidence identifies the ala as a rib homolog. 

Fossils of Devonian stem tetrapods (e.g. Acanthostega) possess a single sacral rib that 

articulates with the pelvis. This rib mimics other ribs morphologically and lies in series 

with ribs found both anteriorly and posteriorly (Coates 1996), strongly suggesting 

homology.  Further, distal portions of the ala express the reporter that tracks abaxially 

patterned tissues in the transgenic Prx1/Cre/Z/AP mouse (Durland et al. 2008). As 

vertebrae and their transverse processes are exclusively somitic, this marker also 

identifies at least the distal portion of the ala as a distal rib homolog. 

 

Assembly of the mammalian sacrum is the product of the lateral formation and medial 

migration of the LPM pelvic element (Pomikal and Streicher 2010). The signaling 

cascade that results in the “docking” of the abaxial pelvis with the abaxial distal 

components of ribs is unknown. However, the concurrent posterior transposition of both 

sacral vertebrae and the pelvis in Hox9 quadrupal mutants (McIntyre et al. 2007) argues 

for the importance of distal rib / pelvis interaction across the lateral somitic frontier to 

pelvic assembly. To the extent that a ribless lumbar region is selectively advantageous 

for abdominal expansion during inspiration and parasagittal locomotion, anterior 

displacement of the pelvis would be nonadaptive, and would limit reduction of presacral 

vertebral count in mammals (Fig. 2 E-H). The morphological effects of aberrant anterior 

displacement of the abaxial ilium relative to the primaxial lumbosacral transition are 

demonstrated by the very unusual pelvic morphology of Choloepus hoffmanni. In this 

species, both sternum and ilium lie anterior to their outgroup axial locations, suggesting 

primaxial / abaxial displacement (Buchholtz and Stepien 2009).  The apparently lumbar 

vertebrae lying between the ilia either “refuse” incorporation into the sacrum, are poorly 
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incorporated into the sacrum, or in extreme cases “escape” sacral integration anteriorly 

(Fig. 3).  

 

Posterior translocation of the pelvis (thoracolumbar count > 20) presents no obvious 

selective disadvantage and does occur, most frequently in afrotherians (Sanchez-

Villagra et al. 2007). At least one afrotherian, the manatee Trichechus, is known to 

possess rib-derived transverse processes (Filler 2007), raising the possibility that some 

or all of the taxa with exceptional thoracolumbar counts may possess abaxially patterned 

components compatible with pelvic element articulation in their  lumbar or anterior 

caudal segments. 

 

Overview 

The evolution of the vertebral column is seen here as a case study in the evolution of 

structures with serially homologous elements. These structures typically show an 

increase in differentiation or modularity over evolutionary time, concurrent with a 

reduction in the variability of element count. Despite the commonality of the pattern, the 

specific developmental steps involved in the imposition of count constraint are likely to 

be unique in each case. The hypothesis presented above suggests that meristic 

constraints in the mammalian cervical and thoracolumbar column were not in 

themselves adaptively selected, but were the secondary consequences of respiratory 

and locomotor adaptations. In this hypothesis, the ancestral synapsid column was a 

permissive, low modularity system, with anteroposterior movement of the limbs 

unrestricted by specializations of adjacent segments. Developmental specializations of 

mid-cervical segments associated with the muscularization of the diaphragm by MMPs 

and of the lumbar segments associated with the loss of abaxially patterned rib 

components generated non-permissive or high modularity systems in mammals.  Novel 



	
   14 

developmental relationships of somitic and LPM tissues across the lateral somitic frontier 

characterize these new modular units, and tie them to limits on the anteroposterior 

translocation of the limbs. 
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Figure Captions 

Fig. 1. The distribution of cervical and thoracic vertebral innovations across the synapsid / 

mammal transition as described in the literature (see text). The phylogeny is based primarily 

on Luo et al. (2007), and characters are polarized by reference to the Permian synapsid 

Cotylorhynchus. Colored boxes indicate the presence of derived traits. Question marks 

indicate that trait status is unknown. 

 

Fig. 2. Hypothesis for the role of developmental interactions across the lateral somitic 

frontier in the origin of meristic constraints in mammals. (A-D), cervical constraint; (E-H), 

thoracolumbar constraint. Vertebral patterning inferred for ancestral taxa is represented 

in the far left column (A, E) in light gray. Novel mammalian morphological modules (mid-

cervical, lumbar) are represented in white in the remaining columns (B-D and F-H). 

Abaxial tissues (MMPs migrating from the limb-level and mid-cervical somites, distal rib 

components, sternum, pelvic element) are in dark gray. Both anterior (C) and posterior 

(D) transposition of the fore limb are predicted to generate a poorly muscularized 

diaphragm, forelimb, or both.  Anterior transposition (G) of the pelvis is predicted to be 

limited by the importance of a ribless lumbar region to abdominal expansion during 

inspiration and to parasagittal locomotion. No non-adaptive consequence of posterior 

transposition (H) of the pelvis is known. C = cervical, Cd = caudal, D = dorsal, Di = 

diaphragm, P = pelvic element, PPS = post-pulmonary septum, S = sacral, St = sternum, 

T = thoracic, ? = patterning uncertain. A-D modified from Fig. 5 of Buchholtz et al. 2012. 

Fig. 3. Pelvic morphology in Choloepus hoffmanni suggests disturbances across the lateral 

somitic frontier. Each individual has six cervical vertebrae and possesses ribs articulating 

with the sternum on vertebra 7. Vertebrae in axial position 32 are highlighted in purple; those 

in axial position 33 are highlighted in green. A, USNM (National Museum	
  of Natural History, 

Washington, D.C) 137420; B, FMNH (Field Museum of Natural History, Chicago) 60544; C, 
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USNM 256181.	
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