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Abstract

Proteins that bind intracellularly are surrounded by other macromolecules. Macromolecular
crowding has been shown to impact protein folding and binding, but its effects on the
electrostatics of protein binding have not been thoroughly studied. Two ways crowding can
affect binding are via loss of water mobility and water depletion. Crowding causes loss of
water mobility because more water molecules will be organized into solvation shells around
the crowding agents, instead of being in bulk form; waters in solvation shells are less mobile.
Water is depleted because the crowders occupy volume that would have held water. We
are interested in the effect of loss of water mobility, but it is difficult to separate the effects
of loss of water mobility and water depletion. We had previously used implicit solvent to
study the effect of water depletion due to crowding. An explicit solvent model will show
both loss of water mobility and water depletion effects. In combination with the results from
the implicit solvent study, we can then assess the effect of loss of water mobility. In this
study, we used free energy perturbation and component analysis in explicit water to begin
to examine the binding of barnase and barstar. Specifically, we evaluated the contribution
of the charge of a particular residue, barstar’s aspartic acid 35, to the binding free energy
of the barnase-barstar complex. In the future, we will introduce crowders into the system,
so we may see how the contribution of the charge of a residue to the binding free energy

changes in the presence of crowders.
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1 Introduction

1.1 Crowding

Many of the current models of protein binding, vital to rational drug design and to un-
derstanding the fundamentals of protein interaction, represent proteins and other species as
surrounded by a sea of water containing salt. However, proteins in real cells are in a crowded
environment. Between 5% and 40% of cells are composed of macromolecules, which could
potentially affect the binding and recognition of protein partners. For example, a theoretical
study of relevance to anticancer strategies® showed that for ligands binding to telomeric
DNA, the binding affinity of the ligands was significantly affected by molecular crowding.
Crowding also changes the rates®® and mechanisms™" of biological processes. In order to
understand protein binding within the cellular environment, it is necessary to understand
how crowding affects binding.

There are two ways crowding can affect proteins — through hard excluded volume inter-
actions and soft chemical ones. Many previous studies have focused on the entropic excluded
volume effect, which is caused by crowders occupying volume that was once accessible to the
protein.” When the space accessible to a protein decreases, the entropy of noncompact states
decreases more than that of compact states, and the compact states (e.g. folded, bound,
or aggregated) are thus relatively stabilized. For example, the crowding agents Ficoll and
dextran, which have little soft chemical interaction with proteins, cause proteins to favor a
compact state.

Soft chemical interactions, unlike excluded volume effects, can be either stabilizing or
destabilizing and mostly affect enthalpy. For example, urea and trimethylamine N-oxide
(TMAO) both interact with the protein backbone, but urea destabilizes'® while TMAO
stabilizes it.™' In vitro, it is difficult to separate the effects of soft and hard interactions. In

2

a study using poly(vinylpyrrolidone), which interacts only weakly with proteins®® and was

deliberately chosen to minimize soft interactions, the soft interactions were still significant



enough to reduce the stabilization caused by volume exclusion.*?

One particularly important physical determinant of molecular binding is electrostatics.
However, the effect of crowding on the electrostatic component of binding has not been
thoroughly studied. Previous studies™*% have mainly focused on how protein conformation

is affected, leaving the effect on binding free energy largely unexplored.

1.2 Electrostatics

Many important aspects of protein binding, such as binding affinity, specificity, and promis-
cuity have been shown to be dependent on electrostatics.*” In particular, the interaction
specificity of a molecule with its correct binding partner is important not only for under-
standing living cells, but also for targeting specific molecules with drugs. Electrostatics have
been used to design mutations on proteins™® and modifications of drugs™ with different
affinities and specificities. These studies all model the proteins and drugs as surrounded by
a sea of water, without any crowding.

Water in biological systems can be thought of as occurring in two phases: bulk water
and hydration shells. Water molecules will organize themselves into solvation shells around
other molecules. In the form of hydration shells, water is less mobile than if it were in bulk
form. These non-bulk effects can extend a few Angstroms to several nanometers from the
biomolecular-solvent interface.?Y The amount of non-bulk water in a cell is controversial.
Magnetic relaxation dispersion suggests 20% of cell water content is non-bulk, which corre-
sponds only to the first hydration shell.?” X-ray and neutron scattering®! and diffusion of

22724 suggests that up to 75% of cell water may be non-bulk.

endogenous probes

Crowding can decrease the mobility of water.“” When more crowding agents are present,
more water molecules will be in the form of solvation shells instead of bulk water. Addi-
tionally, by replacing water molecules with less polarizable crowding agents, electrostatic

interactions between the protein partners are descreened. Previous studies have incorpo-

rated crowding effects into a continuum model of solvation,® and a large-scale simulation of



a crowded system has partially accounted for electrostatic solvation effects.*” Computation-
ally, crowders in solvent appear to lower the effective dielectric constant of the solvent;46
this agrees with experiments that measure a lower dielectric constant in the cytoplasm, as
compared to that of pure water.*®22

In a previous study carried out in collaboration with Connie Chen ‘15 and Priyanka Nakka,
‘12, we examined the effect of crowding on the electrostatic component of protein interaction
in implicit solvent (i.e. the water is modeled as a constant dielectric).*” The protein complex

3132 and has been

used, barnase-barstar, is known to have strong electrostatic interactions
used in previous crowding studies.”® In that study, we were concerned solely with the water
depletion effect and not with altered water mobility. By modeling the water implicitly, we
were able to solely examine the water depletion effect. To solve for the free energies, the
Poisson equation ([1)) was used to relate the potential ¢(7) to the charge distribution p(7)
and the dielectric €(7) . The crowders were modeled as uncharged spheres with the same
dielectric constant as the protein; in effect, they were spherical cavities of lower dielectric
within a high dielectric solvent. We found that the presence of crowders caused the protein

partners, which are electrostatically optimized to bind, to bind more tightly, with larger

average effects at higher crowder concentration and smaller crowder size.

()

€0

V- (e(MVe(r) = - (1)

In this previous study, we also used a technique known as component analysis®#=% to

evaluate how the electrostatic contributions of specific amino acid residues were impacted
by the crowders. Component analysis involves setting the charges on a residue or moiety to
zero, and evaluating the change in binding free energy as shown in equation . A positive
AAG indicates the residue contributes favorably to binding. We can evaluate the effect
of crowding on AAG using . A positive AAAG indicates the residue contributes more

favorably (i.e. is more important) or less unfavorably when there is crowding.



AAG = AG,zeroed - AGom'ginal (2>
AAAG - AAGCTOwded - AAC¥w7,c'rouui<2d (3)

Lee and Tidor®? showed that the five barstar residues whose side chains contribute most
to the electrostatic component of binding free energy are TYR29, ASP35, ASP39, THR42,
and GLU76, shown in figure [T} Of these, we found that the charged side chains contributed
even more favorably in the presence of crowders, though only on the order of tenths of a
kcal /mol. 5

The previous study focused on water depletion and therefore used an implicit solvent
model. However, as previously discussed, there are also water mobility effects associated
with crowding. In order to model water mobility, individual water molecules must be free to
move, and so must be modeled explicitly. Molecular dynamics (MD), in combination with
explicit water, has previously been used to study crowding.™* However, it is very difficult to
directly model a protein-protein binding process using MD, so in this study, we will combine
component analysis with explicit solvent MD simulations to examine the effect of crowding

on the contribution that particular residues have on the binding free energy.

1.3 Molecular Dynamics

Molecular dynamics (MD) follows the trajectory of atoms through time. MD treats the
atoms as classical particles. Using empirical molecular mechanical force fields, described
below, the forces acting upon the atoms can be determined. Once the forces are known, the
motion of the atoms can be determined by numerically integrating Newton’s equations of
motion through time. If the system is ergodic and adequate sampling has been done, the
time average over the simulation will be the same as the NPT ensemble average, allowing
thermodynamic properties like free energy to be determined. It is often assumed, though

not proven, that for a reasonably long simulation, the system is ergodic.



Figure 1: Five residues on barstar that contribute the most favorably towards the electro-
static component of barnase-barstar binding energy.

From Newtons laws, the position update and velocity update formulae can be
derived. Here, 7 is position, v is velocity, Fis force, t is time, and m is mass. Notice that
if we are interested in the motion of a system, At must be short enough to capture these
motions. Bond vibrations that involve hydrogen atoms occur on the order of femtoseconds;
if we want to use a At larger than a fs, it is necessary to use an algorithm like LINCS,57

which constrains bond lengths.

AT = Ty At (4)
AT = %At (5)
m

In order to integrate the position update and velocity update formulae, we use the
second order leap-frog algorithm,3 to produce equations (@ and . Leap-frog integration
updates the position and velocity at staggered time points, with the positions defined on

integer times and velocities defined on half-integer times.



Ft) = F(t — At) + 5t — %At)At (6)

Bt + 5 A1) = Tt — LA + %At (7)

In order to run an MD simulation over a single time step, At, it is necessary to know
the initial positions, velocities, and masses, in addition to the forces on each particle. In the
case of the barnase-barstar complex, there is a known crystal structure to serve as a starting
point.*” The forces may be calculated once a potential energy (i.e. force field) is known, by
taking the gradient of the energy.

Molecular mechanical force fields are derived from classical mechanical approximations
to the quantum mechanical model of molecules, breaking down the potential energy into
components, as seen in equation . Each of these components is parameterized from

experiment or ab initio theoretical calculations.

E= Ebond + Ezzngle + Edihedral + Eelectrostatic + Evande'rWaals (8)

The bond, angle, and dihedral terms are collectively known as the bonded terms and
model interactions between atoms within a couple bonds of each other. Ej,,q is the energy
associated with bond lengths deviating from their equilibrium values. E,,g. is the energy
associated with angles deviating from their equilibrium values. These two terms are often
approximated by harmonic potentials. Notice that this model implies that no covalent bonds
can be created or broken; to do so is beyond the scope of molecular mechanics. Egpedra is the
energy associated with dihedral angles deviating from their equilibrium values, but it cannot
be modeled simply as a harmonic oscillator; it is typically treated as a periodic function of
the dihedral, with the periodicity dependent on the hybridization of the two middle atoms.

The van der Waals and electrostatic terms are collectively known as the non-bonded
terms, and apply only to atoms that are not close together in bonded sequence. Recall that

the van der Waals force is comprised of two effects, the attractive London dispersion force and



the repulsive Pauli exchange force; the van der Waals term will be interchangeably be called
the Lennard-Jones (LJ) interaction in this thesis. The London dispersion force arises from
attraction between induced dipole-induced dipole correlated electron motion. Specifically,
the electron clouds surrounding the atoms have temporarily shifted such that the atoms are
dipoles and these dipoles interact with each other. London dispersion falls off as r%, where
r is the distance between the two atoms, and so it is weak at long distances. The Pauli
exchange repulsion is even shorter ranged and very strong. It arises from the fact that the
wave functions of indistinguishable fermions must have exchange antisymmetry, and causes
the steric effect. For computational ease, it is often modeled as proportional to T%Q Because
the LJ potential decays so rapidly with r, it is typical to neglect its contribution at large r.

Of particular interest is the electrostatic term, which, as described previously, acts over
long distances and has a large impact when modeling proteins. In reality, atoms are partially
comprised of electron clouds, but for the sake of computational feasibility, they are not
directly modeled. Instead, partial atomic point charges and atomic radii are assigned to
the atoms. These parameters are determined through fitting to experiment and to ab initio
calculations. Once the atoms have point charges, their electrostatic interactions can be
modeled through Coulomb’s law @, noting that only atoms at least three bonds away from
each other should be included. Here, ¢ is the charge of the atom, r is the distance between

two atoms, and k is Coulomb’s constant.

Eelectrostatic = Z Z kzlqj (9)
ij

A
Notice that Coulomb’s law is O(N?) in the number of atoms in the system. Unfortu-
nately, because the electrostatic force drops off relatively slowly with distance, long-range
electrostatic interaction is actually very important. Additionally, in an actual simulation, to
avoid boundary issues, the boundary conditions are often periodic, so using Coulomb’s law
would naively take infinite time. One method to approximately calculate the electrostatic

energy is the particle mesh Ewald (PME) method.*” The PME method involves separating
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the potential (in this case, electrostatic interaction potential) into short- and long-range
components. The short-range sum converges quickly in real space, while the long-range
component converges quickly in Fourier space. This way, PME can more rapidly compute
interaction energies of periodic systems. The Fourier transform assumes periodicity, and so
it neatly deals with the boundary condition used. Overall, PME gives results in O(Nlog/N)
time, where NN is the number of atoms in each cell.

In cases where we desire the system to be coupled to a heat bath to maintain constant
temperature, a Berendsen thermostat may be used.*! The algorithm rescales velocities v
according to equation by coupling the temperature of the system T to a heat bath of
temperature Ty with coupling time constant 7. A similar Berendsen barostat is used to keep

the pressure at a desired value; in that case, the positions are rescaled.

v’:v\/l—l—%(%—l) (10)

MD may be run with either explicit or implicit solvent. Because the goal here is to
examine the effect of water mobility, we used explicit solvent, specifically the TIP3P water
model.#? TIP3P is a three-site model, with the three atoms in the water molecule able
to interact with other atoms. The number of sites in the model indicates the number of
potential sites of interaction. The molecule is held with a rigid geometry, so that the bond
angle and lengths are constant, with each of the atoms having its own charge and Lennard-

Jones parameters.

1.4 Free Energy Perturbation

The goal of the project is to calculate the AAAG for the five aforementioned important
residues of barstar, shown in figure [T, in the presence of explicit solvent in order to assess
the effect of crowding on the contributions these residues make to the binding free energy.

Again, it is computationally infeasible to directly simulate the binding process. However,
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Figure 2: Thermodynamic cycle to calculate the change in free energy, AAG, as a residue
is charged.

we can get around this issue by carefully selecting a thermodynamic cycle. We can obtain
the AAG through the cycle shown in figure The difference in free energy between the
horizontal processes in the figure, which corresponds to original formula for AAG in equation
(2)), is the same as the difference in the vertical processes, as shown in equation . Then,
we perform the same cycle in the presence of crowders, and use equation to obtain the
AAAG. In order to perform the alchemical, vertical transformations, where the residue is

being charged or uncharged, we must turn to free energy perturbation.

=4) - (11)

Free energy perturbation (FEP) is a statistical mechanical method to compute the free

energy difference as one system, A, is transformed into another, B.%3 If a particular physical



process is computationally infeasible to model directly, the free energy of the physical process
may be determined by using a thermodynamic cycle in conjunction with alchemical (i.e.
nonphysical) transformations. Consider the difference in the free energies of the states,

equation (|12)).

AG =G — G4 (12)

This can be rewritten in terms of the NPT partition function Z, using equation , to

produce . k is the Boltzmann constant and 7' is the temperature.

G = —kTInZ (13)
AG — —kKTInZE (14)
Za

If the partition functions Z4 and Zp are known, the free energy difference can be cal-
culated by equation (14]). However, the partition functions are often not known. Zp can
be rewritten as shown in equation , where r are the degrees of freedom of the system
and U is the potential energy, defined to include volume as a coordinate and pressure as a

parameter in an NPT ensemble.

Up
Zp :/e_der (15)
Up Up Uy

= /e_kTe_kTeder (16)

= /e_%e_UBkTUAdr (17)

Taking the ratio of partition functions results in equation ; the < ... >4 notation

indicates an average with respect to state A.
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_Ua _Up—Ua
Zp [ewe wm o dr
= U

=B 18
Za e~ dr (18)
U (19)

If equation and equation are combined, the Zwanzig equation , also known
as exponential averaging (EXP), is produced.

Up-U

AG(A— B)=—kTln < e 7 >, (20)

The EXP method is limited. Notice that, in effect, we are taking the microstates of
state A and using them to calculate Zp. The difference in energy, AU, is obtained by
averaging over the equilibrium ensemble of the initial state. Thus, we reweigh the states,
using ¢~ % instead of e~ . The method converges rapidly only if states A and B have large
phase space overlap, meaning that they contain many microstates in common. In that case,
the difference in potential energy is small, so the exponential in the Zwanzig equation is
large. If they overlap poorly, there is a great deal of statistical uncertainty and the equation
converges slowly. In FEP, at each state, a MD simulation is run, to determine the probability
of microstates at that state. Because the simulation may not begin at equilibrium, the system
must first be minimized and equilibrated at each state. FEP therefore is very computationally
intensive. If the perturbation between A and B is large (i.e., the overlap between the two
states is small), the simulation must run for a long time to sample the dissimilar microstates.
One solution is to select intermediate states; the transformation from state A to B is denoted
by the reaction progress coordinate, A. In our case, A corresponds to the charge on the residue
being zeroed out. When choosing intermediate states for this method, we choose states that
maximize overlap and ensure convergence, therefore maximizing the calculations efficiency
and accuracy.

The EXP method requires all high probability microstates of A be found in high proba-

11



bility in B. A less stringent method is the Bennett acceptance ratio method (BAR), which
involves sampling from both states A and B instead of just A.%% (As a result, BAR requires
configurational information at both states.) Therefore, BAR is more efficient and requires
less phase overlap, though it is less intuitive. The original Bennett paper deals with finding
the Helmholtz free energy from a Monte Carlo simulation. Although this derivation is not
strictly true for a molecular dynamics simulation, the MD data for a system with many

degrees of freedom will be very similar to the configurational distribution.**

=e " (21)

For any function M that satisfies equation (21)) (i.e., that follows the principle of detailed
balance), we can write a version for both Uy and Up (equations and (23)). After some
algebra, we get equation out, which Bennett called the acceptance probability (recall
that he was dealing with MC).

MUs) — _y,
—M(—UA) =e (22)

MUs)  _y,
—M(—UB) =e (23)

MU v, _ MUs) o,

MU0 M(-Us) )
M(UA)M(=Ug)e V8 = M(Ug)M(—Uy)e V4 (25)
MUy —Ugle ™V = M(Ug — Uyp)e V4 (26)

If the relation in equation is integrated over all of configuration space, and then

multiplied by %, we get .

J MUy —Ug)e YPdqy...dgy P [ M(Up — Ua)e Y4dqy...dgs
=Zp

Z
A ZA ZB

12



Notice that the fractional portions of equation are averages; this leads to the accep-
tance probability ratio equation, equation ([28)).
Z 4 <M(UA—UB)>B

L 28
ZB <M(UB—UA)>A ( )

Now, a more general version of equation (28) can be obtained by allowing an arbitrary
weighting function W (g;...qn) to be included in both numerator and denominator. This

results in equation ([29)).

Za  Za[We Ur=Undgh

Z_B - ZBfWe_UB_UAqu (29)
< MU, —Up)>p [ WeVazUsqgV (30)
< M(Up—Uyp) >4 [WeUs~UadgVN
_< We Vs > 31)

<We'Us >,

Bennett’s paper*® then finds the W which minimizes the error in the estimated free
energy. The rest of the derivation is briefly outlined and presented without proof; for more
details, consult Bennett’s paper. The free energy is shown in equation . If the data
are n, configurations in state A and np configurations in state B, and the sample size is
large, then the error will be approximately Gaussian and expected to look like equation

(32). Equation shows the result of optimizing W if the result is substituted back into

equation , then equation follows.

(AGest — AG)Q < W?2e=2Us > < W?e=2Ua >pB B i B i (32)
kT Cna(< WeUs >,)2 " np(< WeUa >5)2 ny  np
R e R T T
(Jf WemUa=UndgN)? na  np
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constant
W - ée_UB + Z_Be_UA <34>
naA np

tant -U.
< > cons ) e~ Ua >p5
Za na® Btape 4

ZB < Ziefzogf:ge*UA erB >A
nA np
1
>
T aUs)(ZazE) T8 Zun, (36)
- 1
(Um0 (A A s
:<f(UA—UB+C) >B€C (37)
< f(UB — UA—C) >A

Equation uses the Fermi function f(r) = — and a shift constant C' = InZA%E

1+e® Zpna°

The shift constant C' must be determined self consistently. Finally, the free energy can be

determined by equation .

<f(UA—UB+C) >B
< f(Up —Un—C) >4

AG = kT (In +0) (38)

1.5 Comparison to implicit solvent

The ultimate goal of this work is to perform component analysis of barstar residues in the
barnase-barstar system, in explicit solvent, in the presence and absence of crowders. We can
then assess how the water depletion and loss of water mobility caused by the crowders effects
the contribution of the charges on particular residues to the binding free energy. In order
to perform component analysis in explicit solvent, free energy perturbation is necessary to
calculate the free energy change. When taken in context of previous work, which dealt with
water depletion, we will be able to see if the loss of water mobility in the presence of crowders
changes this contribution.

Implicit solvent calculations were largely done with the same methodology as in our previ-

ous study.®” In order to compare the implicit and explicit solvent results in a controlled way,

14



we changed some parameters for the implicit solvent calculations, as described in Methods.
The results of these calculations are reported in the current study.
At this point, component analysis has been performed for the aspartic acid 35 residue of

barstar in the absence of crowders.

2 Methods

2.1 Structure

The structure used in this study was modified from a 2.0 A resolution crystal structure
of the barnase-barstar complex, containing a Cys to Ala (40,82) double mutant of barstar
(PDB ID 1BRS).® The original crystal structure contains three barnase-barstar complexes;
chains A and D, which have the least missing density, were used. Crystallographic water was
removed for both explicit and implicit solvent calculations. Hydrogens were modeled onto
the structure with the HBUILD%® function of CHARMM,*" using the CHARMM22 force
field*? and the TIP3P water model.” The two N-terminal residues of barnase and residues
64 and 65 of barstar were not resolved in the crystallographic structure and were built in
using MODELLER.*® Missing side chain density was added via CHARMM.

For static, implicit solvent calculations and as the starting structures for the MD sim-
ulation, the following changes were made to the structure. Based on potential hydrogen
bonding, the amide groups of asparagine and glutamine residues and the imidazole groups of
histidine residues were flipped if necessary, and the tautomerization state of histidines were
assigned. Protonated states were chosen based on physiological pH: lysine and arginine side
chains were protonated, while aspartic acid and glutamic acid were not. Charged termini
were used. Note that the resulting structure differs from the structure used in our previous
study®” because missing residues, including missing terminal residues, were built back in in
this study.

A molecular dynamics simulation was run on the resulting structure with GROMACS 420

15



The Gromos96 43al force field®! was used. The structure was placed in a cubic box, where
the sides of the box were at least 0.8 nm away from the complex, with a 0.1 M concentration
of salt ions (sodium and chloride) in water. It was minimized for 100 steps using a steepest
descents minimization.

The resulting structure (“structure with unaltered interface”) was used to perform FEP.
An attempt was made to run an initial MD simulation on this structure prior to the FEP, but
the resulting structure had an altered interface (“structure with altered interface”). Because
the structure with altered interface was also used to perform FEP and some of those results
are discussed, I will state the parameters used in this initial MD simulation to produce the
structure with altered interface. An MD simulation with the following parameters was run
on the minimized structure ( “structure with unaltered interface”) for 20 ns with a step size of
0.002 ps. Non-bonded interactions were calculated every 10 steps, using the grid algorithm
(i.e., only neighboring grid cells are used when constructing the new neighbor list). The
cut-off distance for Coulombic and van der Waals interactions was 1 nm (note that when
using PME, the cut-off distance for Coulombic interaction indicates where real and Fourier
space are used). Periodic boundary conditions were used in the x, y, and z directions. The

temperature was kept at 310 K using a Berendsen thermostat®!

with a coupling time of 0.1
ps. The Berendsen thermostat re-scales the velocities of the particles in the simulation, so
the system behaves as if it were weakly coupled to a heat bath at the preset temperature.

The pressure was coupled to a barostat at 1 bar with a coupling time of 1 ps. All bonds

were constrained with the LINCS algorithm.""

2.2 Free Energy Perturbation

Referring back to the overall thermodynamic cycle, figure[2] in order to determine the AAAG
for a particular residue, four perturbations from a charged version of the residue to an
uncharged one are necessary, in the following scenarios:

1. Barnase-barstar complex, no crowders
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Repeat for each A

Figure 3: Simulations run for each A value.

2. Barstar only, no crowders

3. Barnase-barstar complex, crowders

4. Barstar only, crowders

In this thesis, we describe efforts to perform perturbations in scenarios 1 and 2 using
barstar’s ASP35 residue. Recall that the reaction coordinate A corresponds to the process of
perturbing the system from the charged ASP35 to the uncharged ASP35. Since aspartic acid
has a -1 overall charge, a counter ion within solvent was used, which had the appropriate
charge to keep the system neutral, starting out with a +1 overall charge at A = 0 and
ending with a neutral overall charge at A = 1. The counter ion had the same Lennard Jones
potential and size as a sodium ion. Because we ultimately want to compare the results
in explicit solvent to those in the implicit solvent, where rigid binding was assumed,3? we
did not want to allow the proteins to move about. During the course of the perturbation,
the positions of the atoms in the barnase-barstar complex were restrained to their starting

positions, using a harmonic oscillator potential with a force constant of 1000

mol nm2

Before the production MD at each A, the system was first minimized and equilibrated
in the following steps, also shown in figure This workflow is based on Justin Lemkul’s
GROMACS tutorial.®2 In all cases, periodic boundary conditions were used in the x, y, and
z directions.

First, a 5000 step steepest descents minimization was run with a maximum step size
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of 0.01 moliJn — and a tolerance of 100 moliJn —. The electrostatics were calculated using the

particle mesh Ewald method with a distance cutoff of 1 nm and an interpolation order of
6. The van der Waals force was calculated using a normal LJ potential until 0.8 nm, after
which it is smoothly switched off to zero at 0.9 nm. A long range dispersion correction was
applied to both energy and pressure. Both temperature and pressure coupling were off, as is
appropriate for energy minimizations. Bonds were constrained with the LINCS algorithm.="
This energy minimization “relaxed” the structure to prevent steric clashes, inappropriate
geometry, and other major issues. The result was a reasonable structure with respect to
geometry.

Second, an NVT equilibration was run for 200 ps with a time step of 2 fs. The electrostatic
and van der Waals forces were calculated as described in the steepest descents minimiza-
tion. The leap-frog stochastic dynamics integrator was used, which sets the temperature
of the system at 300 K. Pressure coupling was turned off. The equilibration was necessary
because the reasonable structure produced by the energy minimization may not have given
the solvent enough time to reorient around the protein, crowders, and ions. Additionally,
the temperature of the system, as calculated from kinetic energies, was not yet correct. An
NVT equilibration will in general bring and stabilize the system to a desired temperature.

Finally, an NPT equilibration was run for 200 ps with a time step of 2 fs. All settings
were the same as the NVT equilibration, but with a pressure coupling using the Berendsen
method, which involves exponential relaxation pressure coupling with time constant 0.5 ps.
This was necessary to stabilize the pressure and density of the system. The result after
the energy minimizations and equilibrations is a system that is equilibrated to a desired
temperature and pressure.

The production MD was run using the leap-frog stochastic dynamics integrator for 5 ns
with a time step of 2 ps, and the same settings as the NPT equilibration.

Because the effect of discharging the residue is greatest when its charge is larger, an effort

was made to sample more finely at low A values, which corresponds to greater magnitude
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charges. Due to time constraints, not all the desired trials have been run; future work is
discussed later. For the structure with altered interface, 24 A values were used: 21 equally
spaced between 0 and 1 at intervals of 0.05, and additional As of 0.025, 0.075, and 0.125.
For the structure with unaltered interface, 21 A values were used, equally spaced between 0
and 1 at intervals of 0.05.

The FEP itself was done using the Bennett’s acceptance ratio method (BAR).*

2.3 Implicit solvent calculations

In order to assess the effect of water mobility, we needed to compare explicit solvent results
to implicit solvent results; in order to compare results in a controlled way, we need to modify
the parameters used in our previous study.®¥ Implicit solvent calculations were done with
the same methodology as in our previous study,*” with a few changes to make the system
consistent with the explicit solvent parameters. A salt concentration of 0.1 M was used,
because the explicit solvent simulations were done at 0.1 M salt concentration. A dielectric
constant of 1 was used for the protein, instead of the 4 used in the previous study. This is
because the dielectric constant of 4 was supposed to account for the polarizability and motion
of the protein; however, in these explicit solvent simulations, we are keeping the protein
restrained. Because of memory limitations, a 401x401x401 grid was used when solving for
the potentials using the finite-difference method. During the component analysis, the entire
residue’s charges were zeroed, as opposed to only the side chain, in both explicit and implicit
calculations. Additionally, the structure used for the implicit solvent calculations here was
slightly different than the one described in Qi et al. it had additional residues built in and
was minimized, as described in the Methods section. As a result, all crystallographic waters

were removed.
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(a) Barnase-barstar after minimization, with un-(b) Barnase-barstar after a 20 ns MD simulation,
altered interface. with altered interface.

Figure 4: Barnase-barstar structures used for the FEP. Barstar is shown in red; barnase in
blue. Barstar’s ASP35 is shown in yellow.

2.4 Analysis, visualization, and computational details

All visualizations of molecules were done using VMD.?3 Graphs were generated with MAT-

LAB."

All simulations were run with 16 3000 MHz AMD Opteron processors.

3 Results and Discussion

When an unrestrained MD simulation was run on the barnase-barstar complex using the
parameters described in section [2.1] the interface changes, as seen in figure db] Notice that
the ASP35 that was once in the interface moved away from the interface. In a previous
study, using implicit water,*? we found that the aspartic acid had a large AAG, as it was

in the interface and therefore very desolvated upon binding. Also, once the aspartic acid
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moved away from the interface, it was no longer be able to interact with barnase as strongly.
Nevertheless, because it was the initial FEP analysis run for this thesis, I will discuss the
analyses run to confirm that the FEP worked using this structure (altered interface), in
addition to discussing the results from a structure more consistent with the model complex

used in the implicit solvent study (unaltered interface).

3.1 Implicit solvent

The implicit solvent data for the AG of binding between barnase and barstar is presented in
kJ/mol. The zeroed residue was barstar’s ASP35. An in depth explanation and analysis of
similar trends in the ligand desolvation penalty (LDP), receptor desolvation penalty (RDP),

and interaction (INT) may be found in Qi et al.*"

LDP | RDP | INT | TOT

AGorigina | 935.8 | 529.7 | -747.1 | 318.4

AGeroeq | 356.4 | 529.7 | -540.7 | 345.4

AAG -179.4 0 206.4 | 26.97

The implicit solvent AAG of 26.97 kJ/mol is different than previously reported AAG
values for this residues?#5 hecause the parameters used were slightly different — the inner
dielectric was 1, salt concentration was 0.1 M, and the entire residue’s charge was zeroed
out. As a result, the desolvation penalties and interactions were magnified, but the total
AAG decreased. In any case, note that the sign of AAG is positive, indicating that the

charges of the aspartic acid contributed favorably to the binding of barnase and barstar.

3.2 )\=0 simulation analysis, altered interface structure

The following analyses were done for the A = 0 value.
Figure [5| shows that during the energy minimization, the potential energy converged.

During the production MD, we should see the temperature, pressure, and density remain
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Figure 5: Potential energies during the energy minimization for A=0.

306

305 -

304 | -

303

302
301

300

Temperature (K)

299 i

298

297

296 | | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (ps)

Figure 6: Temperature during the production MD for A\=0.
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Figure 9: RMSD of the protein during the production MD for A=0.

about the same on average, though they may fluctuate. Figure [6] shows the temperature
fluctuated around 300.9 K, which was approximately the target temperature, 300 K. The
pressure (figure [7]) fluctuated wildly and had an average at -1.9 bar. These large pressure
fluctuations are expected because it takes a large pressure change to even slightly change
the volume of a liquid, and equilibrium is not instantaneous. Small volume changes there-
fore cause large pressure changes. Additionally, instantaneous pressure is not well defined,
especially over a short (ps) time scale; pressure is only meaningful as a macroscopic quantity
and as a time average. Fluctuations on the order of hundreds of bar, like we observed, are
therefore typical. The negative pressure indicates that the density of the system was too low
and the system wanted to contract; it is not unusual. Because of these known properties of
the pressure during an NPT simulation, the density is typically considered more useful. The
density of water by itself should be 1000 III‘T%,. The average density, seen in figure , was 1011

kg
m3
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Figure 10: Number of hydrogen bonds between solvent molecules during the production MD
for \=0.

In figure [0 the RMSD of the protein during the production MD suggests that the struc-
ture was stable. Because the protein atom positions were restrained and not constrained,
the atoms of the protein did move around slightly. However, RMSD will not tell us if the
solvent had equilibrated properly, as we would expect the water and ions to move about
freely. We would instead see the RMSD of the solvent slowly reach some maximum no mat-
ter what structure the RMSD was calculated relative to. Instead, the density, pressure, and

the number of H-bonds (figure being relatively constant indicates solvent equilibrium.

3.3 FEP analysis, altered interface structure

The following results are again for the barnase-barstar structure with altered interface, during
the discharging of the ASP35 residue of barstar.
In figure [11] the AG between each A value is plotted. As expected, the AG was greatest

at low values of A\, and sampling more there was appropriate. (Note that because the error
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Figure 11: Free energy difference between neighboring values of A\ for the bound barnase-
barstar complex. The sum of these AGs corresponds to the AG uichemical parnasebarstar-

associated with the phase space overlap is always less than 2 kJ/mol, the error bars are not
visible.)

In figure , the distributions of ‘;—i] for each value of \ are plotted. (Note that here, H

SH 5

51 S, the AH’s can be calculated between

is the Hamiltonian, not enthalpy.) From these
neighboring A values. In figure the distributions of AH values is graphed. Notice that
the AHs for a particular A are calculated from configurations in a different \ trajectory;
this is denoted by the legend entry. A legend entry of “N(AH (A = 0.5)|\ = 0.45)” means
that the AH distribution is calculated at a A value of 0.5 from configurations in the A\=0.45
trajectory. Adequate sampling within each window (indicated by the ‘;—if distribution) and
between neighboring windows (indicated by the AH distribution) is necessary for a good
estimate of AG.

In the graphs of AH and %I distributions, notice that especially at low A, the overlap

between neighboring distributions is not very good. However, the error in the AG ychemical
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values were only on the order of a few kJ/mol; this error is solely the one associated with
the phase space overlap. The derivation for how to arrive at this error is shown in Bennett’s
paper.** Do note, however, that this error assumes uncorrelated data. In the structure with
altered interface, going from the 21 equally spaced A values to 24 X’s (adding three more A
runs at 0.025, 0.075, and 0.125), the AGaichemicar g0es from 947 kJ /mol to 949 kJ /mol. Part
of the reason there is relatively low error is because BAR is effective even at lower phase

overlaps.

AC;talcherm'cal,barnaselmmtar 949 & 4 kJ/IHOl

ACgozlcherm'cal,barstar 959 + 4 kJ/m()l

AAG -10. £ 9 kJ/mol

The AAG for the structure with altered interface is a small negative value. The small
value is expected, because the ASP35 residue has moved away from the interface and is no
longer interacting as much with barnase. However, the sign is unexpected — it seems to
indicate that the the residue’s charges contribute unfavorably to binding. This discrepancy

will be discussed further in the unaltered interface results.

3.4 Unaltered interface results

Figures [I4] [15] [16] [I7, and [I§] correspond to the same analysis as in section for the

barnase-barstar structure at A\ = 0 value, but with the structure that had an unaltered
interface (figure [a). The AG between each A value is shown in figure 21
Similar figures may be generated for the FEP done on the barstar by itself; they show

the same types of fluctuations and trends.

AG(alcherm'cal,ba’/‘nasebarstaﬂ" 920 £ 3 kJ/InO1

AG(alchemical,ba’rstar 954 £ 5 kJ/m01

AAG -34 £+ 8 kJ/mol
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Figure 14: Potential energies during the energy minimization for A=0.
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Figure 15: Temperature during the production MD for A=0. Average temperature is 301 K.
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Figure 18: Number of hydrogen bonds between solvent molecules during the production MD
for \=0.

We find that the the charge on the aspartic acid has a smaller effect on the binding in
the structure with altered interface than in the structure with the unaltered interface. This
is consistent with our expectations: the aspartic acid is now no longer interacting with the
barnase, so it should have a smaller impact on binding. However, what is unexpected is
that the sign of AAG is negative, which seems to indicate that the aspartic acid’s charges
are working against binding. This disagrees with our previous implicit solvent study®® and
with previous literature values®? and so we are actively trying to determine the cause of this
result.

When we examine the AAG values between each A, shown in figure[22] the most negative
contributions to the AAG are at low A values.

One potential problem is the equilibration; because of the way the unbound barstar sys-
tem was derived from the barnase-barstar complex, the waters were not as well equilibrated

in the starting complex. At the various A values, in both the barnase-barstar complex and
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Figure 21: Free energy difference between neighboring values of A\ for the bound barnase-
barstar complex.

the barstar alone, the systems appeared to be equilibrated by the time the simulation reaches
the production MD. In order to compare with the implicit water results, we had set up the
thermodynamic cycle with the assumption of rigid binding. This meant that the barstar,
when by itself, was not in an ideal conformation, but because it was restrained to not move
about, the extra potential energy from being in a non ideal conformation should cancel out.

The barstar system’s density was 994.0 %, compared to the 1010 %of the barnase-
barstar system. Part of the reason that it decreased is because protein is denser than water.
However, it is odd that the density is below that of water; even if waters were not incorporated
correctly in the starting structure, the minimization should have caused the system to reach
the correct density. The negative pressures observed at some of the A values could also be
an indication the system is held at too low a density®® and wants to contract. Notice that

if the density of the system was too low in the starting structure, the only opportunity to

decrease in density would be during the energy minimization step.
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Figure 22: AAG values between neighboring values of A\, where each AAG is the difference
between the free energy in the barnase-barstar complex and the free energy in the barstar
alone at that \. AAG = AGbarnase—barstur - AGba?"stcw-
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The trend in the free energy differences between neighboring values of \ is expected to
be quadratic, due to linear response theory. When a charge is doubled, the reaction field
generated by the water in response to the charge also doubles, resulting in a quadratic change
in solvation energy. The interaction energy change caused by the change in charge will be
linear. Because a quadratic plus a linear change results in a total quadratic change, we
expect a change in charge to impact the energy quadratically. However, looking at figure
21| notice that the relationship between charge and free energy is not quadratic — at low A
(charge close to 1), it appears quadratic, but not at high A (charge close to 0). This seems
to indicate that the linear response model does not hold perfectly at lower charges, an odd

result that warrants further inspection.

4 Future work

During the energy minimization, the potential energy does not look fully minimized; part
of the cause of this may be a too low density in the system. Originally, we had done two
energy minimizations, one steepest descents and one L-BFGS. However, in GROMACS, only
steepest descents is set up to handle restraints properly. This means we were unable to use
a minimization method other than steepest descents to help reach a lower energy. We could
allow the steepest descents minimization to run for more steps and see if this fixes the issue
with the density.

Additionally, there could be problems with the starting structure, if it was not fully
minimized before beginning the FEP. In addition to running a longer minimization, we
could also let it equilibrate. We had attempted to ensure it was in an ideal configuration
by running an MD simulation prior to the FEP, but as discussed earlier, this resulted in an
altered interface. A potential cause of this could be that the force field used is not properly
parameterized to keep the interface stable; I would like to test different force fields to see if

there is one that would keep the interface stable and allow the starting structure to be in a
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better configuration.

There are also some inconsistencies that need to be addressed. Prior to performing the
FEP on the barstar system, we did not run an additional minimization to move the waters
to energetically better places. As a result, the minimizations for the barstar system did
not converge as well as for the barnase-barstar system. There were also some differences
between the conditions used to equilibrate the barnase-barstar structure (to produce the
structure with altered interface) and the conditions used during the course of the FEP; the
barnase-barstar equilibration was done at 310 K, but the FEP was done at 300 K.

Although the phase overlap is not high in any of the FEP runs, the error due to this
overlap is relatively low, on the order of a few kJ/mol. Running more simulations at inter-
mediate A\ values, particularly at low A values where the phase overlap is worse, would be
able to reduce this error even more.

Ideally, we would like to incorporate crowders into this system, and compare the AAAGSs
to those in implicit water. Because the crowders we want to use are larger than normal atoms,
there are no physical Lennard-Jones potential values we can use to motivate them. The
crowders will be restrained in the same way the proteins are, in order to be comparable to the
implicit water results. In our previous study,”” we noticed that the placement of crowders
has a large effect on the binding free energy. In order to achieve statistically significant
results, it was necessary to average over many randomly generated crowder placements. To
compare the explicit solvent results to implicit solvent results, we will have to compare
structures containing crowders in the same locations. Because the structure used in this
study is slightly different than the one used in the previous study, it will be necessary to
repeat the implicit solvent experiments on this new structure. Then, FEP could be run on
the same crowder configurations.

There are also several interesting parameters that we studied in implicit solvent and that
would be interesting to study in explicit solvent. For example, higher salt concentrations

were shown in implicit solvent to not change trends, but, on average, mute the effect of
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crowders. I hypothesize that a similar effect will be found in explicit solvent; more salt will
again mute the effect of the crowders. It would also be interesting to perform component
analysis on the other four residues studied in our previous work.

The barnase-barstar complex was chosen because it binds intracellularly and therefore
under crowded conditions. A search of the protein databank did not yield many complexes
that unambiguously bound intracellularly and were well-suited for computational study. If
other appropriate intracellular protein complexes could be identified, it would be interesting
to perform these experiments on those complexes.

Eventually, it would also be interesting to understand how other elements of “reality”
will affect binding free energy. For example, to bring in some elements of soft interactions,
charged crowders could be used. A more computationally demanding experiment could also
use actual protein shapes for crowders, instead of spheres.

In conclusion, this thesis lays the groundwork for studying the effect of crowding on the
contribution of a particular residue’s charges to the binding free energy in explicit solvent.
We have done preliminary studies on the change in binding free energy associated with
zeroing the charge on barstar’s ASP35. Ultimately, we hope that this work will lead to a
better understanding of the effects of crowding, which will in turn lead to better models of

protein binding.
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Abstract

Macromolecular crowding within the cell can impact both protein folding and binding.
Earlier models of cellular crowding focused on the excluded volume, entropic effect of
crowding agents, which generally favors compact protein states. Recently, other effects of
crowding have been explored, including enthalpically-related crowder—protein
interactions and changes in solvation properties. In this work, we explore the effects of
macromolecular crowding on the electrostatic desolvation and solvent-screened

interaction components of protein—protein binding. Our simple model enables us to focus
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exclusively on the electrostatic effects of water depletion on protein binding due to
crowding, providing us with the ability to systematically analyze and quantify these
potentially intuitive effects. We use the barnase—barstar complex as a model system and
randomly placed, uncharged spheres within implicit solvent to model crowding in an
aqueous environment. On average, we find that the desolvation free energy penalties
incurred by partners upon binding are lowered in a crowded environment and solvent-
screened interactions are amplified. Ata constant crowder density (fraction of total
available volume occupied by crowders), this effect generally increases as the radius of
model crowders decreases, but the strength and nature of this trend can depend on the
water probe radius used to generate the molecular surface in the continuum model. In
general, there is huge variation in desolvation penalties as a function of the random
crowder positions. Results with explicit model crowders can be qualitatively similar to
those using a lowered “effective” solvent dielectric to account for crowding, although the
“best” effective dielectric constant will likely depend on multiple system properties. Taken
together, this work systematically demonstrates, quantifies, and analyzes qualitative
intuition-based insights into the effects of water depletion due to crowding on the
electrostatic component of protein binding, and it provides an initial framework for future

analyses.

Introduction
It is believed that up to 40% of the cellular volume is occupied by
macromolecules[1], making the cell a crowded place. Nevertheless, many in vitro

experiments and computational studies model protein processes in a vast “sea” of aqueous
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solvent. To build better models of such processes, it is crucial to better understand the
effect of cellular crowding on the physical determinants of protein folding and binding.
While more attention has been given to these effects in recent years, reviews of crowding
effects span multiple decades[2-9]. Experimental work has shown that crowding can
cause a thermodynamic favoring of compact states - folded, bound, or aggregated states of
proteins[10-13] - and could favor compaction of unfolded states as well[14,15], although
sometimes certain effects were found to be small or even reversed[16,17], likely because of
enthalpic interactions between crowding agents and the proteins being studied[18].
Nevertheless, even small, subtle effects could have important implications for aggregation
associated with neurodegenerative diseases[10,19]. Crowding has also been
experimentally shown to change the preferred conformations of protein and DNA
systems[20-25] and to alter drug—target interactions or affinities[26-28]. Finally,
macromolecular crowding may slightly[16,29] or more greatly affect association rate
kinetics[30] and reaction mechanisms[31,32].

Theoretical and computational studies have provided great insight into the physical
bases for observed effects due to macromolecular crowding. Many thermodynamic studies
to date have focused on the entropic “excluded volume” effect, in which crowding lowers
the available cellular volume, thus lowering the entropy of noncompact states more than
that of compact states, leading to a relative free energy stabilization of compact states. This
effect was shown to have measurable consequences in theoretical and computational
studies[33-36]. More recently, it was shown that favorable interactions between less
compact states and the crowders could cancel out this effect or dominate over it[37-39],

demonstrating not only that the physical properties of the crowders are important, but also
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that crowding could significantly affect the enthalpic component of the binding free energy
in addition to the entropic component. The subtle interplay between multiple energetic
components as well as dynamical effects have been considered via molecular dynamics
simulations of proteins within a crowded environment[37,38,40,41]. These and other
time-dependent simulations[42,43] have also provided insight into the association rates of
proteins within the cellular milieu.

There have been relatively few studies that focus on how crowding affects the
electrostatic component of protein—protein interactions and their solvation energetics. As
a reasonable hypothesis, crowding can both affect the hydration dynamics of water[44] and
deplete the number of polarizable water molecules surrounding the proteins, thereby
potentially descreening their electrostatic interactions relative to the infinite dilution limit
(i.e., the uncrowded case). While crowding has been incorporated into electrostatic models
via a screened Coulomb potential-based implicit solvent model[45] and a lowered effective
solvent dielectric constant[46], to our knowledge, only very recent work has probed more
specifically to study how crowding affects electrostatic interactions within a solvated
medium[47,48]. Such work demonstrated that it may be possible to capture certain
electrostatic effects of crowding by a lowered solvent dielectric constant, a result that
supports other work suggesting that the observed dielectric constants within cellular
environments may be quite lower than that of water[49-53]. Specifically, Harada et al.[47]
found via explicit solvent molecular dynamics simulations that water mobility was
hindered in a crowded environment, providing one physical mechanism for this lowered
dielectric constant. However, as they note, another mechanism for a lowered dielectric

constant may stem from the fact that crowding depletes bulk water from around molecules,
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an idea that was explored further in an implicit model study[48]. It is this latter
mechanism that provides the focus of the current study, although here, we extend this idea
to study protein—protein binding.

This work uses simplified models to study how water depletion due to crowders can
alter electrostatic binding free energies between proteins. We use the barnase—barstar
protein complex as a model system, as it has been shown previously[54,55] that
electrostatic interactions play a crucial role in their interaction, and it has also been used in
previous studies investigating crowding or similar phenomena[35,45]. While a more
realistic model may use explicit solvent and actual proteins as crowding agents, we wished
to separate out electrostatic effects due to water depletion from other electrostatic effects,
such as loss of mobility of individual water molecules or electrostatic interactions with
crowder molecules. To that end, our study uses spherical, uncharged model crowders
within an implicit solvent, and electrostatic free energies are computed through obtaining
potentials via the Poisson Equation (or the Linearized Poisson-Boltzmann equation, if
applicable). To again focus on the water depletion effect in a controlled manner, we
assume rigid binding, although we recognize that crowding may affect protein
conformations[48]. Our thermodynamic cycle allows us to separately quantify the effects
of crowding on desolvation and on solvent-screened interaction. The use of simple model
crowders enables us to systematically study these effects as a function of crowder density
and size. Adequately sampling crowder locations to get proper Boltzmann-weighted
distributions of states would be computationally infeasible, and so we limited our results to
simple averages over 50 randomly-generated crowder placements in the bound and

unbound states per data point, especially since Boltzmann-weighting based only on
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electrostatic solvation energies may be less realistic than assuming that other factors can
also contribute to crowder placement.

We find that on average, crowding lowers desolvation penalties and amplifies
solvent-screened interactions, stabilizing favorable interactions and destabilizing
unfavorable ones. This effect is more pronounced when crowder size is reduced, assuming
a standard-size water probe radius within the continuum model. The mean stabilization or
destabilization of solvent-screened interactions was robust to the specific placement of the
random crowders, but the average desolvation effects were not, with very large standard
error values. While an overall reduced dielectric constant may capture average water
depletion effects, there may be system specific conditions that lead to uncertainty in the
mean effect of crowder placement as a simple function of crowder density and size. Finally,
we show that crowding can differentially affect the electrostatic contributions of individual
protein residue side chains toward binding, with the relative effects on desolvation and
interaction depending on the residue’s environment. This suggests that crowding could
affect the consequences of specific mutations on binding, as well as the role that certain
residues or binding “hot spots” play in varied cellular environments. While these results
may qualitatively agree with intuition, our goal is to provide a systematic, controlled
demonstration and quantitative analysis of these effects. Moreover, the methods used here
provide experimentally testable hypotheses and an initial framework for understanding
the role of crowding in modulating electrostatic interactions in protein—protein binding

that can be built upon in future work.

Materials and Methods
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Structure Preparation

Studies used a 2.0 A resolution crystal structure of barnase complexed with a Cys -> Ala
(40,82) double mutant of barstar (PDB ID 1BRS)[56]. The asymmetric unit consisted of 3
model complexes; the complex corresponding to chains A and D were used in this study.
Crystallographic water molecules greater than 3.3 A from either binding partner or with
fewer than three potential hydrogen-bonding interactions with protein were removed. The
remaining 17 water molecules were assigned to either protein partner based on proximity
and hydrogen-bonding contacts. The amide groups of asparagine and glutamine and the
imidazole group of histidine were flipped as necessary and the tautomerization states of
histidine were assigned based on manual inspection of possible hydrogen bonding with
surrounding residues. The two N-terminal residues of barnase and residues 64 and 65 of
barstar were not resolved in the crystallographic experiment, and neighboring residues
were patched with acetyl or N-methylamide groups. Hydrogens were modeled onto the
structure with the HBUILD[57] functionality in CHARMM][58], using the CHARMM?22 force
field[59] and the TIP3P water model[60]. Patches and missing side chain density were

added via CHARMM and were energy minimized.

Crowder Placement

Bound and unbound states in each binding free energy calculation were crowded
separately. A box was created to contain both the protein complex (or each unbound state)
and the model crowders, such that the box “walls” were each 70 A from the most extreme
(i.e, maximal and minimal) X, y, and z protein coordinates. The dimensions of the box were

approximately 190x190x190 A. Spherical crowders of either specified or random radii (up
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to 25 A, roughly the size of the barnase—barstar complex) were added sequentially, and
each potentially new crowder was accepted if it did not (1) overlap in space with any
existing crowder or protein molecule, (2) partially or totally fall outside the total box
volume, or (3) cause the volume density of crowders to be higher than the desired value.
The volume density of crowders was calculated as the ratio of the total volume of the
crowders to the originally available volume (i.e., volume not taken up by the protein(s)).
Fig. 1 shows sample, random crowder placements around the bound state at denoted
specifications. Preliminary analyses showed that one consequence of our crowder
placement method is a depletion of crowder density at the system’s extreme edges; future
efforts to place crowders could adopt a strategy leading to more even placement
throughout the entire system volume.

Continuum Electrostatics Calculations

A single-grid red-black successive over-relaxation finite-difference solver (M.D. Altman and
B. Tidor, unpublished)[61] of the Poisson/Linearized Poisson Boltzmann Equation,
distributed with the Integrated Continuum Electrostatics (ICE) software package (D.F.
Green, E. Kangas, Z.S. Hendsch, and B. Tidor, Massachusetts Institute of Technology
Technology Licensing Office), was used to solve for the electrostatic potentials of both
crowded and uncrowded systems. Unless otherwise noted, a probe radius of 1.4 A was
used to define the molecular surface for the dielectric boundaries. Likewise, unless
otherwise noted, a dielectric constant of 4 was used for all spherical crowders and protein
atoms, and the solvent was modeled using a dielectric constant of 80. Potentials were
solved on a 491x491x491 grid. A three-tiered focusing procedure was used, in which the

system (the complex and all crowders) occupied 23%, 92%, and 184% of the grid. At the

A8



lowest focusing, the regions beyond the entire system were modeled as dielectric 80 and
screened Coulombic (or Debye-Huckel, in cases of non-zero ionic strength) boundary
conditions were used. Zero-radius dummy atoms were placed at identical extreme points
of every run to maintain equal grid resolution for all states. At the highest focusing, this
grid spacing yielded a resolution of approximately 4.6 grids/A, and the grid was centered
on barstar within the large system (for a small subset of runs, the grid was centered on a
particular atom within the interfacial barstar Asp39 residue). PARSE radii and charges[62]
were used. The ionic strength was set to zero except when implicit salt was modeled at a
concentration of 0.145M and a Stern layer of 2 A was used. Due to memory limitations,
runs with nonzero ionic strength were solved on a 401 x 401 x 401 grid, and to assess the
effect of ionic strength, were compared only to other runs at the same grid resolution.

Potentials were solved for both the bound and unbound dielectric boundaries upon
charging up one binding partner at a time. By multiplying (one-half) the potential
differences due to charges on a given partner by the charges on that partner, desolvation
penalties were obtained, and by multiplying the potentials due to charges on one partner
by the charges on the other partner, solvent screened interactions were obtained[63] (Fig.
2).

Model charge variation

The monopole on each binding partner was changed by adding or subtracting random
charge values of maximum magnitude 0.1e to randomly selected atoms within the partner
until the desired overall monopole was reached. No single atom was allowed to have an
overall charge magnitude greater than 0.85e. To test the robustness of the results,

monopoles were changed by starting both with the original charge distribution and from a
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structure in which all the charges were set to zero. Here we show only the results
produced by starting with the original barnase-barstar charge distribution.

Component Analyses

To quantify the contributions of selected residues toward the electrostatic component of
binding in the presence and absence of model crowders, the partial atomic charges on the
side chain of a given residue were all set to zero and the binding free energy re-evaluated,
in a similar manner to component analyses in previous work on both protein and small
molecule systems[55,64-68]. The effect of zeroing out the side chain was then computed
via:

AAG,, = AG AG

zeroed orig
A positive value of AAGres implies that a residue’s side chain contributes favorably toward
the electrostatic component of binding, as zeroing out its charges worsens binding. The

desolvation and interaction components of AAGres were computed by directly subtracting

the desolvation and interaction components of the binding free energies between the

system with zeroed charges and the original system, respectively.

Component Analyses of residue groups within barstar

For analyses in which charges of groups of residues were zeroed, groups were determined
by calculating the solvent accessible surface area (SASA) of residues within each partner
(assuming associated water molecules are considered residues and not bulk solvent) in the
bound and unbound states. CHARMM was used to calculate SASA, using a 1.4 A -radius
probe and the CHARMM22 force field. Residues with non-zero burial upon binding were

classified as either highly buried or peripheral depending on whether more or less than
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50% of their unbound SASA remained in the bound state. Non-core residues were
classified as either surface exposed or partially exposed depending on whether they have
more or less than 50 A2 SASA in the unbound state. Here, the charges of both side chain
and backbone atoms were set to zero so that the union of all atoms considered was the

entire barstar protein (and associated explicit water molecules).

Data Analysis and Visualization

Figures of protein molecules and model crowder systems were generated using VMD[69].

All plots and data analyses were performed using Matlab (The Mathworks, Inc. Natick, MA).

Results

To assess the effect of water depletion due to crowding on the electrostatic component of
protein—protein binding, binding free energies were computed in the presence and
absence of model crowders. To model the crowded states in a controlled fashion and focus
on water depletion, spherical, uncharged “crowders” were randomly placed around the
bound and unbound state proteins at specified densities (Fig. 1). The effect of crowding on
the electrostatic component of the binding free energy was quantified as the difference
between the electrostatic binding free energies in the presence and absence of crowders:

AAG AG

bind uncrowded

crowding = AGbind crowded ~

A negative AAGcrowding means that crowding lowers the electrostatic binding free energy (i.e.,
favors binding, all other components equal). With our model, AGpind,elecuncrowded was found

to be 0.5 kcal/mol, suggesting that the electrostatic component of binding in this system (in
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pure aqueous solvent) is neither strongly favorable nor unfavorable, in qualitative
agreement with previous work using quantitatively different parameters[70]. Given that
the electrostatic binding free energies between proteins are generally quite unfavorable
with models using an internal dielectric constant of 4[71], our value supports the accepted
view that electrostatics play an important role in this system.

Binding free energy contributions were broken into desolvation and interaction
components (Fig. 2). The free energy cost upon binding to remove solvent interactions
with barstar (considered the “ligand”) is denoted the ligand desolvation penalty (LDP), and
was found to be 41.7 kcal/mol for the uncrowded system. The energetic cost upon binding
to remove solvent around barnase (the “receptor”) is termed the receptor desolvation
penalty (RDP, 37.2 kcal/mol when uncrowded). Finally, the solvent-screened interaction

between the partners (int) was also quantified (-78.4 kcal/mol when uncrowded).

On average, crowding lowers desolvation penalties and amplifies interactions

Figure 3 is a graph of AAGcrowding as a function of crowder radius (bars grouped by bottom
axis) and crowder volume density (top axis). In the rightmost set of bars, crowder radii
vary within each system from 5-25 A (the largest spheres were therefore approximately
the size of the protein complex). Total AAGcrowding Values are broken up into contributions
due to changes in barstar’s desolvation penalty (LDP, blue), barnase’s desolvation penalty
(RDP, green), and solvent-screened interaction (int, red). Each bar is the result of 50
random trials, with average values +/- standard error (not standard deviation) shown for

each contribution.
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Figure 3 shows that on average, AAGcrowding Was negative for all crowder densities
and radii, although generally, the effects were more pronounced at higher crowder
densities and smaller crowder radii. Moreover, the changes in all contributions (LDP, RDP,
and int) were generally negative on average, in this system. This result makes intuitive
sense - in a crowded environment, each unbound state is already partially desolvated by
crowders, with some crowders potentially occupying the same space in the unbound state
as the binding partner does in the bound state. Hence, there may be less solvent displaced
near the binding interface upon binding in the crowded system when compared to an
uncrowded one, resulting in a reduced desolvation penalty on average. Moreover, the
bound state is also partially desolvated due to the crowding, resulting in less solvent
screening and more amplified interactions between the two partners. Because the
interactions in this complex are favorable in general, amplifying them would increase their
favorability.

The average effects seen in Fig. 3 are qualitatively similar to what one might obtain
using a lower solvent dielectric constant. Previous work has modeled aspects of crowding
via the use of a lower “effective” solvent dielectric constant[37,38,46,48], and experimental
evidence suggests that a dielectric constant can be characterized for the cytoplasm[51,53]
through measuring shifts in emission wavelength maxima of fluorescent probes due to the
polarity of the microenvironment. This observed constant likely is a macroscopic average
accounting for both the loss of water mobility and water depletion (and potentially other
effects), the first of which is not accounted for in the present study. Nevertheless, it is
instructive to measure the effects of a lowered, effective solvent dielectric on protein—

protein binding. Figure S1 shows AAG values (relative to a solvent dielectric constant of 80)
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for the desolvation and interaction components of barnase-barstar binding as a function of
solvent dielectric constant. In addition, Table 1 shows numerical data using two potential
values of solvent dielectric constant - an experimentally obtained value of 21.9[53] and the
value of 55, similar to values found from explicit simulations at 30% crowder volume
density, to model solely the effects of hindered water mobility[47]. A dielectric constant of
21.9 produced AAG values that were several times more pronounced (Table 1) than the
results obtained using explicit crowders (Fig. 3), but this may be because the
experimentally-obtained constant would account for not only water depletion, but also
hindered water mobility and other possible effects of crowding. A dielectric constant of 55
again produced more pronounced results than using explicit crowders within a dielectric
80 medium, although the effects were more quantitatively similar to our explicit crowding
simulations (~1kcal/mol difference in AAG for desolvation components and ~5 kcal/mol
difference in AAG for interaction, at a 30% crowding density and varied radius, Table 1).
Again, differences could be due to the fact that this value was found to account for hindered
water mobility and not water depletion.

The qualitative trends seen with lowered dielectric constants (Fig. S1) were similar
to the trends found in this work for either increasing crowder volume density or
decreasing radius, although for a given crowder radius and volume density, there may not
exist an effective dielectric constant that provides quantitative agreement. Perhaps a “long-
range” dielectric constant cannot model the full effect of hydration immediately
surrounding each macromolecule; in a heterogeneous environment, the dampening of the
electric fields due to a small amount of highly polar water might not be captured by an

average, low macroscopic dielectric constant and therefore, effects of crowding may be
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overestimated. Nevertheless, one potential solution, similar to what was done in work by
Harada et al.[38], is to use a slightly lower dielectric constant to account for the loss of
water mobility and explicitly model crowders to account for water depletion. Future work
could also involve effective medium theory approaches to estimate effective dielectric
constants of this composite environment as a function of crowder size and shape[72].

The relatively small standard error for interaction indicates that the mean
stabilization due to the further descreening of interactions relative to infinite dilution is
fairly robust to the ensemble of states sampled; there is little uncertainty in the mean effect.
However, the large standard error for both desolvation contributions in all ensembles
indicates great uncertainty in the mean reduction of desolvation penalties due to random
crowder placement. As desolvation penalties depend strongly on the level of direct solvent
exposure of charged or polar interfacial groups, it makes sense that they will be very
sensitive to precise crowder placement. Interaction energies, on the other hand, are more
long-ranged, except for interfacial interactions (and these are fairly unaffected by crowders
in the bound state anyhow), and are therefore far less sensitive. The large standard error
due to desolvation, by definition, implies an even larger standard deviation and therefore a
huge amount of variability between trials, which suggests the necessity of thorough
sampling. Currently, it is computationally infeasible to thoroughly sample all relevant
crowder configurations. Preliminary attempts to use Boltzmann-weighting to more heavily
account for lower-energy states by obtaining partition functions from each set of 50
sampled configurations resulted in similar qualitative trends to those shown in Fig. 3 (data

not shown).
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Our results suggest that the effects of crowding on water depletion are most
pronounced at a given crowder volume density when the crowders are small, although
large standard errors confound the robustness of this result, especially for desolvation.
Presumably, very small molecules can more closely approach the irregular surface of a
protein, more substantially desolvating it in its unbound state and more effectively
descreening its interactions with a partner in the bound state relative to infinite dilution.
Analyses of our model crowded systems showed that the minimum distance of approach
between any one crowder and the proteins increases on average as the crowder radius
increases (Figure S2), in support of this hypothesis.

It is plausible that aspects of this observed trend could be dependent on the use of a
standard, nonzero-sized (here, 1.4 A) “probe” used to generate the molecular surface in
continuum models. The water-sized probe is intended (as standard practice) to
approximately account for the nonzero size of discrete water molecules and the inability of
“actual” water molecules to occupy cavities and crevices smaller than their size. A
consequence of this model feature is that low-dielectric regions will be larger than the
actual volume occupied by model crowders and protein, and this difference will likely be
greater for systems with smaller-radius crowders due to the likelihood that they often
closely approach each other and the protein.

To test this hypothesis, we redid a subset of the calculations shown in Figure 3 using
a probe radius of zero to generate the molecular surface. The results are shown in Figure
S3. Desolvation penalties were still reduced on average and interactions amplified, but as
expected, the quantitative effects were now often ~50-75% less pronounced (AAGcrowding =

~2 kcal/mol or less). Additionally, the dependence of the desolvation effects on radius was
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not apparent (although they did not appear to be statistically significant even with a
standard probe radius). However, the average effect on the interaction component still
strengthened overall as the crowder radius decreased, suggesting some robustness to the
observation that smaller crowders may have greater impact. While it is standard practice
to use a probe radius of 1.4 A[73,74], results using a continuum model can be sensitive to
this feature[74,75]. Our results demonstrate this limitation, specifically when modeling
crowding effects using a continuum approach.

Even with the “standard” probe radius of 1.4 A, at radii that more accurately model
small proteins (20-25 A), the mean effects on electrostatic interaction were found to be
modest, but still significant on average, especially at higher crowding densities. These data
suggest that the effects of crowding on electrostatics could be sensitive to the precise
distribution of molecular sizes within the cell, and that it might be not be crowding due to
proteins but rather, due to smaller metabolites and peptides that most greatly affects the
electrostatic component of binding. We note that the trends for radii are curtailed here due
to missing data at higher crowder densities and larger radii. Because of our purely random,
sequential crowder placement, it became geometrically impossible to satisfy all constraints
noted in the Methods when both crowder size and desired volume density were large.
Future work can attempt to explore this region of property space while still maintaining a
purely random crowder placement within the noted constraints.

Taken together, these results show that on average, the effects of crowding on
electrostatic interactions can vary as a function of both crowder volume density and size,
but desolvation effects are highly sensitive to crowder placement. To qualitatively account

for crowding effects due to water depletion, therefore, it may be expedient to use an
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effective lowered solvent dielectric constant. Our work supports the idea that such a
constant is likely to be specific to crowding volume fraction[47] and the distribution of
crowder radii, and additional parameters may be needed to capture system-specific
variations due to various arrangements of crowders.

In addition to the varied probe radius size discussed above, a subset of data was
obtained under other different model conditions, to gauge the robustness of our results to
parameters and physical conditions. First, we varied the internal dielectric constant used
for both protein and model crowders. For maximal control, the precise locations of
crowders in the bound and unbound states of the 50 trials were maintained in calculations
with different dielectric constants in one set of runs, and allowed to vary in another set.
Results here used a varied crowder radius at a volume density of 30%. With an internal
dielectric constant of 1, results were qualitatively similar to those with an internal
dielectric constant of 4 when controlling for crowder placement and quantitatively more
pronounced on average, especially for desolvation penalties (Table 1, € i» = 1, same”).
However, standard errors were much larger, which may explain the difference in
AALDP rowding between trials in which the same crowders were used and when random
crowders were used (Table 1, “¢ i, = 1, random”).

To understand how the presence of electrolytes could modulate the effect of
crowding, data were gathered including implicit mobile ions at a concentration of 0.145M
through obtaining potentials via the linearized Poisson-Boltzmann equation. Again, we
used a crowder volume density of 30% and randomly varied crowder radii, although all
relevant runs with and without mobile ions were done at a somewhat lower grid resolution

due to memory limitations when modeling salt (see Methods). We obtained qualitatively

A18



similar results when the solvent contained implicit, mobile ions, although the average
lowering of the LDP, RDP, and especially int, were not as pronounced (Table 1).

If crowders descreen interactions relative to infinite dilution, they should amplify
both attractive and repulsive interactions. To show this, we computationally modified the
charge distributions on both barstar and barnase to vary their monopoles (see Methods).
Of course, such charge distributions are not realistic, but they allow for a controlled,
systematic study on how a system’s charge distribution may affect its molecular
recognition profile in a crowded environment. Figure 4 shows the average change in LDP,
RDP, and int for three modeled pairs of monopoles - in which the partners either had
opposite, large-magnitude monopoles (+/-10e), no net monopole, or the same, large-
magnitude monopole (+10e). Each bar is the average of 50 trials in which crowders of
varied (5-25 A) radius were used at a 30% volume density. The average effect of crowding
on desolvation penalties was similarly stabilizing in all three cases, but the average effect
on interactions is markedly different in the three cases. As expected, crowding greatly
destabilized the (+10/+10) interaction and greatly stabilized the (+10/-10) one. This
suggests that binding partners’ overall monopoles can affect how they interact with
partners in a crowded environment, although this effect is mediated more by interactions

rather than the desolvation component.

Crowding can differentially affect electrostatic contributions of side chains toward binding

Many protein—protein interactions have been shown to be mediated by one or more polar
or charged residues or “hot-spots”[76-79]; such residues can be elucidated by experimental

mutagenesis studies (e.g., alanine scanning) or through computational analyses.

A19



Presumably, if the overall electrostatic binding free energy can be modulated by the level of
environmental crowding, as the model above suggests, then this implies that the specific
contributions of individual residues toward that interaction can also be altered, but the
nature of the alteration may depend on the properties of each residue.

To explicitly demonstrate, quantify, and better understand this intuitive idea, we
began with the original (unaltered) charge distribution of the complex and quantified the
electrostatic contribution of selected barstar residues toward the binding free energy by
computationally setting the original partial atomic charges on a given side chain to zero
and re-evaluating the binding free energy to obtain a AAGres (see Methods); this procedure
was done both in the presence of crowders (the 50 trials used in the original analyses were
used to obtain an average AAGres) and in the absence of crowders. Consequently, we can
define a AAAGrescrowding that quantifies the effect of crowding on a residue’s contribution
toward the binding free energy:

AAAG

AAG AAG

res.crowding res.crowded res uncrowded
A positive AAAGres,crowding means that a residue contributes more favorably (or less
unfavorably) toward binding in the presence of crowding than in its absence.

In this study, we chose to calculate AAAGyes,crowding for five barstar residues whose
side chains were previously shown to contribute significantly toward the electrostatic
component of binding free energy[55]: Tyr29, Asp35, Asp39, Thr42, and Glu76. Figure 5a
is a graph of the AAAGyes crowding for each of these residues, broken up into barstar
desolvation (LDP) and interaction (int) components (there is no change in the desolvation

of barnase, RDP, as only charges on barstar were changed to zero). On average, the charged

side chains contributed even more favorably in the presence of crowding, although the
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effect was quite small, with an average AAAGres,crowding Of only tenths of a kcal/mol. The
contributions were not significantly changed on average for the two polar side chains
studied.

Interestingly, the desolvation component of AAAGyes,crowding Was altered more on
average for Asp35 and Asp39, whereas the interaction component was altered more on
average for Glu76. We hypothesize that the different mechanisms of altering
AAAGres crowding is due to where these residues lie relative to the binding interface (Fig. 6).
Both Asp35 and Asp39 are interfacial and highly buried upon binding, and so crowding
may more greatly affect their desolvation penalties, by partially desolvating them already
in the unbound state. Glu76, however, is more peripheral to the interface and so it remains
more solvent exposed upon binding - this implies that crowding could more greatly impact
the solvent-screening of its interactions in the bound state.

To further explore the idea that crowding might affect residue-based
contributions differently, we grouped barstar residues based on both level of surface
exposure and degree of burial upon binding (see Methods). Then, we zeroed out the
charges simultaneously on all residues in each group (including both side chain and
backbone) to determine AAGyes for that group. This was done both in the presence and
absence of crowding to obtain a AAAGres crowding (using the 50 trials used in the original
analyses). Indeed, surface residues that are highly buried upon binding showed the largest
desolvation component of AAAGres crowding Values (Fig. 5b), while surface residues that are
peripheral to the interface (i.e., only partially buried upon binding) showed the largest
interaction component of AAAGres, crowding. Interestingly, AAAGyes crowding Of surface residues

with no burial upon binding (i.e., distal from the interface) was negative; here, crowding
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makes these residues contribute more unfavorably toward binding. This result may be due
to the dominating effect of the monopoles of distal groups; the monopoles on our model of
barnase (+1) and the collection of distal, surface exposed residues on barstar (+3) have the
same sign. The same trends are found when one controls for the number of residues in
each group by finding the average AAAGrescrowding per residue in each group (Fig. S4). These
results explicitly demonstrate that electrostatic contributions - and therefore perhaps
mutational energies - can be predictably altered in an environmentally-dependent way for

residues in a crowded environment.

Discussion

In this work, we used simplified models to investigate the effect of macromolecular
crowding on the electrostatic component of protein—protein binding free energy via water
depletion. We found that for proteins with favorable electrostatic interactions, crowding
can enhance the relative favoring of the bound state due to lowered desolvation penalties
and enhanced interactions. For proteins with potentially unfavorable interactions, there
may be opposing effects. The effects of crowding on desolvation were highly sensitive to
crowder placement - yielding far more uncertainty in the mean effect on desolvation than
in the mean effect on the interaction component.

Our results can potentially provide experimentally-testable hypotheses. For
example, one could experimentally study the effect of monopole-changing yet relatively
isosteric (e.g., Asn—>Asp) interfacial and peripheral mutations on protein—protein binding
in crowded and uncrowded environments to see if crowding affects their relative

contributions as predicted.; these experiments can be bolstered by varying ionic strength
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to highlight the interaction component of binding over desolvation components.

Experimental tests would likely combine the effects of crowding due to both water
depletion and lowered solvent mobility, so experimental results should reflect the
predictions in this work in combination with other computational predictions[47].

The importance of crowder size was studied in a previous computational study that
focused on the excluded volume effect of crowding on the binding of the barnase—barstar
complex[35]. Like our study, it was also found that smaller crowders had a larger effect,
but for a different reason - at a given volume density, smaller crowders left smaller voids
for the proteins to occupy, lowering the available volume. This effect was confirmed in
another study, and it was also shown that the ratio between crowder size and protein size
is important[12]. Thus, smaller crowders may have a bigger impact for multiple reasons -
by their excluding more volume and by their ability to more closely approach proteins to
desolvate them and descreen their electrostatic interactions relative to infinite dilution.

We also demonstrated that crowding can differentially affect the relative
contributions of residues toward binding. That these changes can be dominated by
different phenomena (desolvation vs. interaction) could provide avenues for rational,
environmentally-dependent design tasks.

This study provides a useful framework on which to build in future studies. With
adequate computational resources, larger-sized model crowders and overall crowded
volumes could be explored. Elements of “reality” can be added individually, in turn, to
understand the effect of each on the binding free energy. Such elements include using
actual protein shapes for the crowders (crowder shape has been shown to affect changes in

folding and binding free energies[12,80]) as well as protein charge distributions to include
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direct enthalpic crowder interactions, which have been shown to be important for protein
stability and conformation[18,48]; it would be interesting to quantify their precise effects
on protein—protein binding. Another future goal is to increase the sampling of crowder
configurations and potentially the conformational states of the binding partners, to allow
for Boltzmann-weighted averages through Monte Carlo or dynamic simulations. In this
study, the costs of Poisson-based models on such large systems prohibited exhaustive
sampling (each binding free energy calculation took ~0.5 day of CPU time and > 1GB RAM
with current resources).

To also account for the altered mobility of water molecules due to crowding, explicit
solvent simulations are necessary, and have been previously attempted[38,47], although
rigorously analyzing such effects on the energetics of specific protein—protein binding has
yet to be done, to our knowledge. Given the potential computational cost of such studies,
alchemical transitions[81,82] of individual residues (i.e., component analysis) or small
molecule—protein binding systems may be good starting points.

In this study, we demonstrated and systematically explored the idea that
macromolecular crowding can affect the electrostatic component of the free energy of
binding between proteins through depleting regions of high dielectric water. Our results
highlight yet another example of how environmental effects can have a quantitative and
potentially qualitative impact on molecular recognition and should therefore be considered

in both the analysis and the rational design of biomolecular systems.
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Tables

Table I. AAGcrowding Values for selected model systems described in the text.

AAGcrowding LDP RDP int TOT

€ out = 55 -0.1 -1.1 -4.8 -6.0

€ out = 21.9 -3.1 -6.6 -21.7 -31.4

€ in = 4, control run -1.2+0.5 -1.4+0.5 -1.08 £ 0.05 -3.7+0.7
€in =1, same 312 512 -1.4+0.1 -9+3
€in=1, random 0x1 -5+1 -1.4+0.1 62
OM ions, same, lower grid -1.2+0.5 -1.4+0.5 -1.08 £ 0.05 -3.7+20.7
OM ions, random, lower grid -1.0+0.4 -0.1+0.3 -0.97 £ 0.04 -2.1+05
0.145M ions, same, lower grid -0.9+0.5 -1.3+0.5 -0.48 £ 0.05 -2.8+0.7
0.145M ions, random, lower grid -0.7+0.4 -0.2+0.3 -0.51 +0.05 -1.4+0.5

Table I: AAGcrowding Values broken into components (LDP, RDP, int, and total) for systems
not shown in Fig. 3. In the first two rows, the outer dielectric constant is varied as a
substitute for explicitly modeling crowders. In the next set of rows (€in =1, € in = 4), the
internal dielectric constant was changed to 1 and compared with the control value of the
reference system ( € in = 4, also the rightmost bar in Fig. 3). The last four rows show the
effect of nonzero ionic strength. For maximal control, all components were re-evaluated at
a slightly lowered grid both without ions (“OM ions, same, lower grid”) and with ions
(“0.145 ions, same, lower grid”). Additionally, crowders were either kept the same as they

were in the 50 trials of the reference system (“same”) or were randomly varied (“random”).
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Figures

Figure 1. Sample simulated crowded environments. Here, the bound state barnase—
barstar complex (red and blue) is surrounded by randomly-placed crowders (orange); the
top row depicts environments in which the radius of crowders varied within a system

(from 5-25 A), at increasing crowder volume densities (left to right). The bottom row

radius (left to right).

depicts environments at a constant crowder volume density, but with increasing crowder
- } n
R —
RDP A
 ——

Figure 2: Schematic defining physically relevant components of the electrostatic

binding free energy. Pictorially represented are the ligand (barstar) desolvation penalty
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(LDP), the receptor (barnase) desolvation penalty, (RDP) and the complex solvent-
screened interaction (int). Gray regions denote solvent, and white regions denote low-
dielectric cavities in the shape of a given partner, but without charges modeled. The total

electrostatic binding free energy is LDP + RDP + int.

10%
20%
30%
10%
20%
30%
10%
20%
10%
20%
10%
20%
10%
20%
30%

g
(DO
g
-5
-6
-7 I  DP
[ IRDP
I int
-8
5A 15A 25 A varied

Figure 3: AAGcrowding , in kcal/mol, for barnase-barstar vs. crowder volume density
(top axis) and radius (bottom axis). The bars at right (“varied”) are for systems in which
the crowder radius varies within each trial. Each bar is the average of 50 trials and is
shown as a composite of its contributions of barstar desolvation penalty (LDP, blue),
barnase desolvation penalty (RDP, green), and solvent-screened interaction (int, red).
Error bars on each contribution represent +/-1 standard error. Missing bars are a result of

unsatisfiable geometric constraints (see Results).
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Figure 4: Effect of partner monopole on AAGcrowding. AAGcrowding, broken into barstar
desolvation penalty (LDP), barnase desolvation penalty (RDP), and solvent-screened
interaction (int) components, is shown in kcal/mol for the binding free energy of
hypothetical proteins generated by randomly altering the charges of randomly selected
atoms on the barnase—barstar complex until a desired overall monopole on each partner
is reached (see legend). Each bar shows the average of 50 trials in which the bound and
unbound states were crowded with spheres of random, varied radii (5-25 A) to 30%

crowder volume density. Error bars indicate +/-1 standard error.
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Figure 5: Effect of crowding on residue-based electrostatic contributions.

AAAGres crowding, broken into barstar desolvation penalty (LDP) and interaction (int), in
kcal/mol, is shown for (a) selected barstar residues (see legend) and for (b) groups of
barstar residues based on level of surface exposure and degree of burial (see Methods);
The number above each bar indicates the actual magnitude of the selected component of
AAGres without crowding present. Each bar indicates an average of 50 trials in which each
crowded bound and unbound state is crowded with spheres of random, varied radii
between 5 and 25 A to 30% crowder volume density. Error bars indicate +/- 1 standard

error.
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Figure 6: Location of the 5 barstar residues studied via component analysis within

the barnase(blue)/barstar(red) complex.

Supporting Information

ding

crow

-10

AAG

-15

-20 I LDP
[ IRDP
I int
10 20 30 40 50 60 70 80 90

solvent effective dielectric constant

Figure S1: AAGelec Vs. solvent dielectric (relative to a solvent dielectric constant of 80),

without explicit crowders. A lowering of the external dielectric constant produces a
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similar qualitative trend as increasing the volume density or decreasing the radius of

explicit crowders.

10 T T T T T T

minimum approach (Angstroms)

-2 1 1 1 1
5 10 15 20 25 vary
radius (Angstroms)

Figure S2: Average minimum distance of approach between crowders and protein vs.
crowder radius. The minimum distance of approach is the shortest distance between the
protein and crowder in each state, accounting for their radii. Data are shown for both 15%
crowder volume density (data for 20% crowder density show a similar trend, not shown).
Data are averaged over bound and unbound states for all 50 trials conducted for each

radius and volume density. Error bars are +/- one standard deviation.

A36



-0.2

-0.4
-0.6
2-0.8
©
3
s -1
g
3 12
-1.4
-1.6
I L DP
-1.8 [ IRDP
I int
-2
5A 15 A 25 A

Figure S3: Effect on AAGcrowding Of using a zero-radius probe to generate the
molecular surface. A subset of runs shown in Fig. 3 were redone using a zero-radius
probe sphere to generate the molecular surface instead of the standard 1.4-A probe.
Identical crowder placements were used for each bar shown here and the bar
corresponding to the same crowder density and radii in Fig. 3; the only different is in the

size of the probe sphere.
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Figure S4. Per residue AAAG for sets of residues on barstar. Residues were grouped by
degree of burial and solvent exposure and values were normalized by dividing by the
number of residues in each group (Figure 5b in the main text does not normalize per
residue). Similar overall qualitative trends are seen in this Figure and in Figure 5b in the
main text. The number above each bar indicates the per-residue value of the selected

component of AAGres

A38



	Wellesley College
	Wellesley College Digital Scholarship and Archive
	2014

	Effect of Macromolecular Crowding on the Electrostatic Interaction of Barnase-Barstar: Initial Steps Using an Explicit Solvent Model
	Helena Qi
	Recommended Citation


	Introduction
	Crowding
	Electrostatics
	Molecular Dynamics
	Free Energy Perturbation
	Comparison to implicit solvent

	Methods
	Structure
	Free Energy Perturbation
	Implicit solvent calculations
	Analysis, visualization, and computational details

	Results and Discussion
	Implicit solvent
	=0 simulation analysis, altered interface structure
	FEP analysis, altered interface structure
	Unaltered interface results

	Future work
	Bibliography
	Appendix

