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ABSTRACT 
 

Quickly and accurately calculating the electrostatic free energy change that occurs 

when proteins bind is essential to the analysis of protein-protein interactions. This free 

energy change, quantified as ΔGelec, expresses how energetically favorable it is for two 

proteins to come together. Calculating ΔGelec for a protein complex usually involves 

finding a numerical solution to the computationally intensive Poisson equation. More 

approximate methods can save time and computational cost. Our approach involves 

training a computer via regression-based machine learning techniques to predict ΔGelec 

using simple, structural features of the protein complex itself. Work on both shape-

simplified model systems and protein shapes suggests that this approach may be 

successful in efficiently and accurately predicting ΔGelec for protein complexes. 
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INTRODUCTION 
 
I. Importance of electrostatic interactions 
 From metabolism to the actions of the immune system, many cellular processes 

critical to life depend on protein-protein interactions. Much experimental work has 

focused on the energetics of binding, which are governed by electrostatic interactions, 

hydrophobic effects, and van der Waals forces. Especially critical to molecular 

recognition and binding are electrostatic forces, the interactions between polar or charged 

groups. Electrostatic interactions are particularly suited to computational studies, such as 

the one presented in this work.  

This study focuses on calculating ΔGelec, which quantifies how energetically 

favorable it is for two proteins to bind based on the electrostatic component of binding 

alone. A quantitative, computationally inexpensive model for binding energetics would 

aid our understanding of molecular interaction. The work presented here uses regression-

based machine learning techniques to train a model to predict electrostatic binding free 

energies based on structural features of a protein complex.  

 
A. Protein binding

 
Figure 1.1. Schematic of protein binding: a ligand (typically the smaller partner) binding 
to a receptor to form a complex.  
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 Made up of only 20 different types of amino acids, proteins have remarkable 

similarities but also vast differences in structure and function. Proteins are polymers of 

amino acids linked by peptide bonds. The peptide bond linkages make up the backbone 

of the protein. Proteins can differ in their number of amino acids (called residues) and in 

their amino acid composition, as each amino acid contains a variable region called a side 

chain that confers vastly different properties to the structure. Despite such apparent 

simplicity in their composition, proteins can adopt complex secondary and tertiary 

structures that are very different from one protein to the next. Perhaps because of this, 

proteins differ vastly in their binding behavior – some bind promiscuously to multiple 

targets, while others are highly specific. This behavior can in part be explained by 

electrostatics, which impacts both protein specificity and affinity. 

The complex role of electrostatics in protein binding has been extensively 

reviewed.1, 2 Electrostatic interactions can impact protein stability. A study of protein-

protein complexes with amino acid mutations at the binding interface found that disease-

causing mutations tend to destabilize the protein complex electrostatically, while non-

disease-causing mutations do not – suggesting that electrostatic interactions between 

interfacial residues can impact stability.3 Electrostatic interactions are not always 

energetically favorable during protein binding,4 but are critical to molecular specificity 

and affinity.  

Much research has focused on short range electrostatic interactions between 

binding partners.5 Polar and charged residues tend to be conserved at the binding 

interface, acting as “hot spot” residues.6, 5 When such “hot spot” residues are removed, 
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either computationally or experimentally (i.e., alanine scanning), their favorable 

contribution to the electrostatic binding free energy is lost.  

However, the vast diversity in protein shape and character 7 makes it difficult to 

predict which residues are “hot spots”.8 While hydrogen bonding is important for 

specificity9, it is sometimes difficult to tell using scientific intuition which structural 

contacts are important and contribute favorably to binding free energy.10 Despite this 

difficulty, certain trends have been elucidated that give insight into important features in 

protein binding. Kumar and Nussinov studied the electrostatic contribution of ion pairs to 

the overall electrostatic free energy.11 They found that favorability of the ion pairs 

depends on the local environment of the ion pair as well as the geometrical orientation of 

the two side chains in relationship to each other. Furthermore, protein binding occurs in 

an aqueous solvent, which complicates calculating the interaction between these polar 

and charged groups.1 Kundrotas and Alexov showed that proteins with smaller interfaces 

tend to have a higher proportion of charged and polar residues than do those with larger 

interfaces, suggesting that electrostatics play a larger role in proteins with smaller 

interfaces.12 They proposed that the extent to which desolvation, the stripping of 

favorable interactions with solvent from the binding interface, is compensated by 

hydrogen bonds and ion pairs is important to determining the impact of electrostatics on 

binding.  

Electrostatic interactions also play a role at long distances. Residues on the 

periphery of the interface are sometime more important than those on the interface itself. 

While research has shown that net charge becomes important at long distances,1 simply 

changing the net charge is not enough to enhance binding affinity.13 Joughin and Tidor 
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identified specific noncontacting residues that can increase binding affinity of the protein 

TEM1 β-lactamase to its inhibitor,13 which suggests that electrostatic interactions 

between non-interfacial residues are important. Electrostatic interactions, both at long and 

short distances, are important to binding affinity and specificity.  

 
B. Modeling protein binding 
 

Modeling protein binding is challenging for many reasons. Although quantum 

mechanics, which treats electrons as delocalized particles, would be the most accurate 

way to model binding, such treatment for large macromolecules like proteins is 

computationally infeasible. Molecular mechanics, a model in which atoms are treated as 

localized particles with a charge at the center, is more practical. The accuracy of 

computer-calculated free energies depends on multiple factors, including the resolution of 

the X-ray crystal structure or other structural model used, the accuracy of appropriate 

parameters such as partial atomic charge, and the assignment of the appropriate 

protonation state on titratable residues.1 

Additionally, the energetics of binding are difficult to calculate because the 

reaction occurs in the aqueous phase, often with a certain salt concentration at a particular 

pH.1 In reality, proteins are surrounded by countless water molecules, which can take on 

multiple orientations and are thus difficult to model computationally. By modeling water 

implicitly as a constant dielectric, one can account for the polarization of water without 

modeling each molecule explicitly. An additional challenge is that proteins are dynamic, 

rarely locked into shape as the static images of X-ray crystal structures suggest. 

Furthermore, although in this work, proteins are modeled as rigid structures during 

binding, in reality the bound form of the protein within a complex may not resemble its 
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unbound conformation. Such challenges make it difficult to model protein binding 

computationally, so it is important to understand the limitations of our model when 

interpreting our results.  

In nature, proteins are surrounded by solvent, which contains highly polarizable 

water molecules and ions. The charges on proteins interact with the charges on water, 

which contains both a partially negative oxygen atom and two partially positive hydrogen 

atoms. Upon binding, the water molecules that were interacting with the proteins’ binding 

interfaces must forfeit these interactions. However, the charges on one protein can now 

interact favorably with the charges on the other protein – a phenomenon called 

interaction. Protein binding, therefore, is a delicate balancing act between these two 

terms: the generally favorable interaction of binding partners, and the unfavorable act of 

pushing solvent molecules aside (termed desolvation).  

 
II. Free energy calculations 
 
A. The continuum electrostatic model 
 

Methods to calculate free energies have been extensively researched and 

reviewed.14 Continuum electrostatics is a well-established method to model free energies. 

In vacuo, charges can be described by classical electrostatics.15 The Poisson equation, 

below, describes charges in a vacuum, and can be used to solve for electrostatic potential. 

In this equation, ϕ(r) is the electrostatic potential as a function of position, and ρ(r) is the 

charge distribution as a function of position.   

€ 

−∇ •∇φ(r) =
ρ(r)
ε 0  
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Furthermore, for charges in vacuo, the electric field is a superposition (a sum) of the 

individual electric fields produced by each of the charges.  

€ 

E(r) = −∇φ(r) 
 The electrostatic energy of a field of charges Q is the electrostatic work required 

to bring the charges together from an infinite distance apart. This is described by the 

following equation. 

€ 

U = φ(q)dq
0

Q
∫  

Because the electrostatic potential ϕ is proportional to charge, ϕ(q) can be written as Cq, 

or charge q multiplied by a constant C. The electrostatic energy can also be expressed 

using the equation below: 

€ 

U = (Cq)dq =
1
2
CQ2

0

Q
∫  

For two point charges in vacuo, the interaction energy of the two charges can be 

described by the Poisson equation, which reduces to Coulomb’s law. This interaction U 

represents the work done to bring the charges together from infinite separation.  

€ 

U(r12) =
q1q2
4πε 0r12

 

In this equation, r12 is the distance between the two point charges. This equation shows 

that as two charges get closer together (r12 decreases), the magnitude of their interaction 

energy U increases.  

In most biologically relevant systems, however, charges do not exist in vacuo, but 

rather in solutions that contain solvent. In this case, a spatially varying dielectric constant 

D(r) is used to account for how water or other species screen (or dampen) the interactions 

between charges. A uniform dielectric constant cannot be used because of the sudden 

change in dielectric constant at the protein boundary. The Poisson equation can be 

amended as below to account for this spatially varying dielectric. 
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€ 

−∇⋅ [D(r)∇φ(r)] =
ρ(r)
ε 0  

Furthermore, the solvent often contains not just water but mobile ions such as salt, 

which further screen electrostatic interactions. These ions carry charge, which interfere 

with the interactions between the protein charges themselves. Debye-Hückel theory 

extends the Poisson equation into the Poisson-Boltzmann equation, which implicitly 

accounts for the extra sources of point charges. The Boltzmann factor of e-βϕ(r)q
i increases 

or decreases the estimation of the local concentration (cr) of ions compared to their bulk 

concentration (cbulk). 

€ 

ci(r) = ci,bulke
−βφ (r )qi  

In a system that contains N types of ions each with specified charge and bulk 

concentration, the nonlinear Poisson-Boltzmann equation can be used. 

€ 

−ε 0∇ • D(r)∇φ(r)[ ] = ρ f (r) + qici,bulk (r)e
−βqiφ (r)

i=1

N

∑  

In this equation, the electric fields generated by the system of charges are not equal to the 

sum of the fields generated by each individual charge, because each charge experiences a 

different degree of solvent screening. This means that the electrostatic potential is not 

proportional to charge. Because the potential does not vary linearly with the source 

charges ρf(r), it is very difficult to find a numerical solution to this equation.  

However, when the magnitude of the charges is small, we can assume that the 

electrostatic potential is small. This approximation can convert the nonlinear equation 

into a linear one: 15  

€ 

−ε 0∇ • D(r)∇φ(r)[ ] = ρ f (r) −ε 0D(r)κ
2(r)φ(r)  

In this instance: 

€ 

κ 2 =
β
Dε 0

ci,bulkqi
2

1

N

∑  
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The linearized Poisson-Boltzmann equation (LPBE) is more convenient to use. It 

assumes linear response: the electrostatic field generated by the system of charges is 

equal to the sum of the fields generated by the individual charges, meaning that the 

electrostatic potential is proportional to charge and that the principle of superposition 

again applies. This means that the total electrostatic energy can be obtained by summing 

the product of charge and potential for each charge, and dividing by ½.   

€ 

G =
1
2
qiφi

i
∑  

In this equation, the factor of ½ stems from two sources: 1). It avoids double counting the 

electrostatic effects of two charges feeling the impact of the other, and 2). It reflects the 

cost of generating a reaction field, which is ½ the interaction energy of the charge with 

the solvent. Furthermore, this reaction energy is a free energy, because it includes the 

entropic cost associated with re-orienting the solvent molecules. 16 This term G is called 

the Gibbs free energy.  

We are interested in calculating the free energy change that occurs when proteins 

bind. Thus, we aim to find the change in Gibbs free energy that occurs when proteins go 

from their unbound to their bound states. We are interested in systems with multiple 

charges on two partners, and quantifying how the charges on one partner (the “ligand”) 

interact with the charges on the other partner (the “receptor”).  

For an individual charge, the solvation energy is quadratically related to the 

magnitude of the charge itself, assuming linear response – that is, that the reaction field 

generated by the solvent in response to each charge is proportional to the magnitude of 

the charge itself.16 For interacting charges, the interaction energy is proportional to the 
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product of both charges i and j.  The energy can thus be rewritten as a sum of charge 

squared and charge pairs:16 

€ 

G =
1
2
qiciiqi +

i
∑ 1

2
qicijq j

j
∑

i
∑  

This equation can also be rewritten in matrix form. A vector of charge q, 

containing all the charges on the protein, can be multiplied by a potential matrix M 

consisting of the proportionality constants ½ cij.16 

€ 

G = qTMq 
As proteins bind, the difference in their free energies is described by the 

difference in the Gibbs free energy of the unbound and bound states. The lower in energy 

a state is, the more stable it is. If the bound state is lower in energy (more negative) than 

the unbound state, ΔGelec will be negative, and the process is energetically favorable. This 

can be written mathematically as:  

€ 

ΔG =Gbound −Gunbound = qT (Mbound −Munbound )q = qT (Mdiff )q 
In this case, q represents all the charges on the ligand and the receptor. This 

potential matrix can be split up into matrices of potential for the ligand, receptor, and 

complex of ligand-receptor. We partition Mdiff into separate matrices so that we can 

quantify different phenomena in protein binding: desolvation and interaction. This is 

summarized in the following equations: 

€ 

ΔG = qT (Mdiff )q = [qL
TqR

T ]
L 1

2
C

1
2
CT R

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

qL
qR

# 

$ 
% 

& 

' 
( = qL

TLqL + qR
TRqR + qL

TCqR  

Above, vectors of charge for the ligand (qL) and receptor (qR) are multiplied by matrices 

of unit potential for the ligand, receptor, and complex. Each term quantifies the particular 

phenomenon involved in binding: 

ΔGelec = Ligand Desolvation Penalty + Receptor Desolvation Penalty + Complex Interaction 
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B. Numerical solutions to the LPBE 
 

Because proteins have an irregular dielectric boundary, it is impossible to solve 

the linearized Poisson-Boltzmann equation analytically.15 Numerical methods, which 

discretize the problem into smaller systems that can be solved by matrices, must be used 

to solve the equation. Two commonly used numerical methods include the boundary 

element method and the finite difference method. In the boundary element method, the 

dielectric boundary of a protein is discretized into flat panels, and the surface charge is 

determined for each panel. In contrast, in the finite difference method, a cubic lattice is 

laid over a protein, discretizing space. At each grid point, the charge is defined. The 

electrostatic potential is solved for at each of the grid points: 

€ 

φi =
ε 0Djφ j + qi /h1

6
∑
ε 0Dj +ε 0Diκ i

2h2
1

6
∑

 

In this equation, ϕi is the potential for each grid point i, while j represents the indices of 

the six neighboring grid points, and h is the length of one grid line.15   

As it is computationally expensive to solve the Poisson-Boltzmann equation, 

many different approaches have been taken to speed up the solution process. These 

different approaches range from physics-based approximations to more empirical 

methods based on physicochemical properties.  

 
C. Physics-based approximations to the LPBE 
 

The broad applicability of free energy calculations necessitates improving ways to 

calculate such free energies. In cases such as molecular dynamics and Monte Carlo 

simulations, rapidly calculating ΔG is essential.17 One physics-based approximation is the 
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Generalized Born (GB) approximation. This model approximates a protein as a set of 

spheres with an internal dielectric constant εin surrounded by solvent with dielectric 

constant εout, which is advantageous because the Poisson equation can be solved 

analytically for spheres.16 This method aims to calculate the individual polarization 

energy Gi
self of each charge in a system in the absence of all other charges, in order to 

find the overall polarization energy Gpol of the system.18  

€ 

Gpol = −
1
2
1
ε in

−
1
εout

$ 

% 
& 

' 

( 
) 

qiq j

ri, j
2 +α iα j exp −

ri, j
2

cα iα j

$ 

% 
& & 

' 

( 
) ) 

$ 

% 
& & 

' 

( 
) ) 

1/ 2
i, j
∑  

The constant c is an empirical coefficient, originally defined as 4,19 while qi is each 

atom’s atomic charge and ri.j is the distance between each atom i and j. Gpol is written 

above as a sum over the Born radii αi, which can themselves be written in terms of their 

individual self-polarization energies Gi
self.18  

€ 

α i = −
1
2
1
ε in

−
1
ε out

% 

& 
' 

( 

) 
* 
qi
2

Gi
self  

The Born radius αi is a term that accounts for each atom’s degree of burial within the 

solvent.  

 Because calculating the Born radii for each atom still requires finding Gi
self, it is 

still computationally expensive. A further approximation simplifies Gi
self into a volume 

integral.18 

€ 

Gi
self = −

1
8π

1
ε in

−
1
ε out

% 

& 
' 

( 

) 
* D

2
dV

V
∫  

In this equation, 

€ 

D = qr / r 3  is the electric displacement vector. The integration is done 

over the volume outside the dielectric cavity.18 This changes the equation for Born radii 

into the following Coulomb approximation: 



 16 

€ 

1
α i

=
1
4π

1
r4
dV

V
∫  

Instead of integrating over the volume outside the dielectric cavity, this equation can be 

re-formulated to integrate over the volume of the atom itself (W), excluding the volume 

of the electrostatic radius (the distance from the atom center to the edge of the electron 

cloud) of the atom.  

€ 

1
α i

=
1
Ri
es −

1
4π

1
r4
dV

W
∫  

 The GB approximation can be further simplified into the surface-Generalized 

Born approximation, by turning the volume integral into a surface integral.18, 20 This can 

be used to calculate the individual polarization energies of each atom.18 

These physics-based methods are effective in approximately calculating free 

energies, but more rigorous solutions take more time. The above formulation of the 

Surface GB method predicts solvation energies with a root mean square error of 0.13 

kcal/mol relative to a well-established polarizable continuum method.18 Many 

implementations of the GB method overestimate Born radii.21 These methods are 

disadvantageous because of the tradeoff between accuracy and computational cost. 

 
D. Empirical methods based on physicochemical properties 
 
 One alternative to physics-based modeling is the identification of “features” of 

binding that impact free energy calculation. Although much research has focused on 

feature identification in drug-protein systems, work remains to be done on protein-protein 

systems. Feature identification and free energy calculation are often done in the field of 

rational drug design, which often involves virtual screening of large-scale databases to 

select potential drugs (lead compounds) for a molecular target. These lead compounds are 

often identified by pharmacophore modeling and/or molecular docking.  
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Pharmacophore modeling 
 
 Pharmacophore modeling has become an important tool in rational drug design 

and has been extensively reviewed.22 A pharmacophore is the set of features that is 

necessary for a molecule to bind to its target. 23 Such features often involve hydrogen-

bond acceptors or donors, hydrophobes, negatively and positively charged ionizable 

groups, and aromatic ring structures.24 Pharmacophore modeling involves both ligand-

based and structure based methods. 

Ligand-based methods involve characterizing common chemical features of a set 

of ligands binding to one molecular target.22 A computational technique that allows the 

ligand to occupy a range of conformational spaces is used, followed by methods that 

characterize the chemical features of all the ligands in all the various conformations. This 

allows for the production of a set of key features that are apparently vital to bind to that 

particular target.22 Ligand-based pharmacophore modeling methods are commercially 

available, often involving both pharmacophore identification as well as quantitative-

structure-activity-relationship (QSAR) model development and 3D database screening.24 

QSAR links experimental activity with each feature, enabling prediction of active 

compounds.24  

Structure-based pharmacophore modeling involves analysis of the interactions of 

the ligand with the active site of a protein complex. However, because this method 

depends on the 3D structure of the complex, it is unusable in cases in which no ligands 

are known to bind to the target.22 In structure-based pharmacophore modeling, following 

structure preparation of the protein and identification of the binding site, pharmacophore 

features are defined and selected.25 The most commonly used features in structure-based 
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methods are hydrogen bond acceptors and donors, ionizable groups, lipophilic regions 

and aromatic rings. 25 A variety of methods exist to select proper combinations of 

features, including energy-based predictions that predict the interaction of the ligand with 

the protein. Probe docking selects features by docking the ligand with the protein, and 

selecting the features that lead to high interaction energies.25   

 
Molecular docking 
 

Molecular docking involves predicting which orientation a molecule prefers when 

binding to a target. Scoring functions are used to predict the strength of the binding 

interaction.26 These scoring functions tend to fall into three categories: force field 

calculations, empirical methods, and knowledge-based statistical potentials.27 Force field 

scoring functions calculate the potential energy of a complex based on the sum of non-

bonded and bonded energy terms, which are physics-based and computationally 

intensive.17  Empirical scoring functions calculate binding free energies by summing 

physicochemically relevant terms, such as hydrogen bonding, hydrophobic interactions, 

van der Waals interactions and conformational entropy.27 Knowledge-based statistical 

potentials compare the features of a protein complex to those in a database, such as the 

distribution of atom-atom distances between the ligand and the receptor, and from this 

comparison predict an energy.27 Because force field scoring methods are very similar to 

the physics-based methods described above, for brevity I will discuss only knowledge-

based functions. 

 Knowledge-based scoring functions rely on a set of data. Wallqvist and Covell 

described an approach that classified the surfaces of buried ligand atoms in a set of 

enzyme-inhibitor complexes and predicted ΔGbind.28 They used computational geometry 
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to examine the shape of each protein’s surface and derived a scoring system for each pair 

of geometrically-overlapping segments between partners, and from this calculated ΔGbind 

for the complex. The minimum energy was used to determine the appropriate 

configuration of the complex. Knowledge-based scoring functions have thus been used to 

calculate free energies in the past.  

Pharmacophore modeling employs the use of features to make predictions about 

drug-target interaction, while molecular docking uses scoring functions to calculate free 

energies in order to determine the correct orientation of the drug in the binding site. 

Combined, both molecular docking and pharmacophore modeling are useful in 

identifying potential drugs during drug discovery. We aim to use a similar feature-based 

approach to estimate protein-protein binding free energies.  

 
III. Our approach 
 
 Past research has focused on one of two extremes: mathematical, physics-based 

approximations to solving the Poisson equation, or empirical methods to calculate 

binding free energies. This work aims to combine the machine-learning aspects of 

empirical methods with the physics-based insights of more mathematical models. We 

define certain “features” of binding based on human intuition of the underlying physical 

models. We then use regression to relate these features to binding free energies.  

 Our method takes advantage of the fact that ΔGelec for the association of two 

proteins in solution can be decomposed into three terms: the ligand desolvation penalty, 

the receptor desolvation penalty, and the complex interaction. As a reminder, the 

desolvation penalties are the costs associated with stripping the protein of its favorable 
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interactions with water from the binding interface. Interaction is the hopefully 

energetically favorable term that arises from the charges on the ligand interacting 

favorably with the receptor.  

€ 

ΔGelec = qLLqL + qRRqR + qLCqR  
From this equation, each term can be written out more fully as a vector of charge 

multiplied by a matrix of unit potential multiplied again by a vector of charge. For 

example, the ligand desolvation penalty can be rewritten: 

 

€ 

LDP = q1 q2[ ]
L11 L12
L21 L22

" 

# 
$ 

% 

& 
' 
q1
q2

" 

# 
$ 

% 

& 
'  

The matrix elements L11…L22 are unit potentials. The diagonal matrix elements (L11 and 

L22) correspond to charge 1 and charge 2 on the ligand, respectively. The off-diagonal 

matrix elements L12 and L21 represent the interaction of charge 1 with charge 2, and thus 

by definition should be equal to each other. 

 The above matrix multiplication to calculate the term can be rewritten as a sum 

of individual charge potentials and the pairwise atom potentials. For the ligand 

desolvation penalty, in the case of two charges: 

€ 

LDP = q1
2L11 + q1q2L21 + q1q2L12 + q2

2L22 
The potentials L11…L22 can be calculated using a numerical solution to the Poisson 

Boltzmann equation, such as the finite difference method. In a similar fashion, we can 

write the entire ΔGelec equation as a weighted sum of individual charge features (ie, q1
2) 

and pairwise charge features (ie, q1q2).  

€ 

ΔG = ciiqi
i
∑

2
+ ci, jqiq j

i, j
∑

 
In the above equation, if charges i and j are on the same partner, cii and cij are the 

diagonal and off-diagonal matrix elements of the L and R matrices. If i and j are on 



 21 

separate partners, cij are the elements of the C matrix. This would multiply out to produce 

the same result as using the equation: 

€ 

ΔGelec = qLLqL + qRRqR + qLCqR  
Our work aims to bypass solving the Poisson Boltzmann equation by estimating either 

these unit potentials (matrix elements) or terms (LDP, RDP, CI) from the features that we 

define. In other words, we aim to estimate cii and cij using features. Using these 

mathematical relationships, we can perform regression either on the matrix elements or 

the terms, writing each as a linear combination of the features. Thus cii and cij are 

coefficients that are calculated by performing regression on the features: 

€ 

cii = αk xk
ii

k
∑  

€ 

cij = Σ
k
βk xk

ij

 
In these equations, x is the feature(s) of interest, and α and β are the coefficients assigned 

during regression.  

 Picking physically relevant features is obviously crucial to the success of this 

approach. Our aim for this project is to be able to predict the three components of ΔGelec 

to a high degree of accuracy. In picking features, we aim to select terms that intuitively 

seem important to desolvation and interaction. For desolvation, there are both single atom 

and pairwise features, while for interaction there are only pairwise features. An example 

of a single atom feature important to desolvation is the distance of the charge to the 

interface. An analogous pairwise feature is the average of two charges’ distance to the 

interface.  

 After defining the features, regression will be used to assign a weight (coefficient) 

to each feature, which will estimate how “important” each feature is to binding. Both 

linear and nonlinear regression methods may prove useful. However, up to this point, 
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linear regression, in which a change in x is directly proportional to a change in y, has 

proven to be sufficient for our model, so this work presents only simple linear regression.  

 
A. Linear regression 
 

In linear regression, an input vector Xj is used to predict an output Y. In our case, 

the input vector contains the features. The linear regression model is as follows.29  

€ 

f (X) = β0 + X jβ j
j=1

p

∑
 

In the above equation, βj are the unknown parameters (coefficients) that regression 

assigns to the feature vector Xj. In our regression, we generally set the error term or noise 

β0 equal to 0, so that we can use just βj to predict Y. (However, in some instances β0 was 

included so that we could standardize the features to have a mean of 0 and standard 

deviation of 1 - see the discussion section for explanation.) 

 In linear regression, the parameters βj are predicted to minimize the sum of 

squared errors (RSS):29 

€ 

RSS = (yi − f (xi)
j=1

p

∑ )2 = (yi − β j xij
j=1
∑

j=1

p

∑ )2  

A similar type of regression, not currently included in this work but intended as 

part of future work, is LASSO regression, which minimizes a similar but different sum to 

predict the parameters βj. Using LASSO is advantageous because inflicts a penalty if the 

error is too large, which allows it to limit the number of non-zero coefficients and thus 

the number of features. LASSO selects fewer features with similar error.  

€ 

RSS = (yi − f (xi)
j=1

p

∑ )2 + λ β j
j=1
∑  

This tries to minimize the coefficients as well as the error. When λ is zero, this 

simplifies to normal linear regression. However, if λ is too large, this forces the 
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coefficients to be zero. The trick is to pick the correct value of λ that will select out 

important features (non-zero parameters) without forcing all the parameters to be zero. 

Using LASSO is a future step that will limit the number of coefficients, and thus the 

number of features used.  

 
B. Nonlinear regression 
 
 Other methods exist that are nonlinear. Although we did not use these except in 

preliminary studies, these methods may potentially prove useful in future. Nonlinear 

methods include k nearest neighbors.  

 K nearest neighbors begins by classifying data based on its “nearest neighbor” 

features in the training data. If k = 1, the data is put into the same class as its nearest 

neighbor. In other words, it is predicted to have the same value as its nearest neighbor. If 

k = n, each of the values of the n nearest neighbors are averaged to predict the value of 

that data point.  

 Though such techniques are useful, this work utilizes a simple linear-regression-

based approach; though the problem is linear in the charge products, this work 

investigates whether a model that is linear in features can provide adequate accuracy. Up 

to this point, simple linear regression has been sufficient.  

 
C. Summary 
 
 This work aims to predict ΔGelec using only structural features of a protein-protein 

complex. We trained a regression-based model on free energies calculated from a 

numerical solver to the Poisson equation. We tested this approach on theoretical model 

systems and on the irregular molecular shapes of protein-protein complexes. After 
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randomly creating charge distributions for the systems, we calculated both matrix 

potentials and the overall free energies with a Finite Difference Method solver to the 

LPBE. We then calculated features for each system that intuitively seemed important to 

desolvation or interaction. We regressed on this data using the features as input data, and 

predicted free energies from these features. Our work is a novel approach to estimate 

protein-protein electrostatic binding free energies. We aim to combine our human 

insights into protein binding with machine learning techniques in order to calculate ΔGelec 

quickly and efficiently. We hope that this work provides a stepping-stone for other work 

combining machine-learning techniques with protein-protein free energy calculations, 

and in general improves the body of knowledge of protein-protein interactions.  
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METHODS 
 
The goal of this study was to develop a model to predict the electrostatic component of 

the free energy of binding (ΔGelec) using structural features of a protein-protein complex. 

Using both a model system and protein-protein complexes, we first created random 

charge distributions on the systems of interest and performed continuum electrostatics 

calculations on these systems to obtain a “known” ΔGelec. Then, we defined and 

calculated features of the complexes that we hypothesized would be important to ΔGelec. 

Regression was then used to assign weights to each feature, which allowed us to predict 

ΔGelec from the features.  

 
A. Structure preparation 
 

This work utilized both a model system and proteins to test our problem 

theoretically and on existing biomolecular shapes.  

 
a). Model system  

To create the atoms inside which charges would be placed on a model system, 

atoms of 1.2-Å radius were placed to form the hollow outline of a box-shaped ligand that 

bound within a cavity on a box-shaped receptor (refer to Figure 2.1). Then, the system 

was filled in with larger atoms of 2-Å radius inside both ligand and receptor. While these 

atoms carried no charge, charges were later added inside these atoms to create systems 

with overall charge.  

 
b). Protein shapes 

This method was also tested on more biologically relevant shapes of those 

protein-protein complexes. Each atom was assigned a partial atomic charge of zero. 
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Later, random locations within the low dielectric continuum of the complex were 

assigned charges between 1 and -1. 400 charges were placed on each complex. Natural 

charge distributions were not used because proteins consist of thousands of charges. 

Calculation of the matrix elements for each of these charges would prevent us from being 

able to study a variety of complex shapes.  

The crystal structures of 9 protein complexes were selected from the Protein Data 

Bank (PDB) and prepared for use.1 A list of their PDB codes is shown below.  

PDB ID Complex Number of 
ligand atoms 

Number of 
receptor 
atoms 

3BTK30 Trypsin-BPTI 2092 580 
1BRS31 Barnase-barstar 1141 912 
2O6032 Calmodulin- neuronal nitric 

oxide synthase complex 
1461 199 

3D6533 Textilinin-1-trypsin 2091 577 
2XTT34 Schistocerca gregaria 

protease inhibitor 1 - trypsin 
331 2091 

1CM135 Calmodulin - calmodulin-
dependent protein kinase II-
alpha 

1418 188 

1TAW36 Trypsin - amyloid beta-protein 
precursor  

2092 547 

2BCX37 Calmodulin – ryanodine 
receptor peptide 

1409 310 

2F3Y38 Calmodulin – IQ domain of 
cardiac Ca(v)1.2 calcium 
channel 

1447 249 

Table 2.1. PDB codes of proteins used. 
 
These particular protein complexes were selected because they had been previously 

prepared by another student in our laboratory, YingYi Zhang ‘13. These particular 

proteins were sufficient for our purposes, as we wanted structures with overall different 

geometries. Each structure was resolved to a resolution of 2.5 Å or better, to ensure 

maximum resolution. First, non-essential waters not critical to the structure’s function, 

                                                
1 9 structures were selected, but 10 points will be shown on the graphs. One complex, 
1TAW, was accidentally trained on twice using different charge distributions.  
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other solvent molecules, and non-biological atoms that were merely a byproduct of 

crystallization were removed from the structures. The orientation of the carbonyl and the 

amine on both Asn and Gln residues, and the tautomerization state and orientation of 

each His side chain were assessed and optimized. Hydrogens and, if needed, missing 

density were built in for each residue using CHARMM.39  

 
 B. Random charge distributions 
 

It was essential to create charge distributions that were off-center of the atoms 

themselves, so that we could train on the same structure multiple times. If only the atom 

centers were charged, the free energy would be linear because the unit potential would 

remain the same, and multiplication by charge would produce energy. Charges were 

randomly placed inside both the proteins and the model system, subject to certain 

constraints. 

  
a). Model system  

 
Figure 2.1. Schematic of the ligand (left, yellow) binding to a cavity inside the receptor 
(right, green) model system. Charges are shown in purple.  
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Charges were randomly placed inside the 2-Å radius atoms. Each charge was 

defined as an “atom” of zero radius, with a randomly generated partial atomic charge 

between 1 and -1. To avoid charges being too close together, each charge was constrained 

to be at least 1 Å away from the other charges. We purposefully used the smaller atoms to 

outline the box and only placed charges on the inner, larger atoms in order to constrain 

each charge to be at least 1 Å away from the dielectric boundary. 

 
b). Protein shapes 

 
Figure 2.2. Representative random charge distribution for the protein complex trypsin-
BPTI. Charges are shown as gray spheres.  
 

A random charge distribution was created for each protein-protein complex. For 

each system, the original atoms were made neutral by assigning them a partial atomic 

charge of 0. Then, 400 charges of zero radius were randomly placed inside these atoms, 

off-center of the atom itself and constrained to be at least 1 Å apart from each other. Each 

charge was assigned a partial atomic charge between 1 and -1.  

Constraining charges to be at least 1 Å away from the dielectric boundary 

required identifying the solvent-exposed atoms. All solvent exposed atoms were 
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identified using a script written by YingYi Zhang ’13. This script divided the local area 

of each atom up into 8 boxes and counted the number of atom contacts in each box. If the 

number of boxes with 2 or fewer contacts was 3 or greater, the atom was considered to be 

solvent exposed. To place a charge, a script randomly selected an atom and placed a 

charge inside it. If a charge was placed inside a solvent-exposed atom, an additional 

script checking to make sure that every atom was at least 1 Å away from the dielectric 

boundary was run (YingYi Zhang ’13). This script calculated the distance from the 

charge to the center of the atom in which it was placed. If that distance was more than 1 

Å, that charge was rejected and another charge was placed inside another atom. (In the 

future, solvent exposed atoms will be double-checked using CHARMM, which calculates 

the solvent exposed surface area for each atom in the bound and unbound states.39 If the 

surface area is non-zero in the bound or unbound states (or both), the atom is solvent 

exposed. This method will be used as a check against our laboratory method. The double-

checking did not occur for the placement of these charges.) 

In some complexes, charges were biased to be located near the interface to 

encourage a larger desolvation term. To bias the charges, all atoms within 10 Å of the 

partner were considered “interface”. Charges could either be placed by selecting an atom 

located either within one protein atom of the complex or within one atom of the interface, 

making it more than 50% likely that a charge would land on the interface.  

In some complexes, an additional charge complementarity bias was included to 

encourage a favorable complex interaction term. For each charge placed on the ligand, 

the closest charge on the receptor was biased to be opposite in sign to that charge, 80% 
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on average. This did help in increasing the favorability of the interaction, making it more 

negative.  

 
C. Continuum electrostatics calculations 
 

We calculated the potential of the bound and unbound states of the complexes 

using a Finite Difference Method (FDM) solver to the Poisson equation, as the standard 

against which our approximate method would be compared.40 Although the FDM is itself 

approximate, it is a rigorous numerical solution to the Poisson equation and is often the 

benchmark used to evaluate other, more approximate models.41 Two types of calculations 

were carried out: 1). An overall binding free energy calculation, calculating the overall 

terms of LDP, RDP, CI and thus ΔG, and 2). An explicit potential matrix elements 

calculation, calculating the L, R, and C potential matrices for each complex in going from 

the unbound to bound states. Note that if the L, C or R potential matrix is multiplied by 

vectors of the appropriate charges, it equals the overall terms.  

The Finite Difference Method solver laid down a cubic lattice consisting of 201 

grids points along each dimension over the protein complex, for approximately 3-4 grids 

per Å for each protein. Then, it solved for the electrostatic potential at each point on the 

grid. The inner protein dielectric constant was set at 4, reflecting the relatively low 

polarizability of protein, while the outer dielectric was set at the comparatively high value 

of 80. Calculations were carried out using a probe radius of 1.4 Å (the size of a water 

molecule) that rolls over the protein surface to identify the area where water cannot 

penetrate, and zero ionic concentration. The grid was translated three times to recalculate 



 31 

the potential using a slightly different lattice. These values were averaged to calculate 

potential.  

 
D. Feature definition 
 

The heart of the project was the definition of “features” for each complex, which 

were each assigned a weighted coefficient during regression as a measure of its 

importance. From these coefficients and the features, we were able to predict ΔGelec. In 

approaching this problem, we trained separately on desolvation and interaction, assuming 

that if we predicted both of these terms accurately, the sum of the predictions would 

accurately predict ΔGelec.   

We used our human intuition to devise features that would be important to 

desolvation or interaction. For desolvation, we identified both single atom features, or 

features that directly relate to only one charge, and pairwise atom features, features that 

capture the pairwise interaction between two charges. Because interaction is by definition 

pairwise, interaction features were only pairwise atom features.  

 
Desolvation 
 

For desolvation, we assumed that charges pay a bigger penalty when they are 

solvent exposed in the unbound state and close to the binding interface so that they are 

highly buried upon binding. So, our features for each charge aimed to capture the degree 

of solvent exposure that is sacrificed when the protein binds.  

First, we defined one single atom feature as the distance of a charge to the binding 

interface. As before, the atoms within 10 Å of the other partner were considered 

interface. Then, to capture the fact that one charge may be close to multiple atoms on the 
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binding interface, we defined a burial term as the reciprocal distance of a charge to all the 

atoms on the partner within a certain distance. We took this term at various distances, 

from 3-10 Å.  

Then we defined one other single atom feature to approximate the local geometry 

around the charge. The local area around a charge was divided into eight boxes, and the 

number of atom contacts in each box was counted. The feature was taken as the number 

of empty, or solvent exposed, boxes. 

 We then defined pairwise atom features, which in some instances were analogs of 

the single atom features defined earlier. Others were independent of the single atom 

features, such as the distance between two charges. Analogs of the single atom features 

included the arithmetic and geometric means of two charges’ distance to the interface. 

Multiple pairwise features were created as analogs of the burial terms. We considered 

that the degree of interaction between two charges would scale inversely as the distance 

between them. For the pairwise burial term, we multiplied two charges’ burial terms and 

divided by the distance between them. In this way, two charges far apart but both close to 

the interface would have a large burial term, but two charges close to the interface but 

close together would have an even larger burial term. We then further expanded the 

pairwise atom features by using a variety of geometric and arithmetic means on the burial 

terms.  
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A comprehensive list of the features used is listed below.  
 

Desolvation features 
Single atom features Pairwise atom features 
Distance to interface Arithmetic mean of distance to interface:  

½ (x+y) 
 Geometric mean of distance to interface: 

√xy 
 Distance between charges 
Burial term: reciprocal distance to all atoms 
within x Å of interface* 
BT = 1/r1+1/r2 + … + 1/rn 

Burial termcharge1 x Burial termcharge2 
Distance between charges 

 Burial termcharge1 + Burial termcharge2 
Distance between charges 

Number of solvent exposed boxes Average number of solvent-exposed boxes 
Table 2.2. Desolvation features. 
*x = 3-10 Å 
 
Complex interaction  
  
 A similar strategy was used to define features to predict complex interaction. 

These features were by definition pairwise. 

€ 

CI = qL
TCqR  

Because qL is a vector of length m, and qR is a vector of length n, C must be a matrix of 

length mxn.  

Similar to how we approached desolvation, features aimed to capture human 

intuition about how two charges interact. First, because two charges interact strongly 

when they are close to each other, one feature was defined as the distance between a 

ligand charge and a receptor charge. Because the interaction increases as the distance 

decreases, an additional feature was added that was the reciprocal of this distance. 

Secondly, a high degree of solvent screening lessens the interaction between two charges.  

Thus, an additional feature was the average of two charges’ closest distances to a solvent-

exposed atom. A feature was added to capture the degree of solvent screening: pairwise 

“solvent exposure” terms. For each charge, the reciprocal distances to each solvent-
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exposed atom within a certain “cutoff” distance were added. A large term meant the 

charge was close to many solvent-exposed atoms. To obtain the pairwise feature, the 

solvent exposure terms of the two charges were added or multiplied, and then divided by 

the distance between them. An additional feature called the “inverse solvent exposure” 

term took the inverse of the solvent exposure term for each charge, so that the feature 

decreased as the level of solvent exposure increased (resembling how solvent exposure 

decreases interaction). The pairwise feature was obtained similarly. Additionally, a last 

set of features were included simply because they were readily accessible: the same 

burial features used in the desolvation section, in spite of the fact that complex interaction 

can only occur when the complex is interacting (because when the proteins are bound, the 

binding interface does not exist in our model, but is only part of the interior of the low-

dielectric cavity). A comprehensive list of each feature used is shown below.  

Interaction features Interaction features Interaction features 
Pairwise “burial” features Pairwise “solvent exposure” 

features 
Pairwise “inverse solvent 
exposure” features 

Arithmetic mean of distance to 
interface:  
½ (x+y) 

Arithmetic mean of distance to 
solvent-exposed atom:  
½ (x+y) 

Arithmetic mean of distance to 
solvent-exposed atom:  
½ (x+y) 

Geometric mean of distance to 
interface: 
√xy 

Geometric mean of distance to 
solvent-exposed atom: 
√xy 

Geometric mean of distance to 
solvent-exposed atom: 
√xy 

Distance between charges Distance between charges Distance between charges 
Inverse distance between 
charges 

Inverse distance between 
charges 

Inverse distance between 
charges 

B termcharge1 x B termcharge2 
Distance between charges 

SE termcharge1 x SE termcharge2 
Distance between charges 

ISE termcharge1 x ISE termcharge2 
Distance between charges 

B termcharge1 + B termcharge2 
Distance between charges 

SE termcharge1 + SE termcharge2 
Distance between charges 

ISE termcharge1 + ISE termcharge2 
Distance between charges 

Table 2.3. Complex interaction features.  
*B term = Burial term: reciprocal distance to all atoms within 3-10 Å of interface 
**SE term = Solvent exposure term: reciprocal distance to all atoms within 3-10 Å of protein edge 
**ISE term = Inverse solvent exposure term: reciprocal of solvent exposure term 
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We stress that the features defined in this work are not necessarily the “best” 

features to use. Although we show that the features used can reasonably predict 

desolvation and interaction, it is entirely possible that other features could predict them 

better. Our work instead is a proof of principle that a feature-based approach can be used 

to predict ΔGelec.  

 
E. Regression 
 

Regression techniques were then used to assign coefficients to each feature. As a 

reminder, the electrostatic component of binding is comprised of three terms (LDP, RDP, 

and CI), which can be written as: 

€ 

ΔGelec = qL
TLqL + qR

TRqR + qL
TCqR  

Because of this mathematical relationship, two methods can be used to carry out the 

regression: 1). Regression on the L, R, and C matrix elements themselves and 2). 

Regression on the overall LDP, RDP, and CI. 

Simple linear regression was used in both approaches. As a reminder, linear 

regression minimizes the sum of squared errors to estimate the coefficients βj.  

€ 

RSS = (yi − β j xij
j=1
∑

j=1

p

∑ )2  

We first use “training data” with known (x1,y1)…(xN,yN) to estimate the 

parameters βj. Then, from these parameters, we can multiply by known x values of 

“testing data” to obtain output y.  

Predictions were first obtained by training on all the data, using those coefficients 

to predict the same data. To verify that the coefficients did have predictive value, cross-

validation was performed by training on a subset of the data and predicting the rest of the 

data (the “testing data”). 10-fold cross-validation was conducted, training on 90% of the 
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data and predicting the remaining 10%. This technique was performed a total of 10 times 

to make predictions for all the data. All results shown are performed using 10-fold cross-

validation, except as specified.  

 
Regression on the matrix elements 
 

We can regress on the L, C, and R matrix elements to predict matrix elements. In 

this case, xN is each feature we define, while yN is the matrix potential. A table 

summarizes: 

XN (feature) YN (matrix potential) Type of feature and matrix 
potential 

Single atom feature Desolvation diagonal matrix 
element 

Single atom 

Pairwise atom feature Desolvation off-diagonal 
matrix element 

Pairwise atom 

Pairwise atom feature Complex interaction matrix 
element 

Pairwise atom 

Table 2.4. Regression on matrix potentials. 
 
 We can multiply these predicted matrix elements by charge to get energy, 

allowing us to predict LDP, RDP, and CI, and thus ΔGelec. 

 
Regression on the term 

In the second case of regression on the term itself, we can write each term as a 

sum of charge squared and charge pairs. For example, the ligand desolvation penalty can 

be written as a sum of the single atom charges squared times the single atom features xi 

and the charge pair products times the pairwise atom features xij, where α and β are 

coefficients for the charge squared and charge pairs respectively.  

€ 

LDP = αqi
2xi

i
∑ + βqiq j xij

i, j
∑  

xN is the sum of each feature multiplied by charge pairs, while yN is the term 

itself.  
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An example makes this more concrete. If we have a ligand with 3 charges, for the 

ligand desolvation penalty we obtain a 3x3 unit potential matrix, and have a vector of 

charge qL with size 3x1. We can obtain a vector of charge squared by making a 1x3 

vector of qL
T: [q1

2  q2
2  q3

2].  We have a matrix of single atom features where each feature 

is a 3x1 vector that describes the feature for each atom, so the matrix of features is 3xm 

where m is the number of features. Multiplying qL
T, the 1x3 matrix, by this 3xm feature 

matrix gives a 1xm matrix. We can do an analogous process for the pairwise features, 

where the charge vector in this case is instead [q1q2  q1q3  q2q3].  

Then, we can do the regression, using xN as a concatenation of the charge 

squared-single atom feature matrix (1xm) described above and the charge pair-pairwise 

feature matrix (1xn) above, while yN is the LDP itself. This regression assigns 

coefficients to each feature, producing m+n coefficients.  

 
Regression protocol 
 
 We performed regression using a variety of input data, summarized in Table 5.  

Training data Testing data 
Model system Model system 
Model system  Proteins 
Proteins Proteins 
Proteins  Model system 
Table 2.5. Summary of training data and testing data for regression.  
 
Regression was conducted using R.42  
 
Data analysis 
 
 To analyze each feature’s importance, the data was standardized to account for 

the relative size of the input. This involved standardizing each feature so that the mean of 

the data was zero, and the standard deviation was one. The mean of each feature for a set 
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of data was subtracted from each feature value, and each value was divided by the 

standard deviation of the feature. This accounted for the relative size of the input itself, 

and standardized the coefficients so that they could be compared. We examined the size 

of the coefficient itself, as large coefficients meant that the feature had a large impact on 

the prediction.  
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RESULTS 
 

Regression on Poisson equation-derived matrix elements or terms was used to 

predict electrostatic binding free energies from features of the complex. Regression and 

data plotting was performed in R.42 This section will proceed as follows: first, the model 

system results will be described, including the two approaches to regression (matrix 

elements and terms) for desolvation and interaction, and the coefficients obtained in both 

approaches. The next section will describe the results of the protein regression. The last 

section will compare the coefficients obtained when training on either the model system 

or the proteins, and also describe the data obtained when training on one system and 

testing on the other. A list of the features used in each case is listed at the end of Results.  

As seen above, ΔGelec can be written as follows: 

€ 

ΔGelec = qL
TLqL + qR

TRqR + qL
TCqR  

L, R, and C are unit potential matrices consisting of matrix elements. Each unit potential 

matrix, when multiplied by charge, gives the term: ligand desolvation penalty (LDP), 

receptor desolvation penalty (RDP), and complex interaction (CI). We can regress on 

either the matrix elements or the term, using features to predict ΔGelec.  

 
MODEL SYSTEM 
 
Desolvation  
 

The two terms of interest in desolvation are the ligand desolvation penalty and the 

receptor desolvation penalty.  

€ 

LPD = qL
TLqL

RDP = qR
TRqR
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To predict desolvation, two approaches to regression are possible: training on the matrix 

elements, and training on the term. Each will be discussed separately, and then 

coefficients from both approaches will be compared. In summary, training on the matrix 

elements produced predicted matrix elements that correlated well with the original 

values. Multiplying these matrix elements by charge to predict desolvation penalties 

improved the correlation. However, regression on the term produced the best correlations 

of all.  

 
Matrix elements 
 

The L and R matrices are by definition square and symmetric, consisting of 

diagonal matrix elements and off-diagonal matrix elements.  

 
Figure 3.1. Schematic of a square symmetric matrix. The diagonal and off-diagonal 
matrix elements are indicated. Note that the two halves of the off-diagonal matrix 
elements are identical.  
 
Diagonal matrix elements depend on the environment of single charges, so the features 

used in the regression are single atom features. Off-diagonal matrix elements depend on 

properties of interacting charges, so the features used are pairwise.  
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In the figures below, R indicates the correlation of the predicted values with the 

expected “exact” values. The “exact” values are the values obtained from the Finite 

Difference Method solution to the Poisson equation.40 When R = 1, the data is perfectly 

correlated. When R = 0, there is no correlation. The root mean square error (RMSE) 

between the predicted and expected values is also indicated. This is the absolute 

difference between the two data sets, and thus measures the amount of error in the 

prediction. The following figures are the results from 10-fold cross-validation, except as 

specified.  

 
Figure 3.2. Predicted vs. exact L (left) and R (right) diagonal matrix elements. Features 
trained on: List 1 (see end of section). RMSE units = kcal/mol/e2.  
 

The predicted L diagonal matrix elements are well correlated. The predicted 

values appear to underestimate when the matrix elements are large, indicating that the 

model underestimates how much of a desolvation penalty charges pay when they are 

highly buried upon binding.  However, predictions are close to the expected when the 

matrix elements are small.  

Interestingly, the predicted R diagonal matrix elements (Figure 3.2 right) behave 

differently. Two observations must be noted: the R diagonal matrix elements are 
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systematically overestimated, and more ligand charges pay a high desolvation penalty 

than receptor charges. These implications will be addressed in the discussion section.  

 

 
Figure 3.3. Predicted vs. exact L (left) and R (right) off-diagonal matrix elements. 
Features trained on: List 1. RMSE units = kcal/mol/e2. 
 

The predicted diagonal matrix elements of L and R behave differently, so it is 

unsurprising that the predicted off-diagonal matrix elements do as well, because the 

pairwise features are derived from the single atom features. The same trend for the 

diagonal matrix elements is seen for the off-diagonal matrix elements: error in the large 

matrix elements for the L matrix elements, and the same systematic overestimation for 

the R off-diagonal matrix elements. This is most likely because the pairwise features 

were almost entirely pairwise analogs of single atom features. In the case of the L off-

diagonal matrix elements, almost all the large elements are overestimated, unlike the 

diagonal matrix elements, which were underestimated. However, the R off-diagonal 

matrix elements show nearly the same behavior as the diagonal: overestimating larger 

matrix elements.  
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These matrix elements can be used to construct an “approximate” L or R matrix, 

which can be multiplied against charge to give LDP or RDP.  

 
Figure 3.4. Predicted vs. exact desolvation penalties for ligand and receptor, after 
training on the matrix elements. RMSE units = kcal/mol. 
 

Given the error in larger predicted matrix elements, it is surprising that 

multiplication of the approximate matrix by charge gives an energetic penalty so close to 

the expected. It is possible that the error in each of the individual matrix elements cancel 

out when multiplied by charge.   
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Term regression 

  
Figure 3.5. Regression on the desolvation penalties. Features trained on: List 1. RMSE 
units = kcal/mol. 
 

Regression on the desolvation penalties produced high correlations for both ligand 

and receptor. This suggested that regression on the term was a more promising approach 

than regression on the matrix elements. Earlier, we suggested that the error in the 

individual predicted matrix elements cancels out when multiplied by charge. However, 

regression on the desolvation penalties produces a better fit, which implies the previous 

approach still suffers from some compounding of error, though not as much as one might 

expect. This requires further investigation.   

 
Coefficients 
 
 The features were each scaled to make the mean 0 and the standard deviation 1. 

This standardizes the coefficients to allow for more direct comparisons between features. 

Magnitude indicates relative importance, and direction indicates in what way the feature 

affects the prediction.  
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Model system 
L 

Model system 
R 

(Intercept) 1.9072 0.3640 
DI 0.4338 0.1184 
BT:3 0.3337 0.5282 
BT:4 0.9507 -0.2252 
BT:5 -0.0505 0.0587 
BT:6 -0.0078 0.0917 
BT:7 -0.3233 0.0963 
BT:8 1.0081 0.1453 
BT:9 0.9509 0.1541 
BT:10 -0.2962 0.1353 
Solvent boxes 0.0000 0.0000 

Table 3.1. Diagonal feature coefficients for L (left) and R (right) after training on matrix 
elements. Highest positive coefficient (excluding the y intercept) is shown in blue, 
negative in red.  
 
 The single atom feature coefficients for ligand and receptor for desolvation show 

little correlation. The largest coefficient for the ligand was the burial term for all atoms 

within 8 angstroms. The largest coefficient for the receptor was the burial term for all 

atoms within 3 angstroms. The most negative coefficient for the ligand was the burial 

term at 7 angstroms, while the receptor was a burial term at 4 angstroms. This difference 

is not entirely surprising, given that the receptor has a different shape from the ligand. 

However, the difference in both magnitude and direction make interpretation of the 

relative importance of features difficult.  
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Model system 
L 

Model system 
R 

(Intercept) 0.6329 0.1166 
Dist between -0.1282 -0.0263 
Geom. DI -0.1974 -0.0708 
Arith. DI 0.1610 0.0304 
PWBprod:3 3.1074 0.2636 
PWBprod:4 -3.4784 -0.1688 
PWBprod:5 1.1078 0.0166 
PWBprod:6 0.4497 -0.0037 
PWBprod:7 -0.4450 -0.0040 
PWBprod:8 0.0889 -0.0072 
PWBprod:9 -0.0308 0.0038 
PWBprod:10 0.0081 -0.0001 
PWBsum:3 -3.0078 -0.1147 
PWBsum:4 3.9630 0.1037 
PWBsum:5 -1.1558 0.0010 
PWBsum:6 -0.7231 0.0170 
PWBsum:7 0.3551 0.0219 
PWBsum:8 0.3303 0.0081 
PWBsum:9 0.0867 0.0261 
PWBsum:10 -0.0929 0.0068 

Table 3.2. Off-diagonal feature coefficients for ligand (left) and receptor (right) after 
training on matrix elements. Highest positive coefficient shown in blue, negative in red. 
 
 The pairwise atom coefficients, on the other hand, do appear more correlated. The 

directionality of the coefficients is largely the same, apart from the final six coefficients, 

which are all small in magnitude. The largest coefficient for the ligand was the pairwise 

burial sum using a cutoff of 4 angstroms, while the receptor was a pairwise burial product 

using a cutoff of 3 angstroms. The most negative coefficient for both the ligand and the 

receptor was the pairwise burial product, using a cutoff of 4 angstroms. Furthermore, note 

that the magnitudes of the receptor coefficients are smaller than those of the ligand. This 

is possibly because the receptor is larger, so the charges inside experience less 

desolvation. The implications of these coefficients will be discussed in the discussion 

section. 
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Model system 
L 

Model system 
R 

(Intercept) -0.0727 0.0099 
DI -0.0198 0.0022 
BT:3 -0.0458 -0.0032 
BT:4 0.1073 0.0167 
BT:5 -0.0271 0.0174 
BT:6 -0.0098 0.0371 
BT:7 -0.0284 -0.0210 
BT:8 0.0469 0.0831 
BT:9 0.2572 0.1483 
BT:10 -0.2310 0.3059 
Solvent boxes 0.0000 0.0000 
Dist between 0.0929 0.0041 
Geom. DI -1.4899 -0.1393 
Arith. DI 1.6206 0.1459 
PWBprod:3 0.0042 0.0150 
PWBprod:4 -0.0082 -0.0113 
PWBprod:5 0.0109 -0.0079 
PWBprod:6 0.0029 -0.0139 
PWBprod:7 -0.0373 0.0655 
PWBprod:8 0.0595 -0.0725 
PWBprod:9 -0.0239 -0.2126 
PWBprod:10 -0.1115 6.0294 
PWBsum:3 -0.1875 0.1063 
PWBsum:4 0.4491 -0.0063 
PWBsum:5 -0.4585 -0.2233 
PWBsum:6 -0.0666 0.5359 
PWBsum:7 0.5110 -0.2809 
PWBsum:8 -0.2807 0.0506 
PWBsum:9 0.4895 0.6044 
PWBsum:10 0.1438 0.2516 

 
Table 3.3. Feature coefficients for ligand (left) and receptor (right) after training on the 
term. Highest positive coefficient shown in blue, negative in red. 
 
Interaction 
 

Complex interaction occurs when ligand and receptor charges interact in the 

bound complex. For a system of n ligand charges and m receptor charges, the C matrix is 

an nxm matrix, involving only pairwise interactions. Thus, the features used are pairwise. 

Similar to desolvation, we can train on the C matrix elements or the complex interaction 

term.  
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Matrix elements 

  
Figure 3.6. Predicted C matrix elements (left) and complex interaction (right) for model 
system. Features trained on: List 3 (burial terms). RMSE units (left) = kcal/mol/e2. 
RMSE units (right) = kcal/mol. 
 

Note that above, the features used were similar to the pairwise features for 

desolvation, which were largely comprised of burial terms. In this case, the interactions 

were between charges on the ligand and the receptor, rather than the same partner. But 

because there are no “binding partners” in the complex, interaction should theoretically 

not depend on the binding interface at all. We tried these features simply because they 

were readily accessible. However, we found that these features produced good 

predictions for complex interaction.  

We trained on an additional set of features: solvent exposure terms analogous to 

burial terms (the reciprocal distance of the charge to all solvent-exposed atoms within a 

certain distance). The larger this term, the more solvent exposed a charge was, therefore 

the more its interaction should be screened and the more the matrix element should 

decrease.  
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Figure 3.7. Predicted C matrix elements (left) and complex interaction (right) for model 
system. Features trained on: List 4 (solvent exposure terms). RMSE units (left) = 
kcal/mol/e2. RMSE units (right) = kcal/mol. 
 

The results showed that this term was also successful in capturing the matrix 

elements for this system.  

We then tested a third set of features that were termed inverse solvent exposure 

terms. These were very similar to the solvent exposure terms, except that the inverse of 

the solvent exposure term was taken for each charge. The larger this term, therefore, the 

less solvent exposed a charge was, thus the less its pairwise interaction term should be 

screened. 
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Figure 3.8. Predicted C matrix elements (left) and complex interaction (right) for model 
system. Features trained on: List 5 (inverse solvent exposure terms). RMSE units (left) = 
kcal/mol/e2. RMSE units (right) = kcal/mol. 
  

These predicted values also showed good agreement with the expected values. 

The matrix elements were slightly overestimated, compared to the predicted matrix 

elements shown in the previous graph (using the solvent exposure features).  

Note that two features were included in all three sets of features (Lists 3-5): the 

distance between charges, and the inverse of the distance between two charges. These 

features most likely influence the predictions greatly.  
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Term regression 

  
Figure 3.9. Predicted complex interaction after regression on the term. Features trained 
on: List 3 (burial terms). RMSE units = kcal/mol. 
 

Using the List 3 burial term features, regression on the complex interaction 

resulted in a good correlation with the expected values, although the matrix elements 

approach was slightly better in this case (R = 0.9907).  

 
Figure 3.10. Predicted complex interaction after regression on the term. Features trained 
on: List 4 (solvent exposure terms). RMSE units = kcal/mol. 
 

Regression on the term using the solvent exposure features produced a similar fit, 

but it was again not as successful as the matrix elements approach (R = 0.992).  
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Figure 3.11. Predicted complex interaction after regression on the term. Features trained 
on: List 5 (inverse solvent exposure terms). RMSE units = kcal/mol. 
 

Regressing on the term using the inverse solvent exposure produced good 

correlations. The data was less correlated than 1). the matrix elements approach and 2). 

the previous two sets of features.  

Taken together, the results suggest that the matrix elements approach is more 

promising in the case of interaction. Furthermore, although each of the three sets of 

features produced good correlations, the features in List 3 were surprisingly successful, 

and best in the term regression approach. Somehow, these burial terms must approximate 

features important to interaction. Perhaps charges close to the interface with a large burial 

term are close to charges on the opposite partner, which would increase the interaction 

between them. This will be addressed further in the discussion.  

 
Coefficients 
 

All coefficients are shown after standardizing the features by setting the mean 

equal to 0 and the standard deviation equal to 1.  
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The tables below show that the inverse distance between charges resulted in large 

coefficients when regressing on the matrix elements.  

 

 
Matrix 
elements Term 

(Intercept) 0.6684 0.0246 
Dist bw 
charges 0.3715 -1.0760 
Inverse dist 0.9904 0.3880 
Geom. DI 0.1862 0.9265 
Arith. DI -0.0811 0.0919 
PWBprod:3 0.4843 1.8721 
PWBprod:4 -0.2452 -1.4179 
PWBprod:5 -0.0140 0.3318 
PWBprod:6 0.0300 0.0511 
PWBprod:7 -0.0258 -0.1092 
PWBprod:8 0.0357 0.0598 
PWBprod:9 -0.0233 -0.0611 
PWBprod:10 -0.0015 -0.0004 
PWBsum:3 0.0223 -1.9335 
PWBsum:4 0.0368 3.1522 
PWBsum:5 0.0719 -1.1323 
PWBsum:6 -0.1037 -0.2106 
PWBsum:7 -0.0793 0.1269 
PWBsum:8 0.1200 0.1312 
PWBsum:9 -0.0223 0.1780 
PWBsum:10 -0.0414 -0.1682 

 
Table 3.4. Coefficients for matrix elements regression (left) and complex interaction 
regression (right) for the model system. Features trained on: List 3 (burial terms). 
 

In the matrix elements approach, the most positive coefficient when using the 

burial terms was the inverse distance between two charges. This makes sense, because 

the interaction of two charges increases as the distance between them decreases. The 

most negative coefficient when training on the burial features was the pairwise burial 

product at a cutoff of 4 angstroms. In the term approach, the most positive and negative 

coefficients were those for the pairwise burial sum terms at 4 and 3 angstroms, 

respectively.  
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Matrix 
elements Term 

(Intercept) 0.6684 0.0246 
Dist bw 
charges 0.7101 -0.0453 
Inverse dist 1.0990 0.4408 
Geom. DS 0.0319 0.0908 
Arith. DS -0.0053 -0.0748 
SEprod:3 0.5631 12.5566 
SEprod:4 -0.3770 -12.4905 
SEprod:5 -0.0672 1.9510 
SEprod:6 0.0195 2.5783 
SEprod:7 -0.1320 -1.6351 
SEprod:8 0.0242 -0.2230 
SEprod:9 -0.0238 0.2947 
SEprod:10 0.0095 -0.0807 
SEsum:3 0.0380 -21.6931 
SEsum:4 0.0290 23.6577 
SEsum:5 0.0638 -3.6298 
SEsum:6 0.1458 -2.3141 
SEsum:7 0.0762 1.8341 
SEsum:8 0.0284 0.1264 
SEsum:9 -0.0435 -0.3558 
SEsum:10 -0.0321 0.0527 

Table 3.5. Coefficients for matrix elements regression (left) and complex interaction 
regression (right) for the model system. Features trained on: List 4 (solvent exposure 
terms). 
 

Similarly, when training on the matrix elements using the solvent exposure terms, 

the most positive coefficient was the inverse distance between two charges. The most 

negative coefficient was the pairwise solvent exposure product at a cutoff of 4 angstroms. 

When training on the term, the solvent exposure sum at 3 angstroms and 4 angstroms 

were the most negative and positive, respectively.  
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Matrix 
elements Term 

(Intercept) 0.6684 0.0246 
Dist bw 
charges 0.7995 -0.6990 
Inverse dist 1.4353 4.2963 
Geom. DS 0.0402 0.2502 
Arith. DS 0.0135 -0.2343 
ISEprod:3 -0.1197 7.2374 
ISEprod:4 0.0887 -7.1258 
ISEprod:5 -0.0830 1.4299 
ISEprod:6 -0.0030 0.0478 
ISEprod:7 -0.0041 -0.0367 
ISEprod:8 -0.0047 0.0001 
ISEprod:9 -0.0016 0.0046 
ISEprod:10 -0.0015 0.0174 
ISEsum:3 0.0148 -11.8221 
ISEsum:4 0.0571 9.2444 
iSEsum:5 0.0586 -1.5849 
ISEsum:6 -0.0021 -0.0416 
ISEsum:7 0.0039 0.0325 
ISEsum:8 0.0056 -0.0074 
ISEsum:9 0.0086 0.0071 
ISEsum:10 0.0078 -0.1274 

Table 3.6. Coefficients for matrix elements regression (left) and complex interaction 
regression (right) for the model system. Features trained on: List 5 (inverse solvent 
exposure terms). 
 

Again, when using the inverse solvent exposure features and training on the 

matrix elements, the most positive coefficient was the inverse distance between two 

charges. The most negative coefficient was the pairwise solvent exposure product at a 

cutoff of 3 angstroms. Note the small magnitude of the inverse solvent exposure feature 

coefficients. When training on the term, the most positive and negative coefficient was 

the pairwise solvent exposure sums at 4 and 3 angstroms. In this case, the solvent 

exposure sums and products features had low magnitudes of coefficients, while the lower 

cutoff terms had much higher coefficients. 
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Predicting ΔGelec 

  
Figure 3.12. ΔGelec after regressing on matrix elements (left) and terms (right). Features 
trained on: List 1, List 2, and List 3. RMSE units = kcal/mol. 
 

Summing desolvation penalties and complex interaction yielded good correlations 

in both cases. In both types of regression, the RMSE was less than 0.6 kcal/mol. In all, 

the model system results suggest that both types of regression are a promising approach 

to predicting ΔGelec. 

 
PROTEIN-SHAPED SYSTEMS 
 

The same approach used above on the model system can be taken using actual 

protein complex geometries. After randomly placing charges inside 10 different protein-

protein complexes, Poisson-equation derived matrix potentials and free energies were 

calculated. These matrix potentials and free energy terms can be regressed on, using the 

features to predict ΔGelec. 
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Desolvation 
 
Matrix elements 

 
Figure 3.13. Representative predicted diagonal matrix elements from 10 protein-protein 
complexes. Receptor and ligand are arbitrarily defined. Features trained on: List 1. 
RMSE units = kcal/mol/e2.  
 

The ligand and receptor diagonal matrix elements show a similar correlation to 

each other, but the correlation is much worse compared to the model system. Note that 

there are more high magnitude diagonal matrix elements on the receptor than on the 

ligand. The extremely high nature of some of the matrix elements is unphysical. This will 

be addressed later in the discussion.  
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Figure 3.14. Representative predicted off-diagonal matrix elements from 10 protein-
protein complexes. Receptor and ligand are arbitrarily defined.  Features trained on: List 
2. RMSE units = kcal/mol/e2. 
  

Both the ligand and the receptor off-diagonal matrix elements show a similar 

correlation. Overall, the correlation is worse than the model system. Note again that the 

receptor off-diagonal matrix elements tend to be higher in magnitude than those of the 

ligand. The implications of this will be mentioned in the discussion section.  

These predicted matrix elements can be used to construct “approximate” L and R 

matrices. When multiplied by charge, these yield ligand and receptor desolvation 

penalties, shown below.  
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Figure 3.15. Predicted vs. exact desolvation penalties for ligand and receptor, after 
training on the matrix elements. RMSE units = kcal/mol. 
 

The ligand desolvation penalty shows a much worse correlation than the receptor 

desolvation penalty. This is probably because the receptor desolvation penalties are much 

higher magnitude, and one point appears to dominate the receptor graph. The root mean 

square error for the receptor is 189 kcal/mol, while it is only 54 kcal/mol for the ligand 

desolvation penalty.  

 
Term regression 
 

Regression can also be performed using the ligand and receptor desolvation 

penalties.  

The following figure, unlike those shown previously, which show 10-fold cross-

validation, shows the predictions for training data after regressing on the term.  
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Figure 3.16. Predicted vs. exact desolvation penalties for ligand (left) and receptor 
(right), after training on the term and predicting that same term.  
 
A perfectly linear fit is observed when training on the term data and predicting the term. 

The implications of this will be addressed in the discussion, but note that this indicates 

over-fitting, which is when the number of parameters (features) exceeds the number of 

observations (terms).  

When data is overfit, the training predictions are often very good, but the testing 

data predictions are much worse. The results from the testing data, shown below, suggest 

overfitting as well. When 10-fold cross-validation is performed, the following results are 

obtained.  
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Figure 3.17. Predicted vs. exact desolvation penalties for ligand (left) and receptor 
(right), after training on the term and predicting that same term. RMSE units = kcal/mol. 
 

The predicted values deviate largely from the expected result, with correlations 

below 0.3.  Taken together, these results highly suggest overfitting. For this reason, we 

focused on regressing on the matrix elements for the proteins, rather than the term.   

 
Coefficients 
 

Only the coefficients produced by regressing on the matrix elements will be 

discussed, because regressing on the term had such low predictive value.  

 Proteins L Proteins R 
(Intercept) 1.9088 7.8735 
DI 0.2217 1.1876 
BT:3 -1.1159 4.0957 
BT:4 0.2647 -4.7312 
BT:5 2.4031 5.4283 
BT:6 0.6675 4.1852 
BT:7 -2.2356 0.7400 
BT:8 2.3247 -8.1887 
BT:9 2.7394 14.0177 
BT:10 2.5447 4.1364 
Solvent boxes -0.3312 0.2758 

Table 3.7. Single atom desolvation coefficients, training on the off-diagonal matrix 
elements. Features trained on: List 1. Highest positive coefficient shown in blue, negative 
in red. 
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The two most positive coefficients are the same: the burial terms using a cutoff of 9 

angstroms.  

 
 Proteins L Proteins R 
(Intercept) 0.1157 0.3995 
Dist between -0.0353 -0.0893 
Geom. DI -0.1063 0.0952 
Arith. DI 0.1705 0.0817 
PWBprod:3 -0.3541 1.9294 
PWBprod:4 0.3702 -2.3645 
PWBprod:5 -0.0575 1.2857 
PWBprod:6 -0.1101 -0.4225 
PWBprod:7 0.1677 0.1757 
PWBprod:8 -0.0239 -0.2730 
PWBprod:9 -0.0100 0.0603 
PWBprod:10 0.0265 0.0165 
PWBsum:3 0.7327 0.0583 
PWBsum:4 -0.5248 0.9622 
PWBsum:5 0.1041 -0.7498 
PWBsum:6 0.0405 0.6584 
PWBsum:7 0.0223 -0.4929 
PWBsum:8 0.0028 0.2761 
PWBsum:9 -0.0050 0.0830 
PWBsum:10 0.0186 0.0425 

Table 3.8. Pairwise desolvation coefficients, training on the off-diagonal matrix 
elements. Features trained on: List 1. Highest positive coefficient shown in blue, negative 
in red. 
 
Interaction 
 
Matrix elements 
 

The plots below are generated using the features listed in Lists 3-5 as specified. 

Each of these features contains the following features in common: distance between 

charges, and inverse distance between charges.  
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Figure 3.18. Predicted C matrix elements (left) and complex interaction (right) for 
proteins. Features trained on: List 3 (burial terms). RMSE units (left) = kcal/mol/e2. 
RMSE units (right) = kcal/mol. 
 

Training on the burial terms produces a good correlation with the expected values 

of the matrix elements. When multiplied by charge, the correlation is remarkably good 

but appears to be dominated by the highest-magnitude value. Regression on the burial 

terms does give a root mean square error of approximately 80 kcal/mol.  

 
Figure 3.19. Predicted C matrix elements (left) and complex interaction (right) for 
proteins. Features trained on: List 4 (solvent exposure terms). RMSE units (left) = 
kcal/mol/e2. RMSE units (right) = kcal/mol. 
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Training on the solvent exposure terms underestimates the matrix elements at 

higher values.  

 
Figure 3.20. Predicted C matrix elements (left) and complex interaction (right) for 
proteins. Features trained on: List 5 (inverse solvent exposure terms). RMSE units (left) = 
kcal/mol/e2. RMSE units (right) = kcal/mol. 
 

Training on the inverse solvent exposure terms gives essentially the same result as 

the solvent exposure terms. The prediction is worse for the higher-magnitude matrix 

elements.  

 
Coefficients 
 

The coefficients for the three sets of features used are shown below. In all cases, 

the inverse distance between charges was the most positive coefficient.  
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Matrix 
elements 

(Intercept) 0.4473 
Dist bw 
charges 0.3075 
Inverse dist 0.6752 
Geom. DI 0.0000 
Arith. DI 0.0555 
PWBprod:3 0.1310 
PWBprod:4 -0.2833 
PWBprod:5 0.2104 
PWBprod:6 -0.0375 
PWBprod:7 0.0479 
PWBprod:8 -0.0090 
PWBprod:9 0.0062 
PWBprod:10 0.0540 
PWBsum:3 0.3568 
PWBsum:4 0.1336 
PWBsum:5 -0.2878 
PWBsum:6 0.0452 
PWBsum:7 -0.0538 
PWBsum:8 0.1719 
PWBsum:9 -0.0589 
PWBsum:10 -0.0230 

Table 3.9. Coefficients for burial terms (List 3).  
 

For the burial features, the most positive coefficient is the inverse distance 

between charges, while the most negative is the pairwise burial sum at a cutoff of 5 

angstroms.  
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Matrix 
elements 

(Intercept) 0.4473 
Dist bw 
charges 0.4579 
Inverse dist 1.0546 
Geom. DS 0.1659 
Arith. DS -0.2262 
SEprod:3 -0.4674 
SEprod:4 0.3139 
SEprod:5 0.1151 
SEprod:6 -0.0322 
SEprod:7 0.0505 
SEprod:8 -0.0043 
SEprod:9 0.0025 
SEprod:10 -0.0068 
SEsum:3 0.8730 
SEsum:4 -0.4771 
SEsum:5 -0.4087 
SEsum:6 0.1999 
SEsum:7 -0.2118 
SEsum:8 -0.0005 
SEsum:9 0.0045 
SEsum:10 -0.0097 

 
Table 3.10. Coefficients for solvent exposure terms (List 4).  
  

The most positive coefficient is the inverse distance between charges when 

training on the solvent exposure terms. The most negative is the pairwise solvent 

exposure sum at a cutoff of 4 angstroms.  
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Matrix 
elements 

(Intercept) 0.4473 
Dist bw 
charges 0.4627 
Inverse dist 1.0314 
Geom. DS 0.0300 
Arith. DS -0.0356 
ISEprod:3 -0.0110 
ISEprod:4 -0.0057 
ISEprod:5 0.0078 
ISEprod:6 0.0215 
ISEprod:7 0.0032 
ISEprod:8 -0.0004 
ISEprod:9 -0.0025 
ISEprod:10 0.0054 
ISEsum:3 -0.0219 
ISEsum:4 0.0440 
ISEsum:5 0.0249 
ISEsum:6 0.0511 
ISEsum:7 0.0200 
ISEsum:8 0.0166 
ISEsum:9 -0.0257 
ISEsum:10 -0.0389 

Table 3.11. Coefficients for inverse solvent exposure terms (List 5).  
  

The most positive coefficient is the inverse distance between charges when 

training on the inverse solvent exposure terms. The most negative is the pairwise inverse 

solvent exposure sum at a cutoff of 10 angstroms. The implications of these coefficients 

will be addressed in the discussion.  

 
 
 
 
 
 
 
 
 
 
 
Predicting ΔGelec 
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The matrix elements regression was the best approach to take with the proteins, 

because of issues overfitting the terms.  

 
Figure 3.21. Predicted ΔGelec after training on the matrix elements. Features used: List 1, 
List 2, and List 3 (best complex interaction results). Left: training on 10 structures. Right: 
same data with outlier removed. RMSE units (right) = kcal/mol. 
 

The predicted ΔGelec is well correlated with the expected. However, one point 

dominates the graph because its magnitude is physically unrealistic. With this point 

removed, the predictions are still well correlated, and the absolute error decreases 

somewhat.  

 
CROSS-SYSTEMS 
 

Thus far, we have trained on both a model system and protein shapes. It is 

interesting to compare how the coefficients on one system carry over to the other. For the 

sake of comparison, only the coefficients produced by regressing on the matrix elements 

will be compared, because the coefficients from the regression on the term for the 

proteins had low predictive value.  
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Desolvation 
 

For the sake of comparison, the coefficients from both systems for desolvation are 

listed below. The implications of these coefficients will be discussed further in the 

discussion section. 

 

 
Model system 
L 

Model system 
R Proteins L Proteins R 

(Intercept) 1.9072 0.3640 1.9088 7.8735 
DI 0.4338 0.1184 0.2217 1.1876 
BT:3 0.3337 0.5282 -1.1159 4.0957 
BT:4 0.9507 -0.2252 0.2647 -4.7312 
BT:5 -0.0505 0.0587 2.4031 5.4283 
BT:6 -0.0078 0.0917 0.6675 4.1852 
BT:7 -0.3233 0.0963 -2.2356 0.7400 
BT:8 1.0081 0.1453 2.3247 -8.1887 
BT:9 0.9509 0.1541 2.7394 14.0177 
BT:10 -0.2962 0.1353 2.5447 4.1364 
Solvent boxes 0.0000 0.0000 -0.3312 0.2758 

Table 3.12. Single atom desolvation coefficients, training on the diagonal matrix 
elements. Features trained on: List 1. 
 

In looking at these coefficients, the magnitude is clearly highly variable from 

system to system.  

Note that one feature, the number of solvent-exposed boxes, is always zero in the 

model system. This is because all charges were constrained to be within the model 

system, which was outlined by atoms. Splitting up the local geometry around a charge 

into boxes and counting the number of atom contacts never produced an empty box, so 

the feature was always zero. This likely affects the fit when applying the model system 

coefficients to the proteins and vice versa.  

 
 
 
 
 Model system Model system Proteins L Proteins R 
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L R 
(Intercept) 0.6329 0.1166 0.1157 0.3995 
Dist between -0.1282 -0.0263 -0.0353 -0.0893 
Geom. DI -0.1974 -0.0708 -0.1063 0.0952 
Arith. DI 0.1610 0.0304 0.1705 0.0817 
PWBprod:3 3.1074 0.2636 -0.3541 1.9294 
PWBprod:4 -3.4784 -0.1688 0.3702 -2.3645 
PWBprod:5 1.1078 0.0166 -0.0575 1.2857 
PWBprod:6 0.4497 -0.0037 -0.1101 -0.4225 
PWBprod:7 -0.4450 -0.0040 0.1677 0.1757 
PWBprod:8 0.0889 -0.0072 -0.0239 -0.2730 
PWBprod:9 -0.0308 0.0038 -0.0100 0.0603 
PWBprod:10 0.0081 -0.0001 0.0265 0.0165 
PWBsum:3 -3.0078 -0.1147 0.7327 0.0583 
PWBsum:4 3.9630 0.1037 -0.5248 0.9622 
PWBsum:5 -1.1558 0.0010 0.1041 -0.7498 
PWBsum:6 -0.7231 0.0170 0.0405 0.6584 
PWBsum:7 0.3551 0.0219 0.0223 -0.4929 
PWBsum:8 0.3303 0.0081 0.0028 0.2761 
PWBsum:9 0.0867 0.0261 -0.0050 0.0830 
PWBsum:10 -0.0929 0.0068 0.0186 0.0425 

Table 3.13. Pairwise desolvation coefficients, training on the off-diagonal matrix 
elements. Features trained on: List 2. 
 

The model system features share the same most negative coefficient: the pairwise 

burial product using a cutoff of 4 angstroms. That feature also had the most negative 

coefficient in the protein receptor model. The model system and protein receptors both 

had the most positive coefficient as the pairwise burial product with a cutoff of 3 

angstroms.  

 
 
 
 
 
 
 
 
 
 
 
 
Applying the Model System Coefficients to Proteins 
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Figure 3.22. Using the model system ligand diagonal coefficients to predict protein L 
(left) and R (right) diagonal matrix elements. Ligand and receptor here are arbitrarily 
defined. RMSE units = kcal/mol/e2.  
 

While the correlation is good, the magnitude is greatly underestimated. This 

makes sense, because the proteins had much higher matrix elements than the model 

system, indicating much higher desolvation penalties.  

 
Figure 3.23. Using the model system ligand off-diagonal coefficients to predict protein L 
(left) and R (right) off-diagonal matrix elements. RMSE units = kcal/mol/e2.  
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Figure 3.24. Predicting ligand desolvation penalty (left) and receptor desolvation penalty 
(right) after using the ligand model system coefficients. RMSE units = kcal/mol. 
 

When these predicted matrix elements are multiplied by charge to produce 

desolvation penalties, the error is very high for both ligand and receptor (RMSE = 48 and 

594 kcal/mol for ligand and receptor, respectively). This is not surprising given that the 

matrix elements themselves were underestimated so drastically. In all, these results 

suggest that training on a shape-simplified system like the model system does not 

produce coefficients good enough to predict energies for protein shapes, although there is 

reasonable correlation in some cases.  

 
Applying the Protein Coefficients to the Model System 
 

The graphs below show that applying the protein coefficients to the model system 

result in vastly overestimating the magnitude of the matrix elements, and the magnitude 

of the desolvation penalties.  
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Figure 3.25. Using the protein diagonal coefficients to predict model system L (left) and 
R (right) diagonal matrix elements. 
 

Using the protein coefficients results in predictions that are surprisingly well 

correlated with the expected values. However, the predictions are vastly overestimated.  

 
Figure 3.26. Using the protein off-diagonal coefficients to predict model system L (left) 
and R (right) off-diagonal matrix elements. 
 

The same trend is seen for the off-diagonal matrix elements, though not to the 

same degree because the magnitudes of the matrix elements are so small. The 

implications of this will be addressed in the discussion.  
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Figure 3.27. Predicting model system ligand desolvation penalty (left) and receptor 
desolvation penalty (right) after using the protein coefficients.  
 

Using the predicted matrix elements to predict the desolvation penalty resulted in 

a reasonably good correlation. However, the fit is not as good as the fit for the matrix 

elements themselves. 

 

SUMMARY 
 

In all, the results suggest that training on the systems of interest make the best 

predictions for those same systems. Because we want to identify the set of features and 

their coefficients that could best predict ΔGelec for protein-protein complexes, we will 

most likely need to train on natural charge distributions to obtain the optimal result.  

 
 
 
 
 
 
 
 
 
 



 75 

FEATURES 
 
List 1. Single atom desolvation features 
Number Single atom feature 
1 Distance to interface 
2 BT: 3 
3 BT: 4 
4 BT: 5 
5 BT: 6 
6 BT: 7 
7 BT: 8 
8 BT: 9 
9 BT: 10 
10 Number of solvent-exposed boxes 
 
List 2. Pairwise atom desolvation features 
Number Pairwise Feature 
1 Distance between charges 
2 Geometric distance to interface 
3 Arithmetic distance to interface 
4 PWBproduct: 3 
5 PWBproduct: 4 
6 PWBproduct: 5 
7 PWBproduct: 6 
8 PWBproduct: 7 
9 PWBproduct: 8 
10 PWBproduct: 9 
11 PWBproduct: 10 
12 PWBsum: 3 
13 PWBsum: 4 
14 PWBsum: 5 
15 PWBsum: 6 
16 PWBsum: 7 
17 PWBsum: 8 
18 PWBsum: 9 
19 PWBsum: 10 
*PWBproduct = BT1*BT2/distance between charges 
*PWBsum = BT1+BT2/distance between charges 
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List 3. Pairwise atom features for complex interaction: burial.  
Number Pairwise Feature 
1 Distance between charges 
2 Geometric distance to interface 
3 Arithmetic distance to solvent-expoPWBd atom 
4 PWBproduct: 3 
5 PWBproduct: 4 
6 PWBproduct: 5 
7 PWBproduct: 6 
8 PWBproduct: 7 
9 PWBproduct: 8 
10 PWBproduct: 9 
11 PWBproduct: 10 
12 PWBsum: 3 
13 PWBsum: 4 
14 PWBsum: 5 
15 PWBsum: 6 
16 PWBsum: 7 
17 PWBsum: 8 
18 PWBsum: 9 
19 PWBsum: 10 
 
List 4. Pairwise atom features for complex interaction: solvent exposure 
Number Pairwise Feature 
1 Distance between charges 
2 Geometric distance to solvent-exposed atom 
3 Arithmetic distance to solvent-exposed atom 
4 SEproduct: 3 
5 SEproduct: 4 
6 SEproduct: 5 
7 SEproduct: 6 
8 SEproduct: 7 
9 SEproduct: 8 
10 SEproduct: 9 
11 SEproduct: 10 
12 SEsum: 3 
13 SEsum: 4 
14 SEsum: 5 
15 SEsum: 6 
16 SEsum: 7 
17 SEsum: 8 
18 SEsum: 9 
19 SEsum: 10 
*SEproduct = SE1*SE2/distance between charges 
*SEsum = SE1+SE2/distance between charges 
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List 5. Pairwise atom features for complex interaction: inverse solvent exposure 
Number Pairwise Feature 
1 Distance between charges 
2 Geometric distance to solvent-exposed atom 
3 Arithmetic distance to solvent-exposed atom 
4 Inverse SEproduct: 3 
5 Inverse SEproduct: 4 
6 Inverse SEproduct: 5 
7 Inverse SEproduct: 6 
8 Inverse SEproduct: 7 
9 Inverse SEproduct: 8 
10 Inverse SEproduct: 9 
11 Inverse SEproduct: 10 
12 Inverse SEsum: 3 
13 Inverse SEsum: 4 
14 Inverse SEsum: 5 
15 Inverse SEsum: 6 
16 Inverse SEsum: 7 
17 Inverse SEsum: 8 
18 Inverse SEsum: 9 
19 Inverse SEsum: 10 
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DISCUSSION 
 

We begin this section with a few caveats to interpreting the data. Next, 

implications from the results will be addressed. Then, future steps will be suggested to 

build off this work. Overall, the results showed that this regression-based model is a 

promising approach to predicting ΔGelec. More work must be done to address certain data 

fitting issues, and expand the structures trained on to more biologically relevant systems.  

 
Caveats 
 

There are a few concerns with this project that will be addressed by future 

students. One is that, in this work, certain energies for the proteins were physically 

unrealistic. A second concern is that the regression model may be overfitting the data. 

Thirdly, standardization of the data was carried out so that coefficients could be directly 

compared; however, this constrained the way the regression was carried out, forcing the 

inclusion of a y-intercept. Last, it is important to note that the systems trained on thus far 

consist of randomly placed charges inside protein shapes. Natural systems are of interest 

in the future.  

 
Magnitude of certain protein terms 

In certain cases, the magnitude of desolvation penalties for the proteins was 

extremely high (>1000 kcal/mol). This number is extremely large and physically 

unrealistic. Upon investigation into why certain values were so high, charges were 

discovered that were placed less than 1 angstrom away from the dielectric boundary. In 

cases when the charge was less than one angstrom away from protein edge and located on 
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the binding interface, the L and R diagonal matrix elements were observed to be far 

above the maximum expected value of approximately 39.45 kcal/mol/e2 for a sphere of 

radius 1 Å that is completely, 100% desolvated [calculations performed by M. 

Radhakrishnan and J. Bardhan]. This was due to the fact that not all solvent-exposed 

atoms were identified when placing charges, and charges were only constrained to be at 

least 1 angstrom away from the dielectric boundary if the atom it was placed inside was a 

solvent-exposed atom. In the future, CHARMM will be used to ensure that all the solvent 

exposed atoms are identified correctly.39 For the purposes of this work, it is important to 

keep in mind that the training data includes values that are physically unrealistic. 

However, the error in charge placement only occurred in a subset of the data, and the vast 

majority of charges are indeed physically realistic.  

 
Overfitting 

A potential danger in this project was overfitting, which occurs when the model 

describes noise rather than the relationship between variables. This can occur when there 

are too many parameters to fit the number of observations. When overfitting occurs, the 

model has poor predictive value. To eliminate the possibility of overfitting, we performed 

10-fold cross-validation, using 90% of the observations to predict the remaining 10% of 

the data for a total of 10 times.  Because the number of observations, either the terms or 

the matrix elements, was often so much greater than the number of features, it is unlikely 

our data was overfitted for the model system. However, the protein data was accumulated 

using large numbers of charges but fewer overall runs, leading to many matrix elements 

but few terms. When we trained on all the desolvation terms and predicted those same 

terms, a perfectly linear fit was observed, which is suspicious in itself. However, when 
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we performed 10-fold cross-validation, the predictions deviated largely from the expected 

result, strongly suggesting that the model was overfitted. Because the proteins carried 

hundred of charges, the quantity of data required to regress on the terms for the protein is 

large, requiring thousands of single atom and pairwise atom features multiplied by 

thousands of charge pairs for just ten data points. This makes it difficult to train on large 

numbers of terms. It is possible that we could randomly place smaller charge distributions 

on more proteins, producing more terms, which would hopefully solve the overfitting 

issue. Overfitting is a concern, particularly when it comes to the protein data.  

 
Data standardization 

Ideally, linear regression ought to be carried out by constraining the y-intercept to 

be zero, such that the coefficients solely determine the prediction. The plots shown in this 

work are produced after standardizing the coefficients, which necessitated including a y-

intercept. Standardizing the data, subtracting the mean and dividing by the standard 

deviation, was essential so that coefficients could be compared to each other. However, 

the y-intercept adds a certain amount of noise to the system, so the coefficients are not 

sole predictors of the output data.  

 
Biological significance 

The proteins trained on in this work were created through random charge 

distributions. Biologically relevant systems will be investigated in later work. While we 

hope that this theoretical model will carry over to natural systems, it is too early to 

assume that it will. Furthermore, the matrix elements of natural charge distributions are 

much smaller than those used in this work. A good model will need to produce much 

smaller RMSE values than those seen in this work, less than 1 kcal/mol. Additionally, 



 81 

natural proteins contain thousands of charges. To develop a model based on these natural 

charge distributions, these charges must be used. To make this more computationally 

feasible, it is possible to select a subset of these charges as training data. However, this 

may not adequately sample the different types of interactions present in real proteins.  

 
Implications 

Given the early stage of this project, it is important not to over-interpret the 

coefficients, which are still preliminary. However, examination of the coefficients can 

elucidate important aspects of predicting binding energies. First, the magnitude and 

direction of the coefficients in each system can indicate the importance of each feature. 

Secondly, the robustness of the coefficients between systems can yield insights into 

important structural differences between systems.  

 
Coefficients 

We can compare the magnitude and direction of the coefficients both between and 

among systems. A positive coefficient means that a large value of the feature increases 

the matrix element for that charge, while a negative coefficient means that a large value 

of the feature decreases the matrix element.  

 
Model system 
1). Desolvation 
 

The model system coefficients were somewhat difficult to interpret, because they 

did not indicate that the same features were important to both ligand and receptor. 

However, the structural differences between the receptor and the ligand (e.g., the binding 

cavity located on the receptor) may account for these differences.  
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The receptor burial term coefficients were largest at smaller cutoffs than the 

ligand, indicating that the charge’s nearest surroundings were most important to 

predicting its desolvation penalty. While the largest coefficient for the ligand was the 

burial term for all atoms within 8 angstroms, the largest coefficient for the receptor was 

the burial term for all atoms within 3 angstroms. Similarly, the most negative coefficient 

for the ligand was the burial term at 7 angstoms, while a burial term at 4 angstroms was 

most negative for the receptor. This difference is not entirely surprising, given that the 

receptor has a different shape from the ligand. It is possible that for the receptor, the 

burial terms at higher cutoffs were not sensitive enough to the presence of the binding 

cavity. In other words, smaller cutoffs may do better at accounting for the presence of the 

binding cavity, because atoms on the ligand would be closer to charges on the receptor. 

However, the difference in both magnitude and direction make interpretation of the 

relative importance of features difficult. 

For the pairwise features, the largest coefficient for the ligand was the pairwise 

burial sum using a cutoff of 4 angstroms, while the receptor was a pairwise burial product 

using a cutoff of 3 angstroms. The most negative coefficient for both the ligand and the 

receptor was the pairwise burial product, using a cutoff of 4 angstroms. These are both 

features that examine the close surrounding environment of the charge. Since these 

features are so similar, yet the coefficients are so different in direction, it is possible that 

they somehow compensate for the other. Perhaps the positive coefficient overestimates 

the matrix element, while the negative coefficient helps underestimate, helping the matrix 

element be predicted correctly.  
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2). Interaction 
 

Three sets of features were used to predict complex interaction: burial terms, 

solvent exposure terms, and inverse solvent exposure terms. Each had essentially the 

same success in the prediction. 

Despite not being intuitively important features, the burial features produced a 

good fit. This result may perhaps indicate that the burial features are in fact good 

predictors of interaction. The coefficients for the burial features showed good agreement 

when regressing on the matrix elements and the term. There may technically be no 

“ligand” or “receptor” when the two are in a complex, but the burial features may 

approximate how close the charge is to the atoms on the partner, and thus, how closely it 

can interact with the opposite charge.  

Two additional sets of features were used to approximate the level of solvent 

screening that each charge feels. These features resulted in approximately the same fit as 

the burial features. The solvent exposure features, which add up the reciprocal distances 

to the solvent-exposed atoms within certain cutoff distances, are large when a charge is 

solvent exposed. However, a highly solvent-exposed charge will have its interactions 

dampened because of the solvent. Thus, because of the concern that the directionality of 

the solvent exposure features was wrong, a third set of features was added that took the 

reciprocal of the initial solvent exposure terms. However, we found that all three sets of 

features predicted interaction well. It is important to note that all three sets used had 

certain features in common, most notably the inverse of the distance between two 

charges, which was strikingly predicted to be the most positive coefficient in all cases. 
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The fact that all three sets of features were successful in predicting interaction was 

perhaps due to the fact that they all contained this feature in common.  

One might expect that the inverse solvent exposure feature coefficients would be 

opposite in sign to the solvent exposure feature coefficients. After all, the directionality is 

reversed. However, this was not observed. This warrants future study.  

 
Protein shapes 

Due to issues with overfitting during regression on the term, the following 

discussion only pertains to regression on the matrix elements.  

 
1). Desolvation 
 

The two most positive coefficients for desolvation were the same for the ligand 

and receptor: the burial terms using a cutoff of 9 angstroms. This was encouraging, given 

that the ligand and receptor have no inherent structural differences and should have 

similar coefficients. This result is similar to what was seen for the model system ligand, 

in which the burial term within 8 angstroms was the most positively correlated.  

However, in the model system, the most positive receptor coefficient was the 

burial term within 3 angstroms. Previously, we hypothesized that because of the more 

irregular shape of the receptor, the local geometry around the charge was most important, 

leading to the large coefficient for the 3 angstrom burial term. One might expect that 

because protein shapes have such irregular geometry, the more immediate surroundings 

(ie, burial term within 3 angstroms) would be most important. Yet, the larger distance 

cutoffs were observed to be more important. It is possible that because the protein shapes 

are larger, charges are further from the partner, with relatively few charges being within 
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10 or fewer angstroms of the partner. Features at larger cutoffs may be more important 

simply because more charges have features defined for them.  

 
2). Interaction 
 

Similar to the results for the model system, each of the three sets of features 

resulted in predictions with good correlations. In all cases, the most positive coefficient 

was the inverse distance between charges. When training on the burial features, the most 

negative coefficient was the pairwise burial sum at a cutoff of 5 angstroms. The most 

negative is the pairwise solvent exposure sum at a cutoff of 4 angstroms, which meant 

that high levels of solvent exposure decreased the matrix elements at those values. This is 

physically realistic because the solvent will screen the interaction. In the third set of 

features, the most negative coefficient was the inverse solvent exposure term at a cutoff 

of 10 angstroms. This is puzzling, because a large value of this feature meant that the 

atom was not solvent exposed, and the negative coefficient meant that a large value 

reduced the prediction for the matrix element. However, the actual magnitude of this 

coefficient was relatively low (-0.03), suggesting that it was not that important to the 

prediction.  

 
Predictions and fit 
Model system 

The model system results showed that it is possible to regress on both the matrix 

elements and the terms. Several issues need to be addressed.  

In the model system for desolvation, the R diagonal matrix elements are 

systematically overestimated, while the L diagonal matrix elements are not. This is 

interesting, given that the model was trained directly on the receptor matrix elements 
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themselves. The only difference between the ligand and receptor is the receptor’s binding 

cavity, which must be affecting the level of desolvation for the charges inside. This 

indicates that perhaps the features do not do a good job of quantifying the geometry 

around the receptor. However, one would expect that the presence of the binding cavity 

would increase the actual value of the matrix element, and that the feature would 

underestimate it.  

Furthermore, more ligand charges pay a high desolvation penalty than receptor 

charges. This could be an artifact of the system. The ligand was much smaller than the 

receptor, so the likelihood of a charge being closer to the solvent and binding interface 

was greater.  

A surprising result occurred when training on the matrix elements: the fit for the 

predicted term (multiplying the predicted matrix elements by charge) was better than the 

predicted matrix elements themselves. While one might expect the error in each of the 

individual matrix elements to compound, the error appears to instead cancel out. This 

observation also requires further investigation. 

We observed that training on the term itself sometimes produced a greater overall 

fit than training on the matrix elements. It is difficult to say which is a better approach. 

On the one hand, the error in each of the matrix elements appears to cancel out when 

multiplied by charge. The features can be directly and intuitively correlated to the matrix 

elements, so that is also a promising approach. However, regression on the term would 

intuitively seem to be a more promising approach, because it avoids any potential source 

of error in the matrix elements. Both methods show promise, and both will be 

investigated more in the future.  
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Protein shapes  

Training on protein shapes, unsurprisingly, produced worse correlations than the 

model system. This is to be expected, given that the shape of the model system was so 

simple compared to the irregular geometry of proteins. Two points must be discussed 

further: the correlations and the impact of certain physically unrealistic values for 

desolvation.  

Both the ligand and the receptor diagonal and off-diagonal matrix elements show 

a similar correlation, which makes sense because the “ligand” and “receptor” were 

arbitrarily defined. However, there were more high-magnitude matrix elements in the 

receptor rather than the ligand. Because the model underestimated the value of these 

matrix elements, predicting the term from these matrix elements was much worse for the 

ligand than for the receptor in terms of overall fit, but better in terms of root mean square 

error.  

This is likely because the actual magnitude of the receptor desolvation penalty 

was so much greater than the ligand desolvation penalty, due to the error in placing 

charge that was discussed previously. The fact that the receptor desolvation penalty 

tended to be high is most likely an artifact of the system. The arbitrarily defined 

“receptors” tended to be listed second in the original data file and tended to be smaller 

overall. Furthermore, in 80% of cases, charges were biased to be located towards the 

interface. This resulted in a higher probability that a charge would be placed inside a 

solvent-exposed atom, causing the higher magnitude matrix elements and thus 

desolvation penalties.  
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Model system and protein shapes 

In order to compare the model system and the proteins, the features were scaled to 

one standard deviation and a mean of zero. When applying the coefficients from one 

system to the other, the features were scaled based on the first system. This likely had a 

large effect, because the magnitude of the model system features was much greater than 

those of the proteins. The model system is smaller, so more charges are closer to the 

interface, making the features greater in magnitude. We hypothesize that this greater 

magnitude of features in turn makes the magnitude of the coefficients smaller, leading to 

the results seen.  

While the correlations of using the coefficients of one system to predict the others 

are reasonable, the error is very high. This is most likely due to the fact that the 

magnitude of the matrix elements is much higher in the protein-shaped systems. This 

result is both because protein charges are more solvent exposed because of the irregular 

geometry, and because of the occasional error in identifying solvent-exposed atoms. 

More features ought to be incorporated that better quantify the level of solvent exposure.    

 
Future work 

Future work will take many directions, including data acquisition, feature 

refinement, and additional regression techniques.  

The first step that needs to be taken is the correct identification of solvent-

exposed atoms. This work used a script that did identified most but not all solvent-

exposed atoms. Because placement of charges depended on the identification of the 

atoms on the dielectric boundary, certain charges were placed too close to the edge, 

resulting in unphysical values for desolvation. This can be corrected in two ways: 1). 
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Using CHARMM39 to identify solvent exposed atoms, or 2). Improving the accuracy of 

the script used in this work, possibly by adjusting the parameters used to define the boxes 

around each atom.  

In the future, when calculating the Finite Difference Method standard, the number 

of grid points per dimension ought to be varied to ensure the same grids per angstrom 

across all training data. This work utilized the same number of grid points per dimension 

and approximately the same number of grids per angstrom, but since the absolute binding 

free energy is sensitive to the grid spacing, it is best to be consistent.   

Furthermore, for ease of data analysis, fewer charges ought to be placed on 

proteins and more runs ought to be generated. This would help eliminate the term 

regression issue, which was that there were so many matrix elements and features, but not 

enough terms. Secondly, training on more diverse crystal structures would be optimal.  

This work utilized proteins that were previously prepared for a specificity-promiscuity 

study, and many of the partners were in common. Thirdly, training on the natural charge 

distributions of the proteins would allow us to see 1). How our protein model translates to 

natural systems, and 2). Test the hypothesis that it is most optimal to train and test on the 

same-shaped system, and 3). See how different the coefficients produced from the natural 

charge distributions are from those produced in this work. 

In the future, features ought to be expanded and refined. One additional feature to 

which we have made a preliminary start is an additional geometry feature that aims to 

capture the degree of concavity and convexity around a charge. If a charge protrudes out 

into the solvent (ie, it is on a convex surface) and is close to the interface, it will pay a 

larger desolvation penalty than a charge that is located on a concave surface. This feature 
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will draw a line from a charge to the nearest interfacial atom on the partner. Inner and 

outer cylinders using multiple radii can be drawn around this line, encircling all atoms on 

the protein that fall within that radius.  

 
Figure 4.1. Convexity and concavity feature schematic. Red dots indicate charge; one on 
the protein (blue) and partner (white space). An inner cylinder (pink) and outer cylinder 
(green) circle atoms that fall within that cylinder on the protein (blue). The two black 
lines above the line connecting the charges represent the average horizontal projection 
onto that line of atoms in the cylinder. Left: a charge in a convex environment will have a 
shorter average “outer cylinder” horizontal component than the inner. Right: a charge in a 
concave environment will have a longer average “outer cylinder” horizontal component 
than the inner. 
 
The term can be taken as either the difference in the number of atoms in each cylinder, or 

as the average horizontal projection onto the line. This feature will better quantify the 

local geometry around the charge. In the future, hopefully better features can be added 

that are both effective and computationally efficient.  

As the number of features increases, additional regression techniques ought to be 

used to limit the number of features. This will help avoid overfitting, and allow 

determination of “important” features. LASSO, for example, is a technique that imposes 

an additional penalty on the error that forces coefficients to be zero. Using this technique 

will result in fewer features with similar error.  

In this work, coefficients with a large magnitude were considered important. 

However, certain features may have a small but consistent effect on the prediction. To 
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identify those variables, the confidence value of each feature ought to be examined, to see 

which features have a high degree of confidence.  

Future work will compare the accuracy of our model to those of more established 

methods such as Surface-Generalized Born.18 Both the accuracy and the efficacy of our 

model ought to be compared to other methods, as the goal of this project is to develop a 

accurate yet fast model to predict ΔGelec. 

 
Summary 
 

In this work, a feature-based approach to estimate protein-protein electrostatic 

binding energetics was investigated. This work aims to replace a Poisson-equation 

numerical solver with a regression model that uses features to predict ΔGelec. The results 

suggested that this may be a promising approach to estimate ΔGelec, although work is 

ongoing to continue to improve the models for potential accuracy on actual protein-

protein complexes.  
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