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ABSTRACT

Many small, noncoding RNAs (sRNAs) in bacteria
act as posttranscriptional regulators of messenger
RNAs. TargetRNA2 is a web server that identifies
mRNA targets of sRNA regulatory action in bacteria.
As input, TargetRNA2 takes the sequence of an sRNA
and the name of a sequenced bacterial replicon.
When searching for targets of RNA regulation, Tar-
getRNA2 uses a variety of features, including conser-
vation of the sRNA in other bacteria, the secondary
structure of the sRNA, the secondary structure of
each candidate mRNA target and the hybridization
energy between the sRNA and each candidate mRNA
target. TargetRNA2 outputs a ranked list of likely reg-
ulatory targets for the input sRNA. When evaluated
on a comprehensive set of sRNA-target interactions,
TargetRNA2 was found to be both accurate and effi-
cient in identifying targets of sRNA regulatory action.
Furthermore, TargetRNA2 has the ability to integrate
RNA-seq data, if available. If an sRNA is differentially
expressed in two or more RNA-seq experiments, Tar-
getRNA2 considers co-differential gene expression
when searching for regulatory targets, significantly
improving the accuracy of target identifications. The
TargetRNA2 web server is freely available for use at
http://cs.wellesley.edu/∼btjaden/TargetRNA2.

INTRODUCTION

In recent years, small noncoding RNA (sRNA) genes have
been found to pervade bacterial genomes (1). The largest
family of sRNAs corresponds to sRNAs that act as post-
transcriptional regulators by base pairing with their mes-
sage targets. Many of these base pairing sRNAs are cis-
acting RNAs in that they are transcribed opposite to their
target RNA (2). Because these sRNAs are antisense, at least
in part, to their target, they share an extended region of
complementarity to their target. In contrast to cis-acting
sRNAs, the trans-acting sRNAs typically have limited com-

plementarity to their mRNA regulatory targets. As in the
case of microRNAs in eukaryotes, trans-acting sRNA reg-
ulators in bacteria that bind via base pairing to messages
typically affect the translation and stability of their targets.
Commonly, these sRNAs inhibit the translation of their
mRNA target, e.g. by binding in the neighborhood of the
translation initiation site and blocking ribosome binding.
Additionally, these sRNAs may decrease the stability of the
message and target it for degradation by RNase E (3,4).
Less commonly, sRNAs can activate translation, e.g. by
freeing translation initiation sites that would otherwise be
occluded by an inhibitory secondary structure (5,6). The
products of an sRNA gene may interact with multiple mR-
NAs (7), enabling sRNAs to effect global regulatory re-
sponses. While the number of identified sRNAs in bacte-
ria has exploded in recent years, thanks in part to advances
in high-throughput sequencing technology, the bottleneck
has quickly become, not identifying these sRNAs, but elu-
cidating their regulatory targets (8). A number of exper-
imental approaches have been employed for the purpose
of large-scale target identification (9,10), yet these meth-
ods do not scale with the rapid increase in identified sR-
NAs. Thus, computational methods, which can be more ef-
ficient than experimental approaches, may be used as a first
step in helping characterize targets of trans-acting regula-
tory RNAs in bacteria. TargetRNA2 is one such computa-
tional approach––a web server freely available for use, de-
signed to identify mRNA targets, accurately and efficiently,
of trans-acting sRNAs in bacteria.

TargetRNA2 builds on several other web servers that ex-
ist for biocomputational prediction of sRNA regulatory
targets in bacteria (reviewed in (11)). The first web server de-
signed specifically for bacterial sRNA target identification,
TargetRNA (12), predicts sRNA targets using a straightfor-
ward hybridization model for sRNA-target interactions as
well as a seed region comprised of a short series of consec-
utive base pairs between the two RNAs. TargetRNA also
offers predictions of orthologous sRNA-target interactions
in related bacteria, though the orthologous interactions are
not used as a feature in target prediction. IntaRNA (13) pre-
dicts sRNA targets by combining the hybridization energy
from intermolecular base pairings of sRNA-target interac-
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tions with the energy associated with the interacting regions
being unpaired in intramolecular structures. IntaRNA also
incorporates seed regions composed of consecutive base
pairs into its target interaction predictions. RNApredator
(14), built upon RNAplex (15), considers intermolecular in-
teraction energies when predicting sRNA targets and uses
an affine function for structural loop sizes rather than a
more common logarithmic function in order to increase its
efficiency. Peer and Margalit (16) approach the problem of
predicting sRNA-target interactions from a different per-
spective; rather than focusing on targets, they investigate the
target binding regions of sRNAs and find that sRNA inter-
action sites are better conserved and more accessible struc-
turally than other regions of the sRNA, suggesting that bio-
computational tools should emphasize conserved and ac-
cessible sRNA regions when predicting sRNA-target inter-
actions.

TargetRNA2 combines many of the features from the
above-mentioned tools into a fast and accurate target iden-
tification system. Specifically, TargetRNA2 uses four pri-
mary features for sRNA target identification. The first fea-
ture is conservation of the sRNA. The input sRNA se-
quence is compared to every sequenced replicon available
in RefSeq (17). Regions of the sRNA sequence that show
greater conservation are considered more likely to be tar-
get interacting regions. The second feature is accessibility
of the sRNA. The ensemble of sRNA structures is consid-
ered. Each sRNA structure in the ensemble is weighted by
its stability. Those regions of the sRNA that are more ac-
cessible throughout the weighted ensemble are considered
more likely to be target interacting regions. The third feature
is accessibility of the mRNA. For each candidate mRNA
target, the ensemble of its structures is considered. Each
mRNA structure in the ensemble is weighted by its sta-
bility. Those regions of the mRNA that are more accessi-
ble throughout the weighted ensemble are considered more
likely to be sRNA interacting regions. The fourth feature
is energy of hybridization. mRNAs that have one or more
regions with low hybridization energy to one or more re-
gions of the sRNA are considered more likely to be targets
of the sRNA. The TargetRNA2 web server provides a user-
friendly interface for target identification based on the abov-
ementioned four features.

Since sRNA-target interactions are best understood in
Escherichia coli, TargetRNA2’s performance was evaluated
on a comprehensive set of 105 experimentally verified in-
teractions in E. coli (16). TargetRNA2 was found to out-
perform other approaches in its ability to identify sRNA
targets accurately. TargetRNA2 also has the advantage of
being more efficient, requiring only seconds to execute, in
contrast to other approaches that require minutes or hours.
Furthermore, TargetRNA2 has the unique ability among
sRNA target prediction systems to integrate RNA-seq data
in order to improve prediction results. As an additional fea-
ture in target prediction, TargetRNA2 optionally considers
genes that are co-differentially expressed with an sRNA in
two or more RNA-seq experiments. Using data from a va-
riety of RNA-seq experiments in E. coli, where various sR-
NAs are differentially expressed, we find that TargetRNA2’s
target prediction performance improves dramatically when
co-differential expression is considered.

TARGETRNA2 WEB SERVER

The TargetRNA2 web server takes, as input, the nucleotide
sequence corresponding to an sRNA and the name of an
annotated bacterial replicon. TargetRNA2 considers each
mRNA in the replicon as a possible target of the sRNA.
For each candidate mRNA target, TargetRNA2 focuses its
search for an sRNA–mRNA interaction in a neighborhood
around the ribosome binding site of the mRNA, since most
documented interactions occur within the 5′ untranslated
region of the mRNA or near the beginning of the mRNA
coding sequence. TargetRNA2 will not consider interac-
tions outside of this neighborhood, so the size and location
of the neighborhood are user-adjustable parameters.

TargetRNA2 uses four features to identify likely sRNA
regulatory targets. The first feature is conservation of re-
gions of the sRNA sequence. BLASTN (18) is used to com-
pare the sRNA sequence to every bacterial replicon avail-
able in RefSeq (17). For all sequences found to be signif-
icantly similar to that of the sRNA, a multiple sequence
alignment is performed using ClustalW2 (19). From the
multiple sequence alignment, positional entropies are com-
puted that are used to identify regions of the sRNA se-
quence that are highly conserved (16). More highly con-
served regions are considered by TargetRNA2 more likely
to be target interacting regions (16). The second feature
is accessibility of regions in the sRNA secondary struc-
ture. RNAfold from the Vienna RNA Package (20) is used
to determine the probability that regions of the sRNA se-
quence are accessible, i.e. unpaired, in the ensemble of sec-
ondary structures. More accessible regions are considered
by TargetRNA2 more likely to be target interacting re-
gions (16). The third feature is accessibility of regions in the
mRNA secondary structure. RNAplfold (21) is used to de-
termine the probability that regions of the mRNA sequence
are accessible, i.e. unpaired, in the ensemble of secondary
structures. More accessible regions are considered by Tar-
getRNA2 more likely to be target sites (13). The fourth fea-
ture is the energy of hybridization between the sRNA and
candidate mRNA target. RNAduplex (20) is used to deter-
mine regions of the sRNA that have low hybridization en-
ergy with regions of a candidate mRNA target. Optionally,
TargetRNA2 can restrict its target search to a user-specified
subset of genes. This option was used, for example, to search
for targets of sRNAs in E. coli that are co-differentially ex-
pressed with the sRNA in RNA-seq experiments (see Re-
sults).

After searching all mRNAs in the specified replicon for
interactions with the sRNA, TargetRNA2 outputs a list of
likely regulatory targets ranked by P-value. The P-value for
a target corresponds to the likelihood of observing as strong
an interaction by chance. For each target identified by Tar-
getRNA2, a graphical depiction of the sRNA–mRNA in-
teraction is shown along with information about the mes-
sage’s product and a link to the corresponding gene page
from RefSeq (17), as shown in Figure 1.

RESULTS

Since sRNA and target interactions are best understood
in E. coli, TargetRNA2’s performance was evaluated on a
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Figure 1. Sample output from TargetRNA2’s search for regulatory targets of the sRNA RyhB in E. coli is illustrated. For brevity, only 4 of 21 significant
(P-value < 0.05) targets identified by TargetRNA2 are shown in the figure. Below the RyhB sRNA sequence, TargetRNA2’s output begins with a ranked
list of candidate targets, including thermodynamic energy (kcal/mol) of hybridization between the two RNA molecules as well as a P-value indicating the
probability of an interaction occurring by chance that is at least as energetically favorable. The short blue line to the right of each list item is a graphical
representation of where the interaction occurs within the sRNA. Below the list, detailed information about each identified interaction is shown (in the figure,
detailed information is shown only for sdhD, the first of the identified targets), including a graphic depiction of the interaction, the precise coordinates of
the interaction and a link to a web page at the National Center for Biotechnology Information (NCBI) with more specifics about the gene target.

comprehensive set of 105 experimentally verified interac-
tions from 24 sRNAs in E. coli (16). TargetRNA2’s perfor-
mance was compared to that of other leading approaches:
IntaRNA (13), RNApredator (14) and TargetRNA (22).
Table 1 lists verified interactions that are identified by the
different approaches at the same false positive rate of 0.9%,
i.e. when the approaches each generate the same number
of predictions. As shown in Table 1, TargetRNA2 identifies
more verified interactions than the other approaches.

In order to evaluate the parameter space more broadly
and explore the trade-off between sensitivity and false-
positive rate, we then proceeded to assess the performance
of the approaches using different P-value or z-score thresh-
olds. It should be noted that any target prediction that does
not correspond to an experimentally verified target is con-
sidered a ‘false positive’ here, though many of these predic-
tions may well correspond to as yet unverified targets. Thus,

the reported false positive rate should be considered an up-
per bound. As shown in Figure 2, TargetRNA2 outper-
forms the other methods, consistently identifying more true
interactions (higher sensitivity) while making fewer spuri-
ous predictions (lower false-positive rate).

The efficiency of TargetRNA2 was also considered. The
mean execution time across the 24 sRNAs in E. coli (16)
was calculated for TargetRNA2 and for two alternative ap-
proaches. As shown in Table 2, TargetRNA2 is dramati-
cally faster than other approaches, generally requiring only
seconds, as opposed to minutes, to execute. TargetRNA2’s
speed has the benefit of enabling users to explore differ-
ent parameter settings while performing repeated searches
without long delays between each search.

sRNA-mediated regulation often alters the steady-state
abundance of target mRNAs. TargetRNA2, therefore, has
the unique ability among sRNA target identification ap-
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Table 1. For 105 target interactions involving 24 sRNAs in E. coli, the tables indicates whether the interaction was identified by each of four different
computational approaches when the false positive rate is limited to 0.9%. TargetRNA2 identifies 28 interactions, IntaRNA identifies 26 interactions,
TargetRNA identifies 20 interactions and RNApredator identifies 14 interactions.

sRNA mRNA Target
Identified by
TargetRNA2

Identified by
IntaRNA

Identified by
TargetRNA

Identified by
RNApredator

ArcZ rpoS
ArcZ sdaC
ArcZ tpx
ChiX chiP Yes Yes Yes
ChiX dpiB Yes Yes
CyaR luxS
CyaR nadE
CyaR ompX
CyaR yqaE
DicF ftsZ
DsrA hns Yes Yes Yes Yes
DsrA rpoS Yes
FnrS cydD Yes
FnrS folE
FnrS folX
FnrS gpmA
FnrS maeA
FnrS metE
FnrS sodA
FnrS sodB
FnrS yobA Yes Yes
GcvB argP
GcvB argT Yes Yes
GcvB brnQ Yes
GcvB cycA Yes Yes Yes
GcvB dppA Yes Yes Yes
GcvB gdhA Yes Yes
GcvB ilvC Yes Yes Yes Yes
GcvB ilvE Yes Yes
GcvB livJ Yes Yes
GcvB livK Yes Yes Yes Yes
GcvB lrp Yes Yes
GcvB metQ Yes Yes
GcvB oppA Yes Yes Yes
GcvB serA Yes Yes Yes
GcvB sstT
GcvB thrL Yes
GcvB ybdH Yes Yes Yes
GlmZ glmS
IstR tisB Yes
MgrR eptB
MgrR ygdQ Yes Yes
MicA fimB Yes
MicA gloA
MicA lamB Yes
MicA ompA Yes Yes
MicA ompW
MicA ompX
MicA phoP Yes
MicA tsx
MicA yfeK
MicC ompC Yes Yes Yes Yes
MicF ompF Yes Yes Yes
OhsC shoB Yes
OmrA cirA
OmrA csgD
OmrA fecA
OmrA fepA
OmrA ompR
OmrA ompT Yes
OmrB cirA
OmrB csgD Yes
OmrB fecA
OmrB ompR
OmrB ompT
OxyS fhlA
OxyS rpoS
RprA rpoS
RseX ompA
RseX ompC Yes
RybB fadL
RybB fimA
RybB fiu
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Table 1. Continued

sRNA mRNA Target
Identified by
TargetRNA2

Identified by
IntaRNA

Identified by
TargetRNA

Identified by
RNApredator

RybB hinT
RybB lamB Yes
RybB ompA
RybB ompC
RybB ompF
RybB ompW
RybB rbsB
RybB rluD
RybB tsx
RybB ycfL
RybB ydeN
RybB yfeK
RydC yejA
RyhB acnA Yes
RyhB bfr
RyhB cysE Yes Yes Yes
RyhB ftnA
RyhB fumA Yes
RyhB fur
RyhB iscS
RyhB sdhD Yes Yes
RyhB shiA Yes Yes
RyhB sodB Yes Yes
SgrS manX
SgrS ptsG Yes Yes Yes
Spot42 fucI
Spot42 galK Yes Yes Yes
Spot42 gltA
Spot42 nanC Yes
Spot42 srlA
Spot42 sthA
Spot42 xylF

Figure 2. Receiver operating characteristic curves indicating the perfor-
mance of TargetRNA2 as well as three other target identification systems:
IntaRNA (13), TargetRNA (12) and RNApredator (14). The curves are
based on 105 verified interactions of 24 sRNAs in E. coli (16). The x-axis
represents the percentage of noninteractions that each system predicted as
likely interactions. The y-axis represents the percentage of verified interac-
tions correctly identified by each system. Each point along a curve repre-
sents the sensitivity and false positive rate of a system’s identifications at
a specified P-value (TargetRNA2, IntaRNA and TargetRNA) or z-score
(RNApredator).

Table 2. The table indicates the mean execution time, for 24 sRNAs in E.
coli, of three different target identification systems.

System Average execution time per sRNA

TargetRNA2 9 s
RNApredator 247 s
IntaRNA 4294 s

proaches to integrate RNA-seq data in order to improve
its performance. As an additional feature when identifying
targets, TargetRNA2 optionally considers genes that are co-
differentially expressed (either positively or negatively) with
an sRNA in two or more RNA-seq experiments. To evalu-
ate the effect of incorporating co-expression patterns into
sRNA target identifications, RNA-seq data derived from
E. coli cultures grown in triplicate under various conditions
(23) was used to identify targets for five sRNAs whose ex-
pression changed significantly between at least two of the
conditions tested and for which interactions with target
mRNAs are known: GcvB, MicA, RybB, SgrS and ArcZ.
For each of these five sRNAs, only those mRNAs that were
differentially expressed (P-value < 0.01) in the same pair of
conditions as the sRNA were retained (23). The five sRNAs
have 46 validated targets. Of these 46 targets, 29 are differ-
entially expressed in the RNA-seq data in the same pair of
conditions as their sRNA regulator. Ignoring the RNA-seq
data, TargetRNA2 achieves a sensitivity of 35% for all 46
targets of these 5 sRNAs and a false positive rate of 0.77%.
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When RNA-seq is incorporated, TargetRNA2 achieves a
sensitivity of 48% for the 29 differentially expressed targets
and 30% for all 46 targets of these 5 sRNAs and a false
positive rate of 0.37%. When RNA-seq is incorporated into
TargetRNA2, the dramatic reduction in the false positive
rate, by more than half, is notable since limiting the number
of false positive predictions has been a major challenge for
target identification systems. Interestingly, TargetRNA2’s
performance was especially strong for two sRNAs (GcvB
and SgrS) identifying 16 out of 19 verified targets and espe-
cially poor for three sRNAs (MicA, RybB, ArcZ) identify-
ing 0 out of 27 targets. TargetRNA2’s poor performance in
identifying targets for MicA, RybB and ArcZ is consistent
with that of other approaches IntaRNA, TargetRNA and
RNApredator, which identified 2 out of 27 targets, 4 out of
27 targets and 0 out of 27 targets, respectively (Table 1).

DISCUSSION

With the rapidly expanding number of bacterial sRNA reg-
ulators that are being identified, thanks in part to advances
in RNA-seq technology, comes the need for approaches that
can characterize targets of these sRNA regulators. Compu-
tational methods for identifying regulatory targets of sRNA
action offer a good first step, in that they are scalable and
they can efficiently provide a small set of candidate targets,
which can then be followed up on through more focused ex-
perimental methods. TargetRNA2 is a web server that en-
ables rapid and accurate identification of targets of bacterial
sRNA action.

TargetRNA2 uses several features to identify message
targets of sRNA regulation, including conservation of re-
gions of the sRNA, structural accessibility of regions of the
sRNA, structural accessibility of regions of the mRNA and
energy of hybridization between the two RNAs. When com-
pared to other computational approaches, TargetRNA2 of-
fers improved performance both in terms of the accuracy of
its predictions and the speed of its execution. TargetRNA2
is also unique among computational target identification
methods in that it allows for incorporation of RNA-seq
data. Our results using TargetRNA2 with RNA-seq data
suggest that there is significant value in integrating RNA-
seq data into target identification systems, particularly in re-
ducing false positive rates, which has been a major challenge
for computational identification of sRNA targets. This fea-
ture of TargetRNA2 will become increasingly useful as the
number of RNA-seq data sets from diverse bacteria con-
tinues to grow. We offer the TargetRNA2 web server in the
hope that it will be a useful resource for those interested in
RNA regulators in bacteria.
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