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ABSTRACT 
 
 
 

Metamorphosis and puberty are characterized by dramatic morphological and 
behavioral changes, and their regulation and evolution continues to be a puzzling 
scientific enigma. In insects, the timing of metamorphosis is regulated by the interaction 
between juvenile hormone (JH), prothoracicotropic hormone (PTTH) and ecdysteroids.  
However, the transcriptional control of these neuroendocrine regulators remains 
unknown. In vertebrates, POU domain transcription factors have been linked to 
endocrine changes associated with puberty. POU factors play key roles in regulating the 
timing of puberty, having been associated with the production of gonadotropin releasing 
hormone, which regulates the onset of puberty. Since POU factors are highly conserved 
transcription factors found across all metazoans, the role of one of the POU 
transcription factors, Ventral vein lacking (Vvl), was examined during development in 
the postembryonic stages. Previous study has shown that silencing vvl expression using 
RNA interference (RNAi) results in the induction of precocious metamorphosis in 
Tribolium castaneum (Cheng, 2013). Here, I demonstrate that this effect is mediated by 
a reduction in the expression of the JH-inducible gene krüppel homolog 1 (kr-h1), as 
well as a decrease in the expression of the JH biosynthesis enzyme coding gene JH 
acid methyltransferase 3 (jhamt3). Furthermore, the expression of kr-h1 could be 
rescued by topical application of the JH analog methoprene. Interestingly, in addition to 
inducing precocious metamorphosis, molting was also inhibited in vvl RNAi-induced 
animals. I show that ecdysone biosynthesis is reduced in vvl-knockdown animals. Thus, 
Vvl influences both JH and ecdysone signaling and biosynthesis, potentially acting as 
an integrator of both hormonal pathways to regulate the metamorphic onset. In addition, 
I also provide preliminary findings on the relationship between vvl expression and 
nutritional status. Taken together, our study suggests that Vvl may serve as a key 
transcriptional regulator of major developmental endocrine events in both insects and 
vertebrates. 
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INTRODUCTION 
 
 
 

In nature, animals experience complex and dramatic changes in their embryonic 

forms as their cells undergo countless rounds of proliferation and differentiation. 

However, many animals also continue to undergo major transformations in their 

postembryonic stages through a process known as metamorphosis. Metamorphosis is a 

process in which an organism undergoes a series of drastic morphological and 

physiological changes and is observed in insects, amphibians, and even mammals. For 

example, caterpillars undergo dramatic physiological and structural changes in 

morphology to become butterflies. Similarly, mammals also undergo drastic 

developmental changes to reach reproductive maturity. In both of these cases, the 

hormones involved are known, but the regulation of the timing of these hormonal events 

remains a mystery. 

 
 
Regulation of endocrinology in insect development 
 

In the field of developmental biology, the regulation of body size and allometry in 

animals continues to be a perplexing scientific enigma. The final size that an organism 

grows to is influenced by both genetic and environmental factors that function through 

complex molecular and physiological mechanisms that have yet to be fully 

understood. In most animals, these major developmental changes are coordinated by 

the specific timing and release of hormones. Similar to how humans undergo puberty at 

a certain stage in their lives, other organisms also metamorphose at a certain point in 

their development, and these events are typically controlled and regulated by a series of 
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different hormones and signals. In insects, growth and metamorphosis is punctuated by 

the process of molting, which is regulated by the interaction of three hormones: 

prothoracicotropic hormone (PTTH), juvenile hormone (JH), and ecdysteroids 

(Wigglesworth, 1970; Nijhout, 1981; Konopova and Jindra, 2007). We know that, in 

most and probably all insects, the brain controls the biosynthesis and secretion of 

ecdysteroids by the action of PTTH on the prothoracic glands (PG). To initiate a molt, 

the brain releases PTTH, which causes the synthesis and secretion of ecdysteroids 

from the PGs. At the target site, ecdysteroids are converted to 20-hydroxyecdysone 

(20E), which is the primary ecdysteroid involved in molting and triggers the detachment 

of the epidermis from the old cuticle and the subsequent secretion of the new cuticle. 

The nature of the molt – whether it is a larval-larval molt or larval-pupal molt – depends 

on the presence or absence of JH, respectively (Nijhout, 1975). Thus, the roles of PTTH, 

JH and ecdysteroids and how they interact in controlling the molting and metamorphosis 

of insects have been the focus of numerous investigations.  

In the final larval instar of Manduca larvae, JH initially prevents the brain from 

synthesizing and releasing PTTH (Nijhout and Williams, 1974b).  Midway through this 

instar, upon reaching a particular size known as the critical weight, JH levels drop, and 

the larval brain becomes competent to release PTTH (Nijhout and Williams, 1974b). 

Reaching the critical weight thus sets in motion a series of physiological events 

involving signaling of the brain to release PTTH, which activates the prothoracic glands 

to secrete ecdysone, triggering the onset of metamorphosis (Nijhout and Williams, 

1974a; Truman and Riddiford, 1974). 
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The roles of critical weight and threshold size on the onset of metamorphosis 
 
 
Critical weight 
 

In the past four decades, countless studies have been conducted to find the 

underlying physiological mechanisms that regulate size control and critical weight. In 

many insects, starvation during the final instar results in a delay in metamorphosis. The 

critical weight is defined as the point where starvation no longer delays the initiation of 

metamorphosis (Nijhout). The critical weight is determined by both genetic and 

environmental factors, and the body size in Manduca sexta has been shown to evolve 

through changes in critical weight (Davidowitz et al., 2003). Though it is evident that 

genetics play a major role in controlling growth and the initiation of metamorphosis, 

recent scientific approaches to the regulation of growth and size have largely focused 

on the interaction between genetic and environmental effects. Environmental conditions, 

such as nutrition, quality of the diet and exposure to the elements, have been shown to 

have a significant role in the regulation of growth. In Drosophila, the critical weight is 

hypothesized to be controlled levels of insulin sensed by the PG. Thus, interrupting 

insulin signaling in the PGs can impede the point of critical weight, hindering the 

initiation of metamorphosis, or induce precocious onset of metamorphosis (Caldwell et 

al., 2005; Mirth et al., 2005).  

In Manduca sexta, the activity of a larval insect’s corpora allata (CA), or site of JH 

production in early stages of larval development, depends on the weight that the 

individual had attained (Nijhout and Williams, 1974a). In this species, the critical weight 

marks the attainment of a particular threshold body size and leads to the removal of JH 

from the hemolymph. If larvae are starved below the critical weight, JH is prevented 
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from being cleared, interrupting the onset of PTTH secretion. The mechanism by which 

a larva assesses its body size and its critical weight are not known, but the critical 

weight appears to be a function of the initial weight of the instar (Nijhout, 1981). Nijhout 

(1975) suggested the presence of an allometric size-monitoring system mechanism that 

keeps track of the overall size in relation to some other part or to body as a whole. A 

recent study that used Manduca sexta as its model system has shown that oxygen 

levels in the larva indicate critical weight achievement, thus leading to the cessation of 

JH secretion (Callier and Nijhout, 2011). Experiments have revealed that larvae 

exposed to hypoxic conditions form smaller-sized pupae because the critical weight is 

shifted to a lower size. Insects rely on diffusion of oxygen for respiration. Oxygen is 

delivered to various glands and tissues by tracheal tubes. As larvae grow, the 

concentration of oxygen delivered to the inner portions of the animal drops. The 

hypothesis then is that there is an unidentified oxygen sensor that detects oxygen levels 

in the growing larva and that the larva uses oxygen levels as a proxy for body size 

(Callier and Nijhout, 2011).  

 
 
Threshold size 
 

The decision for a larva to initiate metamorphosis is actually influenced by an 

even earlier checkpoint known as the threshold size. In most insects, the final larval 

instar exhibits a distinct morphology that differs from the rest of the larval instar. This 

commitment to enter the final (penultimate) instar is made prior to the final instar. From 

previous studies, we know that nutrition is a key in the regulating the initiation of 

metamorphosis, most likely having to do with the determination of the threshold size, 



11 
 

which determines the number of molts preceding metamorphosis. Whether or not the 

larva enters the final instar in turn is determined by the threshold size. Starvation during 

the penultimate (the instar before the last) instar result in the formation of 

supernumerary penultimate instar (i.e. it repeats the penultimate instar) (Nijhout, 1975). 

Thus, the threshold size determines the number of molts the larvae will go through 

before pupation. However, what determines the threshold size currently remains 

unknown, though the decision is probably made near the end of the instar prior to the 

dramatic plunge in the levels of JH.  

In the final larval instar, an organism’s brain cells are sensitive to levels of JH, 

which delays PTTH secretion (Nijhout, 1975). In earlier larval instars, molting occurs in 

the presence of high JH, which means PTTH secretion from the brain occurs 

independently of JH. In the final instar, the brain becomes independent of the presence 

of JH. Therefore, a subtle switch occurs in the CNS at some point during the 

penultimate instar that alters the brain’s responsiveness to JH. The attainment of the 

threshold size is probably triggered by this switch; however, the molecular nature of this 

switch remains elusive.  

 
 
Juvenile hormone and prothoracicotropic hormone 
 

Though the role of the JH titer decline in metamorphosis is well understood, the 

mechanism controlling the timing of the pulse of PTTH that initiates metamorphosis is 

still a mystery. Nijhout and Williams (1974b) found that the removal of the CA allowed 

for earlier release of PTTH for initiation of gut purge, or when the organism purges its 

gut contents near the end of the larval period.  In fact, the CA stops releasing JH during 
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the final larval instar in most species of insects (Patel and Madhavan, 1969; Nijhout and 

Williams, 1974b). However, what induces the brain to secrete or not to secrete PTTH, or 

what signals the CA to stop secreting JH at the appropriate time, still remains unclear. 

The only definitive study on the intrinsic mechanism for controlling PTTH secretion was 

carried out by Wigglesworth (1934) on Rhodnius prolixus. In this insect, the brain is 

stimulated to secrete PTTH by nerve impulses from the ventral nerve cord. 

Wigglesworth (1970) cites persuasive evidence that the CA do not take note of the 

number of instars and stop JH release at a predetermined stage, but are controlled by 

complex internal factors which are yet to be clarified.  

  
 
Halloween genes and their role in the regulation of ecdysone biosynthesis  
 

In the process of metamorphosis, ecdysteroids play a major role as timing 

regulators. As aforementioned in this paper, during the final instar, these hormones 

activate the initiation of the entrance into metamorphosis as soon as JH is emptied from 

the system. Ecdysteroids are produced in the prothoracic gland (PG) and are produced 

from cholesterol. Inside the PG, ecdysone synthesis is regulated by several Halloween 

genes, and the genes in this family include phantom (phm), spook (spo), disembodied 

(dib), shade (shd) and shadow (sad) (Gilbert et al., 2004). The Halloween genes encode 

for P450 enzymes necessary for catalyzing a series of reactions that ultimately convert 

cholesterol into E, which is then converted to 20E in the peripheral tissues by shd 

(Petryk et al., 2003). Previous studies have shown that disrupting the expression of 

Halloween genes lead to decreased levels of ecdysteroids in Drosophila (Rewitz et al., 

2007). The expressions of the Halloween genes are controlled by both PTTH and 
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insulin signaling and correlate with the ecdysteroid titers. Thus, the regulation of the 

timing of metamorphosis involves the intricate interaction of factors that are involved in 

the production and expression of ecdysteroids and JH titers. These factors are 

monitored by both the physical size and physiological state of the developing organism. 

However, the molecular nature of the processes that combine the various organismal 

and environmental contexts to influence the interplay between JH and ecdysteroid 

regulators remains unclear.  

 
 
The significance of Vvl, a POU transcription factor 
 

Though it is evident that the regulation of growth and the initiation of 

metamorphosis size are regulated by a complex interplay between hormones and 

environmental inputs, the transcriptional regulation of hormonal changes are not well 

understood. In vertebrates, POU (Pit-Oct-Unc) domain transcription factors have been 

linked to endocrine changes associated with puberty and are of particular interest 

because they play significant roles in the development and regulation of the vertebrate 

neuroendocrine centers. They also play key roles in regulating the timing of puberty, 

having been associated with the production of gonadotropin releasing hormone, which 

regulates the onset of puberty (Wierman et al., 1997). Many known POU factors are 

expressed in region-specific areas within the developing central nervous system (CNS), 

and POU proteins also appear to regulate changes in neuroendocrine signal 

expressions linked to puberty. POU factors are also expressed in the CNS of insects; 

however, it is not fully understood whether or not they actually monitor neuroendocrine 

regulation during metamorphosis.   
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Initially, ventral veins lacking (vvl) was studied in Drosophila as a gene 

responsible for regulating development of the trachea, a structure that serves to deliver 

oxygen (Anderson et al., 1995). Vvl, a POU transcription factor, was also found to be 

crucial in directing early cellular migration in the CNS. Because POU factors are highly 

conserved across metazoans, studying them will give us a better understanding of how 

sexual maturation is regulated across species. From previous experimental data, we 

believe that the POU transcription factor Vvl may play an important role in regulating 

metamorphosis (Cheng, 2013).  The function of Vvl was analyzed in the flour 

beetle Tribolium using RNA interference (RNAi). Silencing Vvl expression resulted in the 

induction of precocious metamorphosis in Tribolium. The study also reported a 

preliminary finding that suggested a reduction in the expression of the JH-inducible 

gene krüppel homolog 1 (kr-h1). However, topical application of JH on individuals 

lacking Vvl delayed the onset of metamorphosis and rescued the normal expression of 

kr-h1, indicating that JH levels are reduced in vvl RNAi animals. In addition, these vvl-

knockdown animals failed to molt, suggesting that ecdysteroid regulation might be 

affected. The findings in this study strongly suggest that Vvl acts as an activator of both 

JH biosynthesis and ecdysone signaling to influence molting and the timing of 

metamorphosis. Vvl seems to integrate both JH and ecdysone signaling, meaning 

understanding how its expression is regulated and its relationship with body size may 

reveal interesting implications how development is initiated, thus linking the central 

nervous system with hormonal centers. 
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Oenocytes as a site of vvl expression 
 

Oenocytes are a specialized group of cells that are necessary for multiple 

important metabolic processes, such as lipid generation and developmental signaling 

(Chapman, 1998). Oenocyte development is categorized into two major steps: cell 

specification and cell maturation. At the time of cell specification, oenocytes also 

express several other transcription factors, such as Spalt and HNF4 (two important 

proteins in lipid processing), and Vvl (Inbal et al., 2003; Burns et al., 2012). Burns et al. 

(2012) showed that, similar to Drosophila, the oenocytes of Tribolium larvae are 

localized in the abdominal region. Previous studies have also shown that oenocytes are 

able to generate ecdysone from cholesterol in another beetle, Tenebrio molitor (Romer 

et al., 1974; Delbecque et al., 1990); thus, investigating Vvl localization at the oenocytes, 

may elucidate its role in ecdysone biosynthesis.  

 
 
Objectives and hypothesis 
 

The purpose of this study is to further understand the role of vvl in endocrine 

regulation. Thus, this study: (1) investigates vvl and its possible role in controlling the 

initiation of metamorphosis in Tribolium through the analysis of JH and ecdysteroid 

biosynthesis genes; (2) examines the tissue-specific expression profiles of vvl in 

Manduca; (3) analyzes how Vvl interacts with other known regulators of JH and 

ecdysteroids biosynthesis; and (4) evaluates the expression of vvl at pre- and post-

critical weights in Manduca using quantitative PCR. I propose that Vvl might regulate 

the timing of metamorphosis by controlling both JH and ecdysone biosynthesis, thus 

linking the central nervous system with hormonal centers. I also hypothesize that vvl 
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may play a role in critical weight attainment. Examining vvl from a genetic perspective 

may provide further insight on the evolution of the functions of this gene in growth and 

development.  

 
 
Gene silencing using RNA interference (RNAi) 
 

In Tribolium, using RNAi for studying growth and development is a very powerful 

tool in this particular model system (Denell, 2008). RNAi is a method used to inhibit 

gene function and expression by introducing double-stranded RNA (dsRNA) into an 

organism, resulting in specific silencing of the targeted gene (Fire et al., 1998). Thus, by 

targeting a specific gene and silencing it with the use of dsRNA, protein products are 

not translated.  

When the foreign dsRNA enters the organism, an enzyme called Dicer cleaves 

the dsRNA into small nucleotide fragments known as short interfering RNA (siRNA), 

which then are integrated with additional components to form a complex called the 

RNA-induced silencing complex (RISC). The RISC then unwinds the siRNA into single-

stranded RNA, which then targets complementary mRNA for cleavage and degradation 

(Fortunato and Fraser, 2005). The single-stranded RNA in the RISC complex then binds 

to a complementary sequence of mRNA within the host cell, and the RISC proceeds to 

cut and degrade the mRNA, preventing the process of translation. With the obstruction 

of genetic expression, the production of certain genetic products is also hindered, 

leading to altered development. Thus, to examine gene function of any individual gene, 

we start off with the sequence of a gene of interest, knock down the expression levels of 
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that gene, and study and observe the resulting phenotypic effects (Fortunato and Fraser, 

2005). 

 
 
Tribolium castaneum and Manduca sexta as model organisms 
 

Both Tribolium and Manduca, unlike Drosophila, depend on JH as a key 

regulator of metamorphosis. Tribolium castaneum, or the red flour beetle, is an ideal 

model organism in developmental biology. It is easy to maintain, has a rapid generation 

time, an already sequenced genome, and is susceptible to RNA interference (RNAi), 

making it an excellent model organism for genetic studies. As Tribolium larvae grow and 

develop, they undergo 7-8 instars, or larval stages, separated by periods of molts. Fully 

grown larvae transform into pupae, and within approximately 4-5 days, emerge into their 

adult forms.  

Tribolium have become a major system for evolutionary developmental biology 

because its developmental process is more characteristic of a broader range of insects 

than that of Drosophila. While both Tribolium and Drosophila undergo complete 

metamorphosis, Tribolium embryos undergo a more primitive form of development than 

those of Drosophila, making it a suitable candidate for studies involving evolution and 

genetic conservation (Klingler, 2004). Moreover, using Tribolium is advantageous over 

using Drosophila in experiments pertaining to metamorphosis because they respond 

predictably to JH (Konopova and Jindra, 2007). Whereas Drosophila larvae will 

pupariate even when JH is ectopically applied, the presence of JH induces 

supernumerary molts in Tribolium larvae. Thus, using this organism presents an ideal 
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opportunity to investigate the JH pathway and related factors involved in the process of 

metamorphosis. 

Manduca also serves as a model system for the experiments presented in this 

study because it offers several advantages over Tribolium. With its large body size, the 

organism is the ideal candidate for examining tissue specific genetic expression. It also 

has well characterized physiological regulation and a very standard pattern of 

development with a fixed number of molts. Because their critical and threshold weights 

can be altered with environmental (such as dietary and oxygen level) manipulation, 

Manduca are the ideal system to study the complexity of these two size assessment 

events and their respective roles in the initiation of metamorphosis. Like Tribolium, 

Manduca also have a sequenced genome, which allows us to find genes easily. The 

combination of these two species will allow us to best address the experimental 

questions presented in this study. 
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MATERIALS AND METHODS 
 
 
 
Animal husbandry 
 

Wildtype GA1 strain Tribolium castaneum beetles were raised on organic whole 

wheat flour supplemented with 5% nutritional yeast at 29°C and 50% humidity. 

Manduca sexta larvae were raised on artificial diet at 26.5°C. 

 
 
Isolating RNA and synthesizing complementary DNA (cDNA) 
 

RNA from various larval instars of Tribolium or Manduca was isolated by 

homogenizing the tissues in 500μL TRIzol. Subsequently, 100 μL of chloroform was 

added, and the product was centrifuged in 4°C at 11,500 rpm for 15 min. The top 

aqueous layer, which contains the RNA, was collected and precipitated by the addition 

of 250 μL isopropanol at room temperature for 15 min. The RNA was then pelleted by 

another round of centrifugation in 4°C at 11,500 rpm for 10 min, and the resulting 

supernatant was removed. The remaining pellet containing the RNA was washed with 

500 μL 80% ethanol/DEPC water, followed by centrifugation at a slower rate of 7,400 

rpm for 5 min. The supernatant was discarded, and pellet was allowed to dry before 

being resuspended in 13 μL DEPC water. The product was then incubated at 60°C for 5 

min to dissolve the pellet. Promega RQ1 RNase-Free DNase was used to remove 

traces of DNA from the RNA sample, followed by the RNA being precipitated with 20 μL 

isopropanol and 10% volume 3M sodium acetate (pH 5.2). The mixture was kept at -

20°C for at least one hour, and to isolate the RNA, samples were centrifuged in 4°C at 

14,000 rpm for 10 min.  Pellets were then washed with 75% ethanol and the previous 
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step of centrifugation was repeated, after which the pellets were dried until they 

appeared transparent. After drying, the RNA pellet was dissolved in 10 μL DEPC water, 

and its concentration was measured using the NanoDrop 2000 spectrophotometer in 

preparation for its use in complementary DNA (cDNA) synthesis. 

cDNA was synthesized from 1 μg of RNA by the process of reverse transcription. 

One μL Oligo dT primer was added to 1 μg RNA, with enough DEPC water added to 

bring the total volume for each sample to 12 μL, and the mix was then incubated at 

65°C for 5 min. Reverse transcription was initiated by mixing the following with the 12 

μL RNA: 4 μL of 5X reaction buffer, 2 μL of 10mM dNTP mix, 1 μL of nuclease inhibitor 

and 1 μL reverse transcriptase enzyme. The mixture was then incubated at 42°C for 

one hour, followed by inactivating the enzyme by heating at 70°C for 5 minutes. The 

resulting cDNA was then stored at -20°C until it was ready for either double-stranded 

RNA synthesis or quantitative polymerase chain reaction (qPCR) analysis.  

 
 
Polymerase chain reaction (PCR) and gel electrophoresis 
 

To amplify synthesized cDNA, 0.5 μL cDNA was combined with 0.5 μL forward 

primer and 0.5μL reverse primer, along with 23.5 μL of the following mix: 5 μL Taq PCR 

buffer, 15.875 μL distilled water, 0.5μL dNTPs, 2 μL MgCl2, 0.125 μL Taq Polymerase. 

The resulting solution was then amplified by PCR in a thermal cycler using: an initial 

hold for 2 minutes at 94°C, followed by 40-50 cycles of the following thermal conditions 

– 94°C for 20 sec, 55°C for 30 sec and 72°C for 1 min. The final step involved keeping 

the reaction at 72°C for 5 min before being lowered and kept at 4°C. 
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To ensure that correct amplification of the gene of interest, PCR products were 

mixed with SYBR Safe stain and loaded into a 1.5% agarose gel in 1X TBE buffer. Gel 

electrophoresis was then initiated at 100V for 20 min and the DNA bands were 

visualized under UV light. 

 
 
Cloning using TOPO© TA and synthesizing double-stranded RNA (dsRNA) 
 

The amplified cDNA product was extracted from the gel (previously described in 

“Materials and Methods” in “Polymerase chain reaction (PCR) and gel electrophoresis”) 

and purified using the MinElute Gel Extraction Kit (Qiagen). The PCR product was then 

cloned into the TOPO© cloning vector and transformed using this product.  Plasmid 

DNA was extracted from transformed E. coli cells using the QIAprep Spin Miniprep Kit 

(Qiagen). Restriction digestion using Spe1 and Not1 linearized the plasmid DNA, which 

was then used for single-stranded RNA (ssRNA) synthesis.  

To prepare for ssRNA synthesis, DNA concentration was first obtained using the 

NanoDrop2000 to determine the amount of linearized plasmid DNA. ssRNA was then 

synthesized from 1 μg of plasmid DNA using MEGAscript T3 and T7 kits according to 

the manufacturer’s instructions. Both reactions were kept at 37°C overnight and stopped 

by adding 30 μL ammonium acetate. ssRNAs were then isolated by adding 250 μL 

phenol-chloroform (pH 4.0), followed by chloroform and was finally precipitated with 

isopropanol. The ssRNAs were kept at -20°C overnight to allow precipitation and then 

resuspended in DEPC water. The two complementary ssRNA were then annealed to 

produce a 2 μg/μL dsRNA solution with the following setting: 85°C for 3 min, 20 min 

ramp down to 55°C, 55°C for 10 min, 10 min ramp down to 40°C, hold at 40°C for 20 
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min, 5 min ramp down to 30°C, hold at 30°C for 10 min and hold at 4°C. The final 

annealed product was examined using gel electrophoresis to verify that annealing 

occurred properly and then stored at -80°C until future use. 

 
 
Injecting double-stranded RNA (dsRNA) into Tribolium and treatment of 20E 
 

To investigate the role of vvl on the different aspects of metamorphosis initiation, 

day 0 fifth instar Tribolium larvae were injected with double-stranded RNA (dsRNA). 

Animals were prepared for injection by first anesthetizing them on ice. A 10 μL glass 

capillary needle was connected to a syringe, and 0.5-1 μL dsRNA was injected into 

each specimen. dsRNA was injected on the dorsal side in between the segmental 

ridges, midway from head to tail end.  Controls were injected with the same amount of 

bacterial ampicillin-resistance (ampr) dsRNA.  

To see if applying 20E could rescue hr3 expression, day 0 fifth instar larvae were 

injected with vvl dsRNA as previously described earlier in this section, followed by the 

injection of either 0.15 μg of 20E or water after two days.  

 
 
Quantitative RT-PCR 
 

To better understanding of the developmental expression profile of vvl in 

Tribolium, RNA was isolated from the whole body of larvae that were in the final two 

instars (sixth and seventh), as well as from prepupae. Three biological replicates were 

generated. To investigate how genetic knockdown of vvl affects JH biosynthesis and 

signaling, the expressions of JH-target gene kr-h1, the JH-receptor Met and the JH-

biosynthesis gene jhamt3 were measured. Day 0 fifth instar larvae were injected with vvl 
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dsRNA or ampr dsRNA, and their RNA was isolated and cDNA was synthesized as 

discussed previously in the “Methods and Materials” in “Isolating RNA and synthesizing 

cDNA”.  Thus, to observe the expression of vvl in Tribolium larvae, gene expression 

analysis was conducted on the fat body, the gut, the epidermis and the central nervous 

system (CNS) pooled from twenty day 0 seventh instar animals.  

The effect of vvl-knockdown on ecdysone signaling was analyzed by examining 

the expression of two ecdysteroid-inducible genes, E75 and hr3. How removal of vvl 

influences ecdysone biosynthesis was also examined through analyzing, in vvl-

knockdowns, the expression of five ecdysone biosynthesis genes: spo, phm, dib, sad 

and shd. Day 0 fifth instar larvae were injected with either vvl or ampr dsRNA and were 

dissected and assayed four days later for ecdysone biosynthesis gene expression using 

RT-PCR.  

To determine the localization of vvl (either in the prothoracic glands or the 

oenocytes), and how it may influence ecdysone biosynthesis, larvae were split into the 

anterior (containing the thorax) and posterior (containing the abdomen) halves. 

Biological triplicates for each treatment were prepared. To determine if spo expression 

in the oenoctyes of the vvl- knockdown animals was decreased, day 0 fifth instar KT817 

larvae were injected with either vvl or ampr dsRNA, and oenocytes and fat body 

collected from fifteen biological samples were separately isolated on day 4. 

SsoAdvanced SYBR Green Supermix (Bio-rad) was used for qRT-PCR analyses. All 

qPCR analyses were performed in triplicates. 
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Manduca body dissections 
 

To examine the tissue-specific expression of vvl in Manduca sexta, larval 

specimens were raised until the fourth instar and dissected for isolated tissue samples. 

Instars (fourth or fifth) and day numbers (0-5) were tracked, and larvae were dissected 

for various tissues: central nervous system and corpora allata complex (CNS/CA), 

prothoracic glands (PG), epidermis and fat body. For the fourth instar animals, 10 

samples of PG and CNS/CA and three samples of fat body and epidermis were 

collected. For the fifth instar animals, five samples of PG and CNS/CA and three 

samples of fat body and epidermis were collected. Samples were then prepared for RT-

PCR to analyze localized genetic expression of vvl. To analyze the link between critical 

weight and expression of vvl and the timing of metamorphosis in Manduca, larvae were 

fed either a normal diet or a non-nutritive starvation diet, and after isolating the CNS+CA 

complex, qPCR was used to gauge levels of genetic expression, paying close attention 

to the critical weight. 
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RESULTS 
 
 
 
vvl expression in Tribolium 
 

In order to examine the expression profile of vvl in the late larval and prepupal 

stages of Tribolium castaneum, mRNA was harvested from whole body samples of 

larvae in the sixth and seventh larval instars, and prepupae, converted into cDNA and 

amplified and analyzed for vvl expression using quantitative PCR (qPCR) (Fig. 1A). vvl 

expression was the highest on day 0 of the sixth instar, but then dropped to a low level 

by day 3. Expression then rose again to a high level, coinciding with the molt into the 

final instar. During the seventh instar, vvl expression gradually declined until entry into 

the prepupal stage, which was marked by vvl expression intensifying again to a higher 

level. This seemingly erratic rise and fall observed in vvl expression is actually similar to 

the oscillating levels observed in ecdysteroids and JH expression during the penultimate 

and final instars.  

To determine expression of vvl in specific tissues of Tribolium, its expression was 

analyzed in the central nervous system (CNS)/corpora allata (CA) complex, epidermis, 

fat body and gut of day 0 seventh instar larvae. Highest expression was observed in the 

CNS/CA complex and also in the epidermis, with low expression found in the fat body 

and gut (Fig. 1B). This is consistent with the idea of vvl being a regulator of JH 

biosynthesis, because JH is produced in the CA and vvl might act directly in the CA or 

indirectly via the CNS. 
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Figure 1. Expression profile of vvl in Tribolium larvae. A) Expression profile of vvl in 
the whole body of Tribolium during the late larval and prepupal stages. Expression 
determined by qPCR of vvl from whole body sixth and seventh instars and prepupae. 
Ribosomal protein 49 (rp49) was used as the standardizing control. For all treatments, 
each sample consisted of RNA pooled together from five sixth instars, three seventh 
instars and three prepupae. Three biological replicates were used per treatment, and 
each sample was run in triplicates. B) Expression of vvl in seventh instar day 0 
Tribolium larvae. Expression of vvl in the CNS and CA, epidermis, fat body and gut of 
day 0 seventh instar larvae. mRNA was isolated from tissues that was pooled from 20 
specimen. 
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vvl-knockdown results in reduction of jhamt3 expression 
 

Early onset metamorphosis observed in the vvl dsRNA-injected animals 

suggested that the JH pathway is interrupted in the vvl-knockdown animals. To 

determine whether JH biosynthesis or JH sensitivity was influenced, the expression of 

Met, which produces the JH receptor Met, and the expression of jhamt3, a JH 

biosynthesis gene, was analyzed. JHAMT3, an enzyme that produces JH from JH acid, 

is important for JH biosynthesis, evidenced by how silencing its expression in Tribolium 

results in precocious metamorphosis. Thus, I investigated whether the knockdown of vvl 

affects the expression of jhamt3. Fifth instar day 0 Tribolium larvae were injected with 

either vvl or ampr dsRNA, which were then prepared for qPCR to analyze for expression 

of met or jhamt3 on day 4. Though the expression of Met was not affected by vvl-

knockdown (Fig. 2A), the expression of jhamt3 was significantly reduced in larvae that 

were treated with vvl dsRNA (Fig. 2B). Thus, vvl appears to play an important role in JH 

biosynthesis, and not JH sensitivity, by regulating jhamt3 expression. 
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Figure. 2. jhamt3 (a JH biosynthesis gene) expression is decreased in larvae 
injected with vvl dsRNA. (A) Effect of vvl-knockdown on jhamt3 expression (p <0.05). 
(B) Effect of vvl-knockdown on met expression (p = 0.60; Student’s t-test). Three 
biological replicates were used in each treatment, with each sample being run in 
triplicates and ampr dsRNA-injected specimens as the negative control. For (A) and (B), 
each sample consisted of RNA pooled from five fifth instar larvae. Data are represented 
as mean +/- SEM. 
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vvl-knockdown results in reduction of kr-h1 expression 
 

To further examine whether vvl influences the expression of a target gene 

downstream of the JH pathway, quantitative PCR was conducted on Tribolium larvae on 

day 4 of the fifth instar that were previously injected with vvl dsRNA and treated with 

either 15 µg of the JH analog methoprene or acetone four days prior to RNA isolation. 

Another group of animals were treated in a similar manner, except they were injected 

with ampr dsRNA, and were used as a comparison. As seen in Figure 3A, expression of 

kr-h1 was decreased in the vvl-knockdown larvae in comparison to the ampr dsRNA-

injected larvae. However, in larvae treated with ectopically applied methoprene following 

injection of vvl dsRNA on day 0 of the fifth instar, kr-h1 expression recovered a normal 

level, when compared to that of the ampr dsRNA-injected animals treated with 

methoprene (Fig. 3B). This suggests that vvl-knockdown leads to decreased kr-h1 

expression, which can be rescued with the treatment of methoprene, further supporting 

that JH biosynthesis, rather than reception, is affected by the presence and/or absence 

of Vvl.  
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Figure 3. kr-h1 (a JH-target gene) expression is decreased in larvae injected with 
vvl dsRNA, but expression in vvl-knockdown larvae is rescued with JH 
application. (A) Effect of vvl-knockdown on kr-h1 expression (p <0.05; Student’s t-test). 
(B) Effect of ectopic methoprene application on the kr-h1 expression in vvl dsRNA-
injected animals. vvl-knockdown larvae and ampr–knockdown animals were treated with 
either acetone (control) or methoprene (15 μg) on day 0 of the fifth instar. * indicates 
significantly lowered level relative to other treatments (ANOVA with Tukey HSD-test). 
Four biological replicates were used per treatment, and each sample was run in 
triplicates. Data are represented as mean +/- SEM. 
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vvl-knockdown larvae exhibit decreased ecdysone-response gene expression 
 

Because vvl-knockdown larvae fail to molt, ecdysteroid signaling pathway, an 

essential part of the molting process, was analyzed in the vvl dsRNA-injected animals. 

To determine whether Vvl influences ecdysteroid signaling, I looked at the expression of 

two ecdysone-response genes associated with molting, E75 and hr3, in both vvl-

knockdown and ampr-knockdown larvae that were treated four days before qPCR 

analysis, right before the control larvae entered the sixth instar. Though the expression 

level of E75, the ecdysone inducible early gene, did slightly decrease in the animals 

injected with vvl dsRNA, the difference was not enough to be significant (Fig. 4A). On 

the other hand, the expression of hr3, an ecdysone-inducible gene, was significantly 

reduced in animals injected with vvl dsRNA (Fig. 4B). To see whether application of 20E 

can rescue the expression of hr3 when vvl is silenced, day 0 fifth instar larvae were 

injected with vvl dsRNA, followed by injection of either 0.15 μg of 20E or water two days 

later, and dissected six hours later. Figure 4C shows that larvae injected with 20E had 

significantly higher levels of hr3 expression, suggesting that introducing 20E into the 

system can rescue the expression of hr3 in vvl-knockdown organisms. These results 

strongly suggest that, in the vvl-knockdown animals, ecdysteroid signaling is disrupted 

and that ecdysteroid biosynthesis rather than sensitivity is affected. Thus, Vvl may have 

a dual role as both an activator of JH signaling and as a regulator of molting through its 

influence on ecdysteroid signaling. 
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Figure. 4. Effect of vvl-knockdown on the expression of ecdysone-regulated 
genes. (A) Effect of vvl-knockdown on E75 expression (p = 0.09; Student’s t-test). (B) 
Effect of vvl-knockdown on hr3 expression (p <0.005). (C) Effect of 20E application in 
hr3 expression in vvl dsRNA-injected animals (p = <0.001; Student’s t-test). Three 
biological replicates were used in each treatment, with each sample being run in 
triplicates and ampr dsRNA-injected specimens as the control. For (A) and (B), each 
sample consisted of RNA pooled from five larvae and in (C), each biological replicate 
consisted of RNA pooled from three larvae. Data are represented as mean +/- SEM. 
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vvl-knockdown influences the expression of certain Halloween genes 
 

A past study used a GFP enhancer trap line that expresses GFP under the 

control of the vvl enhancer, and found that, during the early larval stages, oenocytes of 

Tribolium larvae exhibit expression of GFP (Burns et al., 2012). Based on this find, we 

observed late sixth instar larvae and found GFP expression in localized structures of the 

abdominal area that were identified as oenocytes (Fig. 5A, 5B).  

 
 

 
 
Figure 5. GFP image showing vvl expression in a late sixth instar larval whole 
body. (A-B) Vvl-GFP expression in oenocytes of sixth instar KT817 enhancer trap line 
from (A) lateral and (B) dorsal view. White arrows indicate location of oenocytes. 
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Because oenocytes have been found to be possible sites of ecdysone synthesis in 

another species of beetle, we hypothesized that vvl may be linked to ecdysone 

biosynthesis in the oenocytes. To pinpoint where ecdysone biosynthesis was being 

altered, we first deduced that the two candidates were either the prothoracic glands or 

the oenocytes. Tribolium larvae were thus injected with either vvl or ampr dsRNA, and 

cut in half into posterior and anterior sections, which were then analyzed for ecdysone 

biosynthesis gene expression using quantitative PCR. In this manner, expression of 

several ecdysone biosynthesis “Halloween” genes (phm, spo, sad, shd, dib) in the 

knockdown animals were examined. Results showed that phm expression was lower in 

the anterior sections of vvl-knockdown animals compared to ampr-knockdown animals, 

while the posterior expression of phm in the vvl-knockdowns remained unchanged 

compared to the ampr-knockdowns (Fig. 6A,6B).  
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Figure 6. phm expression in vvl-knockdown larvae was reduced in the anterior.  
(A-B) phm expression in ampr and vvl dsRNA-injected instar larvae on day 4 in (A) the 
posterior, containing the abdomen (p = 0.85), and (B) the anterior, containing the head 
and thorax (p <0.05). Three biological replicates were used per treatment, and each 
sample was run in triplicates. Each biological sample consisted of pooled RNA from five 
larvae. Data are represented as mean +/- SEM. 
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In the spo expression, however, we saw the reverse. Expression of spo was decreased 

significantly in the posterior section of the vvl-knockdown larvae (Fig. 7A). Interestingly, 

the expression of spo in the anterior section of the vvl-knockdown specimen did not 

differ significantly from that of the ampr-knockdown animals (Fig. 7B). To further 

investigate if spo expression was reduced in the oenoctyes of the animals injected with 

vvl dsRNA, either vvl or ampr dsRNA was injected into 0 fifth instar animals and on day 

4 the oenocytes with their associated tissues were collected. In the oenocytes of the vvl-

knockdown larvae, we saw that spo expression was reduced compared to those of the 

ampr-knockdown larvae (Fig. 7C). Fat body from the dsRNA-injected larvae was also 

collected, which showed that spo expression was slightly increased in the vvl-

knockdown animals compared to the controls.  
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Figure 7. spo expression in vvl-knockdown larvae was reduced in the posterior. 
(A-B) spo expression in ampr instar larvae on day 4 in (A) the posterior, containing the 
abdomen (p <0.05), and (B) the anterior, containing the head and thorax (p = 0.27). 
Three biological replicates were used per treatment, and each sample was run in 
triplicates. Each biological sample consisted of pooled RNA from five larvae. (C) 
Expression of spo in oenocytes of day 4 fifth instar KT817 larvae with ampr and vvl 
knockdowns. Oenocytes pooled from 15 larvae per treatment. (D) Expression of spo in 
fat body of day 4 fifth instar KT817 larvae with ampr and vvl knockdowns. Fat body 
pooled from 15 larvae per treatment. Data are represented as mean +/- SEM. 
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For the Halloween genes sad, shd and dib, there was no difference between the 

expression of vvl and ampr dsRNA-injected larvae in either the anterior and posterior 

sections (Fig. 8A-F). All together, our results suggest that Vvl may control the synthesis 

of ecdysone in different areas by selectively influencing the expression of certain 

ecdysone biosynthesis genes. 
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Figure 8. sad, shd and dis expression in vvl-knockdown larvae in the anterior and 
posterior portions. (A-F) sad, shd and dis expression in ampr and vvl-knockdown fifth 
instar larvae on day 4 in (A,C,E) the posterior, containing the abdomen (respective p-
values=0.18; 0.75; 0.74), and (B,D,F) the anterior, containing the head and thorax 
(respective p-values=0.20; 0.80; 0.71). Three biological replicates were used per 
treatment, and each sample was run in triplicates. Each biological sample consisted of 
pooled RNA from five larvae. Data are represented as mean +/- SEM. 
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Effect of starvation on vvl expression in Manduca 
 

To determine the expression of vvl in Manduca, vvl expression was analyzed in 

several tissues of penultimate (fourth) and final (fifth) instar larvae. Larvae were raised 

until they reached the fourth instar and were dissected daily to isolate total RNA from 

the central nervous system (CNS)/corpora allata (CA) complex and prothoracic glands 

(PG). In the CNS/CA, minimal expression of vvl was observed during the fourth instar, 

but higher levels were seen in the fifth instar (Fig. 9A). This suggests that there is a 

distinct change in the expression of vvl in the CNS during the final instar. In addition, the 

expression of vvl was also low on day 3 of the fifth instar, which coincides with the 

timing of critical weight attainment. Thus, a decline in the vvl expression might be 

required for the signal to release PTTH which marks the attainment of critical weight. In 

the PG, high expression of vvl was seen on day 0 of both the fourth and fifth instars (Fig. 

10).  
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Figure 9. Expression of vvl in CNS/CA tissue samples in Manduca larvae at 
various days of the fourth and fifth instars. A) vvl expression at various stages of the 
fourth and fifth instar. Ten animals were dissected from the fourth instar and five 
samples from the fifth instar. Specimens were fed on normal diet and central nervous 
systems were collected when animals reached different stages of the fourth and fifth 
instars. B) vvl expression in CNS/CA tissue samples of fed or starved animals at various 
stages of the fifth instar. CNS/CA tissue was isolated from dissected animals at the fifth 
instar on day 0, day 1 (pre-critical weight: fed average weight = 2.85g, starved average 
weight =1.28g) and day 3/4 (post-critical weight: fed average weight =7.43g, starved 
average weight =1.86g). Animals to be dissected on day 1 and day 3/4 were either 
continued to be fed on a normal diet or starved with non-nutritional diet. Starved animals 
weighed much less than critical weight on both days. vvl expression was quantified 
using qPCR, with rp49 used as the standardizing control. Average weights are indicated 
above each bar. 
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Figure 10. Expression of vvl in PG tissue samples in Manduca larvae at various 
days of the fourth and fifth instars. Ten animals were dissected from the fourth instar 
and five samples from the fifth instar. Specimens were fed on normal diet and the 
prothoracic glands were collected when animals reached different stages of the fourth 
and fifth instars. vvl expression was quantified using qPCR, with rp49 used as the 
standardizing control. Average weights are indicated above each bar.  
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To further investigate the possibility of the role of vvl in the timing of 

metamorphosis and its relationship to nutritional intake, the effect of inadequate nutrition 

on the expression of vvl in Manduca larvae was analyzed. Larval specimens were fed 

on a normal diet until they reached the fifth instar, and upon reaching this cornerstone, 

the animals were separated into two different feeding groups: larvae were continued to 

be fed on a normal diet or larvae were fed starvation diet for two days. All fifth instar 

animals were then dissected on day 1 for pre-critical weight, and on day 3-4 for post-

critical weight, in which the CNS/CA complex was collected for quantitative analysis 

using qPCR. Expression of vvl was high on day 0 (not shown), and I saw that during the 

pre-critical weight, the starved animals have less vvl expression compared to the fed 

animals (Fig. 9B). However, once the larvae passed the critical weight, thus reaching 

the post-critical weight, the starved animals had than 2-fold higher vvl expression 

compared to the fed animals. 

Taken together, the results of these experiments strongly suggest that vvl plays 

an important role in regulating the timing of metamorphosis by controlling both JH and 

ecdysone biosynthesis. 
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Figure 11. Theoretical mechanism of Vvl action in determining initiation of 
metamorphosis. Vvl influences JH production by regulating jhamt expression in the 
corpora allata (CA), thus determining the timing of metamorphosis. Vvl also plays a role 
in the ecdysteroid biosynthesis, as well as the molting pathway through the Halloween 
genes in the prothoracic glands (PG) and oencytes. 
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DISCUSSION 
 
 
 

We have previously seen that the whole body expression of vvl correlates with 

the levels of juvenile hormone (JH) and ecdysone (Cheng, 2013). Thus, we investigated 

the effects of vvl-knockdown on various JH and ecdysone genes in Tribolium 

castaneum larvae. In addition, we observed vvl expression in localized tissue areas of 

Manduca sexta during its last two larval instars, which contain crucial size-assessing 

points that specify the timing of the initiation of metamorphosis. The results of this study 

present new and exciting revelations on the complex and multifaceted role of vvl in the 

timing of the initiation of metamorphosis in Tribolium and Manduca, supporting the 

notion that the gene may be the link that bridges the gap between the two hormonal 

pathways important to metamorphosis initiation (Fig. 11). By knocking down vvl 

expression in larval Tribolium, we identified a potential mechanism by which vvl 

regulates the physiological aspects of early insect development. I found that Vvl 

regulates JH biosynthesis, and that vv-knockdown affects the expression of an 

ecdysone-response gene, as well as a series of genes involved in the biosynthesis of 

ecdysone. 

 
 
Juvenile hormone 
 
 
The role of Vvl in JH biosynthesis 
 

In invertebrates, the role of JH is to maintain the organism in its larval stage so 

that it does not pupate in an untimely fashion. Thus, production of this hormone and its 

regulation is essential during the process of metamorphosis. As aforementioned, JH 
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determine the nature of the molt and acts as a status quo hormone (Riddiford, 1996). In 

the fifth larval instar, Manduca ready themselves for pupation by initiating JH levels to 

drop, thus signaling that the animals are ready to metamorphose (Nijhout and Williams, 

1974b). As a whole, JH production is monitored by JH acid methyltransferase 3 (jhamt3), 

a gene involved in JH biosynthesis. Our results show that the expression of jhamt3 

expression in Tribolium is dramatically decreased in vvl-knockdown larvae, indicating 

that vvl might play a direct role in the production of JH. A recent study also found that 

vvl was expressed in the corpora allata (CA) of Drosophila embryos, implying that there 

may be a direct relationship between Vvl and JHAMT in the CA (Sanchez-Higueras et 

al., 2013). 

To better study the expression of vvl and the areas in which it is heavily 

expressed, we investigated the gene of interest in another model system, the Manduca. 

Because of its larger size, Manduca are excellent organisms to dissect and analyze 

localized areas of tissue-specific expression of vvl. We saw that vvl expression in whole 

body samples of Tribolium larvae was high at the start of the sixth and seventh instars, 

and that the CNS/CA complex of day 0 seventh instar larvae had a very high expression 

of vvl.  Similarly, CNS of day 0 of the fifth instar Manduca larvae also expressed high 

levels of vvl expression (Fig. 9). However, Manduca had lower levels of vvl in the CNS 

the second–to-last instar before pupation. The difference in vvl expression between the 

penultimate and final instars may be due to several reasons. It is possible that during 

the final instar, vvl may be activated in the CNS in preparation for metamorphosis, 

especially since Vvl has been shown to regulate neuronal development in Drosophila. In 

addition, if vvl is indeed a dual regulator of JH and ecdysone as this study suggest, 
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there is a possibility that vvl may also have multiple other neuroendocrine functions in 

the CNS besides monitoring the biosynthesis of these two important developmental 

hormones. For example, in Bombyx, a homolog of Vvl, POUM2, has been shown to 

regulate the expression of Diapause hormone and pheromone biosynthesis-activating 

neuropeptide (Zhang et al., 2004). 

In addition, the difference between fourth and fifth instars observed in CNS of 

day 0 Manduca may be due to the fact that the brain changes in its response to JH 

during different instars. In the fourth instar, the release of PTTH from the brain remains 

insensitive to JH, but in the final instar, it becomes sensitive to the hormone. Since we 

found that Vvl regulates ecdysteroid biosynthesis gene expression, vvl may underlie the 

change in the brain’s responsiveness to PTTH secretion that is found in the final instar 

brain. Future studies would benefit from an examination of ptth expression in the brain 

of vvl-knockdown larvae. 

 
 
Nutritional effects on Vvl at critical weight 
 

In insects such as Manduca, the critical weight, or a specific size that an 

organism needs to obtain for it to metamorphose without developmental delay under 

starvation conditions, plays an important role in determining the timing of 

metamorphosis. Nutrition plays an important role in the regulation of the neuroendocrine 

system, and thus, the onset of metamorphosis. In Manduca, the critical weight is 

associated JH clearance, which then initiates the release of PTTH secretion and 

signaling the initiation of metamorphosis (Nijhout and Williams, 1974b).  The decrease 

in JH levels following the attainment of the critical weight sanctions the release of PTTH, 
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resulting in the PGs to start up the synthesis of ecdysone (Nijhout and Williams, 1974a, 

b). Thus, if larvae are starved before they reach the critical weight, JH clearance is 

delayed, therefore disrupting when an organism pupates and delaying metamorphosis. 

To further understand and establish the potential relationship between vvl and critical 

weight, the effect of starvation on pre-critical and post-critical weights was compared. 

The increased expression of vvl observed in the day 3/ 4 starved animals compared to 

the fed post-critical animals suggests that JH production remains high in starved 

animals, possibly contributing to the delay of metamorphic entry. These preliminary 

findings suggest that there is a potential difference in responsiveness to vvl between the 

fourth and fifth instar depending on the CA or the CNS. This suggests that vvl, which 

plays a crucial role in JH biosynthesis, may also be involved in how and when critical 

weight is reached. It would be interesting for future studies to isolate only the CA and to 

see whether the expression in these different localized tissue samples is dramatically 

altered. 

The implications of these findings are fascinating and truly exciting. As 

mentioned before, the critical weight has been suggested to be determined by an 

unidentified oxygen sensor (Callier and Nijhout, 2011). In arthropods, endocrine glands 

and trachea were previously believed to be two unrelated and dissociated systems that 

independently evolved due to various adaptive pressures (Grillo et al., 2014). However, 

recent studies show that the embryonic primordia of the CA and the prothoracic gland 

are in fact homologous to the primordial of tracheal cells (Sanchez-Higueras et al., 

2014). Sanchez-Higueras et al. (2014) show that in Drosophila melanogaster, the CA, 

prothoracic gland and tracheal primordia may have originated at the same location in 
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regions of the head and trunk, having homologous origin and the ability to turn into each 

other. During development, all of these structures are derived from cells that express vvl. 

Because vvl expression also influences the establishment of the endocrine and tracheal 

primordia, the gene may also be involved in the oxygen-sensing mechanism that 

regulates insect development. My findings that Vvl regulates endocrine regulators 

suggest that vvl may link together aspects of the endocrine system with the 

physiological mechanism of respiratory tracheal development in insects, and potentially 

other invertebrates. Thus, oxygen concentration may affect ecdysone and JH levels via 

Vvl. Additional studies will be necessary, however, to provide further evidence of this 

possible link. 

 
 
Ecdysone 
 
 
The role of Vvl in ecdysone biosynthesis 
 

Previous results have shown that vvl-knockdown larvae not only experience early 

onset metamorphosis, but also fail to molt (Cheng, 2013). This led us to believe that Vvl 

may have an activating role on the ecdysteroid signaling pathway.  A recent study 

analyzed the ecdysteroid titers of Tribolium injected with vvl dsRNA, and found that the 

vvl-knockdown animals had overall lower ecdysteroid titers compared to the control 

animals (Cheng et al., in press). This finding supplies further evidence that the 

regulation and expression of vvl influences the production and regulation of 

ecdysteroids. 

From the results of this study, we also found that the expression of hr3, the 

ecdysone response gene, was significantly reduced in Tribolium injected with vvl 
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dsRNA, but treatments of 20E could rescue normal expression of hr3, giving substantial 

evidence that vvl plays a role in the regulation of ecdysone production, rather than 

response (Fig. 2B,C). We also saw that, even though exogenous 20E treatments 

rescued the expression of hr3, it failed to rescue the ability of the larvae to molt (not 

shown), implying that Vvl might influence a more downstream aspect of the molting 

process rather than the early ecdysone biosynthesis signaling pathway. In insects, 20E 

controls the expression of E75 and hr3 (Segraves and Hogness, 1990; Palli et al., 1992; 

Jindra et al., 1994). The difference in expression observed in the two ecdysone 

response genes hr3 and E75 may be due to the fact that rise in E75 comes prior to the 

rise in hr3, because E75 is an “early” gene and hr3 is an “early-late” gene in the 

biosynthesis of 20E (Christiaens et al., 2010). In this pathway, “early” genes are 

responsible for upregulating “early-late” gene, and there is a time lapse between the 

expressions of these two genes. Because hr3 is downstream of E75, it could be more 

sensitive to the vvl-knockdown. 

 
 
Localized expression of Vvl implies various sites of ecdysone production 
 

We analyzed the effect of vvl-knockdown on the expression of various Halloween 

genes to better understand the role of vvl in ecdysone biosynthesis, and saw that the 

expression of phm and spo, two genes involved in ecdysone biosynthesis, in vvl-

knockdown animals were different depending on the sections of the body. Whereas 

phm expression was only lowered in the anterior section, spo expression was only 

lowered in the posterior section (Fig. 6, Fig. 7). Furthermore, I found evidence that spo 

expression in the oenocytes was one target of Vvl. Based on previous studies observing 
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oenocytes in other insect species, such as Tenebrio molitor, we know that these sites 

synthesize ecdysone from cholesterol (Romer et al., 1974). Thus, Vvl might play a role 

in the oenocytes in addition to the prothoracic glands to regulate the process of 

ecdysone biosynthesis.  

Due to the disparity observed between spo and phm expression in the posterior 

vs. anterior when vvl is knocked down, we are inclined to believe that Vvl plays different 

roles in controlling ecdysteroid production depending on the area of its expression, and 

that having multiple sites and degrees of ecdysone biosynthesis may be related to how 

the organism responds to signals from the oenocytes or signals from the central 

nervous system. In various species of arthropods, the synthesis of ecdysone is found in 

ovaries and the epidermis, with several ecdysteroids having also been found to play a 

role in spermatogenesis (Hagedorn et al., 1975; Zhu et al., 1991; Bellé, 2005). Thus, the 

possibility of there being area specific regulation of endocrine factors should not come 

as a surprise.  

Though it still remains unclear exactly how the ecdysone biosynthesis genes are 

regulated in different areas of expression, we propose that multiple areas of vvl-

controlled ecdysone regulation may be beneficial to insects undergoing molts because 

the spread of ecdysoneis faster if it is released from several sites instead of one single 

location. Such regulation might facilitate rapid, massive and more efficient ecdysone 

production and release, allowing for synchronized molting of different segments. 

Moreover, this study presents novel data in which ecdysone biosynthesis genes were 

found in the oenocytes, which could mean that there is a possible homology between 

PG and oenocytes. Since in Drosophila, both oenocytes and prothoracic glands express 
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vvl during their development (Sanchez-Higueras et al., 2014), these observations 

suggest that the PGs and oenocytes likely share a common developmental and 

evolutionary origin. 

 
 
The overall role of Vvl in the regulation of the initiation of metamorphosis 
 

Members of the POU family are no strangers when it comes to early 

development. In vertebrates and invertebrates, they act as major players in cell type-

specific gene expression and cell determination in both embryos and larvae (Fukuta et 

al., 1993; Ryan and Rosenfeld, 1997; Zhang and Xu, 2009). In the moth species 

Bombyx mori, BmWCP4, a protein gene primarily studied as a factor involved in wing 

development, plays a crucial role in pupal cuticle formation during the transition from the 

larval stage into the pupal stage. A study found that the expression of this gene 

increased in response to 20E, but the heightened expression was also found to be 

inhibited by the presence of JH (Deng et al., 2011). This phenomenon was explained to 

be due to the fact that JH hindered the expression of BmPOUM2, a POU homolog of 

Vvl found in Bombyx, which is the reverse of what we see in our study. This discrepancy 

may have been due to the differences in species used in each respective study, but 

another reason may be because prepupal specimens were used in the other study 

whereas this study looked at primarily the larval stages. This suggests that vvl may 

have stage-specific roles whose mechanistic pathways may differ from species to 

species.  

Looking at all of the qualitative and quantitative results from this study, we see 

that there is a subtle similarity between the transcriptional regulation of neuroendocrine 
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factors involved in metamorphosis observed in invertebrates and puberty observed in 

vertebrates, which are two very crucial turning points in organismal growth and 

postembryonic development. Though it is highly unlikely that these two developmental 

processes share a common evolutionary origin, the fact that POU transcription factors 

are evolutionary conserved across several metazoan taxa suggests that the 

transcriptional regulation of these developmental processes may be very similar 

whereas the specific neuroendocrine regulators they target may be distinct. Because 

significant vvl expression is observed in the trachea, corpora allata and prothoracic 

glands during early development in Drosophila, recent studies have claimed these 

structures may had a common origin in an arthropod ancestor (Grillo and Casanova, 

2014; Sanchez-Higueras et al., 2014). Together with the possibility that vvl expression 

may be tied to the critical weight, which has been linked to oxygen levels, the link 

between trachea and the neuroendocrine glands suggest that vvl may have played an 

ancient neuroendocrine function that was conserved throughout millions of years of 

evolution.  
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