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The dual of a matrix ordered space has a natural matrix ordering that makes the dual
space matrix ordered as well. The purpose of these notes is to give a condition that
describes when the linear map taking a basis of Mn to its dual basis is a complete order
isomorphism. We exhibit “natural” orthonormal bases for Mn such that this map is
an order isomorphism, but not a complete order isomorphism. Included among such
bases is the Pauli basis. Our results generalize the Choi matrix by giving conditions
under which the role of the standard basis {Eij} can be replaced by other bases.
C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4812329]

INTRODUCTION

Given a finite dimensional vector space V there is no “natural” linear isomorphism between
V and the dual space V d , but each time we fix a basis B = {vi : i ∈ I } for V there is a dual basis
B̃ = {δi : i ∈ I } for V d satisfying

δi (v j ) =
{

0, i �= j
1, i = j

and this allows us to define a (basis dependent) linear isomorphism between V and V d . We denote
by L(V ) the linear maps from V to V .

Definition 1. Let Mn denote the vector space of n × n complex matrices. If B is a basis of Mn,
the linear map from Mn to Md

n taking each member of B to the corresponding member of the dual
basis is denoted by DB, and is called the duality map. We let �B = D−1

B : Md
n → Mn denote the

inverse of this map.
Note that if f ∈ Md

n , and B is a basis of Mn, then �B( f ) = ∑
b∈B f (b)b. In particular, when we

let E = {Ei j : 1 ≤ i, j ≤ n} denote the standard matrix units, then the map �E : Md
n → Mn satisfies

�E ( f ) =
n∑

i, j=1

f (Ei j )Ei j .

Definition 2. If f ∈ Md
n , there is a unique matrix D such that f (X ) = tr(DX ) for all X ∈ Mn,

and we call this matrix the density matrix for f, with no requirement of positivity for f or D.
We denote the transpose map by t: Mn → Mn, and for D ∈ Mn we write Dt instead of t(D). We

have

f (X ) = tr(�E ( f )t X ) for all X ∈ Mn . (1)

Thus �E is just the map that identifies a functional f with the transpose of its density matrix.
This note is motivated by the following result of Paulsen-Todorov-Tomforde in Theorem 6.2 of

Ref. 3, which we will see later is a restatement of the Choi-Jamiołkowski correspondences.2, 4

a)Electronic mail: vern@math.uh.edu
b)Electronic mail: fshultz@wellesley.edu
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Theorem 3. The map DE : Mn → Md
n is a complete order isomorphism between these matrix

ordered spaces.

In this paper, we will show that this theorem is very dependent on the choice of basis. In fact,
we will show that there exist orthonormal bases for Mn such that the inverse duality map does not
even send positive functionals to positive matrices. Even more intriguing, we will show that there are
“natural” orthonormal bases for Mn such that the inverse duality map does send positive functionals
to positive matrices, yet does not associate completely positive maps with positive block matrices.
These results can be interpreted as giving some new Choi-Jamiołkowski type results.

We believe that such bases might be useful as entanglement witnesses. (We will comment further
on this after Corollary 12).

Before proceeding it will be necessary to establish some notation. The complex conjugate of a
complex number z is denoted by z̄, and the conjugate transpose of a matrix D is denoted D*. If D
= (dij) is any matrix, then we define D = (di j ). Inner products are linear in the first factor unless
specified otherwise.

Recall that when we say that a vector space V is matrix ordered we mean that for each natural
number p, we have specified a cone Cp in the vector space of p × p matrices over V, Mp(V ), which
we identify as the positive elements in Mp(V ), and that these cones must satisfy certain natural
axioms, such as if A ∈ Cp and B ∈ Cq, then A ⊕ B ∈ Cp + q. We also require that if X = (xij) is a p ×
q matrix of scalars and A = (vi j ) ∈ C p, then

X∗ AX = (
p∑

k,l=1

xkivkl xl j ) ∈ Cq .

When there is no ambiguity we simply write C p = Mp(V )+. See chap. 13 of Ref. 6 for more
background on matrix ordered spaces.

Matrix ordered spaces are the natural setting for studying completely positive maps. Indeed,
given matrix ordered spaces V, W we say that a linear map � : V → W is completely positive
provided that for each p, (vi j ) ∈ Mp(V )+ implies that (�(vi j )) ∈ Mp(W )+. (We will denote the map
that takes (vi j ) to (�(vi j )) by �(p), so that � is completely positive iff every map �(p) is a positive
map.) We say that � is a complete order isomorphism provided that � is invertible and that � and
�− 1 are both completely positive.

The most frequently encountered example of a matrix ordered space is L(H), the bounded
linear operators on a Hilbert space H. We define the matrix ordering by identifying Mp(L(H)) =
L(H⊕ · · · ⊕H), the bounded linear operators on the direct sum of p copies of the Hilbert space,
and declaring (Aij) ∈ Mp(L(H))+ exactly when it defines a positive operator on the Hilbert space
H⊕ · · · ⊕H. More broadly, matrix ordered spaces include operator systems: norm closed subspaces
of L(H), which are self-adjoint (i.e., are closed under the map A �→ A*) and unital (i.e., contain
the identity). Indeed, operator systems can be characterized as matrix ordered spaces satisfying an
additional axiom asserting the existence of an element that in an order-theoretic sense acts like the
identity in L(H), see Ref. 6.

When H = Cn, the standard n-dimensional Hilbert space, we write e1, . . . , en for the standard
basis of Cn , and write 〈 · , · 〉 for the inner product on Cn . We identify L(Cn) with Mn, the set of n
× n matrices with entries in C. Note that identifying Mp(Mn), the p × p block matrices with entries
from Mn, with Mpn yields the same cone of positive matrices as when we identify Mp(Mn) with the
linear maps on the direct sum of p copies of Cn, L(Cn ⊕ · · · ⊕ Cn).

Finally, given a matrix ordered space V there is a natural way to define a matrix ordering on
the dual space V d . To do this we declare that a matrix of functionals ( fi j ) ∈ Mp(V d ) belongs to
Mp(V d )+ if and only if the linear map � : V → Mp given by �(v) = ( fi j (v)) is completely positive.

In this paper, we will be concerned with examining various natural bases B for Mn and deter-
mining whether or not the duality map DB is a complete order isomorphism. We will see that there
exist bases for Mn such that DB is positive but not completely positive.
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DUALITY MAP RESULTS

Since our results rely on Theorem 3, we present a new proof here, that is somewhat simpler
than the proof that appeared in Ref. 3.

Proof of Theorem 3. Rather than proving that DE is a complete order isomorphism, we prove,
equivalently, that �E = D−1

E : Md
n → Mn is a complete order isomorphism. We have already seen

that �E sends functionals to the transpose of their density matrices. Since a functional is positive if
and only if its density matrix is positive, and the transpose map is an order isomorphism, we see that
�E is an order isomorphism.

Now let ( fk,l) ∈ Mp(Md
n ) and consider the map �: Mn → Mp defined by �(X ) = ( fk,l(X )) =∑p

k,l=1 fk,l(X )Ek,l . We must show that � is completely positive if and only if �
(p)
E (( fk,l)) ∈

Mp(Mn)+.

We have

�
(p)
E (( fk,l)) = (

�E ( fk,l)
)p

k,l=1 = ( n∑
i, j=1

fk,l(Ei j )Ei j
)p

k,l=1

=
p∑

k,l=1

Ek,l ⊗ [
n∑

i, j=1

fk,l(Ei j )Ei j ]

=
n∑

i, j=1

[
p∑

k,l=1

fk,l(Ei j )Ek,l] ⊗ Ei j

=
n∑

i, j=1

�(Ei j ) ⊗ Ei j .

Since the map that takes A ⊗ B to B ⊗ A extends to a *-isomorphism of Mp ⊗ Mn onto Mn ⊗ Mp,
the last expression is positive iff the matrix

C� =
n∑

i, j=1

Ei j ⊗ �(Ei j ) (2)

is positive. But this last matrix is the Choi matrix and by Choi’s theorem2 the map � is completely
positive if and only if this block matrix is positive. Thus (fk, l) ∈ Mp(Mn)+ if and only if (�E ( fk,l)) ∈
Mp(Mn)+ and we have shown that �E is a complete order isomorphism. This completes the proof
of Theorem 3. �

A map �: Mn → Mn or � : Md
n → Mn is called a co-positive order isomorphism provided that

its composition t ◦ � with the transpose map t on Mn is a complete order isomorphism.

Corollary 4. The linear map from Md
n to Mn that takes a functional to its density matrix is a

co-positive order isomorphism.

Proof. As remarked in connection with Eq. (1), the map that takes a functional to its density
matrix is t ◦ �E . �

Now that we have a complete order isomorphism DE between Mn and Md
n , in order to determine

whether or not other maps between Mn and Md
n are complete order isomorphisms, it will be convenient

to work with a map D̃B : Mn → Mn instead of DB : Mn → Md
n .

Definition 5. Let B be a basis of Mn and E the standard basis of matrix units. Then we define
D̃B : Mn → Mn by D̃B = �E ◦ DB.

Note that since �E is a complete order isomorphism, DB will be a complete order isomorphism
if and only if D̃B is a complete order isomorphism.
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Recall that E = {Ei j } is an orthonormal basis for Mn with respect to the Hilbert-Schmidt inner
product, which we denote by 〈A, B〉 = tr(AB∗), where tr : Mn → C denotes the unnormalized
trace, tr(A) = ∑n

i=1 aii . We fix an order for the basis E , and represent elements in L(Mn) as n2 ×
n2 matrices. Given L ∈ L(Mn) we write [L] for the matrix for L with respect to the basis E . For an n2

× n2 matrix M, we denote its transpose by MT, to distinguish this transpose from the transpose t on
Mn, and M* denotes the conjugate transpose. If L ∈ L(Mn), then L* denotes the adjoint with respect
to the Hilbert-Schmidt inner product, i.e., 〈L*(A), B〉 = 〈A, L(B)〉 for all A, B ∈ Mn, and we have
[L]* = [L*].

Definition 6. Let B be a basis of Mn and E the standard basis of matrix units. A change of basis
map is any linear map CB in L(Mn) taking the set E to the set B. By slight abuse of notation, we
write CT

B for the unique linear map in L(Mn) whose matrix in the standard basis E is the transpose
of the matrix of CB, so that [CT

B ] = [CB]T . We define MB = CBCT
B ∈ L(Mn).

Since a linear map is uniquely determined by its values on a basis, we see that a change of
basis map is uniquely determined up to re-orderings of the basis elements. Thus, in the setting of Mn

there will be (n2)! change of basis maps. However, the map MB is independent of the choice of
change of basis map or matrix. Indeed, fix one change of basis map CB. Then every change of basis
map has the form CB ◦ P , where P ∈ Mn is a linear map which permutes the basis E . Since P sends
the orthonormal basis E to itself, its matrix in that basis is orthogonal. Thus MB is unchanged if we
replace CB by CB P .

Fortunately, we will find that the results that we seek depend on MB and are independent of the
choice of change of basis map CB. In particular, our conditions determining when the duality map
DB is an order isomorphism or a complete order isomorphism will be expressed in terms of the map
MB.

Theorem 7. If B is a basis of Mn, then the duality map is given by DB = DE ◦ M−1
B .

Proof. Let B = {X1, . . . , Xn2}, and let {X̂1, . . . , X̂n2} ⊂ Md
n be the dual basis. Using the fixed

order for E , we write E = {E1, . . . , En2}.
Define Y j = D−1

E (X̂ j ) = �E (X̂ j ) ∈ Mn . We are going to show

CT
B Y j = E j for all j . (3)

Recall that Y j ∈ Mn is the matrix whose entries are the complex conjugates of those of Yj. For each
i, j, using (1),

〈Ei , C∗
BY j 〉 = 〈CBEi , Y j 〉 = 〈Xi , Y j 〉 = tr(Xi Y

∗
j 〉

= tr(Xi Y
t
j ) = tr(Xi (�E (X̂ j ))

t )

= X̂ j (Xi ) = δi j . (4)

It follows that C∗
BY j = E j .

For Y ∈ Mn let [Y ] ∈ Cn2
denote the coordinate vector for Y with respect to the basis E , viewed

as a column matrix. Then

e j = [E j ] = [C∗
B(Y j )] = [C∗

B][Y j ] = [CB]∗[Y j ].

Conjugating both sides of [E j ] = [CB]∗[Y j ] gives

[E j ] = [CB]T [Y j ] = [CT
B ][Y j ] = [CT

B Y j ],

proving (3).
Now

CBCT
BD−1

E X̂ j = CBCT
B Y j = CBE j = X j = D−1

B X̂ j ,

so by linearity MBD−1
E = D−1

B . Thus DB = DE M−1
B . �
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Notation. If C ∈ Mn, then �C: Mn → Mn is the completely positive map defined by �C(X) =
CXC*.

Recall that a map �: Mn → Mp is called completely co-positive if and only if t ◦ � is
completely positive, and a map �: Mn → Mn is called a co-positive order isomorphism provided
that its composition t ◦ � with the transpose map t on Mn is a complete order isomorphism. Here
the order of composition with the transpose map does not matter as shown by the next result.

Proposition 8. Let �: Mn → Mp. Then t ◦ � is completely positive if and only if � ◦ t is
completely positive.

Proof. By Choi’s result,2 t ◦ � is completely positive if and only if (�(Eij)t) is positive, while
� ◦ t is completely positive if and only if (�(Ej, i)) is positive. But these np × np matrices are
transposes of each other. �

We start with the following description of order automorphisms of Mn and their partition into
completely positive and completely co-positive maps. It is a consequence of more general results
of Kadison5 relating isometries, Jordan isomorphisms, order isomorphisms, and *-isomorphisms of
C*-algebras, specialized to Mn viewed as a C*-algebra.

Lemma 9. Let �: Mn → Mn be an order isomorphism. Then there exists an invertible C ∈ Mn

such that either � = �C or � = t ◦ �C. In the first case, � is a complete order isomorphism,
and in the second case � is a co-positive order isomorphism. If n > 1, both cases cannot occur
simultaneously.

Proof. First assume � is unital, i.e., that �(I) = I. For Hermitian matrices A, we have ‖A‖ =
sup{λ ∈ R | −λI ≤ A ≤ λI }, so a unital order isomorphism is an isometry on Hermitian elements
of Mn. It follows that � is an isometry on all of Mn, cf. proof of Theorem 5 in Ref. 5. Every unital
isometry on Mn is a Jordan isomorphism, i.e., preserves the Jordan product A ◦ B = (1/2)(AB +
BA), cf. Theorem 7 of Ref. 5. Every Jordan isomorphism on Mn is a *-isomorphism or *-anti-
isomorphism, cf. Corollary 11 of Ref. 5. In the latter case, composing with the transpose map gives
a *-isomorphism. It is well known that every *-isomorphism of Mn is conjugation by a unitary, see,
for example, Theorem 4.27 of Ref. 1. Thus there is a unitary U such that � = �U or � = t ◦ �U.

Finally, let � be an arbitrary order isomorphism. We will show �(I) is invertible. Observe that
0 ≤ A ∈ Mn is invertible iff A is an order unit, i.e., if for all B = B* ∈ Mn there exists λ ∈ R such
that − λA ≤ B ≤ λA. An order isomorphism takes order units to order units, so �(1) is invertible.
Let D = �(1)1/2, and define � = �D−1 ◦ �. Then � is a unital order isomorphism, so by the first
paragraph there exists a unitary U such that � = �U or � = t ◦ �U. Then � = �D ◦ � = �D ◦ �U

= �DU, or else � = �D ◦ t ◦ �U = t ◦ �C where C = DtU. Note that if both cases occur, then �

is both a *-isomorphism and a *-anti-isomorphism, which is possible only if Mn is abelian, and that
holds only when n = 1. �

Note that Lemma 9 implies that a composition of two complete order isomorphisms, or two
co-positive order isomorphisms, is a complete order isomorphism, and a composition of a complete
order isomorphism and a co-positive order isomorphism (in either order) is a co-positive order
isomorphism.

Theorem 10. Let B be a basis of Mn. Then DB is an order isomorphism iff there exists C ∈
Mn such that either (1) MB = �C or (2) MB = t ◦ �C . In the first case, DB is a complete order
isomorphism, and in the second case it is a co-positive order isomorphism.

Proof. By Theorem 7, we have DB = DE ◦ M−1
B . Since DE is a complete order isomorphism

(Theorem 3), thenDB is a complete order isomorphism (respectively, co-positive order isomorphism)
if and only if MB is a complete order isomorphism (respectively, co-positive order isomorphism).
Now the theorem follows from Lemma 9. �
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Corollary 11. Let B = {B j : 1 ≤ j ≤ n2} be a basis for Mn.

1. MB = �C for some C ∈ Mn if and only if �B : Md
n → Mn is a complete order isomorphism,

2. MB = t ◦ �C for some C ∈ Mn if and only if t ◦ �B : Md
n → Mn is a complete order isomor-

phism.

Proof. We prove the second statement. By Theorem 10, MB = t ◦ �C iff DB is a co-positive
order isomorphism. This is equivalent to �B = D−1

B being a co-positive order isomorphism, and
hence to t ◦ �B being a complete order isomorphism. �

Both Choi and Jamiołkowski have defined useful correspondences that associate a matrix in
Mn ⊗ Mp with each linear map �: Mn → Mp. Choi’s correspondence is � �→ C�, where

C� =
∑

i j

Ei j ⊗ �(Ei j ). (5)

As remarked in the proof of Theorem 3, positivity of the Choi matrix (5) is equivalent to positivity
of

∑
ij �(Eij) ⊗ Eij, and it is this latter form that we generalize below. We now describe a related

correspondence defined by Jamiołkowski.4 If �: Mn → Mp, then J (�) is defined by the condition
〈J (�), A∗ ⊗ B〉 = 〈�(A), B〉 for all A ∈ Mn, B ∈ Mp. This is equivalent to

J (�) =
∑

i j

E∗
i j ⊗ �(Ei j ). (6)

Regarding our current investigation, the Choi matrix C� has the property that C� ≥ 0 iff � is
completely positive.2 The Jamiołkowski correspondence has the property that in (6), J (�) is
unchanged if the basis {Eij} is replaced by any orthonormal basis of Mn. Our correspondence
will be closer to Choi’s.

Corollary 12. Let B = {B j : 1 ≤ j ≤ n2} be a basis for Mn, and let �: Mn → Mp be a linear
map.

1. If MB = �C for some C ∈ Mn, then � is completely positive if and only if
∑n2

j=1 �(B j ) ⊗ B j ∈
(Mp ⊗ Mn)+.

2. If MB = t ◦ �C for some C ∈ Mn, then � is completely positive if and only if
∑n2

j=1 �(B j ) ⊗
Bt

j ∈ (Mp ⊗ Mn)+.

3. If MB = t ◦ �C for some C ∈ Mn, then � is completely co-positive if and only if
∑n2

j=1 �(B j ) ⊗
B j ∈ (Mp ⊗ Mn)+.

Proof. To prove the first statement, for 1 ≤ k, l ≤ p define fk,l ∈ Md
n by �(X) = (fk, l(X)). Then

by the definition of the order on Mp(Md
n ) discussed earlier, � is completely positive if and only if

( fk,l) ∈ Mp(Md
n )+ which holds if and only if (�B( fk,l)) ∈ Mp(Mn)+, cf. Theorem 10. But as in the

proof of Theorem 3, we have that

(�B( fk,l)) =
n2∑

j=1

�(B j ) ⊗ B j .

To prove the second statement, note that � is completely positive if and only if (t ◦ �B( fk,l)) ∈
Mp(Mn)+ and this matrix is seen to be equal to

n2∑
j=1

�(B j ) ⊗ Bt
j .
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For the third statement, replace � by t ◦ � in the second statement. This shows � is com-
pletely co-positive iff

∑n2

j=1 �(B j )t ⊗ Bt
j ∈ (Mp ⊗ Mn)+, and now applying the transpose map

gives (3). �
We now point out that bases with the properties indicated in the Corollary are related to

entanglement witnesses. Indeed suppose B = {B1, . . . , Bn2} is a basis of Mn for which Corollary 12
(1) holds. Taking � = I we have

∑
iBi ⊗ Bi ≥ 0. Let �: Mn → Mn be a map that is positive but not

completely positive. Define

B0 =
∑

i

Bi ⊗ Bi and B� =
∑

i

�(Bi ) ⊗ Bi .

Then for any positive X, Y, since � ≥ 0, we have

〈B�, X ⊗ Y 〉 = 〈
∑

i

�(Bi ) ⊗ Bi , X ⊗ Y 〉

= 〈(� ⊗ I )B0, X ⊗ Y )

= 〈B0,�
∗(X ) ⊗ Y 〉 ≥ 0, (7)

and hence B� is ≥0 on all separable states. Since � is not completely positive, then B� �≥ 0, so
there is a state A such that 〈B�, A〉 �≥ 0. Such a state is then entangled, so B� is an entanglement
witness.

EXAMPLES

Notation. If x, y ∈ Cn , then Rx, y ∈ Mn is the rank one operator defined by Rx, yz = 〈z, y〉x.
Observe that Ei j = Rei ,e j .

Proposition 13. Let (λij) ∈ Mn, with all λij nonzero, and let B be the basis {λijEij}. Then DB is an
order isomorphism if and only if the matrix (λ2

i j ) is positive semi-definite with rank one. In that case,

there are scalars α1, . . . , αn such that λ2
i j = αiα j , and if C = diag(α1, . . . , αn), then D̃B = �C , and

hence DB is a complete order isomorphism.

Proof. Note that for B as described in the proposition, the matrix for CB is diagonal for the
standard basis E of Mn, so CT

B = CB. Thus MB(Ei j ) = (CBCT
B )(Ei j ) = λ2

i j Ei j .

Suppose that the map D̃B : Mn → Mn is an order isomorphism. We first consider the case where
D̃−1

B = MB = �C . Then �C (Ei j ) = λ2
i j Ei j , so

λ2
i j Ei j = C Ei j C

∗ = C Rei ,e j C
∗ = RCei ,Ce j .

The ranges of the two sides must coincide, so for each i there is a scalar αi such that Cei = αiei.
Substituting into the displayed equation gives λ2

i j Ei j = αiα j Ei j , so λ2
i j = αiα j . Thus the matrix

(λ2
i j ) has rank one and is positive. Conversely, if (λ2

i j ) is positive with rank one, then there are
nonzero scalars α1, . . . , αn such that αiα j = λ2

i j . If C = diag(α1, . . . , αn), then one readily verifies

that MB = �C . Then D̃−1
B is a complete order isomorphism, and hence so is DB.

Now we examine the possibility that CBCT
B = t ◦ �C . Then

λ2
i j Ei j = (C Ei j C

∗)t = C∗t E ji C
t .

Let D = C*t, so that λ2
i j Ei j = DE ji D∗. Then for all i, j,

λ2
i j Rei ,e j = RDe j ,Dei .

This implies that Dej is a multiple of ei for all i, j, which is impossible. �
Example 14. If C ∈ Mn is invertible, then �T

C = �Ct , so �C�T
C = �CCt . Hence for the basis

B = {�C (Ei j )}, we have MB = �CCt , so by Theorem 10, B has the property that the map from this
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basis to its dual basis is a complete order isomorphism. In particular, if {Fij} is any system of matrix
units for Mn, there is a unitary V such that �V satisfies �V (Ei j ) = Fi j for all i, j, and so the map
from {Fij} to its dual basis is a complete order isomorphism.

On the other hand, if U: Mn → Mn is unitary with respect to the Hilbert Schmidt inner product
and takes E to a basis B, it need not be the case that the duality map DB is a complete order
isomorphism, as can be seen from Proposition 13 with λ11 = i and λij = 1 for (i, j) �= (1, 1). Hence,
not every orthonormal basis of Mn has the property that the duality map is an order isomorphism.

For our next application we study the Pauli spin matrices.

Theorem 15. Let B = {σ0, σ1, σ2, σ3} be the Pauli spin matrices, i.e.,

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Then the duality map DB is a co-positive order isomorphism. Furthermore, let � : M2n → Mp be a
linear map. Then � is completely positive if and only if

3∑
i1,...,in=0

�(σi1 ⊗ · · · ⊗ σin ) ⊗ σ t
i1

⊗ · · · ⊗ σ t
in

is a positive 2np × 2np matrix.
Similarly, � is completely co-positive if and only if

3∑
i1,...,in=0

�(σi1 ⊗ · · · ⊗ σin ) ⊗ σi1 ⊗ · · · ⊗ σin

is a positive 2np × 2np matrix.

Proof. Let CB be the linear map such that

CB(E11) = σ0, CB(E12) = σ1, CB(E21) = σ2, CB(E22) = σ3.

Then the matrix for MB = CBCT
B in the standard basis of M2 is

[CB][CT
B ] =

⎛
⎜⎜⎝

2 0 0 0
0 0 2 0
0 2 0 0
0 0 0 2

⎞
⎟⎟⎠,

which is twice the matrix of the transpose map t: M2 → M2. Thus DB in this case is a co-positive
order isomorphism.

Applying Corollary 12, we see that a map �: M2 → Mp is completely positive if and only if

3∑
j=0

�(σ j ) ⊗ σ t
j ∈ (Mp ⊗ M2)+.

Using the explicit form of the Pauli matrices, we obtain that � is completely positive if and only if[
�(σ0) + �(σ3), �(σ1) + i�(σ2)
�(σ1) − i�(σ2), �(σ0) − ψ(σ3)

]
is positive in M2(Mp), which is identical to Choi’s theorem.

On M2n the tensored spin matrices B⊗n = {σi1 ⊗ · · · ⊗ σin | 0 ≤ i j ≤ 3} form an orthonormal
basis which we will call the spin basis. The standard basis of matrix units of M2n consists of the tensor
products of the matrix units of M2. The map CB⊗n : M2n → Md

2n taking the standard basis of matrix
units to this spin basis is then the tensor product of the maps on each factor M2, so (CB⊗n )(CB⊗n )T

will be the transpose map on M2n . Thus the map from the spin basis on M2n to its dual basis will
also be a co-positive order isomorphism.
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Again applying Corollary 12 yields that a map � : M2n → Mp is completely positive if and
only if

3∑
i1,...,in=0

�(σi1 ⊗ · · · ⊗ σin ) ⊗ σ t
i1

⊗ · · · ⊗ σ t
in

is a positive 2np × 2np matrix.
Similarly, � is completely co-positive if and only if

3∑
i1,...,in=0

�(σi1 ⊗ · · · ⊗ σin ) ⊗ σi1 ⊗ · · · ⊗ σin

is a positive 2np × 2np matrix. �
For our final application, we study the map from the Weyl basis to its dual basis. We will

compute the duality map for the Weyl basis, with the conclusion that this map is a complete order
isomorphism for n = 2, but is not an order isomorphism for n > 2. Below n > 1 is a positive integer,
and all indices are viewed as members of Zn .

Definition 16. Let e0, . . . , en − 1 be the standard basis of Cn , and B = {Eab | a, b ∈ Zn} the
corresponding matrix units. Let U, V ∈ Mn be defined by V e j = z j e j and Uej = ej + 1 where
z = exp (2π i/n). Then { 1√

n
U a V b | a, b ∈ Zn} is an orthonormal basis for Mn which we call the Weyl

basis W .

The unitary matrices {U a V b | a, b ∈ Zn} are usually called the discrete Weyl matrices or the
generalized Pauli matrices.

Lemma 17. Define CW ∈ L(Mn) by CW (Eab) = 1√
n
U a V b. With respect to the standard basis of

matrix units, we have the following matrix entries for CW and CWCT
W :

[CW ]ab,cd = zdbδb+c,a and [CWCT
W ]ab,cd = δb,−dδa,c−2d .

Proof. We have U a V be j = zbj E j+a, j e j so

U a V b =
∑

j

zbj E j+a, j .

Thus

[CW ]ab,cd = 〈CW (Ecd ), Eab〉

= 1√
n
〈U cV d , Eab〉

= 1√
n
〈
∑

j

zd j E j+c, j , Eab〉

= 1√
n

∑
j

zd jδ j+c,aδ j,b

= 1√
n

zdbδb+c,a . (8)

Now

[CWCT
W ]ab,cd =

∑
jk

[CW ]ab, jk[CT
W ] jk,cd =

∑
jk

[CW ]ab, jk[CW ]cd, jk .

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

149.130.138.59 On: Wed, 18 Mar 2015 16:50:20



072201-10 V. I. Paulsen and F. Shultz J. Math. Phys. 54, 072201 (2013)

In the first factor [CW ]ab, jk of the last sum we use the expression (8) for [CW ]ab,cd with the
substitutions c → j and d → k. In the second factor [CW ]cd, jk , we use (8) with the substitutions
a → c, b → d, c → j, d → k. We get

[CWCT
W ]ab,cd = 1

n

∑
jk

zkbδb+ j,azkdδd+ j,c.

The summands will be nonzero if and only if j = a − b = c − d (mod n). Thus

[CWCT
W ]ab,cd = 1

n
δa−b,c−d

∑
k

zk(b+d).

The sum will be zero unless b + d = 0, in which case it has the value n. Thus

[CWCT
W ]ab,cd = δa−b,c−dδb+d,0 = δb,−dδa,c−2d .

�
Note that Lemma 17 gives

(CWCT
W )(Ec,d ) = Ec−2d,−d , (9)

so in particular CWCT
W acts as a permutation on the basis of matrix units.

Corollary 18. For the Weyl basis W , the duality map DW is a complete order isomorphism if n
= 2, and is not an order isomorphism for n > 2.

Proof. If n = 2, then from (9) CWCT
W is the identity map, and hence DW is a complete order

isomorphism.
Now let n > 2. Suppose first (to reach a contradiction) that CWCT

W = �C for some invertible C
∈ L(Mn). Then by (9),

E−d,−d = (CWCT
W )(Edd ) = �C Edd = RCed ,Ced .

Thus for all d there are scalars λd of modulus one such that Ced = λde− d. Then

Ec−2d,−d = (CWCT
W )(Ecd ) = �C (Ecd )

= RCec,Ced = λcλd E−c,−d . (10)

This implies c − 2d = − c, so 2c = 2d mod n for all c, d. This is impossible for n > 2.
Now suppose CWCT

W = t ◦ �C . Then again applying (9),

E−d,−d = (CWCT
W )(Ed,d ) = (�C (Ed,d ))t

= (RCed ,Ced )t = RCed ,Ced
. (11)

This implies that for all d, Ced is a multiple of e− d, and hence Ced is a multiple of e−d = e−d . As
above

Ec−2d,−d = (CWCT
W )(Ecd ) = (RCec,Ced )t

= RCed ,Cec
= λcλd E−c,−d . (12)

This implies c − 2d = − c for all c, d, which again is impossible for n > 2. �
Remark 19. The Weyl basis for n = 2 is slightly different than the Pauli spin basis. Indeed, one

has

1√
2

I = 1√
2

(
1 0
0 1

)
,

1√
2

U = 1√
2

(
0 1
1 0

)
,

1√
2

V = 1√
2

(
1 0
0 −1

)
,

1√
2

U V = 1√
2

(
0 −1
1 0

)
.
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These are the Pauli spin matrices except for normalization and a missing factor of i in the last. Again,
applying Corollary 12 yields the usual Choi condition.

Recall that for the Pauli spin matrices we found CBCT
B was the transpose map, so DB in that

case was co-positive.

Remark 20. Note that for M2n if we take tensors of the Weyl basis for M2, then we will get
another basis for which the duality map is a complete order isomorphism.

THE CONJUGATE LINEAR DUALITY MAP

Using the fact that Mn is a Hilbert space, we also have a canonical conjugate linear isomorphism
between Mn and its dual space. This map is unaffected by whether we make the inner product
conjugate linear in the first or second variable, so we use the physics convention that inner products
are conjugate linear in the first variable. Thus, the inner product on Mn can be given by

〈A, B〉 = tr(A∗ B)

and the conjugate linear Hilbert space duality map is given by

Dd : Mn → Md
n where Dd (A)(B) = tr(A∗ B).

The inverse of this map

�d = D−1
d : Md

n → Mn

sends the linear functional f A(B) = tr(A∗ B) to the matrix A which is the adjoint (i.e., conjugate
transpose) of the density matrix.

Proposition 21. The duality maps Dd and �d are conjugate linear complete order isomorphisms.

Proof. By Corollary 4, the linear map that sends a functional to its density matrix is a co-positive
order isomorphism. Hence, the map that sends a functional to the transpose of its density matrix is a
complete order isomorphism. But a matrix (cij) is positive if and only if the matrix (ci j ) is positive.
Thus, the duality map �d, which sends a functional to the adjoint of its density matrix is a complete
order isomorphism. Consequently, so is its inverse Dd . �

The above result has a nice interpretation in terms of bases. Choi’s characterization says that a
map �: Mn → Mp is completely positive iff the matrix C� defined in (5) is positive. As observed in
Example 14, in the definition of C�, the basis {Eij} cannot be replaced by an arbitrary orthonormal
basis. The following result provides an alternate description of the Choi matrix that does have this
independence property. Recall that for a matrix B = (bij) we set B = (bi j ).

Proposition 22. Let {Bl}n2

l=1 be an orthonormal basis for Mn. A complex linear map �: Mn →
Mp is completely positive if and only if

n2∑
l=1

Bl ⊗ �(Bl) (13)

is a positive np × np matrix. The matrix in (13) is independent of the choice of orthonormal basis,
and equals the Choi matrix C�.

Proof. Let f A ∈ Md
n be given by f A(B) = tr(A∗ B), so that

�d ( f A) = A =
n2∑

l=1

〈Bl , A〉Bl =
n2∑

l=1

f A(Bl)Bl .
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Thus, with respect to this basis

�d ( f ) =
n2∑

l=1

f (Bl)Bl for all f ∈ Md
n .

Let ( fi j ) ∈ Md
n be the matrix defined by �(A) = (fij(A)) for A ∈ Mn. Recall that by definition,

the matrix (fij) is positive iff � is completely positive. Using the fact that �d is a complete order
isomorphism, we have that � is completely positive if and only if

(�d ( fi j )) =
n2∑

l=1

(
fi j (Bl)Bl

) =
n2∑

l=1

�(Bl) ⊗ Bl (14)

is a positive np × np matrix. Using that fact that a matrix is positive if and only if its complex
conjugate matrix is positive, the proposition now follows by applying the *-isomorphism that takes
A ⊗ B to B ⊗ A.

Finally, since the matrix ( fi j ) ∈ Md
n is determined by �, the matrix

∑
l Bl ⊗ �(Bl) is indepen-

dent of the choice of orthonormal basis {Bl}. For the standard basis {Eij}, the matrix (13) is just the
Choi matrix, and hence the matrix in (13) equals the Choi matrix for all orthonormal bases {Bl}. �

Note that the matrix in (13) is the partial transpose of the matrix J (�) defined by Jamiołkowski,
cf. (6).
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