Wellesley College Digital Scholarship and Archive

Mathematics Faculty Scholarship

Mathematics

1982

Shape Operators of Einstein Hypersurfaces in Indefinite Space Forms

Martin A. Magid Wellesley College

Follow this and additional works at: http://repository.wellesley.edu/mathematicsfaculty

Recommended Citation

M. Magid, Shape operators of Einstein hypersurfaces in indefinite space forms, Proc. A.M.S., 84 (1982), 237-242.

This Article is brought to you for free and open access by the Mathematics at Wellesley College Digital Scholarship and Archive. It has been accepted for inclusion in Mathematics Faculty Scholarship by an authorized administrator of Wellesley College Digital Scholarship and Archive. For more information, please contact ir@wellesley.edu.

Shape Operators of Einstein Hypersurfaces in Indefinite Space Forms Author(s): Martin A. Magid Reviewed work(s): Source: Proceedings of the American Mathematical Society, Vol. 84, No. 2 (Feb., 1982), pp. 237-242 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/2043672</u> Accessed: 02/04/2012 15:19

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

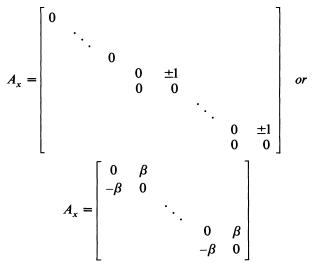
SHAPE OPERATORS OF EINSTEIN HYPERSURFACES IN INDEFINITE SPACE FORMS

MARTIN A. MAGID

ABSTRACT. The possible shape operators for an Einstein hypersurface in an indefinite space form are classified algebraically. If the shape operator A is not diagonalizable then either $A^2 = 0$ or $A^2 = -b^2 Id$.

Introduction. In [F] A. Fialkow classifies Einstein hypersurfaces in indefinite space forms, if the shape operator is diagonalizable at each point. He calls such an immersion proper (p. 764). This paper investigates what happens if the immersion is improper, i.e., if the shape operator is not diagonalizable at a point. It is possible for such a shape operator to have complex eigenvalues or eigenvectors with zero length. The main tool is Petrov's classification of symmetric operators in an indefinite inner product space [P].

THEOREM. Let n > 2. If $f: M^n \to \tilde{M}^{n+1}(\tilde{c})$ is an isometric immersion of an *n*-dimensional indefinite Riemannian manifold into an n + 1 dimensional space form of constant curvature \tilde{c} and if M^n is Einstein, then the shape operator A_x at each point $x \in M$ is either diagonalizable or can be put into one of the following two forms.



with respect to some specially chosen basis. In the last case n is even and $T_x(M^n)$ has signature (n/2, n/2).

© 1982 American Mathematical Society 0002-9939/82/0000-0417/\$02.50

Received by the editors June 8, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 53B30.

M. A. MAGID

Note. The basis in the first case is of the form $\{e_1, \ldots, e_p, l_1, \hat{l}_1, \ldots, l_{q/2}, \hat{l}_{q/2}\}$ where $g(e_i, e_j) = \pm \delta_{ij}$, $g(e_i, l_j) = 0 = g(e_i, \hat{l}_j) = g(l_i, l_j) = g(\hat{l}_i, \hat{l}_j)$ and $g(l_j, \hat{l}_j) = 1$. In the second case the basis is $\{e_1, f_1, e_2, f_2, \ldots, e_{n/2}, f_{n/2}\}$ with $g(e_i, e_j) = -\delta_{ij}$, $g(f_i, f_j) = \delta_{ij}$ and $g(e_i, f_j) = 0$. This follows from [**P**].

Preliminaries. The Ricci tensor field S of a manifold M with linear connection is defined by

$$S(X, Y) = tr\{V \to R(V, X)Y\}$$
 where X, Y, V are in $T_r(M)$.

If e_1, \ldots, e_n is an orthonormal basis of $T_x(M)$, so that $g(e_i, e_j) = \sigma_i \delta_{ij}$, $\sigma_i = \pm 1$, then $S(X, Y) = \sum_{i=1}^n \sigma_i g(R(e_i, X)Y, e_i)$.

The Gauss equation for a hypersurface in a space form $\tilde{M}(\tilde{c})$ states that

$$R(U_1, U_2)U_3 = \tilde{c}(U_1 \wedge U_2)U_3 + \langle \xi, \xi \rangle (AU_1 \wedge AU_2)U_3$$

where R is the curvature tensor of the hypersurface, ξ is a local, unit normal and A the shape operator of the isometric immersion.

Thus we see that

$$S(X, Y) = \sum_{i=1}^{n} \sigma_i g(\tilde{c}(e_i \wedge X) Y + \langle \xi, \xi \rangle (Ae_i \wedge AX) Y, e_i)$$

$$= \sum_{i=1}^{n} \sigma_i \tilde{c} [g(X, Y)g(e_i, e_i) - g(e_i, Y)g(e_i, X)]$$

$$+ \sum_{i=1}^{n} \langle \xi, \xi \rangle \sigma_i [g(AX, Y)g(Ae_i, e_i) - g(AX, e_i)g(AY, e_i)]$$

$$= \tilde{c}ng(X, Y) - \tilde{c} \sum_{i=1}^{n} \sigma_i g(e_i, Y)g(e_i, X)$$

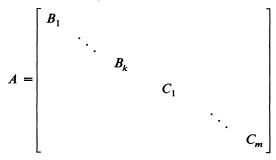
$$+ \langle \xi, \xi \rangle \operatorname{tr} A g(AX, Y) - \sum_{i=1}^{n} \langle \xi, \xi \rangle \sigma_i g(AX, e_i)g(AY, e_i).$$

Note that $\sum_{i=1}^{n} \sigma_i g(e_i, X) g(e_i, Y) = g(X, Y)$ so that

$$S(X, Y) = \tilde{c}(n-1)g(X, Y) + \langle \xi, \xi \rangle (\operatorname{tr} A g(AX, Y) - g(A^2X, Y)).$$

PROOF OF THEOREM. If M^n is Einstein then $S(X, Y) = \rho g(X, Y)$. Letting $\langle \xi, \xi \rangle = \tau$ we see then that $[\rho - \tilde{c}(n-1)]I = \tau[(\operatorname{tr} A)A - A^2]$ or $\tau[\rho - \tilde{c}(n-1)]I = (\operatorname{tr} A)A - A^2$.

According to Petrov [P] a symmetric operator in an indefinite inner product space can be put into the following form:



 $\mathbf{238}$

where

One computes that

Letting $\kappa = \tau(\rho - \tilde{c}(n-1))$ we must have $\kappa I = (\text{tr } A)A - A^2$. It is clear from the form of B_i^2 and C_j^2 that $s_i \leq 2$ and $t_j \leq 1$ so that A has blocks of the form

$$\begin{bmatrix} \mu_i \end{bmatrix} \text{ or } \begin{bmatrix} d_j \lambda_j & d_j \\ 0 & d_j \lambda_j \end{bmatrix} \text{ or } \begin{bmatrix} \alpha_k & \beta_k \\ -\beta_k & \alpha_k \end{bmatrix}$$

with squares

$$\begin{bmatrix} \mu_i^2 \end{bmatrix} \text{ or } \begin{bmatrix} \lambda_j^2 & 2\lambda_j \\ 0 & \lambda_j^2 \end{bmatrix} \text{ or } \begin{bmatrix} \alpha_k^2 - \beta_k^2 & 2\alpha_k\beta_k \\ -2\alpha_k\beta_k & \alpha_k^2 - \beta_k^2 \end{bmatrix}.$$

By a change of basis $\{l, \hat{l}\} \rightarrow \{-l, \hat{l}\}$ we can assume we have blocks of the form

$$\begin{bmatrix} \mu_i \end{bmatrix}$$
 or $\begin{bmatrix} \lambda_j & 1 \\ 0 & \lambda_j \end{bmatrix}$ or $\begin{bmatrix} \alpha_k & \beta_k \\ -\beta_k & \alpha_k \end{bmatrix}$.

With trace A = s the equation $sA - A^2 = \kappa I$ yields

$$s - 2\lambda_j = 0, \qquad s\beta_k - 2\alpha_k\beta_k = 0,$$

$$s\mu_i - \mu_i^2 = \kappa, \qquad s\lambda_j - \lambda_j^2 = \kappa, \qquad s\alpha_k - \alpha_k^2 + \beta_k^2 = \kappa.$$

If there are any blocks with α 's and β 's, $\beta \neq 0$ so that we have $s/2 = \lambda_i$, $s/2 = \alpha_k$, for each j and k. Thus all λ_i 's and α_k 's are equal. It is then clear that all β_k 's are equal. The equations become

 $(1) s - 2\lambda = 0, s - 2\alpha = 0,$

(2) $s\mu_i - \mu_i^2 = \kappa$, $s\lambda - \lambda^2 = \kappa$, $s\alpha - \alpha^2 + \beta^2 = \kappa$. Substituting (1) in (2) we have $s\mu_i - \mu_i^2 = \kappa$, $\lambda^2 = \kappa$, $\alpha^2 + \beta^2 = \kappa$. Since $\lambda = \alpha$ and $\beta \neq 0$, there can be blocks with α 's or blocks with λ 's but not both. In either case we have

$$\mu_i = \frac{1}{2} \left(s \pm \sqrt{s^2 - 4\kappa^2} \right).$$

If $\kappa = \lambda^2$, $\mu_i = s/2$. If $\kappa = \alpha^2 + \beta^2$, $s^2 - 4\kappa^2 < 0$ and there are no μ_i 's.

If there is a block with a λ , then $\lambda = s/2$ and $\mu_i = s/2$, for each *i*. If *p* is the number of μ 's which appear in A and 2q the number of λ 's

$$s = p\mu + 2q\lambda = p(s/2) + 2q(s/2).$$

Thus s(1 - p/2 - q) = 0. But $p + 2q \ge 3$, so s = 0. One possibility for A then is

240

If there is a block with a β , there are no other types of blocks. Since $\alpha = s/2$ we again see that s = 0 and

$$A = \begin{bmatrix} 0 & \beta & & & \\ -\beta & 0 & & & \\ & & \ddots & & \\ & & & 0 & \beta \\ & & & -\beta & 0 \end{bmatrix}.$$

Q.E.D.

These shape operators all occur in examples of Einstein hypersurfaces in indefinite space forms.

EXAMPLE 1.
$$\mathbf{R}_{n}^{2n} \to \mathbf{R}_{n}^{2n+1}$$
.
 $(x_{1}, \ldots, x_{2n-1}, x_{2n}) \mapsto (x_{1} + x_{2}, x_{3} + x_{4}, \ldots, x_{2n-1} + x_{2n}, x_{1} - x_{2}, \ldots, x_{2n-1} - x_{2n}, x_{2}^{2} + x_{4}^{2} + \cdots + x_{2n}^{2})$.

The ambient space has the standard inner product $(-, \ldots, -, + \cdots +)$ with *n* negative signs. The shape operator is

$$\begin{bmatrix} 0 & 1 & & & \\ 0 & 0 & & & \\ & & \ddots & & \\ & & & 0 & 1 \\ & & & 0 & 0 \end{bmatrix}$$

at each point.

EXAMPLE 2. $CS^{n}(1) = \{(Z_1, \ldots, Z_{n+1}) \in \mathbb{C}^{n+1}: Z_1^2 + \cdots + Z_{n+1}^2 = 1\}$ in S_{n+1}^{2n+1} has shape operator

0 -1	1 0]
		•••		
			0	1 0
_			-1	0]

at each point.

Applications. This allows us to obtain some information about isometric immersions of Einstein hypersurfaces.

PROPOSITION. If $f: M^{2n} \to \tilde{M}^{2n+1}(\tilde{c})$ is an isometric immersion of an Einstein manifold and if A_x is not diagonalizable at each point then $A^2 = 0$ everywhere or $A^2 = -b^2 I$ everywhere, for b a nonzero constant.

PROOF. If A_x is not diagonalizable then the proof of the theorem shows tr $A_x = 0$. Thus

$$\kappa I - (\operatorname{tr} A_x)A_x + A_x^2 = 0 = \kappa I + A_x^2$$

for κ a constant. The proof also shows $\kappa \ge 0$.

M. A. MAGID

PROPOSITION. If $f: M^{2n} \to \tilde{M}^{2n+1}(\tilde{c})$ is an isometric immersion of an Einstein manifold with $A_x^2 = 0$, rank $A_x = n$ for all $x \in M^{2n}$, then ker A is a smooth, integrable, totally geodesic, and totally degenerate n-dimensional distribution on M.

PROOF. See also [G]. Choose U_1, \ldots, U_n at p such that $AU_j \neq 0$ and U_1, \ldots, U_n are linearly independent. Then in a neighborhood of p, $AU_j \neq 0$. Since $AAU_j = 0$, AU_1, \ldots, AU_n form a basis for ker A in a neighborhood of p and ker A is a smooth, n-dimensional distribution.

If X, $Y \in \ker A$ we have, by Codazzi's equation that $A(\nabla_X Y) - \nabla_X (AY) = A(\nabla_Y X) - \nabla_Y (AX)$ so

$$A(\nabla_X Y) - A(\nabla_Y X) = 0, \qquad A[X, Y] = 0$$

and ker A is integrable.

It is easy to see that $A^2 = 0$, rank A = n implies that ker A = im A. If $U, V \in T_x M$, $\langle AU, AV \rangle = \langle A^2U, V \rangle = 0$ so that ker A is totally degenerate, i.e., has no metric.

Finally, if X,
$$Y \in \ker A$$
, then $\nabla_X Y \in \ker A$. $\langle Y, AU \rangle = 0$ so
 $X \langle Y, AU \rangle = \langle \nabla_X Y, AU \rangle + \langle Y, \nabla_X (AU) \rangle$
 $= \langle \nabla_X Y, AU \rangle + \langle Y, \nabla_U (AX) \rangle + \langle Y, A[U, X] \rangle = \langle \nabla_X Y, AU \rangle,$

since AX = AY = 0. Thus $A(\nabla_X Y) \perp U$ for all U and $A(\nabla_X Y) = 0$.

Note. In a subsequent paper [M], I classified Einstein hypersurfaces with $A^2 = -b^2$ Id. They are certain complex spheres, of which Example 2 is one.

BIBLIOGRAPHY

[F] A. Fialkow, Hypersurfaces of a space of constant curvature, Ann. of Math. 39 (1938), 762-785.

[G] L. Graves, Codimension-one isometric immersions between Lorentz spaces, Thesis, Brown University, 1977.

[M] M. Magid, Indefinite Einstein hypersurfaces (preprint).

[P] A. Z. Petrov, Einstein spaces, Pergamon Press, Hungary, Oxford and New York, 1969.

DEPARTMENT OF MATHEMATICS, WELLESLEY COLLEGE, WELLESLEY, MASSACHUSETTS 02181

Current address: Department of Mathematics, University of California, Berkeley, California 94720