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Abstract

A microprocessor contains the central processing unit and takes the role of the “brain” for a com-

puter. For the past decades, we have benefited greatly from its technological improvement. To accurately

measure the contribution of such technological improvement to economic growth, we need a quality adjusted

price index, which also helps us understand quality and technology trends in microprocessors. The quality

trend in desktop microprocessors has been extensively studied. I focus on microprocessors for laptops for

my senior economics thesis. Using data I newly collected on laptop microprocessor prices and performance

metrics, I construct a quality adjusted price index spanning the past ten years. Across a range of empirical

specifications, I find a sharp decrease in quality adjusted price over 2004-2013, but smaller in magnitude since

2010. These results might suggest a different technological improvement pattern and/or changing pricing

strategies in the laptop microprocessor segment of the industry.
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1 Introduction

The world has benefited greatly from the Information Revolution, from the ease of online

shopping to the accuracy of medical imaging. Microprocessors, the small semiconductor chips

in our computers, tablets, smartphones and other electronic devices, play a central role in these

developments. Microprocessors function as a computer’s brain, processing the tasks assigned by the

users. The first microprocessor was introduced by Intel commercially in 1971: Intel 4004 at a price of

$60.1 Since then, innovations in production processes have driven down the cost of manufacturing,

such that microprocessors became a lot cheaper and therefore have made Information Technology

(IT) more accessible in everyday life. According to the Census Bureau, 75.6 percent of households

in America reported having a computer in 2011, compared with only 8.2 percent in 1984.2 More

than that, microprocessors are drastically better today than forty years ago in terms of quality.

The conventional evaluation of a microprocessor’s quality compares the number of transistors, the

tiny electrical switches made of silicon on the microprocessor. As a result of constantly shrinking

the transistor sizes, technology nowadays can easily enable billions of transistors to fit on one

microprocessor, compared with only thousands in early days of microprocessors. Such improvement

has increased the computing power of microprocessors substantially. The design of microprocessors

has become more sophisticated at the same time. Betker et al. [1997] remind us that the first

microprocessor was intended for an electronic calculator. Nowadays microprocessors are general-

purposed, capable of running a wide range of application software.

Besides its contribution to the standard of living, progress in the microprocessor industry

is a key driver of the phenomenal productivity growth over the past few decades. To accurately

measure real input and output in the microprocessor industry in national accounts, we need quality

adjusted price indices, which account for price changes while controlling for quality. Two popular

methods for computing quality adjusted price indices are matched-model and hedonic methods.

The matched-model method traces the prices for one model of goods with constant quality features

over time and averages price relatives for all of the models traced in a period. As is common in

statistical agencies, official price indices such as the Producer Price Index (PPI) by the Bureau of

1This price converts to about $350 in 2013 dollars.
2See Computer and Internet Use in the United States (2011 Report), available at http://www.census.gov/prod/

2013pubs/p20-569.pdf.
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Labor Statistics (BLS) for many products are derived based on the matched-model method. The

hedonic method, on the other hand, directly controls for quality changes. Previous work by Byrne

et al. [2014] has shown that the matched-model method used by BLS for the microprocessor PPI

might be biased. Rather than the slow decline post-2010 depicted in Figure 1, a hedonic index of

desktop microprocessors experiences a much sharper decline. This discrepancy calls into question

the validity of the microprocessor PPI. However, the verdict on PPI also depends on a less studied

question: for laptop microprocessors, is the PPI also biased? The contribution of this paper is to

provide empirical evidence on this question by estimating quality adjusted price indices for laptop

microprocessors.

Figure 1: BLS Microprocessor PPI

Notes: Source: Bureau of Labor Statistics Producer Price Index Industry Data.3

Using public online information, I construct a new dataset of microprocessor prices and

quality metrics. These data allow me to construct quality adjusted price indices over 2004-2013.

Across a range of empirical specifications, I find a sharp decrease in price over 2004-2013 but smaller

in magnitude since 2010. These results suggest a different technological improvement pattern. Also,

there is qualitative evidence on potential changes in pricing strategies in the laptop microprocessor

3BLS PPI extracted on: April 9, 2014. Industry: Semiconductors and related device mfg; Product: Micropro-
cessors (including microcontrollers); Series Id: PCU33441333441312; Base Date: 200706. The BLS sample includes
microprocessors in servers, desktops, laptops, and other microprocessors.
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segment of the industry.

The rest of the paper proceeds as follows. Section 2 introduces the empirical approaches

and describes the range of previous literature concerning quality adjusted price indices for mi-

croprocessors. Section 3 describes the microprocessor market and the data. Section 4 presents

estimates of hedonic indices for laptop microprocessors and attempts to track the quality trend in

the microprocessor industry. Section 5 examines the robustness of the empirical results. Section 6

concludes.
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2 Preliminaries on Price Indices

2.1 New Goods Bias in the Matched-Model Method

The discussion of quality adjusted price indices centers around the difference between

matched-model and hedonic methods. The matched-model index is constructed by averaging the

prices changes of the goods in a sample whose quality features stay the same over adjacent time

periods. This is a common practice by statistical agencies. The theory behind the matched-model

is intuitive and the required data collection is straightforward. However, the matched-model index

also introduces “new goods bias.” Since there are always goods exiting or entering the market, the

sample of constant quality goods never remains the same over time. This bias is especially notable

in the microprocessors market, where life cycle ranges from 5 to 13 quarters as shown in Figure 2.

Figure 2: Histogram of Intel Laptop Microprocessor Lifecycle

Notes: The 95% interval is [5,13]. Year = 2004-2013.

The problem as discussed in Pakes [2003] is that the matched-model method fails to make

any adjustment for differences between the “utility per dollar” of the new and old goods. For

example, when Intel introduced multicore microprocessors, the single-core microprocessors became

obsolete. However, consumers would gradually switch from the old single-core to the new multicore

4



microprocessors, rather than shifting completely at the introduction of multicore microprocessors.

Any consumer who switches experiences a price change that is not equal to the change in prices

between the new and the old microprocessors, and consumers increase their utility as a result of

the switch. This utility gain is not captured by matched-model indices so it results in a new goods

bias, which tends to introduce an upward bias into the estimates of changes in the matched-model

indices when the new goods are better in terms of quality.

2.2 Overview of Hedonic Method

The alternative method, the hedonic method, can ameliorate the new goods bias. The

hedonic method utilizes hedonic functions, which provide an explicit way to control for quality

changes. A hedonic function is a relation between the prices of different goods in a sample, and

the quantities of quality features in them. For example, a hedonic function can capture ion the

empirical relationship between the prices of a set of microprocessors and how many transistors

there are on the microprocessors. Different forms of hedonic functions allow for different price

index formulae. Therefore there are a number of ways to compute hedonic indices depending on

the forms of hedonic functions. I now provide a brief overview of hedonic functions. Following the

notation in Pakes [2003] , I denote (xi, pi) to be the quality features and the price of good i and

(x−i, p−i) to be the quality features and prices of the other goods marketed. Then the demand for

good i becomes Di(·) = D(xi, pi, x−i, p−i, A) where A is the distribution of consumer attributes

that determine consumers’ preferences over quality features. Suppose all firms are single good

firms and marginal costs are given by mc(·), then prices are pi = mc(·) + Di(·)
|∂Di(·)/∂p| . The second

term Di(·)
|∂Di(·)/∂p| is the mark-up which varies inversely with the elasticity of demand. The hedonic

function h(x) is the expectation of price conditioned on quality features xi, that is E[pi|xi] =

E(mc(·)|xi) + E( Di(·)
|∂Di(·)/∂p| |xi). So the hedonic function is the expectation of marginal costs plus

that of the mark-up conditioned on the good’s quality features. The underlying assumption for the

hedonic function is that the quality features are costly to produce, and consumers make purchasing

choices based on the quality features. Let ht(xi) be the hedonic function in period t.
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2.3 Alternative Approaches to Hedonic Price Indices

With these preliminaries, I now introduce hedonic price indices. As defined earlier, a hedonic

price index is a price index that uses a hedonic function in some way.

2.3.1 Dummy-Variable Method

The first is the dummy variable (DV) method. Pooling prices and quality features of goods

in the sample over time, this method controls for quality features, and assigns dummy variables

for each time period in which a price is observed for the good. Hence, there is only one hedonic

function hDV (xi) for the sample. A stylized dummy variable hedonic function takes the form

hDV (xi) : ln(Pi,t) = α+ βln(xi) +
∑
t

δtDi,t + εi,t, (1)

where on the left-hand side Pi,t is the observed price of good i at time period t, on the right-hand

side, the xi is the time-invariant quality features for good i. The β coefficient measure by how

much the price changes corresponding to 1% change in xi. It is constrained to be the same over

all time periods, which is in effect an average of the quality elasticity of price for each of the time

periods in the sample. The time dummy variable Di,t is a constructed binary variable which equals

1 if a price is observed for good i at time period t, and 0 otherwise. I exclude Di,t=1 to ensure the

initial time period is the baseline. The DV method entails an unweighted geometric mean index

number formula. To illustrate this point, I expand Equation 1 as in Triplett [2004]

hDV (xi) =



ln(Pi,1) = α+ βln(xi) + εi,t

ln(Pi,2) = α+ βln(xi) + δ2(Di,2 = 1) + εi,t

. . . . . .

ln(Pi,n) = α+ βln(xi) + δn(Di,n = 1) + εi,t

. . . . . .

The δn is the log difference in prices between t = n and t = 1, holding constant quality

features xi of the goods. Similarly, the difference in prices between two adjacent periods is δt−δt−1,

holding constant quality features xi of the goods. It represents the price change in time period t

6



that is not associated with changes in quality features.

Denote Nt to be the number of goods that have price information at time period t. Then

I note that δt − δt−1 as
1

Nt

∑
n∈Nt

(lnPn,t − βln(xn)) − 1

Nt−1

∑
n∈Nt−1

(lnPn,t−1 − βln(xn)). Then the

implicit index number formula is defined as

index{ t

t− 1
} = exp(δt − δt−1) =

∏
n∈Nt

(Pn,t)
1/Nt

∏
n∈Nt−1

(Pn,t−1)
1/Nt−1

∏
n∈Nt

(xn)β/Nt∏
n∈Nt−1

(xn)β/Nt−1

. (2)

Equation 2 shows the DV index equals the ratio of unweighted geometric means of prices in

adjacent periods, divided by a hedonic quality adjustment. The denominator of Equation 2 is the

hedonic quality adjustment, which is itself an index number: a quantity index that measures the

change in quality features of goods sold in adjacent periods as explained in Triplett [2004]. When

N and xn are constant from t to t − 1, then the DV index is the geometric mean of prices. That

is, the DV index would yield same results as the matched-model geometric mean index when there

are no new goods entering or old goods exiting the market, which Aizcorbe et al. [2003] confirm

with empirical evidence. I include the mathematical proof in the Appendix.

If hDV (xi) is estimated with weights by sales, the DV index as in Equation 2 would be a

ratio of weighted geometric means, rather than the equally-weighted geometric means. However,

the form of hDV (xi) imposes the geometric means in the index number formula. It is not possible

to calculate a superlative index number formula, independently from hDV (xi). The second hedonic

function introduced here, the characteristic method, relaxes this constraint.
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2.3.2 Characteristics Method

The characteristics method uses the implicit characteristic prices estimated from hedonic

regressions in a conventional weighted index number formula. Following the notation in Triplett

[2004], for each time period t in the sample, the hedonic function htchar(xi,t) takes the form

htchar : ln(Pi,t) = αt + βtln(xi,t) + εi,t,

where on the left-hand side Pi,t is the observed price of good i at time period t, on the

right-hand side, the xi,t is the time-invariant quality features for good i marketed at time period t.

“Characteristics” are the same as the quality features, just as the name “characteristics method”

suggests. The β measures by how much the price changes corresponding to a 1% change in xi at

time period t in the sample.

The predicted value ˆhtchar(xi, t) is the implicit characteristic price.4 For two overlapping

periods t + 1 and t + 2, one can obtain the implicit characteristics prices from both periods by

estimating

ht+1
char : ln(Pi,t+1) = αt+1 + βt+1ln(xi,t+1) + εi,t+1

ht+2
char : ln(Pi,t+2) = αt+2 + βt+2ln(xi,t+2) + εi,t+2.

Using the characteristic prices, one can choose the index number formula and construct

indices. I briefly present three formulae that I use.

The Laspeyres index, which is the base period weighted index, takes the form

ˆht+2
char(xi,t+1)

ˆht+1
char(xi,t+1)

, (3)

where the numerator of equation 3 is constructed from the characteristics of the good in the initial

4When exponentiating the regression prediction, which is the predicted log of price, there is a correction exp(εi,t)
which I assume equals exp(0.5 ˜V ar(εi,t)) as suggested by Pakes [2003]. The underlying assumption is that the error
terms are from a log normal distribution.
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period t + 1 valued by the second period’s hedonic function, that is, the second period t + 2

characteristics prices for goods in the initial period. The denominator uses the initial period t+ 1

characteristics prices for goods in the initial period. In a PPI context, equation 3 could be thought

of in terms of the total quantity of characteristics produced by the industry in the initial period.

The numerator values the initial period’s output of characteristics with characteristics prices of the

second period; it is the industry’s hypothetical revenue if it sold the initial period’s goods at the

characteristics prices that prevail in the second period. The denominator is the actual industry

revenue in the initial period.

The Paasche index, which is a current-period weighted index, takes the analogous form

ˆht+2
char(xi,t+2)

ˆht+1
char(xi,t+2)

. (4)

The Fisher index, which is the chain weighted index, is the geometric mean of Laspeyres

and Paasche indices:

(
ˆht+2

char(xi,t+1)

ˆht+1
char(xi,t+1)

·
ˆht+2

char(xi,t+2)

ˆht+1
char(xi,t+2)

.

)1/2

(5)

To summarize, the Laspeyres index draws characteristics from the initial period to “forecast”

to in the second period. Paasche draws characteristics from the second period and “backcast” prices

in the initial period. The Fisher index values characteristics bundles from both periods.

In this paper, I apply the indices to the average good in each period, i.e. I take the

mean of the predicted prices for all goods in one period, and use this average price as the index

for the period.5 Triplett [2004] points out that this average good might not exist; it is merely

the good with the average quantity of characteristics purchased in one period. For example, the

“average” microprocessor may be a microprocessor with the average number of transistors among

all microprocessors marketed in one period. Such a microprocessor might not exist in the actual

market, but I take this hypothetical microprocessor as the representative of the market in one

period.

Similarly to the DV method, when there are no new goods entering or old goods exiting the

5Precisely I take the geometric mean of the indices since the original scale is in log scale, i.e. the average of logs
of prices converts to the geometric mean of prices.
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market, the characteristics method would yield same results as the matched model index. I include

the mathematical proof in the Appendix.

2.3.3 Adjacent-Period Method

However, given the constraint on data availability, the characteristics method might not be

feasible. If there are too few observations within certain time periods, the characteristics method

could generate unreliable estimates. To alleviate this shortcoming, Byrne et al. [2014] suggest an

alternative method, the adjacent-period method. The essence of the adjacent-period method is a

DV method for each two overlapping period, which takes the form

h
{tj ,tj+1}
adj (xi,t) : ln(Pi,t) = α+ βln(xi,t) +

∑
t

δtDi,t + εi,t, (6)

where t ∈ {tj , tj+1}, the two overlapping periods. The rest of the setup is identical to the DV

method in Section 2.3.1. To construct the index, the adjacent-period method can either infer the

growth rates of prices from the δ’s, or can predict the prices and apply some index formula similarly

as characteristics method. In my analysis I choose to infer price index from the δ’s. Again, when

there are no new goods entering or old goods exiting the market, the adjacent-period method would

yield very similar results to the matched-model index.

In Section 4.2, I compute quality adjusted price indices using all three methods and discuss

their strengths and weakness in an empirical context.

2.4 Previous Literature on Microprocessor Price Indices

My work extends previous research on microprocessor hedonic price indices. Grimm [1998]

calculate that the price index for microprocessors declined at a 35% average annual rate from 1985

to 1996. For 1990-1998, Chwelos [2003] estimates laptop prices decline at an average rate of 40%

per year. Although the prices were for laptop computers, Chwelos [2003] relies on quality features of

microprocessors. Therefore his estimates are reflective of the price trend in laptop microprocessors.

Other research focused on either the entire microprocessor market or desktop microprocessors, and

documented similar trends for the 1990s.

Quality adjusted prices for microprocessors continued to decline rapidly in the early 2000s.

10



Aizcorbe et al. [2008] estimate the quality adjusted price for microprocessors declined 40.5% per

year on average over 2001-2004 using the matched-model method. Recent work by Byrne et al.

[2014] estimate desktop microprocessor prices declined an average of 44% over 2000-2012 using the

hedonic adjacent-period method. They find that both methods, the matched model method and

the hedonic method, yield similar indices for the early 2000s.

I now examine the 2004-2013 laptop microprocessor mark. I present empirical estimates of

quality adjusted price indices and quality improvement in Section 4.2. Before that, I firstly describe

the microprocessor market and data collection in the next section.

11



3 Empirical Context

This section briefly reviews the microprocessor market and the data construction, presenting

information relevant for the empirical analysis. The Appendix documents more details on the data

collection and technical background.

3.1 Laptop Microprocessor Market

Intel and Advanced Micro Devices (AMD) dominate the market for laptop microprocessors.

The industry is highly competitive regarding technical leadership, which Intel gained in 2006 with

the release of the Core 2 family. For laptop microprocessors, Intel now leads the market with more

than 90% market share according to Byrne et al. [2014]. However, while Intel controls the high-end

and mid-range parts of the market, AMD remains a competitor for the low-end parts of the market.

At any given time, manufacturers offer a variety of microprocessors. In particular, Intel

now introduces new microprocessors more widely across its product line, improving high-end and

low-end microprocessors, a new strategy for Intel in the past decade. The most important quality

feature of these microprocessors is performance, the ability to process tasks. High performing

microprocessors tend to have more transistors, include multiple cores, and are equipped with more

advanced designs. Engineers can change all of these quality features to manipulate performance,

but a simple way to compare performances is based on some benchmark scores.

3.2 Tracking Prices

Microprocessors prices are gathered from two sources. Intel publishes bi-monthly price lists

on its investor relation website. These are wholesale list prices for microprocessors sold in units

of 1,000, also called “tray” prices as microprocessors are packaged on a tray. I am able to access

the majority of these price lists for 2004-2013.6 Prices from 2004-2013 were also gathered from

websites devoted to tracking retail prices for Intel and AMD microprocessors. I relied mostly on

SharkyExtreme and Pricewatch.7 These price search engines monitor major online retail market

places such as Amazon, eBay and Newegg for price quotes and track the lowest price. The frequency

6Collected by Dr. David Byrne and the author.
7Collected by Dr. David Byrne and the author. Since Pricewatch gets updated daily, I exploit the “wayback

machine”, an internet archive, for past versions of the same website. See http://web.archive.org/web/*/http:

//www.pricewatch.com/cpu/
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of price quotes ranges from bi-monthly to quarterly as shown in Table A1 in the Appendix. The

frequency I observe a price quote depends largely on data availability, not the popularity of the

microprocessor. In particular, multiple price quotes in a given period might not be associated

with multiple transactions and market popularity for the particular microprocessor. Therefore a

consistent frequency of price quotes can correct this kind of bias in later analysis. I construct

quarterly prices using the minimum price within each quarter for each microprocessor.

Figure 3: Laptop Microprocessor Price Contour

Notes: Each line traces the price for a microprocessor. Each color represent a family of microprocessors.

Figure 3 plots the price contours and Table A2 in the Appendix details the price distri-

bution by year and by family. The two price sources represent different segments of the laptop

microprocessor market. Intel’s wholesale price lists provide a more comprehensive sample with 170

microprocessors. Among the sample of 88 microprocessors, Online retail websites list prices for

some desktop microprocessors that are used in high-end laptops. Figure 4 compares the prices

for five specific microprocessors, which highlights the differences between the two price sources.

There is certainly less fluctuation in Intel prices, and in some extreme cases prices remain constant

throughout the model’s lifecycle, even when the retail prices are dropping sharply. This contrast

casts doubt on the validity of Intel prices. Intel might have not posted actual transaction prices

after the introduction of the microprocessors. The estimates on quality adjusted prices would be

biased if these prices do not represent transaction prices. To ameliorate such bias, I will use the

price from the first time period, that is, the introduction price of each microprocessor.8 Therefore

8This pricing strategy might be due to the multi-product marketing by Intel as discussed in Nosko [2010]. Byrne
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in the analysis, the Intel price dataset has one price per microprocessor, whereas the online retail

price dataset has a quarterly price series per microprocessor.

Figure 4: Selected Laptop Microprocessor Price Contours

3.3 Measuring Performance

For quality features, one might compare microprocessor specifications, which are basic tech-

nology information about the microprocessor.9 Essential specifications include number of transis-

tors, lithography (size of transistor), clock speed (processing frequency), number of cores and

architecture (microprocessor design). These specifications are inadequate quality features as they

only partially represent microprocessors’ performance. Some of the previous empirical research

has used benchmark scores to control for quality in developing quality adjusted prices index for

microprocessor and/or computers.

Benchmark software assigns the microprocessor standard tasks and scores the performance.

There are multiple benchmarks available targeting different features of microprocessors. I focus

on two main features: basic performance and graphics performance.10 By basic performance, I

et al. [2014] offers a fuller justification for using introduction prices given Intel’s pattern of posted prices.
9The information on microprocessor specifications are collected from microprocessor website YouCPU (see http:

//www.youcpu.com/en/). , and verified on Intel and AMD official websites. More technical information can be found
in the Appendix.

10It is arguable whether graphics performance is entirely a microprocessor feature. A graphics processing unit
(GPU) can be on a video card, on the motherboard along with the microprocessor, or on the microprocessor. It was
only recently that Intel and AMD began to commonly integrate GPU into microprocessor architecture (2010 for Intel
– Westmere architecture and 2011 for AMD – Accelerated Processing Unit (APU) Series). With a discrete GPU, to
measure graphics performance, ideally I would need GPU information as well, which I postpone as a future research
topic.
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refer to the microprocessor’s ability to process usual tasks such as running ordinary software ap-

plications. By graphics performance, I refer to the microprocessor’s ability to render 3D images

such as streaming videos.11 I argue that both performances are essential quality features that an

average consumer would factor in their purchase decision process. Possibly the recent popular-

ity of video websites has induced a more central role of graphics performance, and at the same

time, the perfection of basic microprocessor performance has satiated consumers’ needs. I choose

three benchmarks, SuperPI1M, wPrime32 and 3DMark06.12 For basic performance, I choose Su-

perPI1M and wPrime32, for they are free, popular and straightforward. For graphics performance,

I choose 3DMark06, for I am able to obtain a reasonable overlap on microprocessors between price

information and 3DMark06 scores.13

SuperPI1M uses single-threading method to calculate π to a million decimal places. It tests

the ability of a microprocessor to complete one task at a time. wPrime32 uses multi-threading

method to estimate the square roots of first 32 million integers. It tests the ability of a micropro-

cessor to multitask at a time. Both tasks, calculating π and square-rooting integers, are straightfor-

ward tasks for microprocessors and resemble ordinary software applications. Scores from these two

benchmarks are the numbers of seconds taken to complete the assignments. Lower scores in Su-

perPI1M and wPrime32 indicate better basic performances for microprocessors in single-threading

or multi-threading ability. 3DMark06 provides a set of tests, mainly graphics tests, and scores

based on the number of frames per second rendered by the microprocessor. Higher 3DMark06

scores indicate a better graphics performance.

Since the benchmark scores provide a comprehensive comparison among microprocessors,

computer hobbyists have charted the results extensively, and I obtain these data from a hobbyist

website.14 Table A3 in the Appendix shows the coverage of these benchmark scores after matching

with prices by microprocessor name. Not all laptop microprocessors are benchmarked. Therefore

not all laptop microprocessors can be matched with a benchmark score. Note that the sample size

11Graphics performance may also reflect the ability to process large tasks. GPUs can be more effective than CPUs
at processing parallel algorithms because of their highly parallelized structures.

12These three benchmarks are only available for Windows. Since operating system affects microprocessor perfor-
mance, the limitations of these two benchmark in fact remove the bias that is due to different operating systems.

13Nonetheless, the newer version of 3DMark06, 3DMark11, and some other benchmarks such as Cinebench, are
more accurate at capturing graphics performance. See the Appendix for details on benchmarking.

14NotebookCheck, which collects the average of scores from benchmark websites (SuperPI at http://www.superpi.
net/, wPrime at http://www.wprime.net/ and 3DMark at http://www.futuremark.com/benchmarks/3dmark). See
the Appendix for details on benchmarking.
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of matched microprocessors varies by benchmark as well. Some microprocessors with SuperPI1M

scores are missing wPrime32 scores, etc.

Figure 5: Laptop Microprocessor Performance Trend

(a) SuperPI1M Score (b) wPrime32 Score

(c) Synthesized Score (d) 3DMark06 Score
Notes: Trend in (a) microprocessor single-threading ability; (b) multi-threading ability; (c) basic perfor-

mance; (d) graphics performance.

I plot the benchmark scores against introduction year of the microprocessors in Figure 5.15

I combine them by constructing a synthesized benchmark, the geometric mean of SuperPI1M and

wPrime32, for each microprocessor that I have both SuperPI1M and wPrime32 scores. I use this

synthesized score instead of separate SuperPI1M and wPrime32 scores to measure microprocessor

basic performance. Comparing the trends in SuperPI1M and wPrime32 scores, the improvement

is less steep in SuperPI1M. While both are essential, multi-threading ability becomes more crucial

15The sample here includes microprocessors that I can match with benchmark scores, but not necessarily price
information, which is different from the sample used in price index estimation.
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than single-threading ability for microprocessors since most modern software implement parallel

programming models. Of course, by taking the mean, I am assuming equal weights in changes of

both scores, which might not be a well-founded synthesis since the importance of multi-threading

ability is contingent on how parallelized the software is.16 I refer to this synthesized benchmark

as the “basic” benchmark as its score reflects the microprocessors’ performance on basic tasks.

Similarly, I refer to 3DMark06 benchmark as the “graphics” benchmark.

Figure 6: Laptop Microprocessor Performance vs. TDP

(a) Basic Performance vs. TDP (b) Graphics Performance vs. TDP

Notes: The extra low voltage microprocessors (TDP < 5W) are likely netbook microprocessors. They are
excluded from my sample of analysis. I include them here for completeness. I take the square roots of TDP
to compress its scale for a sensible comparison. The desktop microprocessors used in laptops, which are not
included here, have much higher TDP (> 100W.)

Benchmarks measure performances, the most important quality feature of microprocessors.

However, there is a particularly important microprocessor specification that is not reflected in

benchmark scores; namely, the Thermal Design Power (TDP), which is the maximum heat the

microprocessor generates, such that the cooling system in a laptop is required to dissipate. With a

low TDP, the laptop is typically less capable in general. The more powerful microprocessors tend

to generate more heat. Thus the cooling systems would require more power to dissipate the heat

generated by the microprocessors. Figure 6 plots TDP against benchmark and demonstrates that

high TDP tends to correlate with better performance. Figure 7 shows the trend of TDP over the

16There are other benchmarks such as PCMark that captures both single-threading and multi-threading abilities.
However, I am not able to obtain adequate overlap between price information and those benchmark scores. So I use
the geometric mean of SuperPI1M and wPrime32 instead.
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past decade, which I examine later in Section 4.4.

In a word, there is no one dimensional metric available for microprocessor quality features.

Nonetheless, benchmark scores are at least a consistent indicator for microprocessor performance.

I also include TDP in my analysis as an important quality feature.

Figure 7: Laptop Microprocessor TDP Trend

(a) by Basic Performance (b) by Graphics Performance

Notes: Higher-end laptop microprocessors are defined here as the top 50% in terms of benchmark scores,

and lower-end laptop microprocessors are the bottom 50%.
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3.4 Data Construction: An Example

A brief example in Table 3.4 may help clarify my data construction. Intel introduced Core

i7-2640M in 2011Q3, a laptop microprocessor under the Core i7 family. Mid-ranged laptops, such

as Lenovo ThinkPad X1 and Macbook Pro assembled in late 2011, installed this microprocessor. I

firstly collect technological specifications which help identify microprocessors when linking different

sources of data.

For Intel Core i7-2640M, I observe a price quote at $346 on 09/25/2011 from Intel’s official

website. There are 30 quotes in total until 11/17/2013 from Intel. I also find its price at $238 on

12/01/2012 from the online retail market. There are 4 retail quotes in total until 08/05/2013. In

the cases where there are more than one price quote per quarter, I define the quarterly prices as the

minimum price of that quarter as mentioned earlier. For Intel prices, I only use the introduction

price, the first price in the series for each microprocessor, which is $346 on 09/25/2011. For

retail prices, I use the full series of quarterly prices observed. The benchmark scores for Intel

Core i7-2640M are on average 11 seconds for SuperPI1M, 15.1 seconds for wPrime32 and 3927 for

3DMark06, collected from NotebookCheck.

The variables that my estimates rely on are quarterly prices, benchmark scores, and TDP. In

Section 4, I apply the various hedonic methods introduced in Section 2 and discuss their strengths

and weaknesses in the context of my dataset.

Table 1: Data Construction Example

Specifications

Model Introduction Lithography(nm) Clockspeed(MHz) Turbo Boost(MHz) # Cores/Threads TDP(Watt) Architecture
Intel Core i7-2640M 2011 32 2800 3500 2/4 35 Sandy Bridge

Intel Price

Model Quarter Price

Intel Core i7-2640M 2011q3 346

Intel Core i7-2640M 2011q4 346

Intel Core i7-2640M 2012q1 346

Intel Core i7-2640M 2012q2 346

Intel Core i7-2640M 2012q3 346

Intel Core i7-2640M 2012q4 346

Intel Core i7-2640M 2013q1 346

Intel Core i7-2640M 2013q2 346

Intel Core i7-2640M 2013q3 346

Intel Core i7-2640M 2013q4 346

Online Retail Price

Model Quarter Price

Intel Core i7-2640M 2012q4 238

Intel Core i7-2640M 2013q1 238

Intel Core i7-2640M 2013q2 188

Intel Core i7-2640M 2013q3 188
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Benchmarks

Model SuperPI1M wPrime32 3DMark06

Intel Core i7-2640M 11 15.1 3927
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4 Empirical Results

The most intuitive hedonic function form is price per unit of quality. Figure 8 plots the

ratio of price to benchmark scores against years. These trends suggest that price per performance

declined steadily since 2004, but stagnated since 2010 especially for basic performance as shown

in Figure 8(a). These simple ratios fail to address the multi-dimensional nature of microprocessor

quality. Besides performance, TDP should also be controlled for as an important quality feature.

Figure 8: Laptop Microprocessor Price Per Performance

(a) Price Per Basic Performance (b) Price Per Graphics Performance

Notes: In (a), price per basic performance = -(Intel initial price) / (gmean of SuperPI 1M and wPrime32

scores). Since the scores are defined in seconds, I flipped the scale so that better performance means a higher

(less negative) number. In (b), price per graphics performance = (Intel initial price) / (3DMark06 score).

This concern motivates me to explore richer hedonic functions. Nonetheless, the trends in

price per performance hints that starting in 2010, the rate of decline in quality adjusted prices for

laptop microprocessor might have indeed slowed down. In order to formally test the hypothesis,

I adopt three forms of hedonic functions, from which I develop quality adjusted price indices. I

present results from these three estimation methods.

4.1 Dummy-Variable Method

The dummy-variable method pools prices over all periods and imposes one hedonic function.

For chip i at time t, I estimate the following:
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ln(Pi,t) = α+ βln(benchmarki) + γln(TDPi) +
∑
t

δtDi,t + εi,t.

The quality feature variables in Equation 1 are now ln(benchmarki), log of benchmark

scores, and ln(TDPi), log of TDP Watts. These variables vary across chips but remain constant

for a given microprocessor over time. The time dummy variable Di,t is the indicator for whether a

price is observed at time t for chip i. As explained in Section 3, I construct a dataset with quarterly

prices. The time dummy variables are therefore quarters from 2004 to 2013. To ensure that the

initial period is the baseline period, I drop the first quarter dummy variable as noted in Section 2.

The coefficients on the time dummy variables are the main estimates of interest. However,

the coefficients on benchmark scores and TDP are also important indicators for the robustness of

the models. I show estimates from OLS models in Table 2 for these coefficients.

Table 2: Dummy Variable Method

I II
Intel Introduction Price Online Retail Price

(a) (b) (a) (b)
ln(benchmark) -1.545*** 1.592*** -1.643*** 1.860***

(0.136) (0.160) (0.077) (0.085)
ln(TDP) -0.496*** -0.733*** -0.210*** -0.617***

(0.105) (0.142) (0.058) (0.067)

Observations 136 127 532 447
R-squared 0.716 0.677 0.562 0.585

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Benchmark variable in subcolumn (a): basic (gmean of

SuperPI1M and wPrime32); (b): graphics (3DMark06).

Column I (Intel introduction prices) of Table 2 pools together the introduction prices from

Intel (N = 136 in I(a) and N = 127 in I(b)). Column II (online retail price) changes the price

source to online retail prices.

I focus on interpreting the coefficients in column I. The estimates on benchmarks imply

that for every 1% reduction in basic score, there is an increase of about 1.6% in price. Similarly,

for every 1% increase in graphics score, there is an increase of about 1.9% in price. One way to

interpret the magnitudes of these coefficients is the following: over 2004-2013, given the same TDP,

to reduce the basic score by half, the price would increase by 80%. To increase the graphics score

by half, the price would increase by 95%. The pattern is broadly similar across price sources: price

is more responsive to the changes in graphics scores.
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The estimates on TDP, on the other hand, are not consistent in magnitude across price

sources and benchmarks. In general, we observe a negative sign here because shorter battery life

due to higher TDP is undesirable to laptop users given the same performance.

Figure 9: DV Method Quality Adjusted Price Trends

I(a) I(b)

II(a) II(b)
Notes: Price sources: Panel I: Intel introduction prices; Panel II: online retail prices. Benchmark variables:

Column (a): basic (gmean of SuperPI1M and wPrime32); Column (b): graphics (3DMark06). The start

year depends on the availability of data to generate index estimates.

Table A4 in the Appendix documents the δ’s and construction of the indices. Since all δ’s

are relative to the initial period, I can construct annual log difference with simply δyear t+2 q4 −

δyear t+1 q4 and test its significance. For the sample of intel initial prices, some quarters are missing

price quotes. For example, the last quarter observed of year t + 1 is Q3. To obtain annual log

difference, I calculate δyear t+2 q3 − δyear t+1 q4 and impute δyear t+2 q4 − δyear t+1 q4 by assuming
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the price decline in Q4 of year t + 1 is at the average rate over year t + 1 Q3 to year t + 1 Q4.

Figure 9 compares the annual price declines derived from the indices depending on choice of price

sources and benchmark variable. The upper left figure corresponds to the regression results from

column I(a) in Table 2, Intel introduction prices as the price source and basic benchmark as the

benchmark variable. The rest follows. Details on annual growth rates can be found in Table A5 in

the Appendix. I show that the decline from 2010-2013 is indeed significantly smaller than 2004-2010

in magnitudes.

At the outset, DV method constrains the relationship between price change and performance

improvement to be the same in all periods. This assumption might not be valid given the ever-

changing market of microprocessors. It also constrains the price index to a geometric means formula

as discussed in Section 2. I turn to characteristics method, which overcomes these two limitations.

4.2 Characteristics Method

The dummy-variable method constrains coefficients on quality features to be the same over

time. This limitation motivates me to adopt the characteristic method for the second part of

empirical analysis. The characteristics method, as we examined in Section 2, applies a hedonic

function for different time periods separately, rather than pooling together prices from all time

periods and assigning time indicators. I apply the characteristics method for each year in my

sample. For chip i over adjacent two years t+ 1 and t+ 2, I estimate the following:

ht+1
char : ln(Pi,t+1) = αt+1 + βt+1ln(benchmarki) + γt+1ln(TDPi) + εi,t+1

ht+2
char : ln(Pi,t+2) = αt+2 + βt+2ln(benchmarki) + γt+2ln(TDPi) + εi,t+2

I construct and describe price indices from the regression results. For now I focus on the

coefficients on benchmark scores for Intel and online retail prices. I show estimates from OLS

models in Table A6 in the Appendix. I firstly note that the coefficients on the characteristics terms

indeed vary over years. Generally, the magnitude of coefficients on basic benchmark is larger than

graphics benchmark, which is consistent with results from the DV method.

I report the predicted average characteristics prices and Laspeyres, Paasche and Fisher

indices in Table A7 in the Appendix. Figure 10 presents the annual growth estimated by the

24



characteristics method. Details on annual growth rates can be found in Table A8 in the Appendix.

The overall trend conveys a similar message to that in the DV results: quality adjusted prices

decline rapidly since 2004, but the decline has slowed down since 2010.

Figure 10: Characteristics Method Quality Adjusted Price Trends

I(a) I(b)

II(a) II(b)
Notes: CAGR calculated using Fisher index. I truncate the sample for online retail prices to end in 2010.

When constructing the dataset, I append prices from a different source for 2011-2013 to the previous prices.

The latter source covers a rather different microprocessor population, which results in noncomparable char-

acteristic function estimates.

The first advantage of the characteristics method is that it constrains the coefficients on

quality features as little as possible. The DV method requires that the coefficients be unchanged

over all time periods. The characteristics method is not subject to this criticism. It uses one

hedonic function for each of the periods included in the price index, not a single hedonic function
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for all periods, over which characteristics prices can change. However, what matters is the price

index, not the coefficients themselves. As we compare the indices from these two methods, the

overall similarity suggests that empirically these two methods do not differ by much given my

dataset. That said, when there are too few observations within a certain year, or the samples

from two consecutive years overlap poorly, the characteristics method could generate unreliable

estimates.17 The second advantage is characteristics method separates the index formulation from

the hedonic function. The hedonic function depends on the empirical relationship between the

prices and qualities given that it is highly reduced form. The index formula depends on the usual

theoretical conditions from index theory, not on the statistical relation established empirically by

the hedonic function. The DV method implies an index formulation, which is the ratio between

geometric means in quality adjusted prices, which might not be the desired price index formula.

The price index calculated using the characteristics method does not assume a connection between

hedonic functional form and index number functional form.

The downside of characteristics method is that I omit quarterly differences in prices. By

pooling prices on yearly basis, I essentially take a weighted average of prices within a year. Given

that prices for microprocessor change rapidly, we might not want to ignore the quarterly differences

in prices. Also, the variation in sample size and population introduces large volatility to the

estimations.

Thus I return to a tweaked version of dummy-variable method. Instead of inserting time

dummy variables, I add a linear time trend over quarters in adjacent years. Such implementation

constrains the coefficients as little as possible, and at the same time permits reasonable sample size

for each hedonic function.

17This dilemma happens to the online retail price sample. For 2010 and 2011, the microprocessor population
changes drastically and results in noncomparable characteristic function estimates.
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4.3 Adjacent-Year Method

I present my third and last empirical estimation method. It is referred to as the adjacent-

year method. For two overlapping years, for chip i at quarter t, I estimate the following:

ln(Pi,t) = α+ βln(benchmarki) + γln(TDPi) + δti,t + εi,t

The adjacent-year method differs from the dummy variable method in two aspects: 1)

rather than pooling prices from all periods, I limit the sample to two adjacent year for each hedonic

function. Therefore instead of fitting one hedonic function on the entire dataset (2004-2013), I allow

a unique hedonic function for each two-year window. Thus there are nine functions in total. 2) I

substitute the time dummy variable with a linear time trend. The advantage is that the coefficient

on the time trend, δ, is already the average quarterly growth rate, which I can easily convert to

annual growth rate. This shortcut saves the imputation for annual growth rate in DV method,

which is especially helpful dealing with Intel first price dataset.

In the Appendix, Table A9 lists the coefficient estimates on benchmark variables. As ex-

pected, the estimates are more stable over years compared with the characteristic method. However,

the pattern is generally similar: the magnitude for coefficients on graphics benchmark is larger than

that of basic benchmark.

Figure 11: Adjacent-Period Method Quality Adjusted Price Trends

I(a) I(b)

Table A10 in the Appendix shows the annual growth rates calculated from δ’s. Figure 11
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II(a) II(b)

plots the annual percent change in the estimated quality adjusted price indices. Again, despite the

sharp price decline over the past ten years, there is a noticeable slowdown since 2010.
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4.4 Potential Causes of Slowdown

Table 3 reports the CAGR of quality adjusted price calculated using aforementioned hedonic

methods. Over 2004-2013, the quality adjusted price decline on average from -19% to -34%, with

the mid-range at -27%. The basic performance adjusted price decline ranges from -19% to -30%,

with the mid-range at -26%. The graphics performance adjusted price decline ranges from -22% to

-34%, with the mid-range at -28%.

Table 3: Summary of Compound Annual Growth Rates

CAGR for 2004-2013

I II
(a) (b) (a) (b)

DV Method -19 -26 -28 -32
Characteristics Method -26 -34 n/a n/a

Adjacent-Period Method -24 -22 -30 -34

CAGR for 2004-2010 and 2010-2013

DV Method Characteristics Method Adjacent-Period Method
I II I II I II

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)
2004-2010 -20 -27 -32 -33 -31 -40 -25 -29 -30 -24 -32 -35
2010-2013 -15 -23 -19 -30 -14 -20 n/a n/a -12 -17 -25 -31

Notes: Price sources: Panel I: Intel introduction prices; Panel II: online retail prices. Benchmark variables:

Column (a): basic (gmean of SuperPI1M and wPrime32); Column (b): graphics (3DMark06). Fisher index

is reported here for the characteristic method results.

I summarize CAGR for 2004-2010 and 2010-2013 as well. The comparison between 2004-

2010 and 2010-2013 in Table 3 recapitulates the slowdown in rates of price decline since 2010. All

three hedonic methods (DV method, characteristics method, and adjacent-period method) have

delivered consistent estimates across choices of prices sources and benchmark variables. By that I

mean given a hedonic method, if we condition on price source and benchmark variable, the average

price change in 2010-2013 is consistently milder compared with that in 2004-2010. That is, the

values in row “2010-2013” are smaller in magnitude than those in row “2004-2010”. For example,

using the adjacent-period method, I estimate the average price change to be -30% in 2004-2010 in

Intel introduction prices adjusting for basic performance. With the identical regression set-up, I

estimate the average price change to be -12% in 2010-2013, which is smaller in magnitude compared
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with 2004-2010. Such pattern is uniform regardless of the set-up.

There is also a consistent pattern in price trends conditioned on the choice of benchmark

variables. Comparing estimates in subcolumns (a) and (b) under the same price source, the graphics

performance adjusted price indices exhibit larger decline than the basic performance adjust price

indices in most cases. This pattern might imply a slower improvement in basic performance, which

I confirm later with empirical evidence.

Overall, especially after 2010, online retail prices decline at a faster rate than Intel intro-

duction prices. Comparing subcolumn I and II with the same benchmark variable, the online retail

prices experience faster drop than the Intel introduction prices. As mentioned in Section 3, the

online retail market represent a higher-end segment and display more variations in prices. Sup-

pose pricing schemes are similar across the product line, then the slower drop in Intel price may

imply smaller price adjustment for new offerings of microprocessors since 2010. Later I relate this

observation to potential changes in pricing strategies by Intel.

I conclude that my estimates of hedonic quality adjusted prices show sharp decline in the

order of about -20% to -30% annually, but represent a slower decline at about -15% to -25%

since 2010. By definition, the hedonic function is the expectation of price conditioned on quality

features. The changes in hedonic quality adjusted prices are therefore changes in expectation

of price consisting of marginal cost and mark-up given constant quality. So we can attribute the

slowdown in quality adjusted price potentially to either or both of the following two broad channels:

1) smaller improvement in quality which results in smaller price declines, and consequently slower

quality adjusted price declines 2) different pricing strategies with faster increase in marginal cost

and/or mark-up.

4.4.1 Quality Improvement

To test for the possibility of slower improvement in quality, I repeat the growth rates

analysis on benchmark scores.18 For the trends displayed in Figure 5, I present average annual

growth rates in Table 4 I, separated by year 2010. This simple analysis corroborates the trends

in quality adjusted prices: overall substantial improvement with year 2010 as the turning point.

18The growth rates are CAGR, which can be imprecise since the progression on the benchmark scores might not
be linear. For example, a 20% increase from 500 to 600 might imply a larger improvement than a 20% increase from
100 to 120.
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I firstly caution against comparing the growth rates across benchmarks. A direct comparison

between growth rates would imply the two benchmarks have similar scoring paradigms. That is, a

10% decrease in basic benchmark scores is as attainable as a 10% increase in graphics benchmark

scores. Such generalization is flawed. Therefore we may only compare the changes in improvement

rates for the two benchmarks respectively.

Table 4: Laptop Microprocessor Quality Improvement

I. Performance Improvement

Basic Performance Graphics Performance
(1) (2) (3) (1) (2) (3)

2004-2010 -21% -16% -9% 20% 10% 4%
2010-2013 -10% -5% -2% 6% 10% 19%
2004-2013 -17% -12% -7% 18% 11% 6%

II. Performance per TDP1/2 Improvement

Basic Performance Graphics Performance
(1) (2) (3) (1) (2) (3)

2004-2010 -24% -18% -7% 19% 13% 10%
2010-2013 -9% 3% 0% 10% 17% 28%
2004-2013 -19% -12% -5% 17% 13% 9%

III. Decomposing Basic Performance

Top Median Bottom
Basic (a) (b) Basic (a) (b) Basic (a) (b)

2004-2010 -21% -16% -25% -16% -11% -20% -9% -5% -14%
2010-2013 -10% -7% -14% -5% -8% -6% -2% 1% -3%
2004-2013 -17% -13% -21% -12% -10% -15% -7% -3% -11%

Notes: Categorization in Panel I and II are (1) high-end (2) mid-range (3) lower-end.

Improvement in the high-end segment of the microprocessors is defined as the growth rates in the geometric

mean scores of the top 25% (≤75% percentile score for basic or≥25% percentile score for graphics) benchmark

scores; improvement in the mid-range segment is defined as the growth rates in the geometric mean scores

of the middle 50%, i.e. (25%,75%] benchmark scores; improvement in the lower-end segment is defined as

the growth rates in the geometric mean scores of the bottom 25% (basic: >25% percentile score; graphics:

<75% percentile score) benchmark scores.

Benchmark variables in Panel III are (a) SuperPI1M and (b) wPrime32.

Basic performance, measured by the geometric mean of SuperPI1M and wPrime32 scores,

improved at a slower rate 2010-2013 (-16%) than 2004-2010 (-5%) for the mid-range laptop micro-

processors. Graphics performance, measured by the 3DMark06 scores, improved at the same rate

2010-2013 (10%) as 2004-2010 (10%) for the mid-range laptop microprocessors. This difference is
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consistent with the slower decline in basic performance adjusted price.19

We can further dissect the performance trends by incorporating TDP. I factor in TDP by

dividing the benchmark scores with the squared roots of TDP. Shown in Table 4 II, after controlling

for TDP, mid-range graphics performance improved at a faster rate post-2010 (17%) than pre-2010

(13%). Since the graphics creation tends to generate more heat than ordinary tasks, the improve-

ment in graphics performance is often at the cost of higher TDP. It is particularly meaningful for

laptop microprocessors to improve graphics performance without raising TDP. So I conclude that

the improvement in graphic performance did not slow down post-2010, after controlling for power

consumption.

By contrast, controlling for TDP seems to exacerbate the slowdown in basic performance

improvement. I decompose the basic performance into single-threading and multi-threading per-

formance to analyze the trends more thoroughly. In Table 4 III, I observe that across the laptop

microprocessor product line, i.e. high-end segment vs. lower-end segment, there is a noticeable

slowdown in both SuperPI1M and wPrime32 improvement (comparing rows of “2004-2010” with

“2010-2013” under sub columns (a) and (b) within each segment.)

Furthermore, there is evidence that basic performance improvement is at a slower rate

for laptop microprocessors than for desktop microprocessors.20 Similar decomposition of growth

rates in basic performance on desktop benchmark scores shows a contrasting pattern in Table 5.

Indeed, the rate of basic performance improvement in desktop microprocessors persisted throughout

2004-2013, at -21% pre-2010 and -20% post-2010 for the mid-range microprocessors (Column (2)

of Table 5, comparing row “2004-2010” with row “2010-2013” under “Basic”) .21 Similarly to

laptop microprocessors, the single-threading performance as measured by SuperPI1M score shows

stagnation overall. In response to more and more parallelized software, Intel shifted its research

focus from single-threading to multi-threading performance of microprocessors as early as 2005.

Therefore I focus on the multi-threading performance as measured by wPrime32 score.

19The shift in architecture might explain the disparity. Starting in 2010, the microprocessor industry began to
integrate GPU into microprocessor, which substantially increased graphics performance.

20I retrieve the benchmark information for desktop microprocessor from YouCPU, which retrieves average bench-
mark scores from benchmark websites similarly as NotebookCheck.

21 Byrne et al. [2014] suggest that the performance of Intel’s desktop microprocessors improved roughly 30 percent
per year on average from 2001 to 2012, based on benchmark scores from System Performance Evaluation Corporation
(SPEC). Since SPEC is a more comprehensive benchmark, my estimates for improvement in desktop are likely to be
different.
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Table 5: Desktop Microprocessor Quality Improvement

(1) (2) (3)
Basic (a) (b) Basic (a) (b) Basic (a) (b)

2004-2010 -27% -15% -33% -21% -10% -24% -11% 0% -13%
2010-2013 -13% -8% -15% -20% -10% -22% -18% -10% -25%
2004-2013 -23% -13% -28% -21% -10% -23% -14% -3% -17%

Notes: Categorization in Panel I and II are (1) high-end (2) mid-range (3) lower-end.
Benchmark variables in subcolumns are (a) SuperPI1M and (b) wPrime32. This desktop sample includes
quite a few AMD microprocessors. I include them here as a complete comparison with the laptop micro-
processor benchmark information, but I note that the difference in AMD and Intel architectures can cause
various patterns in quality improvement over time.

Across the product line of desktop and laptop microprocessors, the patterns are similar

on improvement rate between high-end and lower-end for 2004-2010. For 2004-2010, performance

improves rapidly for the entire product line of desktop and laptop microprocessors, especially

for higher-end microprocessors. For 2010-2013, I notice a different pattern among laptop micro-

processors: the mid-range and lower-end have slowed the improvement rate substantially. The

improvement rates are, by contrast, rather consistent among higher-end, mid-range and lower-end

desktop microprocessor. The contrasting performance might signal differentiated product introduc-

tion strategies by manufacturers for laptop microprocessors. Manufacturers consistently developed

and introduced better microprocessors than the previous year across the product line each year

for 2004-2010. This strategy is studied in detail by Nosko [2010]. However, after 2010, it seemed

that the development effort was focused on the high-end segment of the microprocessors. Then the

improvement in the high-end segment gradually extends to the entire product line. The continued

improvement in the lower-end segment could just be a “waterfalling” effect from the high-end seg-

ment, which perhaps explain the slowdown in the overall improvement in laptop basic performance.

For the slowdown in quality improvement, I present two potential explanations based on

the technological progress in the microprocessor industry outline by Aizcorbe and Kortum [2005].

The technological progress in microprocessors is largely driven by innovations in the upstream

semiconductor equipment industry. Semiconductor equipment firms like Nikon and Canon invent

new generations of capital equipment which allows microprocessor firms like Intel and AMD to

manufacture smaller transistors, enabling them to make higher quality microprocessors. As shown

in Table 6, the current size of transistor is 22nm introduced in 2012. For past decades, innovations
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Table 6: Intel Microprocessor Family Introduction Timeline

2003 2006 2008 2010 2012
Family Pentium M Core 2 Duo Core 2nd gen. Core 3rd gen. Core

Clockspeed 1.7GHz 2.66GHz 2.4GHz 3.8GHz 2.9GHz
# of Transistors 55 million 291 million 410 million 1.16 billion 1.4billion

Lithography 90nm 65nm 45nm 32nm 22nm
Architecture P6 Core Nehalem Westmere Sandy/Ivy Bridge

Notes: This timeline summarizes the introduction of microprocessor families analyzed in this paper.

More details are available at Intel Chips Timeline (http://www.intel.com/content/www/us/en/history/

history-intel-chips-timeline-poster.html.) The laptop microprocessors architectures is Clarksfield

under Nehalem and Arrandale under Westmere.

in the upstream semiconductor equipment industry has allowed a shrinkage in size by a factor of

roughly 0.7 every 2-3 years, which would shrink the transistor area by half. The ability to constantly

halve the transistor sizes fulfills the Moore’s law, a statement made in Moore [1965] that the number

of transistors on a microprocessor doubles every two years. As transistor size reaches infinitesimal,

the manufacturing becomes more challenging and the fixed-cost skyrockets. “When Moore’s Law

ends, it will be economics that stops it, not physics.” Robert Colwell, director of the Microsystems

Technology Office at the Defense Advanced Research Projects Agency (DARPA), emphasized in

August, 2013.22 The increasing cost might have already stopped Moore’s law. Somewhere in

between 2010 and 2012, as shown in Table 6, the number of transistor for the 3rd generation Core

ceased to increase as fast as before. Consequently there is not as much momentum for improvement

directly from the upstream semiconductor equipment industry as before.

The second explanation lies within the microprocessor industry. Although the industry has

progressed at the speed predicted by the Moore’s law, it has not been able to efficiently transform

the addition of transistors to quality improvement as suggested by Pillai [2013]. With his model

of technological progress in the microprocessor industry, Pillai [2013] suggests the slowdown in

quality was mainly caused by a decrease in the efficiency with which manufactures were able to

use the innovations generated by the upstream semiconductor equipment industry. For example,

even though the area of transistor was halved, clockspeed did not improve from 2008 to 2010 by as

much (between Nehalem and Westmere architectures) as shown in Table 6.23 Borkar and Chien

22See “The Chip Design Game at the End of Moore’s Law.” The original presentation is available at
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.15-keynote1-Chipdesign-epub/HC25.

26.190-Keynote1-ChipDesignGame-Colwell-DARPA.pdf. It was presented at the Hot Chips Conference at Stanford
University.

23In general, comparison on clockspeed of microprocessors from different architectures is rather invalid because
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[2011] explain the difficulty in a more technical context. I highlight here the challenge specific to

laptop microprocessors. Additional transistors generate more heat, which demands extra power

to dissipate the heat. Due to its portable nature, power consumption is a stricter constraint on

laptop microprocessor design than for desktop microprocessors. Energy efficiency, on the other

hand as suggested by Figure 7, has not been consistently improving. This constraint might also

explain smaller improvement in laptop microprocessor quality than desktop. Nonetheless, as we

saw earlier, graphics performance seems to be improving without the cost of raising TDP. The

laptop microprocessor industry might be experiencing and energy efficiency breakthrough.

Additionally, the unique market structure might affect the innovation rate and therefore

quality improvement. Goettler and Gordon [2011] find that innovation is higher with Intel as a

monopolist than with an Intel-AMD duopolist over the span of 1993-2004. The microprocessor

market has shifted to predominantly an Intel monopoly rather than an Intel-AMD duopoly. The

effect of competition on innovations in the microprocessor market could have changed as well. Two

kinds of competition drive innovation: competition between manufactures for the technological

frontier and competition with the current quality to induce consumers to upgrade. Duopolists face

both, whereas a monopolist faces only the latter. Moreover, rapid market growth from first-time

laptop buyers especially in 2000s might have reduced innovation incentives for Intel who could

exploit their demand. To boost demand from laptop replacements, Intel needs to widen the quality

gap between currently owned and new offerings for second-time buyers. Demand from first-time

buyers may not be as responsive to quality changes as second-time buyers. Potentially the first-time

buyers are more attuned to graphics performance and energy efficiency than basic performance.

Therefore Intel might not face much competition with the current quality of laptop microprocessor,

especially in terms of basic performance, which might have exacerbated the slower rate of quality

improvement.

the length of pipeline varies. That is, the amount of work done per clock cycle is different for each architecture.
However, since Westmere is the “tick” following Nahalem, I assume the main quality improvement is mostly from the
shrinkage in transistor size, not changes in architecture. (Intel’s “tick-tock” model means every “tick” is a shrinkage
of transistor size of the previous architecture and every ”tock” is a new architecture. Therefore the comparison of
clockspeed is not completely groundless for Nahalem and Westmere.
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4.4.2 Pricing Strategies

The smaller quality improvement alone might not fully explain the slowdown in price decline.

Potential changes in pricing strategies might have also contributed to the slowdown

I rely on previous literature and qualitative evidence to discuss the possibility of changes in

pricing strategies.

The marginal cost might have increased at a faster pace recently. As explained in Pillai

[2013], larger microprocessors are associated with higher marginal costs of manufacturing because

larger sizes increase the fraction of microprocessors that are defective. The higher defect rate arises

from contamination by dust particles in the manufacturing process. Larger microprocessors have

a higher probability of being contaminated. According to the Poisson yield equation used in the

industry, the defection rate grows exponentially with the area of a microprocessor.

To improve quality, it might require fitting more transistors or a more complex design on

a microprocessor and therefore increase its size. Although there is no ample information on sizes

of microprocessors in my dataset to verify this hypothesis, it is possible that the microprocessor

size has increased lately as more and more new features are added to its architecture: multi cores

in 2005, memory controller in 2008, and GPU in 2010.24 These additions might have enlarged the

size and escalated the marginal cost of microprocessors.

The mark-up might have risen to justify the skyrocketing fixed cost in the industry. In an

investor meeting late 2013, Intel’s chief financial office Stacy Smith indicated that Intel’s factories

were operating at less than 80% of capacity.25 Each manufacturing plant requires a staggering

amount of investment and yet some of them have remained idle due to lack in volume. Perhaps

the overcapacity has in part induced larger mark-ups.

The mark-up varies with demand and the elasticity of demand. Since microprocessors

are largely durable goods, the replacement decision differs from the first-time buying decision.

As the microprocessor market matures, replacement purchases dominates the proportion of sales.

With a dynamic model of consumer replacement cycles, Gordon [2009] finds significant variations

in the distributions of replacement cycles across consumers over the period of 1993 to 2004. On

24See the Appendix for a comparison of architectures in Figure A3.
25The original presentation is available at http://mindspace.ru/wp-content/uploads/2013/12/INTC_investor_

meeting_2013_IM_Smith.pdf
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average, consumers replace their existing processors about every 3.3 years. The high-end consumers

have a shorter replacement cycle than the lower-end consumers. It would be valuable to perform

similar analysis on the replacement cycle since 2004 for the laptop microprocessor market. Possibly

replacement cycles have been stretched longer and consumers have become less sensitive to prices

over time considering the introduction of tablets.

Lastly, Intel’s pricing scheme for new offerings of microprocessors could have changed since

2010. My estimates indicate quality adjusted price decline slower in Intel introduction prices than in

online retail prices after 2010. This might suggest that for a mid-ranged microprocessor introduced

in the current period, compared with a mid-ranged microprocessor introduced in the last period,

Intel does not adjust downward the price as much as the retail market would have equilibrated. If

the demand elasticity has indeed decreased since 2010, then Intel would be able to extract more

revenue from the less price-sensitive consumers.
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5 Estimation Issues

Sources of possible errors in my estimates are: measurement error, selection bias and flaws

in hedonic methods.

5.1 Measurement Errors

There could be measurement errors in microprocessor prices. Intel prices, even the intro-

duction prices, might not be actual transaction prices. Intel reports prices for microprocessors

offered to distributors and original equipment manufactures (OEM) when they purchase in lots of

1,000. Large buyers might get discounts based on the size of their purchases. I cannot rule out the

possibility that the actual transaction price might be lower than the list price. This discrepancy

would not cause bias in my analysis as long as the discounts do not vary over time or model.

However, this assumption is nearly impossible to verify.

Similarly, the retail market price might cover more than a microprocessor. Although I

call this source the online retail prices, most of the prices listed are for the OEM versions of the

microprocessors, also referred to as tray prices. The OEM microprocessors usually do not come

equipped with a heat sink or fan. The actual retail prices are higher since they generally include

the longer warranties, heat sinks and fan which OEM prices do not. Therefore only the OEM

prices are comparable to those on the Intel website. There might be a few actual retail prices, and

I assume the additional charge is small.

5.2 Selection Bias

Benchmark scores, on the other hand, pose mostly selection bias on my sample. 3DMark

is a well-known benchmark and gets quoted in microprocessor reviews often. But the other two

benchmarks I choose, SuperPI1M and wPrime32, are not administered by private companies or

official organizations. It is the community of computer hobbyists that maintains and updates the

score charts for microprocessors. The hobbyists make purchase choices based on the benchmark

scores, which is probably different from how an average consumer makes purchase choices. As I

mentioned in Section 3, only the “popular” microprocessors get benchmarked, and the “popular”

among hobbyists might be the higher performing ones. Thus my sample is likely biased upward
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Table 7: Coverage on Intel Laptop Microprocessors 2004-2013

Before Matching

Family Counts
Celeron 54

Celeron Dual Core 2
Celeron M 50
Core 2 Duo 45

Core 2 Extreme 5
Core 2 Quad 2
Core 2 Solo 4
Core Duo 13
Core Solo 5
Core i5 25
Core i7 50

Pentium M 35
Total 290

After Matching

SuperPI1M wPrime32 3DMark06
Celeron 17 14 13

Celeron Dual-Core 2 0 2
Celeron M 16 14 5
Core 2 Duo 37 39 36

Core 2 Extreme 5 5 5
Core 2 Quad 2 2 2
Core 2 Solo 2 1 2
Core Duo 9 6 6
Core Solo 5 3 1
Core i5 14 14 14
Core i7 33 32 32

Pentium M 15 14 9
Total 157 144 127

in terms of quality features compared to the market. Therefore, the issues of potential selection

bias are twofold: 1) how many microprocessors are benchmarked; 2) how representative are the

“popular” benchmarked microprocessors of the microprocessor market.

Table 7 hints at the share of microprocessors benchmarked. On the left is the sample of Intel

laptop microprocessors with price information. I assume this sample covers most of the Intel laptop

microprocessors marketed in 2004-2013. On the right is the sample of Intel laptop microprocessors

that I obtained benchmark scores for. While about half microprocessors are benchmarked overall,

a few families such as “Celeron” and “Pentium M” are subjected to major selections. However, I

note that the selectios in these families might not pose a threat to the reliability of my estimates

if their microprocessors are not the mainstream microprocessors during their marketing period.

To investigate how representative the benchmarked microprocessors are, I look for anec-

dotal data from the online retail market on which microprocessors are the best sellers and verify

that they are in the benchmarked sample. I attempted to use records on Amazon as evidence for

popularity. Out of the 40 bestseller microprocessors from a Amazon search in April, 2014, my Intel

price dataset has benchmarks for 21 of them whereas the online retail dataset has only 8.26 How-

ever, since the Amazon ratings are self-reported and accumulative, it is difficult to differentiate the

mainstream microprocessors. To illustrate this point, I note that one of the bestsellers, Intel Core

26The 40 bestsellers are: Celeron M (1), Intel Core 2 Duo (16), Intel Core 2 Extreme (1), Intel Core 2 Quad (1),
Intel Core i3 (3), Intel Core i5 (6), Intel Core i7 (6), Pentium 4 (2), AMD (3) microprocessors. The list is obtained
on April 20, 2014.
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2 Duo T8300, is sold at $38, compared with its introduction price of $241 in 2008. The reviews

on the product suggest that the buyers refurbished their obsolete laptops with this microprocessor.

Another bestselling microprocessor, Intel Core i7-2820QM, is sold at $498, compared with its intro-

duction price of $568 in 2011. The reviews on the product suggest that the buyers upgraded their

laptops which are already in fine condition. These two microprocessors are in different segments of

the market at present. Being in the sample of Amazon bestseller microprocessors does not prove

that they are the prevailing microprocessors of their marking periods. For future study, I hope

to obtain more accurate reports on the annual bestsellers in the laptop microprocessor market to

answer this question.

5.3 Flaws in Hedonic Method

Estimating hedonic indices involves two parts: selection of hedonic functional forms and

index number formula. As shown in Section 2, a hedonic function is only a statistical relation

between the prices of a sample of goods and their qualities. In turn, these qualities are both

outputs for producers and commodities for consumers, which is the underlying assumption for the

hedonic method. Producers manufacture a bundle of quality features. Similarly, consumers make

their purchase decision based on the bundle of quality features.

To formulate a hedonic function, one needs to select variables that are representative of

quality features. Hedonic method is therefore prone to criticism for the “arbitrary” selection of

quality variables. The two features I selected, benchmark scores and TDP, certainly cannot en-

compass all abilities of microprocessors. To determine the quality features that consumers value

the most, we certainly need estimates of the distributions of preferences over quality features.

Nonetheless, based on my research I argue that these two features are the most basic ones of laptop

microprocessors, and average consumers are most likely to factor these two features in when making

purchase decisions.

I emphasize that hedonic functions embody both supply and demand sides of the market.

The coefficients are merely elasticities between price and quality. In perfect competition, the

coefficients represent the marginal cost of improving quality. But as we learned in Section 3,

the microprocessor market is far from perfectly competitive. Thus, the hedonic functions also

include the mark-up, and we may only check the plausibility and comment on the pattern of these
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coefficients. Consider, for example, since multi-threading ability is desired by the consumers and

costly to producers, we would be surprised to observe a negative relationship between them in the

hedonic function. But we may not draw any quantitative conclusion on producer cost or user value.

Regarding index formulation, criticism centers around the unweighted index implied by

hedonic functions. This criticism, however, is based on some confusion about hedonic functions.

Rather than incorporating market share as weights, hedonic functions weight the indices by quali-

ties. Therefore it is not entirely unweighted. Not weighting by market share indeed gives “one vote

per model” unfairly. However, using solely market share weights in price index is erroneous as well.

For example, the market share for a microprocessor can be small because it supplies a market niche

or it is a market failure. For future study, I hope to approximate market share by the number of

processors per family or revenue shares per family.

From a practical point of view, what is the best practice for calculating price indices? Price

indices should be timely and accurate. Clearly hedonic methods fail the first criteria. The quarterly

index is highly volatile and unstable, especially when data are limited. Matched model methods,

on the other hand, can construct indices upon availability of prices. Nonetheless hedonic methods

might be better attuned to quality changes for the microprocessor industry, in which new goods

bias is prominent. My empirical estimates show that hedonic methods control for quality more

accurately than matched model method.

There are certainly other considerations in terms of price index choice for statistical agencies.

Statistical agencies are accountable for the authority in their price index. An anecdote is that during

the climax of the antitrust lawsuit Federal Trade Commission v. Intel, Intel requested a subpoena to

examine microprocessor price indices from BLS. Intel claimed that the biased price indices from the

BLS constituted evidence for the allegations of illegal anticompetitive tactics.27 Compared with the

hedonic method, the matched-model method might offer a more definite explanation on the price

index formulation in such a situation. While the hedonic method can take on different functional

forms, the matched-model method involves no variance from different forms of estimation methods.

Therefore statistical agencies might prefer the matched-model method for its straightforwardness.

However, the possibility of biases in matched-model indices suggests that statistical agencies should

27Intel complained the BLS PPI fell too fast over 2000-2009. I was unable to access more details from either side
regarding Intel’s own pricing information and BLS’s estimation method. Publicly available documents can be found
at FTC Office of Administrative Law Judges Docket No. 9341.
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consider developing hedonic techniques that work in real time for microprocessors. With more

frequent and granular price quotes, the characteristics method and adjacent-period method can

potentially generate reliable estimates.28

28The validity of price sources is certainly another consideration.

42



6 Conclusion

In this paper, I present estimates for quality adjusted price indices using hedonic methods.

My estimates show that the laptop microprocessors are declining at -20% to -30% per year over

the past ten years. I note there is a slowdown since 2010: compared with -25% to -35% per year

over 2004-2010, the annual decline plateaus around -15% to -25% over 2010-2013.

At first glance, such price decline seems rather satisfactory. The quality is still improving

and we will continue to benefit from advancement in IT. Nonetheless, I stress that over the previous

decades, the quality adjusted price fell at -50% to -75% annually for overall microprocessors. Given

the extraordinary productivity growth from IT, even the mild slowdown is a cautionary sign.

Additionally, the quality adjusted price trends provide valuable information on the indus-

try. Even though we have all benefitted personally from the drastic decrease in quality adjusted

prices, it is challenging to understand the complex technological advancement and intricate market

structure fully. My analysis on the quality adjusted price trends helps decipher the progress in the

microprocessor industry. With further analysis of my results, I conclude that the slower decline

in quality adjust prices since 2010 are caused by both different quality improvement patterns and

changing pricing strategies. Quality improvement in terms of basic performance has slowed down,

while improvement in graphics performance has kept up its momentum. Moreover, energy efficiency

might have achieved a gain post-2010 compared to pre-2010. The changes in pricing strategies are

similarly multifaceted: increase in marginal cost and markup could have both contributed to the

smaller adjustment in prices.

The broader implications of price trends emphasizes the importance of an accurate estima-

tion method. Return to the question from the introduction: is the BLS PPI also biased for quality

adjusted price indices for laptop microprocessors? The empirical evidence in this paper suggests

that the PPI might be an underestimate of the price decline for laptop microprocessors. Since

the PPI is based on a larger sample of microprocessor than just laptop microprocessors, a direct

comparison between my estimates and the PPI is likely invalid. A better comparison is with the

matched-model index derived from my dataset. I construct a matched-model price index from on-

line retail prices (it is impossible to calculate matched-model index using Intel introduction prices)

as shown in Figure 12 I. For most time periods, the online retail matched-model price index agree
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Figure 12: Laptop Microprocessor Price Indices Comparison

I. Online Retail Price Matched Model Index

II. Intel Introduction Price Hedonic Index III. Online Retail Price Hedonic Index
Notes: The percentage change in hedonic indices are the medians of estimates using three different methods

(two for characteristic method in 2011-2013 online retail prices); The matched model indices are calculated as

the geometric mean of quarterly price relatives. The intel matched-model index uses quarterly Intel prices.

with the PPI. Besides the negative shocks in online retail prices, which are probably due to small

sample size, the online retail matched-model price index seems to fall at a slower rate than PPI.

This difference is not surprising: after all, the PPI includes a variety of microprocessors and builds

on a more consistent database. Now I compare the hedonic indices with the matched-model index

on from the same database.
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Indeed, the estimates by the matched-model present smaller declines for 2010-2013 com-

pared with the hedonic method as depicted in Figure 12. I demonstrate that the method employed

by the PPI, mainly the matched-model method, is more vulnerable to the new goods bias than the

hedonic method for the laptop microprocessor industry.

45



References

Ana Aizcorbe and Samuel Kortum. Moore’s Law and the Semiconductor Industry: A Vintage

Model. Scandinavian Journal of Economics, 107(4), 603-30, 2005.

Ana Aizcorbe, Carol Corrado, and Mark Doms. When Do Matched-model and Hedonic Techniques

Yield Similar Price Measures? Working Papers in Applied Economic Theory, Federal Reserve

Bank of San Francisco., 2003.

Ana Aizcorbe, Stephen D. Oliner, and Daniel E. Sichel. Shifting Trends in Semiconductor Prices

and the Pace of Technological Progress. Business Economics, 43(3), 23-39, 2008.

Michael R. Betker, John S. Fernand, and Shaun P. Whalen. The History of the Microprocessor.

Bell Labs Technical Journal, Autumn, 1997.

S. Borkar and A. Chien. The Future of Microprocessors. Communications of the ACM, 54, 2011.

David M. Byrne, Stephen D. Oliner, and Daniel E. Sichel. How Fast Are Semiconductor Prices

Falling? (Preliminary Version). 2014.

Paul Chwelos. Approaches to Performance Measurement in Hedonic Analysis: Price Indexes for
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Table A1: Laptop Microprocessor Price Quote Frequency

Intel Price Lists

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2004 0 1 0 1 1 0 1 1 1 1 0 1
2005 1 1 0 0 1 0 1 0 1 0 0 1
2006 1 0 0 0 0 1 1 0 0 1 0 1
2007 1 0 0 1 0 0 0 0 1 0 1 0
2008 1 0 0 1 0 0 2 3 3 1 0 2
2009 1 1 2 1 1 1 1 1 2 1 1 0
2010 0 1 0 1 0 1 1 0 0 1 1 0
2011 1 2 3 2 1 1 1 0 1 1 2 1
2012 1 1 0 1 1 1 0 0 1 1 0 1
2013 1 0 0 1 0 1 0 1 2 0 1 1

Online Retail Prices

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2004 0 0 0 1 1 1 1 1 1 1 1 1
2005 1 1 1 1 1 1 1 1 1 1 1 1
2006 1 1 1 1 1 1 1 1 1 1 1 1
2007 1 1 1 1 1 1 1 1 1 1 1 1
2008 1 1 1 1 1 1 1 1 1 1 1 1
2009 1 1 1 1 1 1 1 1 1 1 1 1
2010 1 1 1 1 1 1 1 1 1 1 1 1
2011 1 0 0 1 0 1 0 1 0 1 0 1
2012 1 0 1 0 1 0 0 1 0 0 0 1
2013 1 0 0 1 0 0 0 1 0 0 0 0

Notes: Counts of price quotes per month. For 2004q2 to 2013q3, there is at least one price quote in a quarter.

So I fix the price frequency to be quarterly.
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Table A2: Summary Statistics for Laptop Microprocessor Prices

Intel Initial Price

Year minimum median maximum total count
2004 107 262 637 13
2005 134 262 637 11
2006 86 241 637 23
2007 107 262 851 19
2008 80 286.5 851 26
2009 70 316 1054 19
2010 80 272 1096 18
2011 70 317 1096 19
2012 86 346 1096 10
2013 86 225 454 12
Total 70 284 1096 170

Family minimum median maximum total count
Celeron 70 86 134 11

Celeron Dual-Core 80 83 86 2
Celeron M 86 134 161 16
Core 2 Duo 209 305 637 42

Core 2 Extreme 851 851 1038 5
Core 2 Quad 348 599.5 851 2
Core 2 Solo 241 262 262 3
Core Duo 209 294 637 9
Core Solo 209 241 262 5
Core i5 225 250 287 15
Core i7 278 378 1096 34

Legacy Celeron 80 86 134 8
Pentium M 209 284 637 18

Total 70 284 1096 170

Online Retail Price

Year minimum median maximum total count
2004 108.68 157.39 458.63 9
2005 63.25 174.92 626.23 50
2006 49.23 118.195 1100 54
2007 28.23 98.5 1183.6 49
2008 40.9 232.57 1018 25
2009 160.36 289 990 23
2010 190 334.485 1000 26
2011 64 245 1003 67
2012 35 251 1372 122
2013 22 194.45 964.95 138
Total 22 225 1372 563

Family minimum median maximum total count
A-Series 40.99 103.875 139.99 20

Core 2 Duo 160.36 277.08 543.83 22
Core 2 Extreme 900 971.58 1183.6 19

Core 2 Quad 190 265 864 21
Core i3 22 72 125.98 26
Core i5 30 188 250 93
Core i7 40 304 1372 225

Mobile Athlon 64 82 188.16 368 27
Mobile Pentium 4 157.11 167.43 186.1 6
Mobile Sempron 28.23 73.36 135 73

Pentium 4 159.13 400 626.23 22
Pentium D 85 170.17 269.5 9

Total 22 225 1372 563

Notes: The samples include laptop microprocessors that have both price information and benchmark scores.

Note that the two samples, Intel and online retail, have different microprocessor coverages. Online retail

dataset includes a few desktop microprocessors that are relatively low in TDP and used to assemble laptop

computers. Also, there are a few AMD microprocessors in the online retail sample.
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Table A3: Laptop Microprocessor Benchmark Coverage

Intel

SuperPI1M wPrime32 3DMark06
2003 3 2 0
2004 19 17 9
2005
2006 23 20 14
2007 14 14 11
2008 24 20 24
2009 18 18 16
2010 16 15 14
2011 20 19 20
2012 11 10 10
2013 9 9 9
Total 157 144 127

Online Retail

SuperPI1M wPrime32 3DMark06
2003 1 1 0
2004 7 7 0
2005 8 8 1
2006 4 5 4
2007 6 3 5
2008 4 4 4
2009 8 8 8
2010 10 10 9
2011 16 15 16
2012 19 19 19
2013 3 3 3
Total 86 83 69

Notes: Counts of benchmarked microprocessors by their introduction year.
Intel

SuperPI1M wPrime32 3DMark06
Celeron 11 10 9

Celeron Dual-Core 2 0 2
Celeron M 16 14 5
Core 2 Duo 37 39 36

Core 2 Extreme 5 5 5
Core 2 Quad 2 2 2
Core 2 Solo 2 1 2
Core Duo 9 6 6
Core Solo 5 3 1
Core i5 14 14 14
Core i7 33 32 32

Legacy Celeron 6 4 4
Pentium M 15 14 9

Total 157 144 127

Online Retail

SuperPI1M wPrime32 3DMark06
A-Series 4 4 4

Core 2 Duo 3 3 3
Core 2 Extreme 3 1 3

Core 2 Quad 2 2 2
Core i3 5 5 5
Core i5 13 13 13
Core i7 36 35 35

Mobile Athlon 64 6 6 0
Mobile Pentium 4 1 1 0
Mobile Sempron 9 9 3

Pentium 4 3 3 0
Pentium D 1 1 1

Total 86 83 69

Notes: Counts of benchmarked microprocessors by microprocessor family.
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Table A4: Dummy Variable Method Index Details

Intel Introduction Price
Basic Performance

Quarter δ Annual LD Annual Index Annual Growth Quarter δ Annual LD Annual Index Annual Growth
2004q3 2009q1 -1.742***

(0.362)
2004q4 2009q2 -1.268***

(0.224)
2005q1 -0.119 2009q3 -0.999*** 0.445* 262.479 56.101

(0.175) (0.217) (0.277)
2005q2 2009q4

2005q3 -0.565 311.491 2010q1 -1.921***
(0.359) (0.246)

2005q4 2010q2 -1.309***
(0.252)

2006q1 -0.463** 2010q3 -1.964*** -0.965*** 100.000 -61.902
(0.201) (0.240) (0.193)

2006q2 -0.756*** 2010q4
(0.176)

2006q3 2011q1 -2.052***
(0.246)

2006q4 -0.716*** -0.12 276.047 -11.379 2011q2 -2.273***
(0.185) (0..294) (0.312)

2007q1 -0.638* 2011q3 -2.022***
(0.360) (0.303)

2007q2 2011q4 -1.919*** 0.036 103.666 3.666
(0.274) (0.239)

2007q3 -0.720*** -0.005 274.578 -0.532 2012q1 -2.091***
(0.179) (0.223) (0.367)

2007q4 2012q2 -2.260***
(0.283)

2008q1 -0.915*** 2012q3 -2.580*** -0.88* 42.941 -58.577
(0.196) (0.431) (0.608)

2008q2 2012q4

2008q3 -1.199*** 2013q1 -2.351***
(0.194) (0.284)

2008q4 -1.333*** -0.49*** 168.147 -38.762 2013q2 -2.267***
(0.245) (0.166) (0.353)

2013q3 -2.384***
(0.360)

2013q4 -2.153*** 0.34* 60.427 40.720
(0.233) (0.323)

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.

The significance test I focus on is whether the annual log difference is significantly different from zero in the

“Annual LD” columns.
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Intel Introduction Price
Graphics Performance

Quarter δ Annual LD Annual Index Annual Growth Quarter δ Annual LD Annual Index Annual Growth
2004q3 2009q1 -1.919***

(0.378)
2004q4 0.516 650.215 2009q2 -1.539***

(0.456) (0.338)
2005q1 0.267 2009q3 -1.000*** 0.805*** 286.910 123.744

(0.312) (0.330) (0.269)
2005q2 2009q4

2005q3 0.578 0.083*** 706.251 8.618 2010q1 -1.753***
(0.456) (0.324) (0.347)

2005q4 2010q2 -1.235***
(0.356)

2006q1 -0.674** 2010q3 -2.054*** -1.054*** 100.000 -65.146
(0.334) (0.354) (0.213)

2006q2 2010q4

2006q3 -0.709* 2011q1 -2.130***
(0.393) (0.360)

2006q4 -0.927*** -1.204 211.869 -70.001 2011q2 -2.302***
(0.315) (0.252) (0.419)

2007q1 -0.691 2011q3 -2.099***
(0.487) (0.411)

2007q2 2011q4 -1.711*** 0.27* 131.574 31.574
(0.374) (0.274)

2007q3 -0.853*** 0.098 233.840 10.370 2012q1 -2.137***
(0.302) (0.252) (0.464)

2007q4 2012q2 -2.356***
(0.396)

2008q1 -1.119*** 2012q3 -2.740*** -1.372*** 33.367 -74.640
(0.330) (0.537) (0.695)

2008q2 2012q4

2008q3 -1.314*** 2013q1 -2.510***
(0.320) (0.397)

2008q4 -1.604*** -0.61*** 128.231 -45.163 2013q2 -2.417***
(0.329) (0.152) (0.464)

2013q3 -2.471***
(0.450)

2013q4 -2.370*** 0.296 44.861 34.447
(0.353) (0.354)
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Online Retail Price
Basic Performance

Quarter δ Annual LD Annual Index Annual Growth Quarter δ Annual LD Annual Index Annual Growth
2004q3 0.026 2009q1 -2.109***

(0.606) (0.583)
2004q4 0.107 1004.425 2009q2 -2.210***

(0.575) (0.597)
2005q1 0.231 2009q3 -2.086***

(0.557) (0.579)
2005q2 0.027 2009q4 -2.093*** -0.168 111.293 -15.465

(0.546) (0.579) (0.304)
2005q3 -0.070 2010q1 -2.053***

(0.541) (0.573)
2005q4 -0.084 -0.191 829.788 -17.387 2010q2 -2.064***

(0.543) (0.272) (0.573)
2006q1 -0.161 2010q3 -2.162***

(0.546) (0.579)
2006q2 -0.287 2010q4 -2.200*** -0.107 100 -10.147

(0.543) (0.579) (0.302)
2006q3 -0.498 2011q1 -2.487***

(0.539) (0.580)
2006q4 -0.844 -0.76*** 388.064 -53.233 2011q2 -2.332***

(0.548) (0.212) (0.550)
2007q1 -0.845 2011q3 -2.383***

(0.548) (0.550)
2007q2 -1.085** 2011q4 -2.418*** -0.218 80.413 -19.587

(0.548) (0.548) (0.24)
2007q3 -1.284** 2012q1 -2.345***

(0.551) (0.548)
2007q4 -1.197** -0.353* 272.645 -29.742 2012q2 -2.457***

(0.557) (0.244) (0.548)
2008q1 -1.136** 2012q3 -2.510***

(0.562) (0.548)
2008q2 -1.501** 2012q4 -2.584*** -0.166 68.113 -15.295

(0.588) (0.543) (0.139)
2008q3 -1.784*** 2013q1 -2.618***

(0.589) (0.543)
2008q4 -1.925*** -0.728*** 131.653 -51.713 2013q2 -2.754***

(0.572) (0.285) (0.543)
2013q3 -2.784*** -0.267*** 52.17 -23.407

(0.543) (0.145)
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Online Retail Price
Graphics Performance

Quarter δ Annual LD Annual Index Annual Growth Quarter δ Annual LD Annual Index Annual Growth
2004q3 2009q1 -1.686***

(0.558)
2004q4 2009q2 -1.666***

(0.566)
2005q1 2009q3 -1.790***

(0.559)
2005q2 2009q4 -1.796*** -0.167 110.296 -15.38

(0.559) (0.325)
2005q3 0.173 764.46 2010q1 -1.757***

(0.625) (0.554)
2005q4 0.140 2010q2 -1.768***

(0.625) (0.554)
2006q1 0.039 2010q3 -1.856***

(0.625) (0.560)
2006q2 -0.304 2010q4 -1.894*** -0.098 100 -9.335

(0.572) (0.560) (0.322)
2006q3 -0.493 2011q1 -2.276***

(0.547) (0.561)
2006q4 -0.561 -0.701 379.24 -50.391 2011q2 -2.213***

(0.547) (0.417) (0.535)
2007q1 -0.552 2011q3 -2.263***

(0.539) (0.535)
2007q2 -0.831 2011q4 -2.352*** -0.458*** 63.255 -36.745

(0.539) (0.534) (0.165)
2007q3 -0.969* 2012q1 -2.296***

(0.537) (0.533)
2007q4 -0.968* -0.407* 252.439 -33.436 2012q2 -2.414***

(0.540) (0.261) (0.533)
2008q1 -1.051* 2012q3 -2.467***

(0.549) (0.533)
2008q2 -1.357** 2012q4 -2.698*** -0.346*** 44.754 -29.249

(0.575) (0.531) (0.146)
2008q3 -1.575*** 2013q1 -2.731***

(0.576) (0.531)
2008q4 -1.629*** -0.661*** 130.343 -48.367 2013q2 -2.850***

(0.558) (0.306) (0.531)
2013q3 -2.912*** -0.285** 33.644 -24.824

(0.530) (0.139)
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Table A5: Dummy Variable Method Index

Annual Growth

I II
Year (a) (b) (a) (b)
2005 8.618† -17.387
2006 -11.379 † -70.001† -53.233 -50.391†
2007 -0.532 † 10.37 -29.742 -33.436
2008 -38.762 -45.163 -51.713 -48.367
2009 56.101 123.744 -15.465 † -15.38 †
2010 -61.902 -65.146 -10.147 † -9.33†5
2011 3.666 † 31.574 -19.587 † -36.745
2012 -58.577 -74.64 -15.295 † -29.249
2013 40.72 34.447 † -23.407 -24.824

Notes: The † indicates a change insignificantly from zero at 10% level.

Summary of CAGR

I II
Year (a) (b) (a) (b)

2004-2010 -20.327 -26.803 -31.921 -33.422
2010-2013 -15.457*** -23.448*** -19.498*** -30.449***

Overall -18.535 -25.702 -28.009 -32.323

Notes: Price sources: Panel I: Intel introduction prices; Panel II: online retail prices. Benchmark variables:

Column (a): basic (gmean of SuperPI1M and wPrime32); Column (b): graphics (3DMark06). The start

year depends on the availability of data to generate index estimates.

*** p < 0.01, ** p < 0.05, * p < 0.1.

The significance test is whether CAGR in 2010-2013 differs from that in 2004-2010.
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Table A6: Characteristics Method

Intel Introduction Price

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

ln(basic) -2.181** -3.527*** -2.082*** -1.929*** -0.602* -2.051*** -1.134** -1.489*** -1.424*** -1.217***
(0.579) (0.618) (0.196) (0.365) (0.336) (0.426) (0.442) (0.155) (0.263) (0.223)

ln(TDP) -0.456 -0.815*** -0.821*** -0.483 -0.015 -0.773** -0.158 -0.132 -0.119 -0.401
(0.471) (0.176) (0.142) (0.337) (0.245) (0.348) (0.523) (0.179) (0.290) (0.294)

Observations 8 8 19 11 22 15 15 18 9 11
R-squared 0.637 0.814 0.862 0.748 0.224 0.722 0.448 0.860 0.815 0.739

Intel Introduction Price

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

ln(graphics) 3.934* 2.711 2.958*** 1.699*** 1.731*** 2.434*** 1.469** 1.327*** 1.316*** 1.218***
(0.471) (1.549) (0.317) (0.456) (0.431) (0.463) (0.556) (0.151) (0.321) (0.296)

ln(TDP) -1.195*** -0.720** -0.982*** -1.433*** -0.459 -0.290 -0.148 -0.674
(0.209) (0.315) (0.316) (0.446) (0.603) (0.191) (0.370) (0.393)

Observations 3 6 12 12 24 16 15 19 9 11
R-squared 0.972 0.292 0.888 0.564 0.402 0.695 0.460 0.825 0.713 0.612

Online Retail Price

Year 2004 2005 2006 2007 2008 2009 2010

ln(basic) -2.392** -2.328*** -1.799*** -1.841*** -1.217*** 0.404 4.177***
(0.852) (0.293) (0.202) (0.177) (0.258) (0.723) (1.343)

ln(TDP) 0.582* 0.740*** 0.487*** 0.053 -0.301 2.542** 6.329***
(0.254) (0.104) (0.137) (0.214) (0.487) (0.936) (1.293)

Observations 9 50 54 40 21 21 26
R-squared 0.533 0.787 0.697 0.817 0.676 0.479 0.597

Online Retail Price

Year 2004 2005 2006 2007 2008 2009 2010

ln(graphics) 0.881*** 1.618*** 1.689*** -0.266 1.385 5.852***
(0.068) (0.188) (0.200) (1.132) (0.905) (0.607)

ln(TDP) -0.353* -0.156 1.744 1.272 -1.167**
(0.195) (0.254) (1.210) (0.826) (0.465)

Observations 5 20 37 21 23 26
R-squared 0.977 0.826 0.843 0.497 0.534 0.886

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A7: Characteristics Method Index Details

Intel Introduction Price
Basic Performance

Year ˆht+1
char(xi,t+1)

ˆht+2
char(xi,t+1) Laspeyres ˆht+1

char(xi,t+2)
ˆht+2

char(xi,t+2) Paasche Fisher

2004 259.158 281.429
2005 231.918 202.476 0.781 760.651 231.918 0.824 0.802
2006 228.771 126.584 0.546 360.615 228.771 0.301 0.405
2007 312.791 193.881 0.847 493.206 312.791 0.867 0.857
2008 304.313 273.589 0.875 346.046 304.313 0.617 0.735
2009 378.954 280.601 0.922 578.282 378.954 1.095 1.005
2010 283.116 220.2 0.581 365.329 283.116 0.490 0.533
2011 296.633 211.906 0.748 419.131 296.633 0.812 0.780
2012 336.155 241.4 0.814 165.891 336.155 0.802 0.808
2013 297.534 0.885 189.301 1.141 1.005

Intel Introduction Price
Graphics Performance

Year ˆht+1
char(xi,t+1)

ˆht+2
char(xi,t+1) Laspeyres ˆht+1

char(xi,t+2)
ˆht+2

char(xi,t+2) Paasche Fisher

2004 356.042 427.653
2005 369.421 325.587 0.914 2206.428 369.421 0.864 0.889
2006 327.106 50.153 0.136 336.484 327.106 0.148 0.142
2007 325.918 319.02 0.975 469.267 325.918 0.969 0.972
2008 279.867 189.407 0.581 300.173 279.867 0.596 0.589
2009 321.093 295.618 1.056 485.65 321.093 1.070 1.063
2010 283.116 219.731 0.684 424.143 283.116 0.583 0.632
2011 297.671 206.972 0.731 425.566 297.671 0.702 0.716
2012 336.155 232.516 0.781 177.734 336.155 0.790 0.785
2013 265.94 0.791 185.158 1.042 0.908

Online Retail Price
Basic Performance

Year ˆht+1
char(xi,t+1)

ˆht+2
char(xi,t+1) Laspeyres ˆht+1

char(xi,t+2)
ˆht+2

char(xi,t+2) Paasche Fisher

2004 162.92 219.605
2005 173.515 127.137 0.780 215.956 173.515 0.790 0.785
2006 141.364 118.309 0.682 263.637 141.364 0.655 0.668
2007 132.571 69.154 0.489 328.293 132.571 0.503 0.496
2008 174.466 105.132 0.793 407.729 174.466 0.531 0.649
2009 338.339 167.097 0.958 366.884 338.339 0.830 0.891
2010 426.881 1.262 390.489 1.064 1.159

Online Retail Price
Graphics Performance

Year ˆht+1
char(xi,t+1)

ˆht+2
char(xi,t+1) Laspeyres ˆht+1

char(xi,t+2)
ˆht+2

char(xi,t+2) Paasche Fisher

2004 193.563 211.293
2005 173.423 127.534 0.659 340.414 173.423 0.821 0.735
2006 239.05 112.791 0.650 563.801 239.05 0.702 0.676
2007 317.065 227.137 0.950 465.141 317.065 0.562 0.731
2008 368.382 155.915 0.492 432.141 368.382 0.792 0.624
2009 338.339 248.494 0.675 367.482 390.489 0.904 0.781
2010 442.851 1.309 390.489 1.063 1.179

Notes: Fisher (chain weighted) index is the geometric mean of Laspeyres (base-period weighted) index and

Paasche (current-period weighted) index.
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Table A8: Characteristics Method - Fisher Index

Annual Growth

I II
Year (a) (b) (a) (b)
2005 -19.761 -11.121 -21.477
2006 -59.484 -85.813 -33.192 -26.462
2007 -14.262 -2.807 -50.402 -32.419
2008 -26.537 -41.128 -35.082 -26.901
2009 0.487 6.297 -10.851 -37.594
2010 -46.663 -36.839 15.882 -21.927
2011 -22.043 -28.371
2012 -19.211 -21.45
2013 0.499 -9.216

Summary of CAGR

I II
Year (a) (b) (a) (b)

2004-2010 -30.806 -39.624 -25.247 -29.271
2010-2013 -14.14 -20.063 n/a n/a

Overall -25.646 -33.703 n/a n/a

Notes: Price sources: Panel I: Intel introduction prices; Panel II: online retail prices. Benchmark variables:

Column (a): basic (gmean of SuperPI1M and wPrime32); Column (b): graphics (3DMark06).
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Table A9: Adjacent-Year Method

Intel Introduction Price

Year 2004-2005 2005-2006 2006-2007 2007-2008 2008-2009 2009-2010 2010-2011 2011-2012 2012-2013

ln(basic) -2.403*** -2.171*** -2.130*** -1.402*** -1.297*** -1.444*** -1.316*** -1.447*** -1.299***
(0.381) (0.170) (0.177) (0.306) (0.303) (0.327) (0.162) (0.126) (0.169)

Quarter -0.105* -0.124*** -0.053** -0.105** -0.006 -0.133*** -0.055* -0.047* 0.003
(0.049) (0.017) (0.022) (0.046) (0.035) (0.047) (0.028) (0.026) (0.039)

Observations 16 27 30 33 37 30 33 27 20
R-squared 0.729 0.861 0.847 0.449 0.502 0.551 0.720 0.856 0.803

ln(graphics) 2.811 1.872*** 2.054*** 1.675*** 2.148*** 2.075*** 1.274*** 1.294*** 1.227***
(1.914) (0.479) (0.304) (0.280) (0.300) (0.376) (0.152) (0.132) (0.219)

Quarter 0.061 -0.207*** -0.026 -0.134*** 0.003 -0.100* -0.070** -0.048 -0.026
(0.307) (0.056) (0.029) (0.033) (0.035) (0.049) (0.028) (0.029) (0.044)

Observations 9 18 24 36 40 31 34 28 20
R-squared 0.343 0.440 0.672 0.538 0.597 0.579 0.720 0.802 0.702

Online Retail Price

ln(basic) -2.412*** -2.012*** -1.894*** -1.584*** -1.086*** 1.229* -1.475*** -1.768*** -1.770***
(0.258) (0.150) (0.118) (0.144) (0.224) (0.643) (0.304) (0.146) (0.111)

Quarter -0.074*** -0.116*** -0.189*** -0.144*** -0.081* 0.024 -0.098*** -0.041** -0.074***
(0.023) (0.017) (0.023) (0.032) (0.042) (0.028) (0.024) (0.017) (0.017)

Observations 59 104 94 61 42 47 87 176 250
R-squared 0.788 0.762 0.807 0.779 0.664 0.504 0.390 0.479 0.541

ln(graphics) 0.846*** 1.648*** 1.790*** 1.716*** 0.694 3.155*** 1.465*** 1.661*** 1.843***
(0.046) (0.170) (0.133) (0.198) (0.751) (0.644) (0.298) (0.147) (0.113)

Quarter -0.052 -0.119** -0.131*** -0.162*** -0.108** -0.066*** -0.109*** -0.068*** -0.104***
(0.023) (0.043) (0.029) (0.032) (0.043) (0.024) (0.024) (0.018) (0.018)

Observations 5 25 57 58 44 49 87 177 254
R-squared 0.990 0.834 0.862 0.805 0.523 0.653 0.394 0.440 0.537

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A10: Adjacent Year Method Index

Annual Growth

I II
Year (a) (b) (a) (b)
2005 -34.295 27.634 -25.621 -18.779†
2006 -39.104 -56.308 -37.124 -37.874
2007 -19.104 -9.877 -53.046 -40.785
2008 -34.295 -41.492 -43.786 -47.691
2009 -2.371† 1.207† -27.675 -35.079
2010 -41.257 -32.968 10.076† -23.203
2011 -19.748 -24.422 -32.43 -35.338
2012 -17.139 -17.469† -15.126 -23.815
2013 1.207† -9.877† -25.621 -34.032

Notes:
The † indicates a change insignificantly from zero at 10% level.

Summary of CAGR

I II
Year (a) (b) (a) (b)

2004-2010 -29.578 -23.56 -32.068 -34.645
2010-2013 -12.366 -17.469 -24.723 -31.248

Overall -24.253 -21.582 -29.703 -33.532

Notes: Price sources: Panel I: Intel introduction prices; Panel II: online retail prices. Benchmark variables:

Column (a): basic (gmean of SuperPI1M and wPrime32); Column (b): graphics (3DMark06). The start

year depends on the availability of data to generate index estimates.
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Appendix 1: Related Proofs for Hedonic Functions

This appendix includes proofs on the conditions under which the matched-model and the hedonic

method yield similar price index estimates.

In general, when there is no turnover in the market and the quality features remain constant

over adjacent periods, the two methods would yield similar estimates.

DV Method

Denote Nt the number of goods that have price information at time period t. The DV

method index number formula is

index{ t

t− 1
} = exp(δt − δt−1) =

∏
n∈Nt

(Pn,t)
1/Nt

∏
n∈Nt−1

(Pn,t−1)
1/Nt−1

∏
n∈Nt

(xn)β/Nt∏
n∈Nt−1

(xn)
β/Nt−1

Claim: When Nt−1 = Nt = N and xi are fixed quality features, the index is
∏
n∈N

(
Pn,t
Pn,t−1

)1/N , the

matched-model geometric mean index. That is, the DV method and the matched-model method

yield the same estimates.

Proof: The denominator of Equation 2, the hedonic quality adjustment, is given by
∏
n∈Nt

(xn)β/Nt∏
n∈Nt−1

(xn)
β/Nt−1

.

When there is no turnover, the number of goods stays constant from t−1 to t. So Nt−1 = Nt = N .

Additionally since xn is a fixed quality feature, the quality adjustment is equal to one.

Now Equation 2 becomes

index{ t

t− 1
} =

∏
n∈N

(Pn,t)
1/N

∏
n∈N

(Pn,t−1)
1/N

which is
∏
n∈N

(
Pn,t
Pn,t−1

)1/N . Then the DV index is the geometric mean of price relatives.

This proof follows similarly from Aizcorbe et al. [2003]. Aizcorbe et al. [2003] also confirm

with empirical evidence. In practice, if the price quotes are frequent enough, then the turnover rate
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between two adjacent time periods is likely low. With query set up to retrieve prices from online

price search engines at desired frequency, it might be feasible to establish more granular price sets. �

Characteristics Method

To construct characteristics price index, we predict prices using characteristics functions

from two overlapping time periods t+ 1 and t+ 2:

ht+1
char : ln(Pi,t+1) = αt+1 + βt+1ln(xi,t+1) + εi,t+1

ht+2
char : ln(Pi,t+2) = αt+2 + βt+2ln(xi,t+2) + εi,t+2.

Claim: When Nt−1 = Nt = N and xi are fixed quality features, the three superlative index

formulae, the Laspeyres, Paasche and Fisher, yield the same index. Moreover, the characteristics

method and the matched-model method yield the same estimates.

Proof: When xi are fixed quality features, we have xi,t+1 = xi,t+2 = xi. Then the Laspeyres index

is
ht+2
char(xi)

ht+1
char(xi)

. The Paasche index is
ht+2
char(xi)

ht+1
char(xi)

. These two are the same and their geometric average,

the Fisher index, is therefore identical as well.

In particular, since I apply the index on the average good, I take the geometric mean of the

predicted price. The Laspeyres index is therefore
exp(ln(ht+2

char(xi))

exp(ln(ht+1
char(xi))

. That is,

exp(ln(ht+2
char(xi))

exp(ln(ht+1
char(xi))

=
exp( ˆln(Pi,t+2))

exp( ˆln(Pi,t+1))

=
exp( ˆαt+2 + ˆβt+2ln(xi))

exp( ˆαt+1 + ˆβt+1ln(xi))

=
exp( ˆαt+2 + ˆβt+2ln(xi))

exp( ˆαt+1 + ˆβt+1ln(xi))
.

Note that by the assumption of OLS, ˆαt+1 = ln(Pi,t+1) − ˆβt+1ln(xi). Substitute ˆαt+1 and ˆαt+2

back in the fraction, we get
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=
exp(ln(Pi,t+2)− ˆβt+2ln(xi) + ˆβt+2ln(xi))

exp(ln(Pi,t+1)− ˆβt+1ln(xi) + ˆβt+1ln(xi))

=
exp(ln(Pi,t+2))

exp(ln(Pi,t+1))

Note that
exp(ln(Pi,t+2))

exp(ln(Pi,t+1))
equals

∏
i∈N

(
Pi,t+2

Pi,t+1
)1/N since the sample of goods is constant. Then

the characteristics index is the geometric mean of price relatives. That is, the characteristics index

would yield same results as the matched-model index. �

64



Appendix 2: Additional Details on Data

This appendix describes in additional detail the data sets used in my analysis.

Intel Official Prices

I collected the official price lists from 2004 and onward at the Intel investor relations website.

The 2004-2006 price lists are available roughly every quarter on the internet archive. In 2005, the

laptop microprocessors are marketed as part of Centrino chipsets, which include motherboards and

a specific type of wireless network card. I exclude these products from the laptop microprocessor

market. The 2006-2013 price lists are generously provided by Dr. David Byrne.

There is little documentation on the price lists. The prices are wholesale prices, for micro-

processors sold in units of 1,000. There is no indication on when the price adjustment takes place

or whether there should be any adjustment on prices. It is worth clarifying that not all Intel laptop

microprocessors are included in the price lists. It is possible that the sales for these microprocessors

are less than 1,000, but this speculation is not verified.

Online Retail Market

The other source of prices is the online retail market. The 2004-2011 prices are available

weekly from SharkyExtreme, which uses PriceWatch.29 The 2011-2013 prices are collected directly

PriceWatch, a price search engine that monitors prices from Amazon, eBay and Newegg for price

quotes and tracks the lowest price. I rely on the “wayback machine”, a website archive, to retrieve

historic price information. The frequency of these price quotes is limited by the times that Price-

Watch has a “snapshot” on the “wayback machine”. On average, there is at least one “snapshot”

of PriceWatch in every quarter 2011-2013.

Although I call this source the online retail prices, most of the prices listed are for the

“OEM” versions of the microprocessors, also referred to as “tray” or non-retail. The OEM micro-

processors usually do not come equipped with a heat sink or fan. The actual retail prices are higher

since they generally include the longer warranties, heat sinks and fan which OEM prices do not.

Therefore these prices are comparable to those on the Intel website. There might be a few actual

29Available at http://www.sharkyextreme.com/guides/WCPG/archives/. I am very grateful to Dr. David Byrne
for sharing the prices he collected.
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retail prices, and I assume the additional charge is small.

Note that the retail prices do not include any additional charges for shipping, sales tax, etc.

Table A11 and Table A12 summarize the price information and quality features for each

microprocessor in the analysis.
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Table A11: Summary for Intel Introduction Price Dataset

Model Introduction Intro Price SuperPI1M wPrime32 3DMark06 TDP(Watt)
Intel Celeron M 340 2003 134 90 125 21
Intel Celeron M 320 2003 107 68 21
Intel Pentium M 718 2003 284 139 10
Intel Pentium M 713 2003 241 79 5
Intel Celeron M 360 2004 134 76 131 21
Intel Celeron M 370 2004 134 60 121 21
Intel Celeron M 380 2004 134 56 111 21
Intel Celeron M 373 2004 161 154 5
Intel Celeron M 390 2004 107 59 102 21
Intel Pentium M 715 2004 209 50 115 21
Intel Pentium M 735 2004 294 45 104 698 21
Intel Pentium M 760 2004 423 42 86 830 27
Intel Pentium M 740 2004 241 47 102 737 27
Intel Pentium M 780 2004 637 80 933 27
Intel Pentium M 765 2004 637 40 864 21
Intel Pentium M 755 2004 637 40 89 21
Intel Pentium M 730 2004 209 48 108 663 27
Intel Pentium M 725 2004 241 35 111 684 21
Intel Pentium M 770 2004 637 740 27
Intel Pentium M 733 2004 262 64 5
Intel Pentium M 738 2004 284 55 128 10
Intel Pentium M 745 2004 423 46 103 21
Intel Pentium M 753 2004 262 63 146 6
Intel Pentium M 758 2004 284 52 117 10
Intel Pentium M 750 2004 294 39 95 803 27
Intel Celeron M 420 2006 107 44 109 27
Intel Celeron M 440 2006 107 39 93 980 27
Intel Celeron M 430 2006 134 41 101 27
Intel Celeron M 410 2006 86 46 119 27

Intel Core 2 Duo T7400 2006 423 24 43 1862 34
Intel Core 2 Duo U7600 2006 289 43 69 1008 10
Intel Core 2 Duo T5600 2006 241 31 49 1560 34
Intel Core 2 Duo U7500 2006 262 875 10
Intel Core 2 Duo T7200 2006 294 26 46 1718 34
Intel Core 2 Duo T7600 2006 637 22 38 2005 34
Intel Core 2 Duo U7700 2006 289 46 74 1047 10
Intel Core Duo U2500 2006 289 49 922 9
Intel Core Duo T2600 2006 637 28 40 1766 31

Intel Core Duo T2300E 2006 209 35 52 31
Intel Core Duo L2500 2006 316 33 15
Intel Core Duo U2400 2006 262 55 82 9
Intel Core Duo T2400 2006 294 32 48 1488 31
Intel Core Duo T2500 2006 423 30 44 1621 31
Intel Core Duo T2700 2006 637 25 1860 31
Intel Core Duo T2300 2006 241 35 52 1380 31
Intel Core Solo U1400 2006 262 49 135 6
Intel Core Solo T1400 2006 209 33 95 27
Intel Core Solo T1300 2006 209 37 105 27
Intel Core Solo U1300 2006 241 55 5

Intel Celeron 550 2006 134 89 31
Intel Celeron M 530 2007 107 38 105 739 30
Intel Celeron M 520 2007 134 39 115 30

Intel Core 2 Duo T5500 2007 209 33 55 1392 34
Intel Core 2 Duo T7250 2007 209 30 45 1705 35
Intel Core 2 Duo T7800 2007 530 19 35 2258 35
Intel Core 2 Duo L7700 2007 316 34 17
Intel Core 2 Duo T7300 2007 241 24 46 1729 34
Intel Core 2 Duo T7700 2007 530 21 42 2058 34
Intel Core 2 Duo L7300 2007 284 65 17
Intel Core 2 Duo T7500 2007 316 23 38 1907 35
Intel Core 2 Duo T7100 2007 209 31 50 1536 34
Intel Core 2 Duo L7500 2007 316 62 17

Intel Core 2 Extreme X7900 2007 851 19 31 2449 44
Intel Core 2 Extreme X7800 2007 851 20 32 2079 44

Intel Core 2 Solo U2100 2007 241 58 6
Intel Core Solo U1500 2007 262 49 545 5

Intel Celeron 540 2007 134 110 30
Intel Celeron Dual Core T1600 2008 80 36 1350 35

Intel Celeron M 723 2008 161 44 129 555 5
Intel Core 2 Duo P8600 2008 241 21 35 2155 25
Intel Core 2 Duo T9600 2008 530 16 28 2517 35
Intel Core 2 Duo T9500 2008 530 18 66 2352 35
Intel Core 2 Duo T8100 2008 209 23 38 1878 35
Intel Core 2 Duo SL9300 2008 284 39 112 17
Intel Core 2 Duo SU9300 2008 262 1028 10
Intel Core 2 Duo P9500 2008 348 18 31 2311 25

Intel Core 2 Duo SU9400 2008 289 33 59 1197 10
Intel Core 2 Duo T9400 2008 316 18 31 2304 35
Intel Core 2 Duo T8300 2008 241 21 38 2143 35
Intel Core 2 Duo T9300 2008 316 18 32 2258 35
Intel Core 2 Duo P8400 2008 209 22 34 2036 25
Intel Core 2 Duo SP9400 2008 316 18 38 2059 25
Intel Core 2 Duo SP9300 2008 284 21 39 1974 25
Intel Core 2 Duo SL9400 2008 316 23 43 1300 17

Intel Core 2 Extreme X9100 2008 851 13 26 2810 44
Intel Core 2 Extreme QX9300 2008 1038 18 16 3780 45
Intel Core 2 Extreme X9000 2008 851 17 24 2549 44

Intel Core 2 Quad Q9100 2008 851 20 19 3310 45
Intel Core 2 Solo SU3300 2008 262 564 6

Intel Celeron T1700 2008 86 34 1456 35
Intel Celeron T1600 2008 80 36 1350 35

Intel Celeron 560 2008 134 32 79 31
Intel Celeron T3100 2008 86 30 1687 35
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Model Introduction Intro Price SuperPI1M wPrime32 3DMark06 TDP(Watt)
Intel Celeron 900 2009 70 28 80 35

Intel Celeron Dual Core T1700 2009 86 34 1456 35
Intel Celeron M 743 2009 107 42 122 582 10

Intel Core 2 Duo P9600 2009 348 19 35 2189 25
Intel Core 2 Duo P9700 2009 348 16 37 2540 28
Intel Core 2 Duo T9550 2009 316 17 29 2385 35
Intel Core 2 Duo P8800 2009 241 19 31 2355 25
Intel Core 2 Duo SP9600 2009 316 18 35 2189 25
Intel Core 2 Duo P8700 2009 241 20 32 2254 25
Intel Core 2 Duo T9900 2009 530 15 25 2787 35

Intel Core 2 Duo SU9600 2009 289 60 10
Intel Core 2 Duo T9800 2009 530 15 28 2626 35
Intel Core 2 Duo SL9600 2009 316 21 43 17
Intel Core 2 Quad Q9000 2009 348 22 20 2863 45
Intel Core 2 Solo SU3500 2009 262 36 112 654 6

Intel Core i7-820QM 2009 546 14 19 3149 45
Intel Core i7-720QM 2009 364 16 17 3100 45
Intel Core i7-920XM 2009 1054 13 11 3797 55
Intel Core i7-740QM 2009 378 14 16 3318 45

Intel Celeron M U3400 2010 134 40 62 988 18
Intel Core i5-540M 2010 257 15 19 2826 35
Intel Core i5-520M 2010 225 16 20 2729 35
Intel Core i5-560M 2010 225 14 18 3116 35

Intel Core i5-560UM 2010 250 22 61 1976 18
Intel Core i5-520UM 2010 241 25 25 1492 18
Intel Core i5-580M 2010 266 13 16 3174 35

Intel Core i7-640UM 2010 305 26 18
Intel Core i7-620UM 2010 278 25 18
Intel Core i7-840QM 2010 568 13 16 3532 45
Intel Core i7-620M 2010 332 13 18 3044 35

Intel Core i7-940XM 2010 1096 12 13 4064 55
Intel Core i7-620LM 2010 300 16 27 2358 25
Intel Core i7-640LM 2010 332 15 21 2539 25
Intel Core i7-640M 2010 346 12 17 3307 35
Intel Celeron T3300 2010 86 29 35
Intel Celeron T3500 2010 80 31 39 1760 35
Intel Celeron B710 2011 70 25 88 868 35
Intel Celeron B810 2011 86 25 45 1633 35
Intel Celeron 847 2011 134 36 80 993 17

Intel Celeron B800 2011 80 26 47 1534 35
Intel Core i5-2540M 2011 266 12 17 3682 35
Intel Core i5-2520M 2011 225 12 18 3542 35
Intel Core i5-2537M 2011 250 17 25 2400 17
Intel Core i5-2557M 2011 250 14 24 2750 17
Intel Core i7-2637M 2011 289 14 22 2834 17

Intel Core i7-2760QM 2011 378 11 8 6001 45
Intel Core i7-2920XM 2011 1096 10 8 6131 55
Intel Core i7-2617M 2011 289 15 24 2762 17

Intel Core i7-2720QM 2011 378 11 10 5616 45
Intel Core i7-2620M 2011 346 11 16 3827 35

Intel Core i7-2960XM 2011 1096 10 7 6820 55
Intel Core i7-2640M 2011 346 11 15 3927 35
Intel Core i7-2657M 2011 317 14 2546 17

Intel Core i7-2860QM 2011 568 10 8 6323 45
Intel Core i7-2820QM 2011 568 11 10 5819 45
Intel Core i7-2677M 2011 317 13 20 2729 17
Intel Celeron B830 2012 86 23 35
Intel Celeron 887 2012 86 28 48 1414 17

Intel Celeron B815 2012 86 25 44 1645 35
Intel Core i5-3360M 2012 266 11 16 3995 35
Intel Core i5-3427U 2012 225 14 20 3180 17

Intel Core i7-3720QM 2012 378 10 8 6642 45
Intel Core i7-3920XM 2012 1096 9 6 6973 55
Intel Core i7-3667U 2012 346 11 18 3595 17

Intel Core i7-3820QM 2012 568 10 7 6849 45
Intel Core i7-3740QM 2012 378 10 7 6837 45
Intel Core i7-3520M 2012 346 10 15 4134 35
Intel Celeron 1017U 2013 86 24 46 1719 17
Intel Celeron 1000M 2013 86 21 42 1923 35
Intel Celeron 1037U 2013 86 22 41 1903 17
Intel Core i5-4300M 2013 225 4256 37
Intel Core i5-3437U 2013 225 13 20 3404 17
Intel Core i5-4300U 2013 287 13 19 15
Intel Core i7-3540M 2013 346 10 15 4320 35

Intel Core i7-4800MQ 2013 378 10 9 7232 47
Intel Core i7-4600U 2013 398 12 17 3216 15
Intel Core i7-4650U 2013 454 12 18 2974 15

Notes: N=170
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Table A12: Summary for Online Retail Price Dataset

Model Introduction Intro Price Exit Price SuperPI1M wPrime32 3DMark06 TDP(Watt)
AMD Athlon 64 3200+ 2003 190 190 50 86 62
AMD Athlon 64 2800+ 2004 173 120 52 95 35
AMD Athlon 64 3000+ 2004 163 163 48 86 35
AMD Athlon 64 3400+ 2004 191 207 45 85 62
AMD Athlon 64 3700+ 2004 279 82 46 78 81
AMD Sempron 2600+ 2004 63 49 60 109 25
AMD Sempron 2800+ 2004 88 47 56 99 62
Intel Pentium 4 520 2004 169 176 60 120 91

AMD Athlon 64 4000+ 2005 368 300 39 66 62
AMD Sempron 3000+ 2005 98 28 47 93 35
AMD Sempron 3100+ 2005 129 60 55 95 62
AMD Sempron 3300+ 2005 134 88 52 84 62
Intel Pentium 4 560 2005 501 392 38 85 88
Intel Pentium 4 630 2005 240 159 44 103 95
Intel Pentium 4 660 2005 634 400 33 84 115
Intel Pentium D 820 2005 270 85 45 63 1412 95

AMD Sempron 3200+ 2006 30 30 113 25
AMD Sempron 3400+ 2006 135 39 41 95 664 62
AMD Sempron 3500+ 2006 108 49 50 85 704 25

Intel Core 2 Duo E6700 2006 580 323 19 34 2354 65
Intel Core 2 Extreme X6800 2006 1100 982 17 31 2568 75

AMD Sempron 3600+ 2007 121 41 49 86 748 25
AMD Sempron 3800+ 2007 58 53 98 31

Intel Core 2 Duo E6600 2007 333 231 20 36 2052 65
Intel Core 2 Duo E6850 2007 279 160 17 29 2661 65

Intel Core 2 Extreme QX6700 2007 989 928 19 4022 130
Intel Core 2 Extreme QX6850 2007 1184 900 17 4450 130

Intel Core 2 Quad Q6600 2008 864 206 18 14 3547 105
Intel Core 2 Quad Q9550 2008 325 265 13 12 4230 95

Intel Core i7-920 2008 292 135 10 7 4728 130
Intel Core i7-940 2008 569 225 13 8 5054 130
Intel Core i5-750 2009 204 118 13 12 4320 95

Intel Core i7-720QM 2009 55 40 16 17 3100 45
Intel Core i7-740QM 2009 90 55 14 16 3318 45
Intel Core i7-820QM 2009 198 175 14 19 3149 45
Intel Core i7-920XM 2009 453 390 13 11 3797 55

Intel Core i7-950 2009 558 275 12 7 5143 130
Intel Core i7-960 2009 577 273 12 8 5360 130
Intel Core i7-975 2009 990 453 12 7 5837 130

Intel Core i3-330M 2010 103 22 21 24 2230 35
Intel Core i3-350M 2010 109 35 19 23 2366 35
Intel Core i5-430M 2010 154 30 18 21 2584 35
Intel Core i5-520M 2010 184 99 16 20 2729 35

Intel Core i5-520UM 2010 245 248 25 25 1492 18
Intel Core i5-540M 2010 184 99 15 19 2826 35

Intel Core i7-620LM 2010 304 307 16 27 2358 25
Intel Core i7-620UM 2010 282 286 25 18
Intel Core i7-640LM 2010 315 318 15 21 2539 25
Intel Core i7-640UM 2010 293 296 26 18
Intel Core i7-840QM 2010 297 297 13 16 3532 45

AMD A8-3850 2011 140 96 21 14 4027 100
Intel Core i5-2400 2011 188 150 10 12 5715 95

Intel Core i5-2500K 2011 225 180 9 9 5853 95
Intel Core i7-2600K 2011 330 259 9 6 6667 95
Intel Core i7-2617M 2011 397 397 15 24 2762 17
Intel Core i7-2620M 2011 188 165 11 16 3827 35

Intel Core i7-2630QM 2011 175 145 13 10 5039 45
Intel Core i7-2635QM 2011 448 448 14 15 4906 45
Intel Core i7-2640M 2011 238 188 11 15 3927 35
Intel Core i7-2657M 2011 397 397 14 2546 17

Intel Core i7-2720QM 2011 406 441 11 10 5616 45
Intel Core i7-2760QM 2011 401 392 11 8 6001 45
Intel Core i7-2820QM 2011 397 299 11 10 5819 45
Intel Core i7-2860QM 2011 590 590 10 8 6323 45
Intel Core i7-2920XM 2011 1003 553 10 8 6131 55
Intel Core i7-2960XM 2011 1372 1372 10 7 6820 55

AMD A10-5800K 2012 130 110 24 16 4464 100
AMD A4-5300 2012 60 41 28 36 2284 65

AMD A8-5600K 2012 110 92 25 17 4295 100
Intel Core i3-3110M 2012 109 109 16 22 2988 35
Intel Core i3-3120M 2012 123 123 15 22 3057 35
Intel Core i3-3220 2012 126 116 12 15 4019 55

Intel Core i5-3210M 2012 155 155 13 19 3553 35
Intel Core i5-3320M 2012 230 230 12 17 3767 35
Intel Core i5-3470 2012 190 172 10 12 6179 77
Intel Core i5-3550 2012 215 192 10 10 6405 77

Intel Core i5-3570K 2012 235 208 8 8 6561 77
Intel Core i7-2670QM 2012 299 150 12 11 5401 45
Intel Core i7-2700K 2012 377 308 8 6 6837 95

Intel Core i7-3610QM 2012 266 190 11 9 6078 45
Intel Core i7-3630QM 2012 234 234 11 8 6392 45
Intel Core i7-3720QM 2012 401 332 10 8 6642 45
Intel Core i7-3770K 2012 317 316 8 6 7229 77

Intel Core i7-3820QM 2012 590 575 10 7 6849 45
Intel Core i7-3960X 2012 1005 945 10 4 8330 130
Intel Core i5-3230M 2013 174 174 12 18 3760 35

Intel Core i7-4700MQ 2013 250 250 11 8 6883 47
Intel Core i7-4770K 2013 335 335 8 7 8030 84

Notes: N = 88.
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How to Benchmark A Microprocessor

This section documents the rudimentary benchmarking experience by the author and includes some

explanation for the benchmarks.

Benchmark Intel Core i5-3210M

I install SuperPI1M v 1.5, released on December 10th, 2011. I benchmark the same micro-

processor twice and the results are 13.796 seconds and 13.786 seconds. The benchmark results are

consistent across different versions based on feedbacks from hobbyists.

Figure A1: Sample SuperPI1M Benchmarking Results

I install wPrime v 2.09, released on April 7th, 2012. I benchmark the same microproces-

sor twice and the results are 19.446 seconds and 19.403 seconds. Since the microprocessor has 4

threads, the benchmark sets the number of threads to be 4 as shown in the screenshot. Hobby-

ists mention different versions of wPrime might affect the results. I assume the variations are small.

Super PI

SuperPI1M is a computer program that calculates π to one million digits after the decimal

point. It uses Gauss-Legendre algorithm and is programmed firstly by Yasumasa Kanada in 1995

to compute π to 232 digits. The method is based on the individual work of Carl Friedrich Gauss
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Figure A2: Sample wPrime32 Benchmarking Results

(1777-1855) and Adrien-Marie Legendre (1752-1833) combined with modern algorithms for multi-

plication and square roots.

wPrime

wPrime32 is a multi-threading benchmark that calculates square roots with a recursive call

of Newton’s method for estimating functions. To find the square root of k, equivalently we solve

for x2 = k. The estimating function takes the form of f(x) = x2 − k, where k is the number to be

square rooted. Its first-order derivative is then f ′(x) = 2x. The estimation starts with an initial

guess x0 = k/2 and calculate the sequence {xi} by Newton’s method where xi+1 = xi − f(xi)
f ′(xi)

till

f(x) = 0, i.e. f(xi)
f ′(xi)

= 0 and xi+1 = xi. Then xi is the accurate solution. wPrime repeats this

method for all numbers from 1 to the 32 million integer.

3DMark

The description of 3DMark06 is based on the whitebook for 3DMark11.30 3DMark06 focuses

on updating and rendering complex game worlds in real-time using DirectX 6. DirectX is a collection

of application programming interfaces (APIs) for handling tasks related to multimedia, especially

game programming and video, on Microsoft platforms. The benchmark workload consists of six

tests. The final score is a weighted average of scores on the six tests. The raw score on each test

30Available at http://www.3dmark.com/wp-content/uploads/2010/12/3DMark11_Whitepaper.pdf.
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is the number of frames per second.

Other similar graphics performance benchmarks are: 3DMark11 and Cinebench. Although

the recent versions of the benchmarks can reflect differentiation in performance more accurately,

they might also underrate older microprocessors. For example, since 3DMark11 uses DirectX 11,

microprocessors designed in the context of DirectX 6 might underperform. This discrepancy also

complicates interpolation for missing benchmark scores on old microprocessors.
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Appendix 3: Relavent Information on Microprocessors

This appendix includes additional information on microprocessors in 2004-2013. I briefly introduce

the main technological specifications I mentioned.

Number of Transistors

The transistor count of a device is the number of transistors in the device. Transistor

count used to be the most common measure of microprocessor quality. According to Moore’s Law,

the transistor count of the integrated circuits doubles every two years. The first commercially

available microprocessor, Intel 4004, had 2,300 transistors. Now there are commonly millions of

transistors on a microprocessor. Transistor count is no longer a determinant microprocessor feature.

Lithography

Lithography means printing from a stone literarily. Since microprocessors, consisted of mil-

lions of transistors, are “printed” by ultraviolet lasers on silicon discs (called wafers), lithography

became a term for the size of the transistors. This property of microprocessor is important because

by halving the size of the transistors, the industry can easily abide by the Moore’s law. Moore’s

law is the observation that the number of transistors on a micro processor doubles approximately

every two years. The law is used in the semiconductor industry to guide long-term planning, such

as Intel’s 18-month “tick-tock” model.

Clockspeed

Clockspeed is the frequency at which a microprocessor is running, measured in Hertz. The

way microprocessor processes an instruction is by completing a multi-stage “pipeline”, in which

each stage represents the completeness of the instruction. Each pipeline state takes on clock cycle

to complete, so a smaller clock cycle (higher clockspeed) usually means more instructions processed

per second.

Architecture

Architecture of a microprocessor is the layout design of components in the microprocessor.
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An efficient design determines the microprocessor’s speed and heat dissipation. The die maps best

present different architectures as shown in Figure A3. These are among the Intel architectures

mentioned in Table 6. AMD’s architectures remain unexplored by the author.

Figure A3: Comparison of Architectures

Core

Nehalem

Sandy Bridge

Notes: Source: Intel Corporation.
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