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Abstract

A central question in knot theory is the classification of knots. Given two knots, how
can we determine if they are different or the same? To answer this question, we develop
and study knot invariants which are properties of knots that remain unchanged under
isotopy. Khovanov homology is a powerful knot invariant that is able to distinguish
many knots. However, because it is constructed in a combinatorial and algebraic man-
ner, Khovanov homology lacks any geometric or topological motivation. Since Khovanov
homology encodes information about topological objects, it would be ideal if it could
be interpreted from a topological perspective. One way to approach this is through the
lens of manifold calculus of functors and more specifically, the Taylor tower for spaces of
long knots. Recent developments have shown that the Jones polynomial, another knot
invariant, is encoded in the Taylor tower for knots. Since the Jones polynomial can be
extracted from Khovanov homology, it is natural to ask if the Taylor tower can provide
a space level realization of Khovanov homology. This paper provides an introduction to
Khovanov homology and calculus of functors and offers conjectures that relate the two
notions.
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Introduction and Motivation

Intuitively, a mathematical knot results from taking a string, tangling it and then gluing
the ends together. Two knots are equivalent if one knot can be deformed into the other
without breaking the initial knot open. More formally, a knot is an embedding of S1 into
R3. Two knots are equivalent if there is a deformation, more precisely isotopy, from one to
the other.

A central question in knot theory is the classification of knots. That is, given two knots,
how can we determine if they are distinct or the same? Knot invariants are tools that allow
us to address this question. A knot invariant is a function from the collection of knots to a
collection of mathematical objects such as integers or polynomials that assigns to each knot
an object in a manner that is invariant under isotopy. This means that a knot invariant
will assign the same object to isotopic knots. Hence, if an invariant assigns different objects
to two knots, then the knots are different. It is important to note, however, that the con-
verse is not true. An invariant may assign to two different knots the same object. We say
that an invariant is stronger than another invariant if it can distinguish more distinct knots.

Two powerful knot invariants are the Jones polynomial and Khovanov homology. The Jones
polynomial associates to each knot a polynomial constructed from certain geometric reso-
lutions of the knot while the Khovanov homology associates a homology constructed from
the same resolutions to each knot. They provide novel ways of analyzing knots and are
very successful in disguishing knots. For example, both invariants can distinguish between
the right-hand and left-hand trefoils - knots that many other invariants cannot distinguish.
This paper will explore Khovanov homology, which is the more powerful of the two.

Khovanov homology is considered the “categorification of the Jones polynomial” and en-
codes all the data that the Jones polynomial captures and more. It is strictly stronger
than the Jones polynomial in the sense that Khovanov homology distinguishes all the knots
that Jones polynomial can distinguish and other knots that the Jones polynomial cannot.
While the Jones polynomial cannot distinguish the knots 51 and 10132 or the knot 942 and
its mirror, Khovanov homology can distinguish them. Furthermore, it was recently proven
that Khovanov homology is an unknot detector whereas it is unknown whether or not the
Jones polynomial can detect the unknot.

Despite its usefulness as an invariant, the current understanding of Khovanov homology is
mostly combinatorial and algebraic. Khovanov homology lacks a satisfying geometric or
topological motivation. In particular, what geometric and topological properties of a knot
does Khovanov homology capture that gives it its invariance and its ability to distinguish
knots? Because knots are topological objects, interpreting Khovanov homology as a topo-
logical construction would be ideal. One way to approach this problem is to study Khovanov
homology through the lens of manifold calculus of functors. To do this, we will need the
language of category theory.

Category theory captures universal mathematical properties that are found in diverse fields
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of mathematics. Categories and functors generalize the notions of sets and functions. A
category is a collection consisting of mathematical objects and sets of maps between these
objects. Examples of categories include the category of abelian groups and the category
of topological spaces. A functor is a map relating different categories. Manifold calculus
of functors studies certain functors between a poset of open subsets of a smooth closed
manifold M to the category of topological spaces. It is mostly used in homotopy theory but
has been shown to have applications in knot theory. For more explicit examples, see [Vol].
In this context, we can build what is called the Taylor tower for spaces of long knots.

The idea of a Taylor tower is analogous to that of a Taylor series for a smooth function f
about a point x. Just as the behavior of f about x can be approximated by a sequence of
simpler polynomial functions, the behavior of a functor F : C −→ C′ can be approximated
by a sequence of simpler functors TkF : C −→ C′. We call TkF the k-th stage of the Taylor
tower. The Taylor tower is a “categorification of the Taylor series.” In the case of knots, we
can construct a Taylor tower for the space of knots K3 which captures the isotopy classes
of knots and knot invariants. Understanding how Khovanov homology is encoded in this
construction would yield a space level realization of the knot invariant.

This paper provides an introduction to Khovanov homology and manifold calculus of func-
tors in the case of knots. In Section 1, we review some basic definitions from category
theory as well as important topological objects that will be used throughout the paper.
Section 2 introduces and builds the theory of cubical diagrams and homotopy limits of
punctured cubes of spaces. Section 3 reviews the construction of Khovanov homology
and provides a brief sketch of Everitt and Turner’s homotopy theoretic interpretation of
Khovanov homology from [EvT]. Everitt and Turner’s interpretation yields a space level
construction of Khovanov homology and shares similarities to the construction of the Tay-
lor tower for spaces of long knots. We elucidate this relationship, by proving that their
interpretation is equivalent to the total fiber of a cubical diagram of spaces, which is itself
a homotopy limit. In Section 4, we construct the Taylor tower of long knots where each
stage of the tower is a homotopy limit of a punctured cubical diagram of spaces and provide
equivalent constructions that are more often used in practice. Finally, in Section 5, we
provide conjectures connecting Khovanov homology with the Taylor tower for spaces of long
knots.

1 Preliminaries

Definition 1.1. A category C consists of:

• a collection of objects Ob(C)

• a set of morphisms HomC(X,Y ) for each X,Y ∈ C

• a law of composition ◦ : HomC(X,Y )× HomC(Y,Z) −→ HomC(X,Z) that is asso-
ciative, i.e. α ◦ (β ◦ γ) = (α ◦ β) ◦ γ
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• for each X ∈ C, an identity morphism 1X ∈ HomC(X,X) such that f ◦ 1X =
1X ◦ f = f for any f ∈ HomC(X,X).

Example 1.2. The category Set has sets for objects and functions for morphisms.

Example 1.3. The category of topological spaces, denoted Top, has topological spaces for
objects and continuous maps for morphisms. Similarly, the category of based topological
spaces, denoted Top∗ has based topological spaces for objects and based continuous maps
for morphisms. Note that a based continuous map f : X −→ Y sends the basepoint of X
to the basepoint of Y.

Definition 1.4. A small category C is a category such that Ob(C) is a set.

Example 1.5. Any group G is a small category if we consider the group acting on itself
by left multiplication. The object is the group itself and morphisms elements of G with
compositions compatible with the group operation.

Definition 1.6. Given two categories C and C′, a (covariant) functor F : C −→ C′ is
a map that associates to each object X ∈ C an object F (X) ∈ C′ and to each morphism
α : X −→ Y in C a morphism F (α) : F (X) −→ F (Y ) in C′ such that

• F (1X) = 1F (X) for all X ∈ C.

• F (α ◦ β) = F (α) ◦ F (β) for α ∈ HomC(X,Y ) and β ∈ HomC(Y,Z)

Definition 1.7. Let C be a category. Then the opposite category of C, denoted Cop, is
the category with objects the same as C and morphisms defined by

HomCop(X,Y ) = HomC(Y,X).

Definition 1.8. Let C and C′ be categories. We say that F is a contravariant functor if it
is a functor from Cop to C′. Thus F assigns a morphism F (Y ) −→ F (X) to a morphism
X −→ Y .

Definition 1.9. Let F,G : C −→ D be functors. A natural transformation η associates
to each X ∈ Ob(C) a morphism ηX : F (X) −→ G(X) such that for every morphism
f : X −→ Y , we have ηY ◦ F (f) = G(f) ◦ ηX , i.e. the following diagram commutes:

F (X)
F (f) //

ηX
��

F (Y )

ηY
��

G(X)
G(f)

// G(Y )

Definition 1.10. Let X and Y be topological spaces and let Map(X,Y ) be the space of
continuous functions between X and Y . Then Map(X,Y ) is topologized as follows: Given a
compact subsetK ofX and an open subset U of Y , let UK = {f ∈ Map(X,Y ) : f(K) ⊂ U}.
Then the sets UK form a subbase of Map(X,Y ). This is called the compact-open topology.
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Definition 1.11. If A ⊂ X and B ⊂ Y , then Map((X,A), (Y,B)) is the space of continuous
maps of pairs whose elements are continuous maps f such that f(A) ⊂ B. It is topologized
as a subspace of Map(X,Y ).

If X and Y are based spaces with basepoints A and B respectively, we write Map∗(X,Y ).

Example 1.12. An important example that will be revisited throughout this paper is
the loop space of a based topological space Y with basepoint y ∈ Y . It is defined as
Map((I, ∂I), (Y, y)) and has a basepoint, the constant map cy which sends I to y. This
space is denoted ΩY . Since I/∂I ∼= S1, it follows that ΩY ∼= Map∗(S

1, Y ).

The n-fold loop space is defined inductively as ΩnY = ΩΩn−1Y . We will use the fact that
ΩnY ∼= Map∗(S

n, Y ) in later examples.

2 Cubical Diagrams and Homotopy Limits

2.1 Cubical Diagrams

Definition 2.1. A diagram in category C is a functor F from a small category I, called
the indexing category, to C.

The small category I serves to index the image of F in a manner that captures the shape
of image of F . The diagrams we are interested in are n-cubical diagrams and in particular,
punctured n-cubical diagrams. The indexing category that we will use exclusively are posets
of subsets of {1, 2, . . . , n} ordered by inclusion.

Definition 2.2. Let n = {1, 2, . . . , n}. Then the cubical indexing category P(n) is the
category with the subsets of n for objects and inclusions for morphisms.

Example 2.3. Pictorially P(1) is

∅ // {1}

and P(2) is

∅ //

��

{1}

��
{2} // {1, 2}

and P(3) is
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∅

��

$$HH
HHH

H // {1}

��

&&NN
NNN

N

{2} //

��

{1, 2}

��

{3} //

$$HH
HH

{1, 3}
&&NN

NNN

{2, 3} // {1, 2, 3}.

Definition 2.4. Let P0(n) be the poset of non-empty subsets of n. Then P0(n) is the
n-cube P(n) with the empty set removed and is called a punctured indexing category.

Example 2.5. We can view P0(3) as

{1}

��

&&NN
NNN

N

{2} //

��

{1, 2}

��

{3} //

$$HH
HH

{1, 3}
&&NN

NNN

{2, 3} // {1, 2, 3}.

Furthermore, any punctured n-cube can be redrawn as a barymetrically subdivided (n− 1)
simplex. For example P0(2) is

{1} // {1, 2} {2}oo

and P0(3) is

{1}

zzttt
ttt

ttt
t

$$JJ
JJJ

JJJ
JJ

{1, 3} // {1, 2, 3} {1, 2}oo

{3}

<<xxxxxxxx
// {2, 3}

OO

{2}oo

bbFFFFFFFF

Definition 2.6.

• An n-cubical diagram or an n-cube in C is a functor X : P(n) −→ C.

• A punctured n-cubical diagram or a punctured n-cube is a functor X : P0(n) −→
C.

Notationally, for every S ∈ I, we let X (S) = XS . For example X (∅) = X∅ and X ({1, 2, 3}) =
X{1,2,3}. We further suppress the notation by dropping the set notation so that X{1,2,3} =
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X123. Similarly, each morphism XS −→ XT is denoted X(S −→ T ). Then a 3-cubical
diagram can be represented as a commutative cube X (P(3)) which is illustrated as

X∅

��

""EE
EE

// X1

��

$$H
HH

H

X2
//

��

X12

��

X3
//

""FF
FF

X13

$$II
II

X23
// X123

and a punctured 3-cubical diagram, represented by X (P0(3)), is illustrated as

X1

{{xx
xx
xx
xx

##F
FF

FF
FF

F

X13
// X123 X12

oo

X3

==zzzzzzzz
// X23

OO

X2
oo

aaDDDDDDDD

.

Remark 2.7. For every n > 1, an n-cube can be viewed as a natural transformation
between (n− 1)-cubes in n distinct ways.

2.2 Homotopy Limits of Punctured Cubes of Spaces

Limits of diagrams in the category of spaces satisfy a universal property and capture stan-
dard constructions such as products, inverse limits and gcd. However, they are not well
behaved under homotopy. For example, given two cubical diagrams B and B′ such that
each space XS in B is homotopy equivalent to the corresponding space X ′

S in B′, it is not
necessarily true that the limit of B is homotopy equivalent to the limit of B′. Consider the
following definition and example:

Definition 2.8. The limit of a punctured 2-cube X
f−→ Z

g←− Y is the subspace of X ×Y
consisting of

{(x, y) : f(x) = g(y)}

.
This is also called the pullback of X

f−→ Z
g←− Y .

Example 2.9. Now consider the punctured 2-cube S0 = {0} −→ [0, 1] ←− {1} where the
maps are inclusions of the points {0} and {1} to the endpoints of [0, 1]. The pullback of S0

is ∅. However, the pullback of {0} −→ ∗ ←− {1} is a single point even though [0, 1] ≃ ∗.
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The notion of homotopy limits addresses this issue. Homotopy limits are essentially
formed by “fattening up” limits to form new objects that allow for homotopy invariance.

Although there is a general notion of a homotopy limit over categories, we will restrict our
attention to cubical diagrams and the case where C = Top. Furthermore, we will focus on
homotopy limits of punctured cubes. This is because a non-punctured cube has an initial
object. An initial object of a category C is an object X such that for every object Y ∈ C,
there is a unique morphism X −→ Y . The homotopy limit of an n-cube is homotopy
equivalent to its initial space, which is X∅. The homotopy limits of punctured n-cubes turn
out to be more interesting. We will, however, use the homotopy limit of a 1-cube X −→ Y
when defining the total fiber of an n-cube. To this end, the definition of the homotopy
limit of a 1-cube is given below:

Definition 2.10. Let X∅ be topological space and X1 be a based topological space with

basepoint a. Let f : X∅ −→ X1 be a map. Then holim(X∅
f−→ X1) is the subspace

{(x, α) : x ∈ X∅, α : I −→ X1, α(0) = f(x), α(1) = a}

of X∅ ×Map(I, Y ). This is called the homotopy fiber of f over a ∈ X1 and it is denoted
hofibera(f).

Example 2.11. Let f : a ↪→ Y be the inclusion of the basepoint a of Y into Y . Then

hofibera(f) = ΩY,

the based loop space of Y .

We will now define homotopy limits for punctured n-cubes:

Definition 2.12. Define ∆(•) : P0(n) −→ Top by

∆(S) =
{
(t1, ..., tn) : 0 ≤ ti ≤ 1,

∑
ti = 1, ti = 0 for i /∈ S

}
.

and each inclusion in P0(n) is mapped to an inclusion in Top, i.e. the 0-simplices ∆(1) and
∆(2) map via inclusion to the endpoints of the 1-simplex ∆(12) and similarly for the rest
of the diagram.

This is called the punctured n-cube of simplices. Note that ∆(S) ∼= ∆|S|−1, the simplex
of dimension |S| − 1.

Example 2.13. ∆(•) : P0(3) −→ Top is

7



∆3 ∆23
∆2

∆123

∆13 ∆12

∆1

Definition 2.14. Let X and Y be n-cubes. We can consider the space of natural
transformation between X and Y, denoted Nat(X ,Y). It consists of collections of maps
(fS)S∈P(n) such that each collection determines a natural transformation between X and
Y and is topologized as a subspace of the product space

∏
S∈P(n)Map(XS , YS) where each

Map(XS , YS) is topologized with the compact-open topology described in Definition 1.10.

Definition 2.15. Let X : P0(n) −→ Top. The homotopy limit of X is defined as

holimP0(n)X = NatP0(n)(∆(•),X (•)).

Remark 2.16. At times it will be notationally convenient to denote holimP0(n)X as holimS∈P0(n)XS .

Example 2.17. Let X1 be the punctured 1-cube. A point in holim(X1) consists of a
map from ∗ to a point x ∈ X1, which can be considered as just the point x ∈ X1. Then
holim(X1) = Nat(∗, X1) ∼= X1.

Example 2.18. Let X : P0(2) −→ Top be the punctured 2-cube X1
f→ X12

g← X2. Then

holim(X1
f→ X12

g← X2) = Nat(∗ → I ← ∗, X1
f→ X12

g← X2). This is the subspace

{(x, α, y) : x ∈ X1, y ∈ X2, α ∈ Map(I,X12) s.t. α(0) = f(x), α(1) = g(y)}

of X1×Map(I,X12)×X1. This is also called the homotopy pullback of X1
f→ X12

g← X2.

Example 2.19. Consider the punctured 2-cube ∗ −→ X ←− ∗ where X is a based space
with basepoint ∗ and the maps are inclusions of the basepoint. A point in the homotopy
pullback is (∗, α, ∗), where α is a path beginning and ending at ∗. Thus the homotopy
pullback consists of loops with basepoint ∗, i.e. holim(∗ −→ X ←− ∗) ≃ ΩX, the loopspace
of X.

Example 2.20. Consider the punctured 2-cube X = X
f−→ Y

g←− ∗. A point in holim(X )
looks like (x, α, ∗) where x ∈ X and α is a path between f(x) and g(∗). If we choose g(∗) to
be the basepoint of Y , then a point in holim(X ) is precisely a point in hofiberg(∗)(X −→ Y ),
i.e. holim(X ) ∼= hofiberg(∗)(X −→ Y ).

8



Example 2.21. Let X : P0(n) −→ Top be a punctured 3-cube. Then holimP0(3)(X ) is

Nat


∆3 ∆23

∆2

∆123

∆13 ∆12

∆1

,

X1

����
��
��
�

��9
99

99
99

X13
// X123 X12

oo

X3

DD������
// X23

OO

X2
oo

ZZ666666


.

A point in holimP0(3)(X ) consists of:

• points in X1, X2, X3

• paths α12, α13, α23 in X12, X13, X23 respectively

• a two parameter path α123 in X123

such that they are all compatible with the maps in the diagram.

Example 2.22. Continuing with our previous loopspace example, Let X be the punctured
3-cube where X123 is the based space X with basepoint ∗ and XS = ∗ for all S ∈ P0(3)
such that S ̸= 123. Then holimP0(3)(X ) =

holim



∗

����
��
��
�

��7
77

77
77

∗ // X ∗oo

∗

DD							 // ∗

OO

∗oo

ZZ5555555

 .

Since a point in holim(S0) is a map ∆2 −→ X such that ∂∆2 is mapped to the basepoint
∗ of X, it follows that the homotopy limit is Ω2X ∼= Map(S2, X).

Lemma 2.23. Given an n-cube X such that n ≥ 2, there is a homeomorphism

holimS∈P0(n)XS
∼= holim

(
Xn → holimR∈P0(n−1)XR∪{n} ← holimR∈P0(n−1)XR

)
.

Remark 2.24. Note that the choice of Xn was arbitrary and was made for the sake of
notational simplicity, i.e. the lemma could have been written in terms of any Xi.

Proof. The proof of Lemma 2.23 can be found in [MV, Lemma 5.3.6]. We illustrate the
general idea of the proof below in the case where n = 3.

Let X be a punctured 3-cube. We want to show that there is a homeomorphism

9



holim



X1

����
��
��
�

��9
99

99
99

X13
// X123 X12

oo

X3

DD������
// X23

OO

X2
oo

ZZ666666


∼= holim



X1

f

��
holim(X13

// X123 X12)oo

holim(X3
// X23

g

OO

X2)oo


.

Let holim(S1) be the homotopy limit on the right. To see that there is a homeomorphism,
consider a point (x1, γ, (x3, α23, x2)) ∈ holim(S1). The map f sends x1 to the point in
holim(X13 → X123 ← X12) which consists of a point x1|X12 in X12, a point x1|X13 in X13

and the constant path c|X123 inX123 in a manner compatible with the maps in holimP0(3)(X ).
The map g sends (x3, α23, x2) to a point consisting of a point x3|X13 in X13, a point x2|X12

in X12, and a path α23|X123 in X123 once again in a manner compatible with holimP0(3)(X ).

Then the path γ between f(x1) and g(x3, α23, x2) determines a one parameter path α13

between x1|X13 and x3|X13 , a one parameter path between x1|X12 and x2|X12 , and a two
parameter path α123 between c|X123 and α23|X123 such that all the constructions are compat-
ible. This determines a point in holimP0(3)(X ) and more generally, a map F : holim(S1) −→
holimP0(3)(X ) that sends each point in holim(S1) to a unique point (x1, x2, x3, α12, α13, α23, α123)
in holimP0(3)(X ).

Similarly, we can show that there is map G from holimP0(3)(X ) to holim(S1). It is easy
to see that the compositions of these two maps are identity maps. Hence holimP0(3)(X ) ∼=
holim(S1).

Definition 2.25. Let X be an n-cube of based spaces. Then the total fiber of X , denoted
tfiber(X ), is defined iteratively:

• If n = ∅, then tfiber(X ) = X∅.

• If n ̸= ∅, then consider the n-cube X = (Y → Z) as a map of (n−1)-cubes and define
tfiber(X ) = hofiber(tfiber(Y)→ tfiber(Z)).

Remark 2.26. Since X is based, the total fiber of the (n − 1)−cube Z has a natural
basepoint given by the basepoints of the spaces in Z and constant homotopies.

Remark 2.27. It does not matter how X is considered as a map of cubes. For example, in
the 2-cube, the total fiber is same whether we first take the homotopy fibers of X∅ −→ X2

and X1 −→ X12 and then find the total fiber or if we first take the homotopy fibers of
X∅ −→ X1 and X2 −→ X12 and then find the total fiber. For more details, see [MV,
Prop. 5.5.4].
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Example 2.28. Let X be a 2-cube. Then the iterative process of finding the total fiber of
X is illustrated below:

tfiber(X ) = hofiber(f) // hofiber(X∅ // X2)

��

f // hofiber(X1
//

��

X12)

X∅
f1 //

f2
��

X1

f4
��

X2
f3 // X12

.

Let x0, x1, x2 and x12 be the basepoints of X∅, X1, X2, and X12 respectively. A point in
hofiberx2(X∅ −→ X2) looks like (y, α) where y ∈ X∅ and α is a path from f2(y) to x2. Then
f1(y) ∈ X1 and f3(α) is a path in X12 from f3(f2(y)) to the basepoint x12. Define the map f
as (y, α) 7→ (f1(y), f3(α)). Note that hofiberx12(X1 −→ X12) has basepoint (x1, cf1(x1)=x12

).
Then a point in tfiber(X ) consists of a point in hofiberx2(X∅ −→ X2) and a path of paths
in hofiberx12(X1 −→ X12).

If X is an n-cube in Top∗ and S0 is the punctured n-cube obtained by removing X∅ from
X , then there is a canonical map a : X∅ −→ holim(S0) that sends each point x0 ∈ X∅ to
the point in holim(S0)that consists of

• a point in each Xi, where i ∈ n, obtained by mapping x0 to Xi using the maps in the
diagram

• constant homotopies elsewhere.

Example 2.29. Let X be the 2-cube

X∅
f //

g

��

X1

f ′

��
X2

g′ // X12.

Then we have the canonical map

a : X∅ −→ holim(X1 −→ X12 ←− X2)

x 7−→ (f(x), cf ′(f(x))=g′(g(x)), g(x))

Proposition 2.30. Let X be an n-cube in Top∗. Let S0 be the punctured n-cube resulting
from removing X∅ from X . Then holim(S0) = Nat(∆(•), S0) has a natural basepoint which
sends each face ∆(S) of ∆(n) to the basepoint of the corresponding space XS . Then

hofiber(a : X∅ −→ holim(S0)) ∼= tfiber(X )

Proof. The general proof of Proposition 2.30 can be found in [MV, Prop. 5.5.4]. We will
illustrate the proof for the case n = 2. We proceed similarly to the proof of Lemma 2.23.
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Let X be a 2-cube and S0 the punctured n-cube resulting from removing X∅ from X . We
want to show that

tfiber


X∅

f //

g

��

X1

f ′

��
X2

g′ // X12.

 ∼= hofiber
(
X∅ // holim(S0)

)
.

Let x0, x1, x2, x12 be the basepoints of X0, X1, X2, X12 respectively. Note that the basepoint
of holim(S0) = holim(X1 −→ X12 ←− X2) is (x1, cx12 , x2).

A point in hofiber (a : X∅ −→ holim(S0)) consists of a point y ∈ X∅ and a two-parameter
path α from (f(y), cf ′(f(y))=g′(g(y)), g(y)) to the basepoint (x1, cx12 , x2). Then α determines
the following:

• a path β from (f(y), cf ′(f(y))=g′(g(y))) to (x1, cx12)

• a path γ from g(y) to x2.

Since a point in tfiber(X ) consists of a point (x, δ) and a path from (f(x), g′(δ)) to (x1, cx12)
where δ is a path from f(x) to x2, it follows that the point y and the paths β and γ deter-
mine a point in tfiber(X ). Hence, we have constructed a map F : hofiber(a) −→ tfiber(X )
that sends each point in hofiber(a) to a unique point in tfiber(X ).

Similarly, we can define a map G from tfiber(X ) to hofiber(a). It is easy to see that the com-
positions of F and G are identity maps. Hence tfiber(X ) ∼= hofiber (a : X∅ −→ holim(S0)).

Proposition 2.31. Let X be an n-cube. Append a point ∗ to X so that there is a unique
map from ∗ to every XS , S ̸= ∅, and denote the augmented cube Y. Then holim(Y) ∼=
tfiber(X ).

Proof. We will work with the case where n = 2 for notational simplicity. However, the
following proof can be easily modified for any n.

Let Y be a 2-cube X with a point appended in the manner described above. Then
holim(Y) =

holim


X∅
��

// X1

��
X2

// X12

∗
bbEEE

__

dd

 = holim


X∅

||xxx ""F
FF

��
X1

// X12 X2
oo

∗
ddHHHH

OO ::vvvv

 ∼= 1holim


X∅

||yy ""E
E

��
X1

// X12 X2
oo

∗
>>}} Id // ∗

OO

∗
``AA

Idoo

 .

1In order to prove this equivalence rigorously, we would need to define the homotopy limit for any diagram
of spaces. This is beyond the scope of this paper. Intuitively, it is not hard to see that expanding the diagram
at a point with the addition of identity maps and the same point does not change the homotopy limit.
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By Lemma 2.23 and Example 2.20, it follows that

holim


X∅

||yyy
y

""EE
EE

��
X1

// X12 X2
oo

∗
==|||| Id // ∗

OO

∗
aaBBBB

Idoo

 ∼= holim


X∅

��
holim(X1

// X12 X2)oo

holim(∗ Id // ∗

OO

∗)Idoo

 ∼=

holim


X∅

��
holim(X1

// X12 X2)oo

∗

OO

 ∼= hofiber
(
X∅ // holim(X1

// X12 X2)oo
)
.

Then by Proposition 2.30

hofiber
(
X∅ // holim(X1

// X12 X2)oo
)
∼= tfiber


X∅ //

��

X1

��
X2

// X12

 .

Remark 2.32. In Section 6, we will freely use the fact that the homotopy limit satisfies a
universal property in the sense if a space X maps to every space in a punctured n-cubical
diagram X , then there exists a unique map X −→ holim(X ) that is compatible with the
maps in X . To prove that the homotopy limit satisfies this universal property rigorously
requires a different perspective on homotopy limits that is beyond the scope of this paper.
For details, see [MV, Chapter 8].

3 Khovanov Homology Interpreted via Cubical Diagrams

In [EvT], Everitt and Turner give a homotopy thereotic intepretation of Khovanov homol-
ogy by associating the Khovanov homology of a knot diagram D with the homotopy limit
of a diagram of Eilenberg-Mac Lane spaces. This is achieved by applying the Eilenberg-
Mac Lane functor K(−, n) to a commutative diagram of abelian groups obtained from D
which yields an n-cube of spaces, whose homotopy limit has homotopy groups which are
isomorphic to the unnormalised Khovanov homology of D.

The construction of Khovanov Homology as well as a brief sketch of Everitt and Turner’s
homotopy theoretic interpretation is shown below. We will adopt Everitt and Turner’s no-
tation in [EvT].

Finally, we will need to define a knot projection. A knot projection K is a projection of
a knot onto a plane such that all the points of singularities are double points.
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3.1 Khovanov Homology

Given an oriented knot projection D with crossings arbitrarily labeled 1, 2, ..., n, let n =
{1, 2, ..., n} be the set of crossings of D. Let B be the poset of subsets of n ordered by
reverse inclusion, i.e. for x, y ∈ B such that x ⊆ y, we have x ≥ y. By considering B as
a category, we can construct a contravariant functor FKH : Bop −→ Ab that sends the
n-cube Bop to a commutative diagram of abelian groups as follows:

Each crossing in D can be 0-resolved or 1-resolved as shown below:

0−→ 1−→

For each x ∈ Bop, a complete resolution D(x) of D is a collection of planar circles which
results from 1-resolving every crossing in x and 0-resolving every crossing not in x. For an
example, see Figure 1.

1 2

D(∅) // D(1)

��
D(12)//D(2)

��

Figure 1: a projection of the unknot (left) and the corresponding diagram of complete
resolutions (right)

Let V be the free abelian group generated by {1, s}. Let FKH(x) = V ⊗k where k is the
number of connected components of D(x). For each x, y ∈ Bop where x is obtained by
adding an element of n to y, denoted x ≺ y, the complete resolution D(x) results from
1-resolving a crossing that was 0-resolved in y. This amounts to two circles of D(y) either
merging into one circle or one circle of D(y) splitting into two circles. Let m : V ⊗V −→ V
and ∆ : V −→ V ⊗ V be maps defined on generators as follows:

m : 1⊗ 1 −→ 1, 1⊗ s −→ s, s⊗ 1 −→ s, s⊗ s −→ 0

∆ : 1 −→ 1⊗ s+ s⊗ 1, s −→ s⊗ s

If two circles merge, then FKH(x ≺ y) : FKH(y) = V ⊗k −→ V ⊗k−1 = FKH(x) defined by
using m on the tensor factors corresponding to the merging circles and the identity on the
rest. If one circle splits into two, then FKH(x ≺ y) : FKH(y) = V ⊗k −→ V ⊗k+1 = FKH(y)
defined by using ∆ on the tensor factor corresponding to the spliting circle and the identity
on the rest. For an example, see Figure 2.

With this, the Khovanov cochain complex K∗ can be constructed. Let Kn = ⊕|x|=nFKH(x)
be the n-cochain. In order to define the differentials, it suffices to make each face of the cube
of abelian groups anticommute. This is achieved by sprinkling signs on the edges so that
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∅ {1}oo

{2}

OO

{1, 2}

OO

oo

FKH

−−−−−−−−−→

V ⊗2 ∆ //

m

��

V ⊗3

m

��
V

∆ // V ⊗2

Figure 2: The functor FKH : Bop −→ Ab determined by the projection of the unknot in
Figure 1.

each face contains an odd number of minus signs. Let [x, y] denote the sign corresponding to
the edge FKH(x ≺ y). Let i denote the crossing that was 0-resolved in D(y) but is 1-resolved
in D(x). Define [x, y] = (−1)

∑
j<i 1 where the sum is over j ∈ x and let d : Kn−1 −→ Kn

be defined by
∑

[x, y]FKH(x ≺ y) such that |x| = n. For an example, see Figure 3.

V ⊗2 ∆ //

m

��

V ⊗3

m

��
V

−∆ // V ⊗2

Figure 3: a 2-cube that anticommutes due to a sprinkling of signs

Definition 3.1. The unnormalised Khovanov homology of a knot diagram D is the
cohomology of the Khovanov cochain complex, i.e.

KH
∗
(D) = H(K∗, d)

The unnormalised Khovanov homology is not invariant under isotopy. However, by normal-
ising, a knot invariant is obtained:

Given an oriented knot diagram D, a crossing is said to be a negative crossing if the
understrand runs from left to right. Otherwise, it is a positive crossing.

??__ ??__

Figure 4: a negative crossing (left) and a positive crossing (right)

Definition 3.2. Let D be an oriented knot diagram. Let c be the number of negative
crossings in D. Then the normalised Khovanov homology of D is defined as

KH∗(D) = KH
∗+c

(D).
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oo //

R1

oo //

R2

oo //

R3

Figure 5: the three Reidemeister moves

We want to show that the normalised Khovanov homology is an invariant. It suffices to
prove that Khovanov homology remains invariant under the three Reidemeister moves il-
lustrated in Figure 5.

We will provide the proof for the Reidemeister I and Reidemeister II cases adapted from
[BN]. For the proof of the Reidemeister III case, see [BN, 3.5.5]. We will need the following
lemma.

Lemma 3.3. Let C be a chain complex and let C′ ⊂ C be a subchain complex. Then

• if C′ is acyclic, i.e. its homology groups are zero, then H(C) ∼= H(C/C′) and

• if C/C′ is acyclic, then H(C) = H(C′).

Proof. Consider the long exact homology sequence

. . . // Hr(C′) // Hr(C) // Hr(C/C′) // Hr+1(C′) // . . .

associated with the sequence 0 // C′ // C // C/C′ // 0 . Suppose C′ is acyclic.

Then Hr(C′) = 0 for all r. So then the long exact homology sequence becomes

. . . // 0 // Hr(C) // Hr(C/C′) // 0 // . . .

By exactness, it follows that Hr(C) ∼= Hr(C/C′). The proof for the second part is similar.

Now suppose that C/C′ is acyclic. Then Hr(C/C′) = 0 for all r. So then the long exact
homology sequence becomes

. . . // 0 // Hr(C′) // Hr(C) // 0 // . . .

Then by exactness, it follows that H(C) = H(C′).
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Proposition 3.4. The normalised Khovanov homology is invariant under the first Reide-
meister move R1.

Proof. Let K be a knot projection and K ′ be K with a twist in the projection. We want
to show that KHr(K) ∼= KHr(K ′) for all r. For the sake of notational simplicity, let
Hr(K) = KHr(K) and Hr(K ′) = KHr(K ′).

Let J K denote the cochain complex generated by K ′. Note that the n-cube generated
by K ′ can be considered as a map between two (n − 1)-cubes where one (n − 1)-cube X
consists of all the abelian groups corresponding to complete resolutions where the twist
is 0-resolved and the other (n − 1)-cube Y consists of all abelian groups corresponding to
complete resolutions where the twist is 1-resolved. Then let J K denote the subcomplex

generated by X and J K denote the subcomplex generated by Y.

Then we have the complex

C = J K = J K m−→ J K.
We want to consider the following subcomplex of C.

C′ = J K1 m−→ J K.
We need to explain the notation above. In particular, we want to construct the subcomplexJ K1 of J K. Each cochain of J K consists of linear combinations of tensor products
that correspond to the cycles in the complete resolutions. Each of these complete resolutions
has the cycle from 0-resolving the twist. Then define J K1 to be the subcomplex whose
cochains consists of elements such that the component of the element corresponding to the
cycle in is 1. Note that 1 is a unit for the map m. So then the restriction of m to J K1
is an isomorphism and so C′ is acyclic. Hence by Lemma 3.3, it follows thatH(C) ∼= H(C/C′).

Now consider the quotient complex

H(C/C′) = H(J K/J K1 m−→ 0)

∼= H(J K/J K1).
Since we have essentially “mod out by 1 = 0” from the tensor factor V correspond-
ing to the cycle in the twist, it follows that any element of a cochain of J K/J K1
has s for the component of the element corresponding to V . So then V/(1 = 0) is
generated by a single element s. But this means that V/(1 = 0) ⊗ V ⊗k ∼= V ⊗k. So
H(K ′) = H(J K) ∼= H(J K/J K1) ∼= H(J K) = H(K). Thus, the normalised Kho-
vanov homology is invariant under R1.

Proposition 3.5. The normalised Khovanov homology is invariant under the second Rei-
demeister move R2.
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Proof. The proof of invariance under R2 uses the same techniques as the ones in the proof
of Proposition 3.4. We will provide a diagrammatic sketch of the proof similar to [BN,
Figure 1] with the understanding that the details can be filled easily.

For the sake of notational simplicity, let JKK/1=0 := JKK/JKK1 and

A = J K
B = J K
C = J K
D = J K.

Then we have the following cochain complex:

C = J K = A
m // B

C

∆

OO

// D

OO

Consider the subcomplex

C′ =
A1

m // B

0

∆

OO

// 0

OO

Using the same argument as Proposition 3.4, it follows that C′ is acyclic. Then we have

C′ =
A/1=0

m // 0

C

∆

OO

// D

OO

Now consider the subcomplex C′′ of C/C′ illustrated below:

C′′ =
0 // 0

0

OO

// D

OO

Consider the quotient complex

(C/C′)/C′′ =

A/1=0
// 0

C

∆

OO

// 0

OO

We want to prove that ∆ is an isomorphism. Clearly ∆ is an injection. Consider an element
x of a cochain of J K. Then the components of x corresponding to the middle and right
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cycles of J K is either 1 and s or 1 and 1. In the first case, the element y in J K with
all components equal outside of the R2 region with s corresponding to the cycle on the right
in J K maps to x under ∆. Similarly for the second case. So then ∆ is surjective and
thus an isomorphism. This means that (C/C′)/C′′ is acyclic. Then by Lemma 3.3, it follows
that H(C) ∼= H(C/C′) = H(C′′). Thus we have invariance under R2.

Example 3.6. We will show an example of the construction of the Khovanov cochain com-
plex as well as a computation of Khovanov homology.

Consider the projection D from Figure 1. It generates the following 2-cube

V ⊗2 ∆ //

m

��

V ⊗3

m

��
V

−∆ // V ⊗2

.
This yields the following cochain complex:

. . . // 0 // V ⊗2 ∆⊕m // V ⊗3 ⊕ V
(m,−∆)// V ⊗2 // 0 // . . .

Since the projection D is the unknot, it suffices to calculate Khovanov homology for the
projection D′

We have the following cochain complex:

. . .
d−2 // 0

d−1 // V
d0 // 0

d1 // . . .

Then

KH∗(D′) =

{
KH0(D′) = V/0 = V

KHr(D′) = 0, for all r ̸= 0

3.2 A Homotopy Theoretic Interpretation of Khovanov Homology

In order to arrive at Everitt and Brent’s homotopy theoretic interpretation of Khovanov
homology, the n-cube Bop will have to be modified in a manner that does not affect the
construction of the unnormalised Khovanov Homology. This is because Bop has an initial
object and as a result, any n-cube of spaces obtained from Bop will have a homotopy limit
that is equivalent to the initial space.

We modify B by appending a point ∗ so that for any x ̸= ∅, there is a unique morphism
from x to ∗ and denote the augmented diagram Q. Then the functor FKH : Bop −→
Ab can be extended to FKH : Qop −→ Ab by letting FKH(∗) = 0 and FKH(∗ → x) :
FKH(∗) −→ FKH(x) be the only possible homomorphism. The cochain complex over Qop
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is constructed in the same manner as section 4.1 with minor additions. Let [x, ∗] = −1
for each x ≺ ∗ and define the signs of all other edges [x, y] as before. The direct sum
K0 = ⊕|x|=0FKH(x) includes the zero group and the corresponding differential sums over
the added homomorphisms. Then the resulting cohomology is precisely the unnormalised
Khovanov homology. Thus, adding a point to the diagram in the manner described above
preserves Khovanov homology.

Definition 3.7. An Eilenberg-Mac Lane space K(G,n) is a space with only one non-
trivial homotopy group πn(X) ∼= G.

We can apply the Eilenberg-Mac Lane functor K(−, n) to a diagram of abelian groups.
It sends each group G to the Eilenberg-Mac Lane space K(G,n) and homomorphisms
between the groups in the diagram to maps of spaces determined by the cell structures
of the corresponding Eilenberg-Mac Lane spaces. By composing K(−, n) with the functor
FKH , we obtain a diagram of Eilenberg-Mac Lane spaces. This is a cubical diagram of
spaces with an additional point K(0, n) ≃ ∗ mapping to all spaces except the initial space.
The following theorem associates Khovanov homology with the nth homotopy group of the
homotopy limit of this diagram of spaces.

Theorem 3.8. (Everitt and Turner) Let YnD = holimQop(K(−, n) ◦ FKH). Then

πi(YnD) ∼=

{
KH

i
(D) 0 ≤ i ≤ n

0 else.

Proposition 3.9.
YnD = tfiberBop(K(−, n) ◦ FKH)

Proof. This follows immediately from Proposition 2.31 since the homotopy limit of a cubical
diagram augmented by a point is the total fiber of the cubical diagram.

4 Calculus of Functors

The idea of calculus of functors is that the behavior of a functor F : C −→ C′ can be
approximated by a sequence of simpler functors TkF : C −→ C′. The functors TkF are
constructed so that we have natural transformations F −→ TkF compatible with the com-
position F −→ Tk+1F −→ TkF . This results in a commutative diagram illustrated below:
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��
Tk+1F

��
F

<<yyyyyyyyy
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��,
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// TkF

��
Tk−1F

��
...

��
T0F

This is called a Taylor tower. Each TkF is called the k-th stage of the Taylor tower.

The construction of a Taylor tower for spaces of long knots lies in the domain of what is
called manifold calculus of functors. Let M be a smooth, closed manifold of dimension
m. Let O(M) be the category that has the open sets of M as objects and inclusions
as morphisms. Manifold of calculus studies contravariant functors F : O(M) −→ Top.
Of particular interest to us is the space of embeddings Emb(M,N) where N is a smooth
manifold, which can be regarded as a contravariant functor.

Definition 4.1. Let M and N be smooth manifolds. Then

• an immersion is a smooth map f such that its derivative df : TM −→ TN is a
fiberwise injection and

• an embedding is a immersion f with the additional condition that it is a homeo-
morphism onto its image.

We denote the space of immersions Imm(M,N) and the space of embeddings Emb(M,N).
They are topologized with the Whitney C∞ topology. For details on this topology, see
[MV, Appendix A]. Since every embedding is an immersion, it immediately follows that
Emb(M,N) ⊆ Imm(M,N).

To see how the space of embeddings is a functor Emb(−, N), consider two open sets
U1, U2 ⊆ M such that U1 ⊆ U2. The inclusion U1 ↪→ U2 corresponds to the restriction
Emb(U2) −→ Emb(U1).

In the following sections we will restrict our attention to the case whereM = R and N = R3.
That is, we will build a Taylor tower specifically for the space of long knots rather than a
general construction for a space of embeddings.
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4.1 Taylor tower for spaces of long knots

Since knots are embeddings, it seems natural to study them in the context of manifold
calculus. The Taylor tower for knots consists of the space of knots for F and homotopy
limits of punctured diagrams for each TkF . Traditionally, knots are defined as embeddings
of S1 in R3. However, it will be more convenient for us to consider knots as embeddings of
R in R3.

Definition 4.2. Let e : R −→ R3 be the standard linear embedding defined by t 7−→
(t, 0, 0). Then the space of long knots Embc(R,R3) consists of embeddings f such that
f agrees with e on all points outside of a compact set, i.e.

Embc(R,R3) = {f ∈ Emb(R,R3) : f(t) = (t, 0, 0) for all t /∈ [0, 1]}.

It is topologized as a subspace of Emb(R,R3). The space of immersions Immc(R,R3) is
defined similarly.

Intuitively, it is not hard to see how a closed knot in Emb(S1,R3) relates to a long knot in
Emb(R,R3). A long knot simply restricts all the “tangling” of the knot to a compact set.
Outside of this compact set, a long knot is a straight line that approaches ±∞. We can
think of this as the knot closing up at infinity. A more rigorous treatment of how closed
knots and long knots are related can be found in [MV, 10.3.1].

K ∈ K3

Figure 6: A long knot K ∈ K3

Note that paths in Embc(R,R3) are isotopies. The homotopy group π0(Emb(R,R3)) is the
set of all isotopy classes of knots and the cohomology H0(Emb(R,R3)) is the space of all
knot invariants which are functions that give the same value for isotopic knots.

We will now construct the Taylor tower for long knots. In particular, we want to define the
stages of the Taylor tower.

Definition 4.3. Let K3 denote the space of long knots Emb(R,R3). Let I1, . . . , Ik+1 be
disjoint subintervals of R and S a nonempty subset of k + 1 = {1, 2, . . . , k+1}. Then define
the space K3

S = Emb(R\
∪
i∈S

Ii,R3).

an element of K3
{1,2,3,4}
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Let i ∈ {1, 2, . . . , k + 1}\S. Then there is a map K3
S −→ K3

S∪{i} defined by restrictions of

embeddings to embeddings with one more puncture. These restrictions and the spaces K3
S

define a punctured (k+ 1)-cubical diagram. Let XkK3 denote this punctured (k+ 1)-cube.

Example 4.4. When k = 2, we have the following punctured 3-cube:

K3
{1}

��

%%KK
KKK

K3
{2}

//

��

K3
{1,2}

��

K3
{3}

//

##G
GG

G
K3

{1,3}

%%KK
KKK

K3
{2,3}

// K3
{1,2,3}.

Definition 4.5. The k-th stage of the Taylor tower for K3 is the homotopy limit of the
punctured (k + 1)-cube defined by K3

S , i.e.

TkK3 = holim(XkK3)

Example 4.6. Consider, as in Example 4.4, the case where k = 2. Then we have the
following punctured 3-cube:

K3
{1}

{{vv
vv
vv
vv
v

##H
HH

HH
HH

HH

K3
{1,3}

// K3
{1,2,3} K3

{1,2}
oo

K3
{3}

<<yyyyyyyy
// K3

{2,3}

OO

K3
{2}

oo

bbEEEEEEEE

A point in T2K3 consists of

• one-punctured knots in K3
{1}, K

3
{2}, K

3
{3}

• isotopies of twice-punctured knots in K3
{1,2}, K

3
{1,3}, K

3
{2,3}

• a two-parameter isotopy of a thrice-punctured knot in K3
{1,2,3}

such that they are all compatible with the restriction maps in the diagram.

It remains to define the natural transformations in the Taylor tower. Since K3 maps to
each space in the punctured cube XkK3 via restriction maps (essentially punching holes
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into a knot), it follows that there is a unique map K3 −→ TkK3 (isotopies are constant).
Furthermore since the homotopy limit of a cubical diagram maps in a canonical way to
every space in the diagram and every XkK3 is a subdiagram contained in X(k+1)K3, by
Lemma 2.23, it follows that there is a canonical map T(k+1)K3 −→ TkK3. Combining these
maps yields the Taylor tower for long knots:

...

��
Tk+1K3

��
K3

;;wwwwwwwww

##G
GG

GG
GG

GG

��-
--
--
--
--
--
--
--
--
--
--
--
--

// TkK3

��
Tk−1K3

��
...

��
T0K3

Now that we have constructed the Taylor tower for long knots, we want to know if this
Taylor tower converges, i.e. is it true that π∗(K3) ∼= π∗(T∞K3), where T∞K3 is the inverse
limit of the tower? Similarly, do we have H∗(K3) ∼= H∗(T∞K3)? It is not known if the
Taylor tower converges. However we can measure whether the map K3 −→ TkK3 induces
isormophisms on cohomology through a range by studying the difference between K and
TkK3, i.e. the homotopy fiber of the map K3 −→ TkK3. Namely, for a fiber sequence

hofiber(f) −→ X
f−→ Y , there is a long exact sequence

. . . // πn(hofiber(f)) // πn(X) // πn(Y ) // πn−1(hofiber(f)) // . . . .

So knowing π∗(hofiber(f)) (or H
∗(hofiber(f))) tells us how close X and Y are on homotopy.

But by Proposition 2.30, the homotopy fiber of K3 −→ TkK3 is also the total fiber of the
k + 1-cube K −→ XkK3, i.e.

tfiber(K // XkK3) ∼= hofiber(K // TkK3)

4.2 Equivalent constructions of the Taylor tower for spaces of long knots

In practice, it is useful to construct the Taylor tower for spaces of long knots with what is
called the “space of knots modulo immersions” rather than with Embc(R,R3) and relate the
new construction to configuration spaces. It is beyond the scope of this paper to explicitly
show how these modifications are related to our original construction or that they do not
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significantly change the context in which our original construction studies knots. Instead,
we provide some intuition for this new construction because it lends a valuable perspective
in the study of knots.

The procedure for building the Taylor tower with the space of knots modulo immersions is
essentially identical with the one in Section 4.1. We will denote the space of knots modulo

immersions K3
. We will write Embc(R,R3) when referring to the space of long knots defined

in Section 4.1.

Definition 4.7. Let Embc(R,R3) ↪→ Immc(R,R3) be the inclusion map. Then the space
of knots modulo immersions is defined as

K3
= hofibere(Embc(R,R3) ↪→ Immc(R,R3)).

So a point in K3
consists of a long knot K and an isotopy from K to the unknot e.

Definition 4.8. Let I1, . . . , Ik+1 be disjoint subintervals of R and S a nonempty subset of
k + 1 = {1, 2, . . . , k + 1}. Let eS denote the restriction of e to R\

∪
i∈S

. Then define

K3
S = hofibereS (Emb(R\

∪
i∈S

Ii,R3) ↪→ Imm(R\
∪
i∈S

Ii,R3)).

Let i ∈ {1, 2, . . . , k + 1}\S. Then similar to the construction in Section 4.1, there is a

map K3
S −→ K

3
S∪{i} defined by restrictions of embeddings to embeddings with one more

puncture. These restrictions and the spaces K3
S define a punctured (k+1)-cubical diagram.

Let XkK denote this punctured (k + 1)-cube.

Definition 4.9. The k-th stage of the Taylor tower for K3
is the homotopy limit of the

punctured (k + 1)-cube defined by K3
S , i.e.

TkK
3
= holim(XkK)

The natural transformations in this modified construction of the Taylor tower arise in same
matter as described in Section 4.1. Hence, combining these maps with our newly defined
k-th stages yields a Taylor tower for the space of knots modulo immersions.

We will now associate to each space K3
S a configuration space.

Definition 4.10. The configuration space of n points in R is defined as

Conf(n,R3) = {(x1, x2, . . . , xn) ∈ (R3)n : xi ̸= xj for all i ̸= j}

Example 4.11. From the definition, it is easy to see that

• Conf(0,R3) = ∗

• Conf(1,R3) = R3.

The space K3
S contains knots with |S| many punctures. These punctured knots consist of

disjoint arcs. If we retract each arc to its midpoint, then we are left with |S| − 1 points. So

K3
S ≃ Conf(|S| − 1,R3). Then intuitively, the restriction maps K3

S −→ K
3
S∪{i} correspond

to the maps Conf(|S| − 1,R3) −→ Conf(|S|,R3) that “add a point” as shown in Figure 7.
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x2x1

x3

x1

x3

x2
x′
2

Figure 7: The restriction map “adds a point”

Thus each kth stage TkK
3
is “built out of” configuration spaces, i.e. intuitively, we have

T3K
3 ≃ holim



Conf(0,R3)

��

))SSS
SS

Conf(0,R3) //

��

Conf(1,R3)

��
Conf(0,R3) //

))SSS
SS

Conf(1,R3)
))SSS

SS

Conf(1,R3) // Conf(2,R3).


We need cosimplicial spaces to make the maps between configuration spaces more precise.
For details, see [MV, 10.3.2].

5 Conjectures

In [Vol], the Taylor tower for the spaces of long knots is shown to contain information about
finite type invariants. In particular, the Jones polynomial is encoded in the invariants of the
Taylor tower in the following manner: the coefficient of the nth degree term of the Jones
polynomial is an element of H0(T2nK3). Since the Jones polynomial can be extracted from
Khovanov homology, it is natural to ask whether the higher homology of the Taylor tower
contains information about Khovanov homology.

Furthermore, Everitt and Turner’s space level realization of Khovanov homology is con-
structed using similar cubical diagram techniques to the ones used in manifold calculus of
functors and the construction of the Taylor tower for knots. In particular, the total fiber of
a cube of punctured knots can be used to study the difference between K3 and TkK3 (See
end of Section 4.1). This connection is made further explicit in Proposition 3.9. This leads
to the following conjectures:

Conjecture 1. The cohomology of the stages of the Taylor tower for the spaces of long
knots is related to Khovanov homology. More precisely, let K be a knot with crossing
number n. Let H∗(T2n(K)) denote the cohomology of the 2n-th Taylor stage component of
the space of knots containing the knot K. Then H∗(T2n(K)) ⊃ KH∗(K).

Conjecture 2. H∗(T2n(K)) is built out of H∗(Conf(k,R3)). Thus KH∗(K) can be repre-
sented through the cohomology of configuration spaces.
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