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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 84, Number 2, February 1982 

SHAPE OPERATORS OF EINSTEIN HYPERSURFACES 
IN INDEFINETE SPACE FORMS 

MARTIN A. MAGID 

ABsmAcr. The possible shape operators for an Einstein hypersurface in an indefi- 
nite space form are classified algebraically. If the shape operator A is not diagonal- 
izable then either A2 = 0 or A2 = -b2Id. 

Introduction. In [F] A. Fialkow classifies Einstein hypersurfaces in indefinite 
space forms, if the shape operator is diagonalizable at each point. He calls such an 
immersion proper (p. 764). This paper investigates what happens if the immersion 
is improper, i.e., if the shape operator is not diagonalizable at a point. It is possible 
for such a shape operator to have complex eigenvalues or eigenvectors with zero 
length. The main tool is Petrov's classification of symmetric operators in an 
indefinite inner product space [P]. 

THEOREM. Let n > 2. If f: M' -> M` l(cT) is an isometric immersion of an 
n-dimensional indefinite Riemannian manifold into an n + 1 dimensional space form 
of constant curvature c and if Mn is Einstein, then the shape operator Ax at each point 
x E M is either diagonalizable or can be put into one of the following two forms. 

0 

0 

A ~~0 ?1or x ~~~0 0 

o ?1 
o o 

0/ 
-/3 0 

0/ 
-/3 0 

with respect to some specially chosen basis. In the last case n is even and Tx(M') has 
signature (n/2, n/2). 
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238 M. A. MAGD 

Note. The basis in the first case is of the form {e1, ... , ep, 11, . * * 4 'q/2} 

where g(e*, e) = +?&i,, g(e,,IJ) = 0 = g(e, lJ) = g(li, lJ) = g(li, l) and g(lj, l) = 1. 
In the second case the basis is {e , f1, e2, f2, . .. , en/2, f/2) with g(ei, ej) = -8 

g(fi, f) = Sj and g(e*, f) = 0. This follows from [P]. 
Preliminaries. The Ricci tensor field S of a manifold M with linear connection is 

defined by 

S(X, Y) = tr{ V -> R( V, X) Y} where X, Y, V are in TX(M). 
If e, . . . , en is an orthonormal basis of TX(M), so that g(e*, e) = qi8ijq= + 1, 

then S(X, Y) = :7= aig(R(e,, X) Y, ei). 
The Gauss equation for a hypersurface in a space form M(J) states that 

R(Ul, U2)U3 = C(U1 A U2)U3 + <, (>(AU1 A AU2)U3 

where R is the curvature tensor of the hypersurface, ( is a local, unit normal and A 
the shape operator of the isometric immersion. 

Thus we see that 

n 

S(X, Y) = E aig(c(ei A X) Y + <t, (>(Aei A AX) Y, ei) 
i=l 

n 

- E aic [ g(X, Y)g(ei, ei) - g(e,, Y)g(ei, X)] 
i=l 

n 

+ < <, (>qj[ g(AX, Y)g(Aei, ei) - g(AX, e,)g(AY, e,)] 

n 

= cng(X, Y) - J caig(e,, Y)g(e,, X) 
i=1 

n 

+ < (> trA g(AX, Y) - E <Kq (>qFg(AX, e*)g(A Y, e*). 
i=1 

Note that En. 1 aig(ei, X)g(ei, Y) = g(X, Y) so that 

S(X, Y) = (n- I)g(X, Y) + <t, (>(trA g(AX, Y) - g(A2X, Y)). 
PROOF OF THEOREM. If M' is Einstein then S(X, Y) = pg(X, Y). Letting <K, (> 

= T we see then that [p - (n -1)]I = T[(tr A)A - A2] or T[p - c(n - 1)]I = 

(tr A)A -A2. 
According to Petrov [P] a symmetric operator in an indefinite inner product 

space can be put into the following form: 

B1 

Bk 
A- 

Cl 

Cm 
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where 

djlN di 
0 di di 

B; = , di= +1, Biissj X si, 

di 

aj 01s 1 0 

-,1j aj 0 1 

aj j 1 0 

C; = ~~-,8j aj 0 1 8j 0B ?and Cj is 2tj x 2tj. 

Ci ~ ~ ~ ~ ~ ~ 0 

.~~~~~~~~~~ 

aj 18A 

-_8j aj 

One computes that 

a2 2 2a fi, 1 0 2f3 1 

O a1 2 -2Ai 2 0 1.. 0 

Bi0 = 0 

2 

2 

a -,j 2 aj,8j 2 aj 2 Bj I 0 s 

-2a B o2 _ #2 -2# 2 aj 0 1 0.. 

Cj2 0 aj2 
- 

Bj 22ajfl 2aj 2#j I 0 .. 

Letting K = -r(p -cn-1)) we must have I = (tr A)A --A2. 
It is clear from the form of B72 and Cj2 that si S 2 and tj < I so that A has blocks 

of the form 

[d.Xo dj ] [ ak f1 
AJor [ 

1 or [1k Pk] 
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with squares 

[p^2] or [ 2| or [k2 Pk 
2 2 

By a change of basis {1, 1} -{, 1) we can assume we have blocks of the form 

['id] or [ ? A] or a3k ak J 

With trace A = s the equation sA-A2 = KI yields 

s - 2AJ = O, s/k -2ak/k O, 

S ^ = KK, SA - = IC, Sak ak2 + 1k = K 

If there are any blocks with a's and /3's, /8 # 0 so that we have s/2 = Xj, s/2 = ak, 

for each j and k. Thus all J.'s and ak's are equal. It is then clear that all f8k's are 
equal. The equations become 

(1)s - 2X = O,s - 2a = 0, 
(2) sp. - p. = K, sX - X2 = K, sa - a 2 + /32 =K 

Substituting (1) in (2) we have sp. - W2 = K, = K, al2 + /32 = K. Since X = a and 
,/ :# 0, there can be blocks with a's or blocks with X's but not both. In either case 
we have 

2 ? 24K2) 

If K = X2, A. = s/2. If K = a2 + /2, s2 - 4K2 < 0 and there are no pj's. 
If there is a block with a X, then X = s/2 and p. = s/2, for each i. If p is the 

number of ,i's which appear in A and 2q the number of A's 

s = pti + 2qX = p(s/2) + 2q(s/2). 

Thus s(I -p/2 - q) = 0. Butp + 2q > 3, sos = O. One possibility forA then is 

0 

0 
o ? 

0 0 

0 ? 

O 0+ 
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If there is a block with a /3, there are no other types of blocks. Since a = s/2 we 
again see that s = 0 and 

0/ 
-/3 0 

A~~~ 
0/ 

-/3 0 

Q.E.D. 
These shape operators all occur in examples of Einstein hypersurfaces in indefi- 

nite space forms. 
EXAMPLE 1. R2n -en + 1 

(X1, ... , X2n - 19 X2n) -* (X1 + X29 X3 + X49 . . . - x2.1 + X2n9 

1 . ,** X2n-1 x2n, X2 + X +2n 

The ambient space has the standard inner product (-, ... , -, + +) with n 
negative signs. The shape operator is 

0 1 
0 0 

0 1 
L ~~0 0 

at each point. 
ExAMLE 2. CSE(C) = {(Z1,. **, Zn1)EC C": Z+ + + 2 1 

S 2n'+ 1 has shape operator 

0 1 
-1 0 

0 1 

at each point. 

Applications. This allows us to obtain some information about isometric immer- 
sions of Einstein hypersurfaces. 

PROPOSITION. If f: M2-M2n+1(e) is an isometric immersion of an Einstein 

manifold and if Ax is not diagonalizable at each point then A2= 0 everywhere or 
A2 = -b2l everywhere, for b a nonzero constant. 

PROOF. If Ax is not diagonalizable then the proof of the theorem shows tr Ax = 
0. Thus 

KI - (tr AX)Ax + A2 = 0 = KI + A2 

for K a constant. The proof also shows K > 0. 
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PROPOSITION. If f: M2, _p M- 2"+ 1(J) is an isometric immersion of an Einstein 
manifold with A 2 = 0, rank A = n for all x e M2n, then ker A is a smooth, 
integrable, totally geodesic, and totally degenerate n-dimensional distribution on M. 

PROOF. See also [G]. Choose U1, . . ., U, atp such that A Uj =# 0 and U1, . .., Un 
are linearly independent. Then in a neighborhood of p, A Uj #0 . Since AA Uj = O, 
AU1, .. . , AUn form a basis for kerA in a neighborhood of p and kerA is a 
smooth, n-dimensional distribution. 

If X, Y E ker A we have, by Codazzi's equation that A(VX Y) - VX(A Y) = 

A (V YX) -V y(AX) so 

A(VXY) - A(VyX) = 0, A[X, Y] = 0 

and ker A is integrable. 
It is easy to see that A2 = 0, rank A = n implies that ker A = im A. If U, V e 

TxM, <A U, A V> = <A2U, V> = 0 so that ker A is totally degenerate, i.e., has no 
metric. 

Finally, if X, Y E kerA, then VxY E kerA. <Y,AU> = Oso 

X<Y, AU> = <VxY, AU> + <Y, Vx(AU)> 

= <VxY, AU> + <Y, Vu(AX)> + <Y, A[ U, X]> = <VxY, AU>, 

since AX = A Y = 0. Thus A(Vx Y) I U for all U and A(Vx Y) = 0. 
Note. In a subsequent paper [Ml, I classified Einstein hypersurfaces with A2 - 

-b2 Id. They are certain complex spheres, of which Example 2 is one. 
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