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Abstract 

Schizophrenia is a devastating psychiatric condition marked by severe cognitive 
impairments, brain anatomy alterations, and abnormal neurotransmitter activity. This study 
examines whether the genetically modified GCPII+/- mouse model, which has reduced glutamate 
carboxypeptidase II (GCPII) enzyme activity to mimic the hypoglutamatergic pathways observed 
in schizophrenia, creates magnetic resonance-detectable alterations in morphology and/or 
neurochemistry that can be used for studies of potential treatments. The longitudinal portion of 
this study employs the non-invasive techniques of magnetic resonance imaging (MRI) and 
spectroscopy (MRS). Data were collected from 4 male and 7 female heterozygous GCPII+/- 
(HET) and 6 male and 7 female normal (wild-type; WT) mice on postnatal days (PND) 35/36, 
49/50 and 63/64. MRI was used to examine the volumes of the brain structures affected by 
schizophrenia in humans. MRS was used to measure neurometabolite concentrations in the 
hippocampus, a brain structure known to function differently in schizophrenia. We hypothesized 
that the brain morphology and metabolite concentrations between HET and WT mice would 
differ and that HET mice would mirror characteristics found in human schizophrenia patients. If 
reduced GCPII function could replicate neurological symptoms of schizophrenia, then the 
GCPII+/-model would be a promising tool for treatment studies that target the glutamatergic 
pathways of schizophrenia.  

MRI data revealed enlarged third, fourth, and lateral ventricles, and asymmetric 
hippocampi in HET mice compared to WT mice. These findings are characteristic of 
schizophrenia patients. MRS data showed apparent differences in (N-acetylaspartate + N-
acetylaspartylglutamate)/ creatine (Cr) levels, but no significant effect of genotype on (N-
acetylaspartate + N-acetylaspartylglutamate)/Cr, choline/Cr, taurine/Cr, or (glutamate + 
glutamine)/Cr ratios. Sex differences were found in cerebellum to WBV ratios of HET and WT 
mice, and hippocampus asymmetry and choline/Cr levels in HET mice. These data are consistent 
with findings on schizophrenia patients and suggest that the GCPII+/- mouse model may be a 
good mouse model for schizophrenia treatment development. However, more research must be 
conducted to increase the sample size of data and further characterize the GCPII+/- mouse model.  
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Schizophrenia is a severe mental disorder whose treatments are limited as they only 

partially relieve symptoms (Jones et al. 2011; Nasrallah et al., 2011; Trivedi and Jarbe, 2011). 

This thesis investigates a genetically modified mouse (GCPII+/-) that has reduced GCPII enzyme 

activity to replicate the hypoglutamatergic activity suspected in schizophrenia patients. The goal 

of this developmental study was to characterize the GCPII+/- mouse model and to investigate sex 

differences using magnetic resonance techniques. If the GCPII+/- mouse model replicates the 

pathophysiology and neurological symptoms of schizophrenia then the model would be a 

promising tool for treatment studies that target the glutamatergic pathways of schizophrenia.  

1 Introduction 

 

Schizophrenia is a disabling and chronic mental disorder that affects the most complex 

functions of the brain. The onset of schizophrenia occurs in young adulthood, but the disorder 

persists chronically and can cause a lifetime of suffering for the diagnosed individual and their 

family members. Women and men are affected equally, however women often exhibit symptoms 

later than men and in a milder form (Vorvick, 2010). Those with schizophrenia tend to have a 

shorter life expectancy by approximately 12-15 years as compared to the average population – a 

gap that has been increasing (van Os and Kapur, 2009). Physical causes are responsible for most 

deaths and result from decreased access to medical care and increased frequency of routine risk 

factors – such as a poor diet and smoking (van Os and Kapur, 2009). Though schizophrenia has a 

prevalence of about 1% in the world population, little is known about the disorder and current 

treatments are inadequate, as they can only partially relieve symptoms (Jones et al. 2011; 

Nasrallah et al., 2011; Trivedi and Jarbe, 2011). 
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Schizophrenia’s multitude of symptoms makes diagnosis difficult because individual 

symptoms can be associated with other mental illnesses (van Os and Kapur, 2009). Symptoms of 

schizophrenia are categorized into three categories: positive, negative, and cognitive. Positive 

symptoms reflect an excess or distortion of normal functions and include characteristics 

commonly associated with schizophrenia, such as delusions and hallucinations. Negative 

symptoms refer to diminished characteristics of normal function and include depression, lack of 

emotion, and social withdrawal. Cognitive symptoms involve thought processes and include 

difficulties in memory, attention, and making sense of information (Andreason, 2000; Wilson 

and Terry, 2010). Current treatment options can only alleviate positive symptoms (Nasrallah et 

al., 2011).  

Research on the etiology of schizophrenia suggests that genetic factors play a role as the 

offspring of those with schizophrenia have a higher likelihood of also being diagnosed compared 

to controls (van Os and Kapur, 2009). However, no single genetic alteration is responsible for 

schizophrenia (Jones et al., 2011). Certain environmental factors, such as prenatal exposures or 

social stress have also been linked to an increased risk of developing schizophrenia. These 

factors disrupt neural development, resulting in subtle changes of specific neurons and circuits, 

which may then lead to neurological malfunction (Lieberman et al., 2002). Altered levels of 

certain naturally occurring brain chemicals, including the neurotransmitters dopamine and 

glutamate, support the neurochemical basis of schizophrenia (Lieberman et al., 2002).  

1.1  Dopamine Hypothesis 

The first and most enduring neurochemically-based hypothesis suggests that the central 

pathophysiology of schizophrenia arises from dopamine dysfunction in the limbic system, an 

area in the brain associated with learning, memory, and emotional response (Figure 1-1). The 
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limbic system is known to be overactive in schizophrenia. Two major clinical observations 

provided evidence for the dopamine hypothesis – (1) schizophrenic-like symptoms occur in 

people who use amphetamine, a drug that causes excessive dopamine release and (2) dopamine 

antagonists resulted in alleviation of the positive symptoms of schizophrenia (Howes and Kapur, 

2009; Konradi and Hecker, 2003). Though promising, this hypothesis is incomplete as patients 

who took dopamine antagonists still suffered from the disabling cognitive and motivational 

impairments of negative symptoms (van Os and Kapur, 2009). Thus researchers developed new 

hypotheses involving other neurotransmitters such as glutamate. 

 

Figure 1-1. Cartoon of a human brain with the structures of the limbic system 
labeled by color. The main role of each structure is indicated in parentheses. 
Adapted from University of Colorado (2008). 
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1.2  Glutamate Hypothesis  

 

 

Glutamate is the primary neurotransmitter in the mammalian brain and a key regulator of 

inhibition. When glutamate activates N-methyl-D-aspartate receptors (NMDAR) on inhibitory 

neurons, synaptic activity to the limbic system is inhibited (Figure 1-2; Olney et al., 1999).  The 

glutamate hypothesis suggests that schizophrenia is caused by hypoactivity of glutamate due to 

hypofunction of NMDAR in the frontal lobe (Coyle, 2006; Han et al., 2009; Olney et al., 1999). 

If NMDAR function is reduced, then there would be increased limbic system activity, a 

characteristic of schizophrenia. This hypothesis was formulated when it was determined that 

hallucinogenic drugs that block signals in the brain and reduce the perception of pain, called 

dissociative anesthetics, such as phencyclidine (PCP) and ketamine induced positive, negative, 

and cognitive symptoms similar to those of schizophrenia (Moghaddam and Javitt, 2011). The 

discovery that these compounds function by blocking the NMDAR channel was key to the 

generation of the hypothesis that hypofunction of NMDAR, not hyperactivity of dopamine, may 

contribute to the pathophysiology of schizophrenia (Coyle, 2006; Olney et al., 1999). When 

NMDAR are blocked, there is an excessive release of glutamate and acetylcholine. Olney et al. 

Figure 1-2. Interaction of dopamine and glutamate pathways. Dopamine 
activates the limbic system. Glutamate binds to inhibitory neurons, which 
inhibit limbic system activity. Chemical structures of dopamine and glutamate 
appear next to the name of each neurotransmitter. 
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(1999) suggested that the abundant release of excitatory transmitters and consequent 

overstimulation of postsynaptic neurons may be the source of the cognitive and behavioral 

disturbances connected to NMDA receptor hypofunction. This theory aligns with the dopamine 

hypothesis as the glutamatergic system is normally responsible for inhibiting dopamine activity. 

A hypoglutamateric system would disinhibit the dopaminergic system and cause 

hyperdopaminergic activity in the limbic system. 

1.3  Animal Models 

The etiology and pathophysiology of schizophrenia is poorly understood and is further 

complicated by a lack of appropriate animal models. Animal models of psychiatric disorders are 

crucial to our understanding of the neurobiological basis of schizophrenia and for the 

development of efficacious drugs (Jones et al., 2011). Animal models of human illnesses must 

meet the requirements of face, construct, and predictive validity (Figure 1-3). Face validity 

describes the degree of phenomenological similarity between the animal model and the 

symptoms of the human condition. While some symptoms, such as hyperactivity, have been 

modeled successfully, uniquely human symptoms, such as hallucinations, introduce difficulties, 

as there are currently no methods to quantify or investigate psychological processes in animals. 

Construct validity is the level of homology in pathological mechanisms. This requirement is also 

difficult to achieve for schizophrenia because the neurobiological basis of the symptoms has not 

been established. Predictive validity, the most critical feature, is the degree to which the model 

can be used to predict the efficacy of therapeutic agents in humans (Tordjman et al., 2007; 

Wilson and Terry, 2010). 
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Schizophrenia is a complex and heterogeneous disease, differing slightly for every 

individual (Wilson and Terry Jr., 2010). Thus, the likelihood of developing a single animal 

model that completely represents the range of symptoms associated with schizophrenia is 

unlikely. Focusing on specific symptoms, or specific neurobiological pathways, of the disorder 

may be the most logical approach to improving face and construct validity in animal models. 

Several animal models may then be useful for modeling various phenomenological and 

pathophysiological components of schizophrenia that could be targeted independently with 

separate molecules or multi-drug targets (Wilson and Terry Jr., 2010). 

Figure 1-3. Schematic of the three main requirements for an animal model of schizophrenia 
and the behavioral, neurochemical and structural changes expected and relevant to each 
domain. (Jones et al., 2011) 
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So far, over 20 different animal models of schizophrenia have been developed, each 

representing some aspect of the disorder. (See Jones et al. 2011 for a review on select models). 

Most models can be categorized under four different induction categories: developmental, drug-

induced, lesion, or genetic manipulation (Jones et al. 2011). Animal models that exhibit 

pathophysiological features, such as neurochemical dysfunction, are valuable to learning more 

about what pathways play a role in schizophrenia. There is growing evidence that the pathways 

related to Glutamate Carboxypeptidase II (GCPII), an enzyme responsible for glutamate activity 

and NMDAR function, are viable therapeutic targets for intervention for schizophrenia and 

related psychiatric diseases (Guilarte et al., 2008; Han et al., 2009). In the present study we used 

a genetically modified mouse that has reduced GCPII enzyme activity to replicate glutamatergic 

activity that is suspected in schizophrenia patients. 

1.4  The GCPII Mouse Model 

 The GCPII+/- mouse model is unique as it involves the glutamatergic system, a highly 

implicated pathway in schizophrenia (Han et al., 2009). While dopamine antagonists can only 

alleviate positive symptoms, treatments that reverse hypofunction of NMDA receptors can 

potentially relieve positive, negative, and cognitive symptoms. Most pharmacological treatments 

for the disease are now focusing on a glutamate-modulating class because of the limitations of 

treatments that target dopamine receptors (Nasrallah et al., 2011). 

 GCPII regulates both folate absorption and activation of NMDAR (Goff et al., 2004). In 

the jejunum GCPII hydrolyzes folylpoly-gamma-glutamate and facilitates folate absorption 

(Sacha et al., 2007). When expressed in the brain, GCPII hydrolyzes N-acetylaspartylglutamate  

(NAAG) into glutamate and N-acetylaspartate (NAA; Figure 1-4).  
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GCPII regulates NMDAR activation via glutamate and NAAG. Glutamate activates NMDAR 

while NAAG is a neuropeptide that is a NMDAR antagonist and mGluR3 agonist, which 

downregulates glutamate release (Figure 1-5).  There are discrepancies in the literature regarding 

the effect of NAAG at mGluR3 and NMDAR (Fricker et al., 2009). However, postmortem 

schizophrenia patients exhibited less GCPII activity in the prefrontal cortex, temporal cortex, and 

hippocampus compared to age matched controls, which supports the function of NAAG as stated 

above (Tsai et al., 1995). Further, these findings parallel the glutamate hypothesis and suggest 

that schizophrenia supports a hypoglutamatergic state (Coyle, 2006). 

 

Figure 1-5. Pathways of GCPII in the normal and schizophrenic brain. (Chu, 2009) 

 

Figure 1-4. Function of the GCPII enzyme 
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Our study compares heterozygous GCPII+/- (HET) mice and mutation free wild-type 

(WT) mice. HET mice were generated using the Cre-loxP system. Exons 1 and 2 of the GCPII 

gene were flanked by LoxP sites then excised by crossing with a Cre-expressing mouse. Cre is a 

recombinase protein, which mediates excision of sites located between loxP sites. In the study 

that generated this mouse model, mouse brain tissues were removed to determine GCPII protein 

expression by chemiluminesence and radioenzymatic assays, which were performed to assess 

GCPII enzyme activity. (Han et al., 2009) 

As a result of this mutation, HET mice have the GCPII gene knocked out, which causes a 

50% decrease in levels and functioning of the enzyme GCPII (Han et al., 2009). Null GCPII+/- 

mice, or mice with the GCPII gene completely knocked out, were not used as they are not viable 

(Han et al., 2009). Diminished CGPII function leads to lower levels of NAA and glutamate and 

higher levels of NAAG, thereby suppressing NMDAR function.  

 If HET mice successfully model aspects of schizophrenia, they should be behaviorally 

and neurologically different from WT mice. The study that first explored the viability of this 

model performed a battery of behavioral tests that assessed locomotor, social, and cognitive 

behaviors and found that the HET mice exhibited increased locomotor activity, reduced social 

interaction, and impaired working memory compared to WT mice (Han et al., 2009). These 

differences reflect many, but not all, of the behavioral abnormalities observed in schizophrenia 

patients. These results were expected as the GCPII+/- model only reflects the GCPII pathway of 

schizophrenia; more pathways are likely implicated. 

The goal of our developmental study was to use magnetic resonance techniques to further 

establish the face and construct validity of the GCPII+/- mouse model and to investigate sex 

differences. Male and female HET and WT mice were investigated on postnatal day (PND) 
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35/36, 49/50, and 63/64, where PND 63 corresponds to young adulthood in a mouse. If the 

GCPII+/- mouse model could replicate the pathophysiology and neurological symptoms of 

schizophrenia, then it would be expected that the longitudinal neuroanatomy and neurochemistry 

in HET mice would parallel symptoms seen in human schizophrenia.  

1.5  Magnetic Resonance Theory (Hashemi, 2004) 

The numerous definitive findings on brain abnormalities in schizophrenia have made 

brain scans increasingly important in their identification and determination of causes and 

function. Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) are non-invasive 

techniques used to investigate the longitudinal neuroanatomy and neurochemistry, respectively, 

of the GCPII+/- mouse model (Figure 1-6). This section discusses the theory behind these 

magnetic resonance techniques. 

 

 Only nuclei with an odd number of protons and/or neutrons can be detected with 

magnetic resonance. These nuclei always have at least one proton or neutron that is unpaired, 

giving the nucleus a magnetic dipole moment, or spin magnetic moment, when in a magnetic 

field (B0). In biological systems, magnetic resonance techniques take advantage of the abundance 

Figure 1-6. The brain of a mouse was imaged to produce an MR image (a). MR images 
were used to position a cuboid voxel in the hippocampus/cortex of the mouse brain from 
which an MR spectrum (b) was obtained. 
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of hydrogen, mostly present in water and fat. As this study works with mice, hydrogen, 1H, will 

be the nucleus of focus, unless otherwise noted. 

 Each nucleus has specific energy levels related to the spin quantum number S. The 

number of energy states of a nucleus is determined as follows: 

# energy states = 2S + 1 

For the hydrogen nucleus, S = ½, there are two energy states. In the absence of B0 the 

spin magnetic moments are randomly oriented so that no net magnetization is produced. When 

B0 is applied, the spin magnetic moments align parallel or antiparallel to B0, which correspond to 

low and high energy states, respectively. A slight majority of spin magnetic moments will prefer 

the lower energy state over the higher energy state causing M0, the net magnetization vector, to 

be in the direction of the B0 (Figure 1-7). 

 

 

 

 The spin magnetic moments spin about their own axes in addition to precessing, or 

wobbling, about the axis of B0. The rate of the precession is given by the Larmor equation: 

ω0 = γB0 

where ω0 is the Larmor precession frequency of the hydrogen nuclear magnetic moment and  γ is 

gyromagnetic ratio, a constant. M0, the net magnetization of the vector sum of all the individual 

Figure 1-7. The net magnetization 
vector, M0, aligns with the magnetic 
field B0 because the majority of spin 
magnetic moments align with B0 
(Hashemi, 2004). 
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spins is denoted as the + z-axis in a three-dimensional coordinate system (Figure 1-8). There are 

no components along the x or y-axes because the individual spins are all out of phase. 

  

 A radio frequency (RF) pulse is a type of electromagnetic wave. When an RF pulse is 

applied along the x-axis, perpendicularly to M0, the magnetic component of the electromagnetic 

wave creates a new magnetic field, B1, in the direction of the RF pulse (Figure 1-9). If the 

frequency of the RF pulse is at the same (Larmor) frequency as the precession of the protons, 

resonance occurs. Resonance allows energy to be added to the system and enables protons in the 

low energy state to move to a high energy state. Though the strength of B1 is much weaker than 

B0, the protons respond to the new magnetic field and precess about the x-axis at a frequency of 

ω 1 = γ1B1. Consequently, M0 undergoes nutation, or a spiral motion, from the axis of B0 into the 

perpendicular x-y plane. This creates transverse magnetization. The angle to which M0 is rotated 

is determined by the gyromagnetic ratio and the strength and duration of the RF pulse. 

 

Figure 1-8. M0, the net 
magnetization (red), is along the 

z-axis. There is no x or y 
component because the spins are 

out of phase (Hashemi, 2004). 

Figure 1-9. Application of a 
radiofrequency (RF) pulse along 
the x-axis creates B1, a new 
magnetic field. This causes M0, 
the net magnetization to flip into 
the x-y plane (Hashemi, 2004). 
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When the RF pulse is turned off, the spin magnetic moments must return to their original 

orientations, or their lowest energy states, along the z-axis. They undergo two processes of 

relaxation – longitudinal and transverse. T1 is the longitudinal, or spin-lattice, relaxation time. 

T1 describes the time it takes for 63% for the spin magnetic moments to realign along the z-axis 

or for the spin magnetic moments to release the energy gained from the RF pulse. The T2 time 

constant is for transverse relaxation, or spin-spin relaxation, and describes the time it takes for 

63% of the Mxy component to decay. T2 primarily depends on the inherent dephasing caused by 

interaction between spins. T2* accounts for spin-spin interactions, but differs from T2 in that it 

considers the effects of B0 inhomogeneities. During relaxation, the precession of magnetization 

in the xy plane forms a signal. This signal is called a free induction decay (FID) and contains 

information regarding the properties of the sampled nuclei. In MRI, spatial information is 

obtained to produce a two-dimensional image. In MRS, the signal undergoes Fourier 

Transformation to produce a spectrum. The next two sections discuss these techniques in greater 

detail. 
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1.6  Magnetic Resonance Imaging (MRI) (Hashemi, 2004) 

In biological subjects, MRI uses the signals from protons in the form of water. Different 

tissues possess unique atomic compositions and can be used to provide image contrast. A pulse 

sequence is used to spatially encode these signals. In a pulse sequence, the RF pulse is applied 

multiple times, gradient coils are varied, and multiple FIDs are obtained. The information from 

these FIDs is then combined to create an image (Figure 1-10). This section gives an overview of 

these processes and how MR images are obtained.  

 

 

A pulse sequence (Figure 1-11) uses the parameters of repetition time (TR) and echo time 

(TE) to obtain T1 and T2- weighted images. 

Figure 1-10. Contiguous T2-weighted magnetic resonance images of a 
mouse brain obtained in vivo. 
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TR and TE are closely related to the previously mentioned relaxation constants T1 and T2, 

respectively. However, while T1 and T2 are inherent, TR and TE can be adjusted to provide 

optimal contrast. The time between each pair of 90o pulses is the repetition time (TR). The 

interval between the application of the RF pulse and the measurement of a signal is the echo time 

(TE). A short TR and TE are optimal for T1-weighted contrast where fat is bright and water is 

dark. Accordingly, a long TR and TE produces T2-weighted contrast where water is bright and 

fat is dark. These differences are based on the T1 and T2 relaxation times of protons in different 

environments. Cerebrospinal fluid (CSF) is mostly comprised of water and has a long T2 

compared to white matter, which contains fat. Thus given time after an RF pulse, the magnetic 

moments in CSF will have dephased less than the protons in white matter and will have greater 

signal intensity (Figure 1-12). 

Figure 1-11. Spin-echo pulse sequence diagram. The 90o pulse flips the spin 
magnetic moments into the x-y plane. The 180o pulse is then applied to flip the 
spin magnetic moments 180o in the x-y plane. Thus, this second pulse causes a 
recovery of phase coherence so that maximum signal can be collected (Hashemi, 
2004). 
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In order to create spatially organized two-dimensional MR images, gradient coils are 

used. A gradient coil is an electrical device composed of loops of wire that perturb B0 to create a 

magnetic field gradient. The three gradients, slice-select (Gz), phase-encoding (Gy), and 

frequency-encoding (Gx), each serve a unique function. During the pulse sequence, each gradient 

is applied at a specific point in the sequence (Figure 1-11). Gz is applied during pulse application 

and varies B0 linearly along the z-axis. Gz enables a slice to be selected based on a frequency 

range in the RF pulse that corresponds to the slice location and thickness. In order to differentiate 

points within the slice, Gx is applied between pulses and during readout. Gx distinguishes proton 

frequencies along the x-axis. Gy is then applied between pulses or before readout in the y-axis 

and distinguishes protons by their phase. These latter two gradients can differentiate pixel-

specific properties in the x-y plane. Each time Gy with a different value is applied, one line is 

added to k-space, a digitized space for data from each slice. The data in k-space then undergo 

Fourier Transformation and are converted from the time domain to the frequency domain to 

produce an MR image. 

MRI is useful for structural studies because the technique can non-invasively visualize 

and create contrast among anatomical structures based on the unique characteristics of protons in 

tissue. This is relevant to schizophrenia as schizophrenia patients exhibit structural brain 

abnormalities. Human studies on schizophrenia have found an enlargement of ventricles, 

Figure 1-12. T1 recovery (left) 
and T2 decay (right) curves of 

white matter (WM), grey matter 
(GM), and cerebrospinalfluid 

(CSF) (Hashemi, 2004). 
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asymmetrical lateral ventricles, asymmetric hippocampi, and a reduced hippocampus (Shenton et 

al. 2001, Tsai, 2002). Previous work with the GCPII+/- mouse model found that the hippocampus 

was reduced and asymmetric, lateral ventricles were asymmetric, and third ventricle was 

enlarged in GCPII+/- compared to WT (Mu, 2011). Through this study we hope to replicate these 

findings with statistical significance and validate the GCPII+/- mouse model. 

1.7  Magnetic Resonance Spectroscopy (Hornak, 2011) 

Following an MRI experiment, the MR images are used to specify a voxel, or volume of 

tissue in the brain, to perform in-vivo 1H-MR spectroscopy (MRS), which uses the signal from 

hydrogen protons to non-invasively investigate the concentration of brain metabolites.  

Brain metabolites are differentiated in MRS by their chemical properties. The electrons 

surrounding a nucleus can create a small magnetic field that opposes or enhances B0. This new 

magnetic field causes the effective magnetic field, Beff, at the nucleus to be greater or less than 

B0: 

Beff = B0 (1- σ) 

The value of σ depends on the electron density of protons, which are unique for each molecule 

and depends on the type of nuclei and bonds. When a signal is collected and Fourier 

Transformed, a spectrum is created in which protons in molecules can be identified as unique 

peaks along the x-axis labeled in parts per million (ppm; Figure 1-13). A proton with an electron 

density that enhances B0 will appear downfield in a spectrum. Conversely, a proton with an 

electron density that opposes B0 will appear upfield. Each peak can represent one or more 

molecule(s) and the area under the peak is proportional to the concentration of the molecule(s). 

The location of each molecule on the x-axis is determined by its chemical shift, δ, and compared 
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relative to a reference frequency. In this study, we use the (NAA+NAAG) peak as a reference as 

it has a unique shape and is easy to distinguish in spectra of the mouse brain. 

 

In order to perform MRS, the magnetic field must be made homogenous. This is achieved 

by shimming, which is an automated or manual process that homogenizes the magnetic field by 

adjusting shim coils (Gujar et al., 2005). In this study, shimming is accomplished with a 

FASTMAP pulse sequence that automatically adjusts first and second order shims. 

MRS investigates neurometabolites, whose concentrations are much smaller than that of 

water. Thus it is necessary to suppress the water signal so that it does not overwhelm the 

metabolite signals (Gujar et al., 2005). This is achieved by exciting the water protons with an RF 

pulse, then dephasing the water protons with a crusher, or spoiler, gradient. This results in a 

smaller water peak in the spectrum. Outer volume suppression is also necessary to suppress 

signals surrounding the voxel. 

Figure 1-13. 1H-MR spectrum of a mouse brain. Metabolites are 
labeled above their respective peaks. 
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In this study, a Point-RESolved Spectroscopy (PRESS) pulse sequence was used for 

volume selection. In this pulse sequence, three separate pulses are applied, in the x-, y-, and z- 

axes, and with 90o, 180o, and 90o flip angles, respectively. The intersection of these pulses results 

in a volume of interest, or voxel, from which a spectrum is obtained.  

Metabolites were analyzed from a cuboid voxel positioned primarily in the hippocampus 

and cortex. This region was selected because the hippocampus is linked to the limbic system and 

is known to function differently in schizophrenia patients (Harrison, 2003; Hecker 2001; Shenton 

et al., 2001) With our current spectroscopy parameters, the metabolites that can be resolved are 

Choline (Cho), Creatine (Cr), Taurine (Tau),N-acetylaspartate + N-acetylaspartylglutamate 

(NAA + NAAG), and Glutamate + Glutamine (Glu and Gln; Glx) (Table 1-1). 
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Table 1-1. Metabolite structure, predicted chemical shifts and experimental spectra analyzed in this study 
(Govindaraju, 2000). 

Metabolite Structure 

Predicted 
Chemical 

Shifts for 1H-
MRS (ppm) 

Spectrum 

Cho 
 

 

 
3.1850, 

4.0540, 3.5010 

 

 

Cr 
  

 

 
3.0270, 

3.9130, 6.6490 
 

Tau 
 

 

 
3.4206, 3.2459 

 

 
(NAA+NAAG) 

 

NAA 

 
NAAG 

 
 

 
2.0080, 
4.3817, 
2.6727, 

2.4863, 7.8205 
 

 

 

Glx 
 

Glu 

 
Gln 

 

3.7433, 
2.0375, 
2.1200, 

2.3378, 2.3520 
 
 

2.1290, 
2.1090, 
2.3378, 
2.4320, 
2.4540, 
3.7530, 

6.8160, 7.5290 
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1.8 Metabolites of Interest 

Choline 

 The Cho peak in MR spectra is a combination of several choline-containing compounds 

including glycerophosphocholine, phosphatidylcholine, and phosphocholine (Govindaraju et al., 

2000). Cho is a precursor for cytidine diphosphate choline, a mononucleotide involved in the 

synthesis of phospholipid structural components of cell membranes. Changes in Cho levels are 

indicative of changes in neuronal membrane composition (Bracken et al., 2011, Govindaraju, 

2000). Increased Cho is thought to signal either an increase in the amount of cell membrane per 

unit volume or an increase in the release of Cho during the breakdown of myelin as in the case in 

neurodegenerative disorders (Bracken et al., 2011). Reductions in Cho levels have been found in 

the left hippocampus of schizophrenia patients compared to controls (Maier et al., 1995).  

Creatine 

 Cr, including phosphocreatine (PCr), is a non-essential nutrient and a marker for brain 

energy metabolism. It plays a role in energy metabolism, especially in neurons where energy 

requirements are high and fluctuate (Andres et al., 2008). In MRS studies, the magnitude of Cr 

has largely been used as an internal reference (Ongur et al., 2009). In this study, metabolite 

levels are reported as ratios in comparison to Cr. There is some concern regarding this practice 

because patients with schizophrenia have lower Cr levels than controls. However, this should not 

be a problem if Cr levels are shown to be normal in the study population (Ongur et al., 2008). In 

this study, Cr levels have been used as an internal reference based on previous work that 

determined sufficient controls (Mu, 2011). 
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Taurine 

 Tau is a semi-essential amino acid. In mammals, Tau is the most abundant amino acid in 

the heart, retina, skeletal muscle, brain, and leukocytes (Schuller-Levis and Park, 2003). Tau is 

thought to protect cell membranes from toxins and act as a neuroprotectant by increasing neural 

acetylcholine levels, helping neuronal growth and survival (Schuller-Levis and Park, 2003). Tau 

uptake and release may also represent a form of communication between neurons and glial cell 

(Sturman, 1988). Elevated levels of Tau were found in the prefrontal cortex of schizophrenia 

patients, suggesting a response to increased oxidative stress due to metabolic abnormalities in 

schizophrenia (Shirayama et al., 2009). Previous work with the GCPII+/- mouse model also found 

increased Tau levels in GCPII+/- mice compared to WT (Chen, 2010; Mu, 2011).  

N-acetylaspartate and N-acetylaspartylglutamate 

 NAA is a metabolite of NAAG.  NAA is synthesized by neuronal mitochondria and is 

abundantly located in neurons throughout the brain. NAA is known to be a marker of neuronal 

integrity as levels of NAA are altered in a wide range of disorders. However, the biological role 

of NAA in the brain is unclear (Coyle, 2006). Changes in NAA levels may be indicative of 

spine/synapse number, neuron size, neuron density, or some combination of these (Bracken et 

al., 2011). 

 In schizophrenia patients, in-vivo levels of NAA have been found to be reduced in several 

regions of the brain including the hippocampus (Bertolino et al., 1997; Deicken et al., 1998; 

Miyaoka et al., 2004; Nasrallah et al., 1994; Steen et al., 2005) and cortical gray matter (Bustillo 

et al., 2011; Tayoshi et al., 2011). This is consistent with a reduction in GCPII activity and with 

the process of early dendritic retraction. Correlation was also discovered between NAA levels 

and social functioning in schizophrenia patients suggesting that NAA may also be an indicator of 
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disease severity (Sigmundsson et al., 2003).  

 NAAG is a neuroactive peptide and is localized to subpopulations of glutamatergic, 

cholinergic, GABAergic, and noradrenergic neuronal systems (Coyle, 1997). As previously 

mentioned, NAAG is an agonist at mGluR3 receptors and an antagonist at NMDA receptors. 

NAAG is hydrolyzed to N-acetylaspartate and glutamate by GCPII, which is expressed on the 

extracellular surface of astrocytes. The levels of NAAG and the activity of GCPII are altered in a 

regionally specific fashion in several neuropsychiatric disorders (Coyle, 1997). Postmortem 

studies of NAAG levels in schizophrenia patients have found increases of NAAG in the 

hippocampus (Tsai et al., 1995). 

 Based on the glutamate hypothesis, we expect to find reduced levels of NAA and 

increased levels of NAAG in GCPII +/- mice compared to WT mice. NAA and NAAG contribute 

to the same chemical peak in the 1H-MRS spectrum and are not distinguishable. If the only factor 

were the conversion between NAA and NAAG, we would expect this peak, referred to as 

(NAA+NAAG), to remain the same between GCPII+/- and WT mice. However, other problems 

that account for the viability of cells may result in reductions of NAA (Steen, 2005). 

Accordingly we expect the (NAA+NAAG) peak to be reduced in GCPII+/- compared to WT 

mice. 

Glutamate and Glutamine 

 Glu and Gln are both non-essential amino acids. Glu is the primary excitatory 

neurotransmitter in the brain, while Gln is its precursor and byproduct. In Glu-Gln cycle, Glu and 

Gln are interconverted into each other (Figure 1-14). 
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In glial cells, or non-neuronal cells such as astrocytes, Glu is converted into Gln while in 

the central nervous system Gln is either used for other neuronal processes or converted back to 

Glu and stored for future use (Rothman et al., 1999). Glu can also be produced de novo from 

tricyclic intermediates in the presynaptic neuron The rate that Glu is released and processes that 

follow are controlled by neuronal and metabolic activity through stimulation of extrasynaptic 

glutamate receptors, such as mGlur3 (Yuksel and Ongur, 2005). Glu and Gln appear at similar 

chemical shifts and are indistinguishable using in-vivo MRS. Thus these metabolites are 

quantified together as Glx. 

 

  

Figure 1-14. The glutamate–glutamine (Glu-Gln) cycle. Glu is released from the presynaptic 
neuron into the synaptic cleft where it acts on postsynaptic receptors, such as NMDA and 
other Glu receptors. Glu is further removed from the synaptic cleft by glutamate transporters 
(EEAT1 and EAAT2) which are mainly located on astrocytes. Within the astrocyte, ammonia 
and Glu combine to form Gln via glutamine syntehtase (GS), an astrocyte-specific enzyme. In 
order to replenish stores of Glu, Gln is released from astrocytes and enters the presynaptic 
neuron. Once inside the neuron, neuron phosphate-activated glutaminase (GLNase) splits Gln 
into Glu and ammonia. The cycle then repeats. (Adapted from Rodrigo and Felipo, 2007). 
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The glutamate hypothesis predicts that schizophrenia will function in a 

hypoglutamatergic state. Accordingly, decreased levels of Glu have been found in schizophrenia 

patients (Tsai et al., 1995; Tayoshi et al. 2008; Guilarte et al., 2008). In schizophrenia, Glx levels 

were found to be a marker of cognitive function where levels of Glx were positively correlated 

with overall cognitive performance (Bustillo et al., 2011). These findings confirm a change in the 

glutamatergic system and suggest an involvement in the pathophysiology of schizophrenia. 

However, it must be noted that an increase, lack of change, and decrease of Glx or Glx/Cr in 

schizophrenia patients have also been found in various studies (Tayoshi et al., 2009). This is 

likely due to regional differences or time of sampling as Glu concentrations are thought to be 

higher in the acute stage, but lower in chronic stage (Tayoshi et al., 2009). Our study focuses on 

the hippocampus with the stage, acute or chronic, unknown. As GCPII activity is prominent in 

the hippocampus related to levels of Glu, we expect our findings to parallel MRS studies of the 

hippocampus, which reported decreased levels of Glu (Tayoshi et al., 2009; Tsai et al., 1995).  
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2 Materials and Methods 

 

2.1  Subjects and Subject Maintenance 

All experiments were conducted on GCPII+/- (HET) mice or C57BL/6  (WT) mice, which 

descended from the founding colony at McLean hospital (Belmont, MA). HET mice contain a 

knockout of the GCPII gene and exhibit reduced GCPII enzyme function (Han et al., 2009), 

while WT mice have no genetic modification and serve as controls. HET mice were bred on a 

WT mice background for over 9 generations with procedures approved by the Wellesley College 

Institutional Animal Care and Use Committee and conform to the standards set forth in the 

National Institute of Health Guide for the Care and Use of Laboratory Animals. HET dams were 

mated with WT male mice and the day after birth was considered postnatal day (PND) 1.  

WT and HET mice were weaned on PND 21 and separated by sex into standard sized 

mouse cages that contained at least 2 mice and held a maximum of 4 mice. There were four types 

of mice used: HET males (n = 4), WT males (n = 6), HET females (n = 7), and WT females (n = 

7), and. Mice were exposed to a 12:12 light-dark cycle and temperatures of 21 ± 1 oC with food 

and water available ad libitum. Markings were periodically drawn on mice tails for 

identification. For genotyping, mice ears were clipped and ear samples were sent to Mouse 

Genotype (Carlsbad, CA) for analysis. Subsequently, observations of ear clippings were used to 

identify mice. 
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2.2  In vivo Magnetic Resonance Imaging and Spectroscopy 

Brain MR images of each mouse were obtained on PND 35/36, 49/50, 63/64 on a 9.4 T 

Bruker Avance DRX 400 MHz vertical bore NMR spectrometer equipped with a MicroMouse 

2.5 imaging accessory (Bruker Biospin, Billerica, MA). Bruker ParaVision 4.0 and Bruker 

Topspin 1.5 software (Ettlingen, Germany) were used to acquire images and analyze spectra, 

respectively, on a Linux system.  After imaging, all data were analyzed using a genotype-blind 

protocol with Analyze 10.0 image analysis software (Mayo Clinic, Rochester, MN). 

2.3  Animal Preparation 

Mice were anesthetized with 1-1.5% isofluorane in oxygen, at a flow rate of 0.2 L/min in 

a plexiglass chamber (Braintree Scientific, Inc., Braintree, MA). Once a mouse was anesthetized, 

approximately 10 minutes after exposure to isoflurane/O2, the isoflurane/O2 flow was directed 

into the nose cone of a mouse bed (Wellesley College, Wellesley, MA), which has an opening 

for the exhaust tube and is located inside the micro-imaging probe (Figure 2-1). The exhaust tube 

was connected to a F/AIR Scavenger activated charcoal filter (Paragonmed, Coral Springs, FL) 

to prevent airborne contaminants from entering the environment. The mouse was then transferred 

to the mouse bed where it was positioned using a bite bar and secured using 3M MicroporeTM 

tape (St. Paul, MN). Once taped into the mouse bed, the breath rate of the mouse was monitored 

with a respiration sensor pad (SA Instrument, Inc., Stony Brook, NY) configured with BioTrig 

Builder 1.01 Software (Bruker Biospin, Billerica, MA) on a PC system. The breathing rate was 

maintained between 30 and 100 breaths per minute by adjusting the isoflurane level with a VIP 

Veterinary Vaporizer (Colonial Medical Supply, Co., Franconia, NH). 
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Once the mouse was secured in the mouse bed and inserted into the probe, the probe was 

positioned in the spectrometer to center the brain in the magnet and gradient coils. Throughout 

the experiment, a water circulation unit was used to maintain the temperature of the coils 

surrounding the mouse at 32 oC to help the mouse maintain a body temperature. 

2.4  Magnetic Resonance Imaging 

The probe was tuned and matched before imaging or acquiring spectra. A RARE_tripilot 

sequence was used to visualize the mouse’s position in three orthogonal slices (TE = 12.500 ms, 

TR = 2000.000 ms, rare factor = 8, matrix size = 128x128, number of averages = 1). The 

Figure 2-1. Mousebed (A; top view). Arrows, as labelled, indicate location of bite bar, 
respiration sensorpad, and air inputs. Mousebed with mouse positioned inside (B; side 
view). Mousebed with mouse secured (C; topview). 
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RARE_tripilot images were then used to position the field-of-view (FOV) on the entire mouse 

brain (Figure 2-2). If the brain was not centered in the gradients, the mouse was removed, 

repositioned, and the RARE_tipilot scan was repeated. Next, 24 contiguous coronal MR images 

of 0.7 mm thick slices were acquired with a RARE_8_bas T2 weighted pulse sequence (TE = 15 

ms, TR = 3109 ms, Tx0 ~ 15 dB, Tx1 ~ 5.2 dB, FOV = 2.6 cm2, averages =16). A pre-scan 

macro was used to automatically adjust the attenuators, receiver gain, and shim settings. 

 

2.5  Magnetic Resonance Spectroscopy 

Following the imaging portion of the experiment, with the mouse still in the magnet, a 

spectrum of the hippocampus region was obtained. With the Geometry Editor tool, a 4x4x4 mm3 

(64 µL) voxel was positioned to include the hippocampus using the RARE_8_bas images as a 

reference. A fastmap_4mm scan automatically adjusted first and second order shims over the 

cubic region. The voxel was reduced to a 4x2x3 mm3 (24 µL) cube focused on the hippocampus 

Figure 2-2. Selection of 24 continguous slices on a sagittal 
RARE_tripilot image of a mouse brain.  
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(Figure 2-3). The PRESS_waterline pulse sequence was used to obtain a water peak (TE = 20 

ms, TR = 2000 ms, averages = 8). This sequence included Outer Volume Suppression (OVS) but 

not water suppression. The spectrum obtained from PRESS_waterline was analyzed with Bruker 

TopSpin 1.5 software to determine the linewidth of the water peak. If the width was larger than 

25 Hz, the spectrum could not be obtained and fastmap_4mm was repeated to further 

homogenize the magnetic field. With a satisfactory water peak, the final metabolite spectrum 

was obtained using the Press-1H pulse sequence with VAPOR water suppression and outer 

volume suppression (OVS) (TE= 20 ms, TR = 2000 ms, Tx0~ 150, Tx1~ 9.4, averages = 800).  

 

After the spectrum was acquired, the mouse was removed from the probe and was 

monitored on a heating pad until it recovered full consciousness.  

2.6  Data Analysis 

MRI Data Analysis 

After imaging, all data were analyzed using a genotype-blind protocol with Analyze 10.0 

image analysis software (Mayo Clinic, Rochester, MN). Whole brain, cerebellum, fourth 

ventricle, third ventricle, left and right hippocampus, and left and right lateral ventricles were 

traced as separate objects with the Region of Interest Tool and Wacom Cintiq 12WX tablet 

Figure 2-3. A 4x2x3 mm3 cuboid voxel positioned on the hippocampus in 5 slices, which were 
contiguous and each had a thickness of .7 mm.  
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display (Wacom Co., Ltd., Tokyo, Japan). A stereotaxic atlas was used as a reference to 

determine regional borders of structures and structural markers (Paxinos and Franklin, 2004). 

Three laboratory members, including the author, traced the brains in order to minimize the total 

amount of tracing for each person and maximize tracing consistency for each brain structure. 

Each person traced specific structures in every brain; one traced the whole brain, another the 

cerebellum, and the final traced all other structures (See Appendix-A for tracing guide). The final 

traces were then combined and the Sample Images tool on Analyze 10.0 was used to determine 

the volume of each structure. The combined area of each traced region was multiplied by the 

summed thickness of the slices for the relevant brain region. 

MRS Data Analysis 

The spectral peaks were analyzed with Bruker TopSpin 1.5 to determine relative 

metabolite concentrations. Line broadening, or exponential multiplication, of 10 Hz was applied 

to the FID to improve the signal to noise ratio of the spectrum. The reduction of noise made the 

spectrum lines smoother and easier to read. The spectra were then phased and calibrated, where 

the distinguishable (NAA+NAAG) peak was set to 2.01 ppm. The troughs between each pair of 

peaks were marked as baseline points. The deconvolution tool was then used to fit Gaussian 

curves under each peak and provide the calculated area under the Gaussian peaks. Each peak of 

the spectrum represents the unique properties of equivalent protons in the neurometabolites. The 

Gaussian peak area could then be used to represent the levels of a specific neurometabolite. The 

metabolites Cr, Tau, Cho, Glx, and (NAA+NAAG) were resolved and compared to Cr (3.0 ppm), 

an internal standard (Recall Figure 1-13). 
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Statistical Analysis 

All data were analyzed by genotype and PND with males and females grouped 

separately.  Independent unpaired two-tailed t-tests assuming unequal variances were used to 

detect differences between genotypes at a single time point. Paired t-tests were used to detect 

developmental differences within a genotype between two time points. Bar graphs were created 

to represent mean volume or ratio of brain structures or metabolites with error bars representing 

standard deviation. All analyses were performed using Microsoft Excel where a p < 0.05 was 

considered significant. Q-tests were performed to detect outliers, but outliers were not removed 

given the small sample size of data.  
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3 Results and Discussion 

3.1  Magnetic Resonance Imaging 

MRI data were collected from the same HET males (n = 4), WT males (n = 6), HET 

females (n = 7), and WT females (n = 7) on PND 35/36, 49/50, and 63/64. The effect of sex 

differences on MRI data were first examined in HET and WT mice. Because sex differences 

were found between male and female mice, all data from males and females were analyzed 

separately. The volume or volume ratio of each structure was averaged at each time point for all 

mice in each of the four groups. Brain structures volumes were normalized to the whole brain 

volume (WBV) to account for size differences among mice. WBV, cerebellum to WBV ratio 

(C/WB), fourth ventricle to WBV ratio (4V/WB), third ventricle to WBV ratio (3V/WB), lateral 

ventricle to WBV ratio (LV/WB), left to right lateral ventricle volume ratio (Left/Right LV), 

hippocampus to WBV ratio (HP/WB), and left to right hippocampus volume ratio (Left/Right 

HP) were examined for all mice. The individual volume trends of four mice, one mouse of each 

genotype and sex from the same litter, were also examined.  
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Sexual Dimorphism 

Phenotypic differences between male and female mice (sexual dimorphisms) were 

examined in HET and WT mouse brain structures. Male HET mice had significantly larger 

cerebellum to WBV ratios than females on PND 63 (t(9) = 1.833, p < .01; Figure 3-1B). At all 

time points, male HET mice exhibited a greater left to right hippocampus ratio than female HET 

mice and was significantly different on PND 49 (t(9) = 1.833, p = 0.01; Figure 3-1H). Female 

WT mice had larger cerebellum to WBV ratios than male WT mice at all time points and trended 

towards significance on PND 63 (t(11) = 1.796, p = 0.050; Figure 3-2B). At all time points, male 

WT mice had larger whole brain volumes compared to female WT mice and male HET mice had 

smaller whole brain volumes compared to female HET mice (Figure 3-1A and 3-2A). No 

significant volume differences were found between male and female WT mice at any time point. 

Longitudinal differences within a brain region are discussed later in each structure’s respective 

section. 
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Figure 3-1. Mean brain structure volume or ratio ± SD between GCPII+/- heterozygous (HET) males (M) 
and females (F) from postnatal day 35 to 63. Regions analyzed were A. Whole brain (WB), B. Cerebellum 
(C) to WB ratio, C. Fourth ventricle (4V) to WB ratio, D. Third ventricle (3V) to WB ratio, E. Lateral 
ventricle (LV) to WB ratio, F. Hippocampus (HP) to WB ratio, G. Left LV to right LV ratio, H. Left HP to 
right HP ratio. Key on the bottom left indicates sex and genotype. Data from the same mice were collected 
over time. Regions were manually traced and volume was calculated using the Region of Interest tool on 
Analyze 10.0. * indicates a significant difference (p < 0.05) between genotypes at a single time point as 
determined with unpaired two-tailed t-tests assuming unequal variances.  
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Figure 3-2. Mean brain structure volume or ratio ± SD between wild-type (WT) males (M) and 
females (F) from postnatal day 35 to 63. Regions analyzed were A. Whole brain (WB), B. Cerebellum 
(C) to WB ratio, C. Fourth ventricle (4V) to WB ratio, D. Third ventricle (3V) to WB ratio, E. Lateral 
ventricle (LV) to WB ratio, F. Hippocampus (HP) to WB ratio, G. Left LV to right LV ratio, H. Left 
HP to right HP ratio. Key on the bottom left indicates sex and genotype. Data from the same mice 
were collected over time. Regions were manually traced and volume was calculated using the Region 
of Interest tool on Analyze 10.0. † indicates a trend towards a significant difference between 
genotypes (0.05 < p < 0.07).   
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Sexually dimorphic characteristics have been found in both human and mouse brains, but 

the etiology of these differences is not well understood (Goldstein et al., 2001; Spring et al., 

2007). Our finding that the male WT whole brain is larger than the female WT whole brain 

agrees with a 3D MRI study that examined the same WT (C57BL/6) mice (Spring et al., 2007). 

Volume studies on humans report similar results (Chance et al., 2003; Goldstein et al., 2001). 

Differences in whole brain size may stem from the release of different sex hormones (Cooke et 

al., 1999; Goldstein et al., 2001). Cooke et al. (1999) found that adult hormone manipulation can 

completely reverse sexual dimorphism in the postdorsal component of the medial amygdala of 

rats. However, hormone manipulation could not reverse all sexually dimorphic neural volumes. 

This suggests that non-biological factors, such as behavior and environment, may also play a role 

in the development of sexually dimorphic characteristics. 

Brain metabolic (Tayoshi et al., 2009), morphologic (Springer et al., 2007; Takayanagi et 

al., 2009), behavioral (Seeman et al., 1997), and hormonal (Seeman et al., 1997) sex differences 

have been observed in schizophrenia patients. Males experience an earlier onset and a more 

severe form of schizophrenia than females, as males experience more negative symptoms and 

exhibit greater brain abnormalities (Seeman et al., 1997). These findings may relate to 

morphological changes, which are more prominent in male subjects as compared to females 

(Tayoshi et al.; 2009). Reduced WBV is a characteristic of male and female schizophrenia 

patients (Nakamura et al., 2004; Steen et al., 2006). While we do not see significantly reduced 

WBVs in our mouse model, we found that male HET mice had smaller WBVs than female HET 

mice. This suggests that male HET mice exhibit greater morphological changes than female HET 

mice, as male WT WBVs are normally greater than WT female volumes. Hippocampus 
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asymmetry is also a characteristic of schizophrenia patients (Harrison, 2003; Heckers, 2001; 

Petty, 1999). Our finding that male HET mice exhibit greater asymmetry, or a larger left to right 

hippocampus ratio than female HET mice, further confirms that HET males are more affected 

than females. Cerebellum to WBV sex differences were apparent in WT mice and significant in 

HET mice. However, each genotype exhibited opposite trends – female WT mice had larger 

C/WB ratios than male WT mice and vise versa for HET mice. These differences are, once 

again, likely related to male HET mice exhibiting greater morphological changes than female 

HET mice as an enlarged cerebellum is a characteristic of schizophrenia patients (Levitt et al., 

1999). Other reasons for observed differences in brain structures are discussed later in each 

region’s respective section (See Cerebellum finding, p. 45). 

Collectively, these findings suggest volumetric differences between male and female 

brains in both WT and GCPII+/- mice. In order to control for sex differences, all volume analyses 

between WT and HET mice were grouped by sex (Table 3-1).   
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Whole Brain Volume Results 

WBV was significantly greater for HET female mice than for WT female mice on PND 

63 (t(12) = 1.782, p = 0.03; Figure 3-3A). WBV significantly increased from PND 35 to 63 for 

female WT (t(12) = 1.782, p = 0.02), female HET (t(12) = 1.782, p < .01) and male HET mice 

(t(6) = 1.943, p = 0.04; Figure 3-3). WBV significantly increased from PND 35 to 49 for female 

HET (t(12) = 1.782, p < .01) and female WT mice (t(12) = 1.782, p = 0.03; Figure 3-3A). Only 

female HET mice showed a significant increase in WBV from PND 49 to 63 (t(12) = 1.782, p < 

0.01; Figure 3-3A). At all time points, male WT mice had larger WBVs than male HET mice 

(Figure 3-3B).  

Table 3-1. MRI brain volume data for male WT, male HET, female WT, and female HET mice. A. * 
indicates a significant difference between WT and HET mice at that time point (p < 0.05). † indicates 
a trend towards significance between WT and HET mice (0.05 < p < 0.07). B. * indicates a significant 
developmental difference between indicated time points within a genotype and sex (p < 0.05). † 
indicates a trend towards a significant developmental difference between time points (0.05 < p < 0.07). 
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Whole Brain Volume Development 

Structural studies have found reduced WBVs in schizophrenia patients compared to 

controls (Nakamura et al., 2004; Steen et al., 2006). Our result that male HET WBVs appear 

smaller than male WT WBVs at all time points agrees with these findings. A meta-analysis of in 

vivo MRI studies on the brain volume of schizophrenia patients suggests that the whole brain of 

schizophrenia patients may not exhibit progressive deficits (Steen et al., 2006). In other words, 

the whole brain in schizophrenia patients is growing at the same rate as a healthy person. Steen et 

al. (2006) hypothesized that abnormalities in brain development, which begin after birth or after 

the onset of symptoms, are what cause the brain to be smaller than healthy controls. If abnormal 

brain development begins later for the GCPII+/- mouse model, it is possible that male and female 

HET mice would exhibit significantly smaller WBVs compared to, respectively, male and female 

WT mice at later time points. WBV growth from PND 35 to 63 for male and female HET mice 

Figure 3-3. Mean whole brain volume ± SD of A. wild-type (WT) and GCPII+/- heterozygous 
(HET) females and B. WT and HET males from postnatal day 35 to 63. Keys above graphs 
indicate sex and genotype. Data from the same mice were collected over time. Regions were 
manually traced and volume was calculated using the Region of Interest tool on Analyze 10.0. * 
indicates a significant difference (p < 0.05) between genotypes at a single time point as 
determined with unpaired two-tailed student t-tests assuming unequal variances or a significant 
developmental difference within a genotype and between two time points as determined with 
paired two-tailed t-tests. 
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was expected, as WBV of both healthy and schizophrenic individuals is known to increase over 

time. WBV growth from PND 35 to 63 for male WT mice would likely reach significance with a 

larger sample size as this pattern was observed in all other mice.  

 

Cerebellum to Whole Brain Volume Ratio Results 

female HET mice had significantly lower cerebellum to WBV ratios on PND 63 

compared to female WT mice (t(12) = 1.782, p = 0.02; Figure 3-4A), whereas male HET mice 

had significantly higher cerebellum to WBV ratios on PND 63 compared to male WT mice (t(8) 

= 1.860, p = 0.04; Figure 3-4B). At all time points, male HET mice had higher cerebellum to 

WBV ratios than male WT mice. Female mice exhibited the opposite pattern; female HET mice 

had lower cerebellum to WBV ratios compared to female WT mice. 

 

Figure 3-4. Mean cerebellum to whole brain volume ratio ± SD of A. wild-type (WT) and GCPII+/- 
heterozygous (HET) females and B. WT and HET males from postnatal day 35 to 63. Keys above 
graphs indicate sex and genotype. Data from the same mice were collected over time. Regions were 
manually traced and volume was calculated using the Region of Interest tool on Analyze 10.0. * 
indicates a significant difference (p < 0.05) between genotypes at a single time point as determined 
with unpaired two-tailed student t-tests assuming unequal variances.  
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Cerebellum Findings on PND 63 May be Linked to Sexual Dimorphism 

Few studies have examined the role of the cerebellum in schizophrenia patients, as 

schizophrenia is known to primarily affect structures associated with the cerebrum and limbic 

system. While the cerebellum is primarily associated with motor function, there is evidence that 

the cerebellum may play a role in higher cognitive function (Andreason and Pierson, 2008; 

Shenton et al., 2001; Yeganeh-Doost et al., 2011). This was partially confirmed by Levitt et al. 

(1999) in a study that investigated the vermis, a structure in the cerebellum, and found greater 

vermis white matter volume is correlated to positive symptoms and thought disorder in 

schizophrenia. Further, they found that the vermis is enlarged in schizophrenia patients compared 

to controls (Levitt et al., 1999). Our findings that male HET mice had significantly larger 

cerebellum to WBV ratios on PND 63 and non-significantly larger ratios on PND 35 and 49 

agree with this study. Conversely, other studies found that cerebellum volume is reduced (Martin 

and Albers, 1995) or remains unchanged (Steen et al., 2006) in schizophrenia patients compared 

to controls. The former study agrees with our finding that WT female mice have larger 

cerebellums than HET female mice on PND 63. While previous work in our lab found no 

difference in cerebellum to WBV ratio between HET and WT mice, male and female data were 

combined in the analysis (Mu, 2011). Our data suggest sexual dimorphism could account for the 

observed differences, but a larger sample size or data from later time points are needed to make 

our results more conclusive. If it was determined that female and male HET mice show 

significantly smaller and larger cerebellum to WBV ratios compared to WT mice, respectively, 

at multiple time points, then there would be strong indication of sexual dimorphism in the 

cerebellum. 
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Fourth Ventricle to Whole Brain Volume Ratio Results 

The fourth ventricle to WBV ratios of male HET mice were significantly higher than 

those of male WT mice on PND 49 (t(8) = 1.860, p = 0.01; Figure 3-5B). There was a trend 

toward significance where fourth ventricle to WBV ratio increased from PND 49 to 63 for male 

HET mice (t(6) = 1.943, p = 0.048; Figure 3-5B). There were no fourth ventricle to WBV ratio 

trends observed for female HET and WT at any time point or between time points for each 

genotype (Figure 3-5A). 

 

Fourth Ventricle Enlargement in Male HET Mice 

Increased ventricular volume is a common characteristic of schizophrenia (Shenton et al., 

2001). However, there is dispute regarding fourth ventricle character in schizophrenia. Out of the 

five in vivo MRI studies reviewed in a meta-analysis, four found no difference in fourth ventricle 

volume between schizophrenia patients and controls (Shenton et al., 2001). The one study with 

Figure 3-5. Mean fourth ventricle to whole brain volume ratio ± SD of A. wild-type (WT) and 
GCPII+/- heterozygous (HET) females and B. WT and HET males from postnatal day 35 to 63. Keys 
above graphs indicate sex and genotype. Data from the same mice were collected over time. Regions 
were manually traced and volume was calculated using the Region of Interest tool on Analyze 10.0. * 
indicates a significant difference (p < 0.05) between genotypes at a single time point as determined 
with unpaired two-tailed student t-tests assuming unequal variances. † indicates a trend towards a 
significant developmental difference between time points (0.05 < p < 0.07). 
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positive findings, by Keshavan et al. (1998), found that the fourth ventricle was enlarged in the 

superior temporal gyrus of schizophrenia patients compared to controls. Our findings that male 

HET mice exhibit significantly larger fourth ventricle to whole brain volume ratios than male 

WT mice support these results. However, our findings were only significant at the one time 

point, PND 49. As we only found differences between genotypes in males, it is possible that 

there is an effect of sexual dimorphism on fourth ventricle development. A greater sample size is 

needed to see if these differences also occur on PND 35 and 63 in male mice or at any time point 

in female mice.  

We found that male WT mice exhibited an increase in fourth ventricle to WBV ratio from 

PND 49 to 63 and trended towards significance. However, it is difficult to analyze or compare 

our findings, as there were no studies that related developmental trends of the fourth ventricle in 

humans to mice. It would be interesting to see if a larger sample size would reveal this pattern in 

other groups of mice, as it would suggest that an increase in fourth ventricle to WBV ratio from 

PND 49 to PND 63 is a part of normal brain growth. 

 

Third Ventricle to Whole Brain Volume Ratio Results 

Female HET mice had significantly higher third ventricle to WBV ratios compared to 

female WT mice on PND 35 (t(12) = 1.782, p = 0.0332; Figure 3-6A). There were no third 

ventricle to WBV ratio trends observed for male HET and WT at any time point or between time 

points for each genotype (Figure 3-6B) 
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Third Ventricle Enlargement in Female HET Mice 

Structural studies have found enlargement of the third ventricle in schizophrenia patients 

compared to controls (Nakamura et al., 2004; Shenton et al., 2001; Tsai et al., 2002). Previous 

work in our lab found the third ventricle to WBV ratio to be increased in male and female HET 

mice compared to controls on PND 77. Our findings that female HET mice exhibit significantly 

larger third ventricles than female WT mice on PND 35 agree with these studies. Shenton et al. 

(2001) hypothesizes that increased fluid in the third ventricle observed in schizophrenia patients 

may be related to reduced volume of the thalamus– a limbic system structure adjacent to the 

hypothalamus. Thus, an enlarged third ventricle may be linked to abnormal thalamus 

development.  Additional differences between genotypes would likely reach significance on 

PND 49 as differences are apparent, but not yet significant.  

 

Figure 3-6. Mean third ventricle to whole brain volume ratio ± SD of A. wild-type (WT) and GCPII+/- 
heterozygous (HET) females and B. WT and HET males from postnatal day 35 to 63. Keys above 
graphs indicate sex and genotype. Data from the same mice were collected over time. Regions were 
manually traced and volume was calculated using the Region of Interest tool on Analyze 10.0. * 
indicates a significant difference (p < 0.05) between genotypes at a single time point as determined 
with unpaired two-tailed student t-tests assuming unequal variances. 
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Lateral Ventricle to Whole Brain Volume Ratio Results 

Female HET mice exhibited significantly higher lateral ventricle to WBV ratios 

compared to female WT mice on PND 35 (t(12) = 1.782, p = 0.01; Figure 3-9A). Female WT 

lateral ventricle to WBV ratio showed a significant increase from PND 35 to 63 (t(12) = 1.782, p 

= 0.02; Figure 3-9A). Female WT lateral ventricle to WBV ratios on PND 49 were higher than 

on PND 35 and trended towards significance (t(12) = 1.782, p = 0.047; Figure 3-9A). For male 

HET and WT mice there were no differences in lateral ventricle to WBV ratio at a single time 

point or between time points for each genotype (Figure 3-9B). For male WT, female HET, and 

female WT mice, lateral ventricle to WBV ratio increased over time (Figure 3-9). Female HET 

mice had higher lateral ventricle to WBV ratios than female WT mice at all time points (Figure 

3-9A). Male HET mice demonstrated lateral ventricle to WBV ratio growth from PND 35 to 49, 

with a subsequent decline on PND 63 (Figure 3-9B). 

 

Figure 3-9. Mean lateral ventricle to whole brain volume ratio ± SD of A. WT and GCPII+/- 
heterozygous (HET) females and B. WT and GCPII+/- heterozygous (HET) males from postnatal day 
35 to 63. Key above each group indicates sex and genotype. Data from the same mice were collected 
over time. Regions were manually traced and volume was calculated using the Region of Interest tool 
on Analyze 10.0. * indicates a significant differences (p < 0.05) between genotypes at a single time 
point as determined with unpaired two-tailed student t-tests assuming unequal variances or a 
significant developmental difference within a genotype and between two time points as determined 
with paired two-tailed t-tests. † indicates a trend towards significant developmental difference between 
time points (0.05 < p < 0.07). 
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Lateral Ventricle Development  

In vivo and post-mortem structural imaging studies have found lateral ventricle 

enlargement in schizophrenia patients compared to controls (Chance et al., 2003; Kempton et al., 

2010; Meduri et al., 2010). Ventricle enlargement was found to be greater in female than male 

schizophrenia patients (Chance et al., 2003). Our findings that female HET mice have 

significantly higher lateral ventricles to WBV ratios than female WT mice on PND 35 agree with 

these findings. Female HET mice also appear to have higher lateral ventricles to WBV ratios on 

PND 49 and 63, but these differences are not significant. Results at these time points require a 

large sample size to reach statistical significance.  

The connection between ventricle enlargement and the biochemical processes in 

schizophrenia remain unclear. Studies suggest that lateral ventricle enlargement occurs either 

from abnormal brain development starting at birth or during the prodromal phase of 

schizophrenia, the period of time from when symptoms manifest to the full development of the 

schizophrenia (Kempton et al., 2010). Ventricular enlargement has been associated with smaller 

cortical and subcortical grey matter volumes (cerebral cortex and neural tissue that comprises the 

outer layer of the cerebrum; Meduri et al., 2010). There is also a possibility that genetic factors, 

such as hereditability, can influence lateral ventricular volume (Reveley et al., 1984).  

Our findings that female WT mice showed significant lateral ventricle to whole brain 

volume ratio growth and that female HET and male WT mice showed non-significant growth 

were expected as the lateral ventricles in healthy individuals and schizophrenia patients are 

expected to grow over time (Kempton et al., 2010). Female HET, male WT mice would likely 

show significant lateral ventricle to WBV ratio growth with a larger sample size as differences 

between time points were apparent but did not reach statistical significance.  
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Lateral Ventricle Asymmetry Results 

Lateral ventricle asymmetry was measured by determining the ratio between left and 

right lateral ventricle volumes. Values that deviated from 1 indicated asymmetry where one 

ventricle was larger than the other. For male and female groups, HET and WT mice showed no 

significant difference in lateral ventricle symmetry at a single time point or between time points 

for each genotype (Figure 3-10). For female HET mice, asymmetry increased over time (Figure 

3-10A).  It should be noted that the standard deviations were very large for most groups of mice 

at all time points, so that differences that were apparent were not statistically significant. 

 

Lateral Ventricle Asymmetry  

Schizophrenia patients are known to exhibit lateral ventricle asymmetry where the left 

lateral ventricle is larger than the right (Chance et al., 2002; Petty, 1999). However, the opposite 

Figure 3-10. Mean left to right lateral ventricle volume ratio ± SD of A. wild-type (WT) and GCPII+/- 
heterozygous (HET) females and B. WT and HET males from postnatal day 35 to 63. Key above each 
group indicates sex and genotype. Data from the same mice were collected over time. Regions were 
manually traced and volume was calculated using the Region of Interest tool on Analyze 10.0. 
Asterisks indicate significant differences (p < 0.05) as determined with unpaired two-tailed student t-
tests assuming unequal variances. No asterisks indicate a lack of significant findings. 

 



 

49 

has also been found in schizophrenia patients, where the right lateral ventricle is larger than the 

left (Meduri et al., 2010). Previous work in our lab found no difference in lateral ventricle 

asymmetry in male and female HET mice compared to controls (Mu, 2011). While we similarly 

found no difference in lateral ventricle symmetry between HET and WT mice, female HET mice 

exhibit a trend where the left lateral ventricle was larger than the right lateral ventricle. A greater 

sample size is needed to reach statistical significance, as these trends were only apparent and not 

significant. 

 

Hippocampus to Whole Brain Volume Ratio Results 

Male WT (t(10) = 1.812, p = 0.02) and female HET (t(12) = 1.782, p = 0.02) mice 

showed significant increase in hippocampus to WBV ratio from PND 35 to PND 63 (Figure 3-7). 

There was a trend towards significance where female WT mice showed an increase in 

hippocampus to WBV ratio from PND 35 to PND 63 (t(12) = 1.782, p = 0.053; Figure 3-7A). 

For male WT, female WT, and female HET mice, hippocampus to WBV ratio increased over 

time. 
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Hippocampal Asymmetry 

Hippocampal asymmetry was measured by determining the ratio between left and right 

hippocampus volumes (Figure 3-8). Values that deviated from 1 indicated asymmetry, where one 

side of the hippocampus was larger than the other. Male HET mice had significantly greater 

asymmetry in hippocampi compared to male WT mice on PND 49 (t(8) = 1.860, p < .01; Figure 

3-8B) . For all time points, male HET mice show greater hippocampi asymmetry than male WT 

mice (Figure 3-8B). Conversely, female WT mice showed greater hippocampi asymmetry than 

female HET mice at all time points (Figure 3-8A).  

Figure 3-7. Mean hippocampus to whole brain volume ratio ± SD of A. wild-type (WT) and GCPII+/- 
heterozygous (HET) females and B. WT and HET males from postnatal day 35 to 63. Key above each 
group indicates sex and genotype. Data from the same mice were collected over time. Regions were 
manually traced and volume was calculated using the Region of Interest tool on Analyze 10.0. * indicates 
significant developmental difference (p < 0.05) within a genotype and between two time points as 
determined with paired two-tailed t-tests. † indicates a trend towards significant developmental difference 
between time points (0.05 < p < 0.07). 
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Hippocampus Development and Asymmetry 

The hippocampus is known to exhibit abnormal function and structure in schizophrenia 

patients. Altered synaptic wiring from the hippocampus to extrinsic connections is hypothesized 

to alter glutamatergic pathways (Harrison, 2003). Further, hippocampal abnormalities have been 

linked to neuropsychological impairments (Harrison, 2003; Heckers, 2001). For example, small 

hippocampal size is correlated to poor premorbid adjustment, a rating scale that evaluates the 

degree of achievement of developmental goals at several points of a subject's life before the 

onset of schizophrenia (Smith et al., 2003). 

Hippocampus to WBV ratios significantly increased from PND 35 to 63 for male WT, 

and female HET mice, and trended toward significance for female WT mice. This was expected 

and considered an effect of normal brain growth. Male HET mice, the one group that did not 

show a significant increase from PND 35 to 63, would likely reveal significant differences with a 

Figure 3-8. Mean left to right hippocampus volume ratio ± SD of A. wild-type (WT) and 
GCPII+/- heterozygous (HET) females and B. WT and HET males from postnatal day 35 to 63. 
Key above each group indicates sex and genotype. Data from the same mice were collected over 
time. Regions were manually traced and volume was calculated using the Region of Interest tool 
on Analyze 10.0. * indicates a significant difference (p < 0.05) between genotypes at a single time 
point as determined with unpaired two-tailed t-tests assuming unequal variances.  
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larger sample size as the growth is apparent but not significant. Studies have found reduced 

hippocampal volume in schizophrenia patients compared to controls (Chance et al., 2001; 

Harrison, 2003; Heckers, 2001; Tsai et al., 2002). Previous work in our lab also found 

hippocampus to WBV ratio to be decreased at PND 77 in male and female HET mice compared 

to controls (Mu, 2011). Our results that HET males had non-significantly smaller hippocampus 

to WBV ratios than WT males on PND 49 and 63 agree with these findings. However, these 

results require a large sample size to reach statistical significance.  

Hippocampal asymmetry is hypothesized to develop from asymmetric neural 

development (Harrison, 2003). Structural imaging studies have found hippocampal asymmetry 

where the left hippocampus is smaller than the right hippocampus in schizophrenia patients 

compared to controls (Harrison, 2003; Heckers, 2001). Previous works in our lab have found the 

left to right hippocampus ratio in male and female HET mice to be higher than controls (Mu, 

2011). We found that male HET mice had significantly greater left to right hippocampus ratios 

compared to male WT mice on PND 49 and non-significantly greater ratios compared to WT 

mice on PND 35 and 63. Our findings agree with the previous studies in terms of identifying 

asymmetry. However, we found the opposite asymmetry than human studies. More studies on 

how the left and right hemispheres of a mouse brain correspond to the left and right side of a 

human brain would help elucidate our results.  

The significant increase in asymmetry from PND 35 to 49 for male HET mice could be 

indicative of disease progression. Interestingly, results from the female group differ from those 

in males, where female WT mice exhibited a trend of greater asymmetry than female HET mice 

at all time points. These trends are apparent at PND 35 and 49 for female mice and on PND 49 

and 63 for male mice, but are not significant. Our results on hippocampal asymmetry would be 
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more conclusive if consistent significance differences could be identified at multiple time points. 

Data from a larger sample size or later time points may reveal these differences.  

 

Individual Volume Trends 

Volume trends for one mouse of each genotype and sex from the same litter were 

examined to determine individual volume trends. Mouse 459 (WT-M), 458 (HET-M), 463 (WT-

F), 462 (HET-F) from Litter 77 were used for this analysis (Figure 3-11). Third ventricle volume 

was different for HET and WT genotypes (Figure 3-11E). At all time points, male and female 

HET mice in this litter had larger third ventricle volumes than male and female WT mice (Figure 

3-11E). An enlarged third ventricle is a known characteristic of schizophrenia patients compared 

to controls (Nakamura et al., 2004; Shenton et al., 2001; Tsai et al., 2002). These differences 

were not apparent at all time points when data from several mice were combined, which suggest 

there may be a litter effect. This is possible, as the volume of certain brain structures, such as the 

ventricles (Reveley et al., 1984) and whole brain (Bartley et al., 1997), are determined by genetic 

factors.  



 

54 

 

Figure 3-11. Volume of brain structures for a wild-type (WT)-male (M), GCPII+/- heterozygous 
(HET)-M, WT-F, and HET-F mouse (459, 458, 463, 462) from PND 35 to 63. All mice were from the 
same litter (77). Regions analyzed were A. Whole brain (WB) B. Cerebellum (C) C. Hipocampus (HP) 
D. Lateral ventricles (LV) E. third ventricle (3V) F. fourth ventricle (4V) G. Left to right hippocampus 
ratio (L/R HP) H. Left to right lateral ventricle ratio (L/R LV). Key on the bottom right indicates 
genotype and sex of each mouse. Regions were manually traced and volume was calculated using the 
Region of Interest tool on Analyze 10.0.  
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Summary of MRI Findings  

- * Sex differences were found in cerebellum/WB for HET and WT mice and hippocampi 

asymmetry for HET mice 

- HET and WT mice exhibited similar development in WBV and hippocampus to WBV 

ratio 

- WBV was significantly greater for female HET mice compared to female WT mice at 

PND 63.  

- Cerebellum to WBV ratio was significantly higher in male HET mice than male WT at 

all time points, but was only significant on PND 63. Cerebellum to WBV was 

significantly higher in female WT mice compared to female HET mice, but was only 

significant on PND 63.  

- * Fourth ventricle to WBV ratio was significantly higher in male HET mice than male 

WT mice on PND 49  

- * Third ventricle to WBV ratio was significantly higher in female HET mice than female 

WT mice on PND 35 

- * Lateral ventricle to WBV ratio was greater in female HET mice than female WT mice 

at all time points, but was only significant on PND 35 

- * Hippocampi asymmetry was greater in male HET mice than male WT mice at all time 

points, but only significant on PND 49 

 
An * indicates findings that were consistent with literature results for schizophrenia patients 
compared to controls.  
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3.2  Magnetic Resonance Spectroscopy  

MRS data were collected from a 4x3x2 mm3 (24 µL) voxel positioned on the 

hippocampus in same HET males (n = 2), WT males (n = 6), HET females (n = 7), and WT 

females (n = 7) on PND 35/36, 49/50, and 63/64. Two of the HET males used for MRI data 

could not be used for MRS data due to instrument difficulties that occurred at one time point. 

Metabolite peak areas were divided by the area of Cr (3.0 ppm), an internal standard, and 

averaged for each time point. The metabolite ratios of (NAA+NAAG)/Cr, Tau/Cr, Cho/Cr, and 

Glx/Cr were analyzed (Table 3-2). 

 

Sexual Dimorphism 

Metabolite differences between male and female mice were examined in HET and WT 

brain structures (Figure 3-12 and 3-13). Cho/Cr ratios were lower in HET males than females on 

PND 49 (t(7) = 1.895, p = 0.02; Figure 3-12C). This contrasts with a study by Buckley et al. 

(1994) that found male schizophrenic patients have less NAA and more Cho in the frontal cortex 

compared to male controls and female schizophrenia patients, but this study looked at a different 

brain structure. No differences were found between male and female WT mice (Figure 3-13). 

These findings agree with a study by Charles et al. (1994) that found no differences in Cho or 

NAA levels between males or females in grey or white matter. No studies report differences in 

Tau and Glx metabolite levels between male and female humans or mice.  

Our MRS findings, in conjunction with volume data, are supportive of sex differences 

between male and female mice. In order to control for sex differences, all MRS analyses were 

grouped by sex. 
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Figure 3-12. Mean metabolite concentration ratio ± SD between GCPII+/- heterozygous (HET) males (M) and 
females (F) from postnatal day 35 to 63. A. Glutamate and Glutamine/Creatine concentration ratio (Glx/Cr), B. 
Taurine/Crconcentration ratio (Tau/Cr), C. Choline/Cr concentration ratio (Cho/Cr), D. N-acetylaspartate and N-
acetylaspartylglutamate/Cr (NAA+NAAG/Cr). Key on the bottom indicates sex and genotype. Data from the 
same mice were collected over time. Bruker Topspin 1.5 was used to fit a Gaussian peak underneath each 
metabolite peak and quantify metabolite concentration. * indicates a significant difference (p < 0.05) as 
determined with unpaired two-tailed student t-tests assuming unequal variances.  
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Figure 3-13. Mean metabolite concentration ratio ± SD between GCPII+/- wild-type (WT) males (M) and 
females (F) from postnatal day 35 to 63. A. Glutamate and Glutamine/Creatine concentration ratio (Glx/Cr), 
B. Taurine/Crconcentration ratio (Tau/Cr), C. Choline/Cr concentration ratio (Cho/Cr), D. N-acetylaspartate 
and N-acetylaspartylglutamate/Cr (NAA+NAAG/Cr). Key on the bottom indicates sex and genotype. Data 
from the same mice were collected over time. Bruker Topspin 1.5 was used to fit a Gaussian peak 
underneath each metabolite peak and quantify metabolite concentration. * indicates a significant difference 
(p < 0.05) as determined with unpaired two-tailed student t-tests assuming unequal variances. No * indicates 
no significant differences. 
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Our MRS findings, in conjunction with volume data, are supportive of sex differences 

between male and female mice. In order to control for sex differences, all MRS analyses were 

grouped by sex (Table 3-2).  

 
 
 
N-acetylaspartate and N-acetylaspartylglutamate to Creatine Results 
 

(NAA+NAAG)/Cr ratios in the hippocampus of male HET mice were higher than for 

male WT mice on PND 35 and trended towards significance (t(6) = 1.943, p = 0.048; Figure 3-

14B). At all time points, male HET mice had higher ratios of (NAA+NAAG)/Cr compared to 

male WT mice but they were not significant at later time points. Female WT, female HET, and 

male WT mice exhibited non-significant increases in (NAA+NAAG)/Cr ratios over time (Figure 

3-14). For female mice, no significant differences were found at any time point or between time 

points for either genotype (Figure 3-14A). 

Table 3-2. MRS metabolite data for male WT, male HET, female WT, and female HET mice. A. * 
indicates a significant difference between WT and HET mice at that time point (p < 0.05). † indicates 
a trend towards significance between WT and HET mice (0.05 < p < 0.07). B. * indicates a significant 
developmental difference between indicated time points within a genotype and sex (p < 0.05). † 
indicates a trend towards significant developmental difference between time points (0.05 < p < 0.07). 
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NAA and NAAG levels in HET mice compared to Schizophrenia Patients 

Studies on NAA in schizophrenia patients have found reduced levels in the hippocampus 

(Bertolino et al., 1997; Deicken et al., 1998; Nasrallah et al., 1994; Pegues et al., 2000; Steen et 

al., 2005) and reduced ratios of NAA/Cr in the left hippocampus (Deicken et al., 1998; Miyaoka 

et al., 2004). The opposite has also been found, where NAA levels were found to be higher in the 

hippocampus of schizophrenia patients compared to controls (Lutkenhoff et al., 2010). Previous 

work in our lab also found no differences in (NAA+NAAG)/Cr ratios in the hippocampus of 

male and female HET mice compared to controls (Mu, 2011). These results disagree with our 

findings, but this is not surprising as males and female data were analyzed separately in this 

study. Few studies have examined the combined ratio NAA and NAAG to Cr in the 

hippocampus. Our study that analyzed ex vivo metabolite levels in the cortex of the same mouse 

model (GCPII+/- HET) found no effect of genotype on (NAA+NAAG)/Cr compared to controls 

Figure 3-14. Mean N-acetylaspartate and N-acetylaspartylglutamate/creatine (NAA+NAAG/Cr) concentration 
ratio ± SD between A. wild-type (WT) and GCPII+/- heterozygous (HET) females and B. WT and HET males 
from postnatal day 35 to 63. Keys above graphs indicate sex and genotype. Data from the same mice were 
collected over time. Bruker Topspin 1.5 was used to fit a Gaussian peak underneath each metabolite peak and 
quantify metabolite concentration. * indicates a significant difference (p < 0.05) as determined with unpaired 
two-tailed student t-tests assuming unequal variances.  
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(Schaevitz et al., 2011). Another study by Tsai et al. (1995) reported increased levels of NAAG 

in the hippocampus, but no significant changes of NAA in schizophrenia patients compared to 

controls. Additionally, Kegeles et al. (2000) and Sigmundsson et al. (2003) found no abnormal 

NAA levels in the hippocampus of schizophrenia patients compared to controls.  

We found that male HET mice had higher ratios of (NAA+NAAG)/Cr that trended 

towards significance on PND 35 and non-significantly higher ratios of (NAA+NAAG)/Cr on 

PND 49 and 63 compared to male WT mice. These findings strongly support studies that report 

increased levels of NAA (Lutkenhoff et al., 2010) or increased levels of NAAG (Tsai et al., 

1995) with slightly decreased (Bertolino et al., 1997; Deicken et al., 1998; Nasrallah et al., 1994; 

Miyaoka et al., 2004) or no changes (Kegeles et al., 2000; Sigmundsson et al. (2003); Tsai et al., 

1995) in levels of NAA in the hippocampus of schizophrenia patients compared to controls. 

Increased levels of NAAG and proportionally smaller decreased levels of NAA in male HET 

mice compared to controls are most consistent with reduced GCPII enzyme function as GCPII is 

responsible for cleaving NAAG into NAA and Glu. We could not confirm or reject other 

combinations of increased, decreased, or lack of change in levels of NAA and NAAG as these 

metabolites could not be separately resolved in our spectra.  

NMDAR hypofunction, the basis of the glutamate hypothesis, arises from a combination 

of reduced glutamate release and increased NMDAR antagonism by NAAG. Elevated levels of 

NAAG would suggest increased NMDAR inhibition and decreased levels of NAA may reflect 

decreased neuronal density or hypometabolism in schizophrenia patients compared to controls 

(Bracken et al., 2011). Thus our findings are consistent with the glutamate hypothesis if 

increased ratios of (NAAG+NAA)/Cr in the hippocampus correspond to increased levels of 

NAAG and decreased levels of NAA. These results were unexpected as we hypothesized that 
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HET mice would exhibit increased levels of NAAG, with an even greater reduction in levels of 

NAA such that (NAA+NAAG)/Cr would be reduced.  

Our findings are interesting as they contribute to findings of NAA abnormalities in 

schizophrenia patients compared to controls. Differences in (NAA+NAAG)/Cr levels between 

male HET and WT mice on PND 35, 49, and 63 were apparent, yet not significant. A larger 

sample size would be needed to attain statistical significance. Further, the ability to resolve NAA 

and NAAG separately would also make our results more conclusive.  

 

Taurine to Creatine Results 

 
Tau/Cr ratios significantly decreased from PND 35 to 63 for female HET mice (t(12) = 

1.782, p = 0.0248; Figure 3-15A). For male mice, no significant differences were found at any 

time point or between time points for either genotype (Figure 3-15B). 

 

Figure 3-15. Mean taurine/creatine (Tau/Cr) concentration ratio ± SD between A. wild-type (WT) and 
GCPII+/- heterozygous (HET) females and B. WT and HET males from postnatal day 35 to 63. Keys 
above graph indicate sex and genotype. Data from the same mice were collected over time. Bruker 
Topspin 1.5 was used to fit a Gaussian peak underneath each metabolite peak and quantify metabolite 
concentration. * indicates a significant difference (p < 0.05) as determined with unpaired two-tailed 
student t-tests assuming unequal variances.  
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Developmental Changes in Tau 

Few studies have reported abnormalities in Tau levels in the hippocampus of 

schizophrenia patients. One study that examined metabolite levels in the medial prefrontal cortex 

found increased levels of Tau in schizophrenia patients compared to controls (Shirayama et al., 

2010). Interestingly, we found that Tau levels in male HET mice significantly decreased from 

PND 35 to 63. A similar result was previously found in our lab, where male and female WT mice 

exhibited a significant decrease in Tau levels from PND 35 to PND 63 (Mu, 2011). A larger 

sample size would likely reveal similar findings for the WT mice in this study. These results 

suggest that HET mice reflect behavior of WT mice and that Tau/Cr ratios may not be a useful 

indicator of schizophrenia. Alternatively, Tau abnormalities in schizophrenia patients may exist, 

but our results are limited by our ability to resolve the Tau peak.  

 

Choline to Creatine Results 

Female HET and WT mice exhibited significant changes in Cho/Cr ratios over time 

(Figure 3-16A). Female HET mice showed a significant increase in Cho/Cr ratios from PND 35 

to 63 (t(12) = 1.782, p = 0.0183) and PND 35 to 49 (t(12) = 1.782, p = 0.0006), and a significant 

decrease from PND 49 to 63 (t(12) = 1.782, p = 0.0323; Figure 3-16A). Female WT mice 

showed an increase in Cho/Cr ratios from PND 35 to 63 (t(12) = 1.782, p = 0.0076) and 35 to 49 

(t(12) = 1.782, p = 0.0086; Figure 3-16A). Male HET mice exhibited a trend of increased Cho/Cr 

ratios over time (Figure 3-16B).  
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Developmental Changes in Cho 

Studies disagree on how Cho levels are affected in the hippocampus of schizophrenia 

patients. Reduced (Maier et al., 1995), increased (Lutkenhoff et al., 2010), and unchanged 

(Deicken et al., 1998; Delamillieure et al., 2002) levels of Cho have been found in the 

hippocampus of schizophrenia patients compared to controls. Our finding that there are no 

differences between HET and WT mice agrees with studies that propose no Cho abnormalities in 

the hippocampus of schizophrenia patients compared to controls. This is further confirmed by 

our finding that female WT and HET mice exhibit similar development trends from PND 35 to 

49 and PND 35 to 63. Few studies have conducted longitudinal assessment of metabolite levels 

in schizophrenia over time. Previous work in our lab found an increase in Cho/Cr levels from 

PND 35 to 49 in male and female WT mice (Mu, 2011). However, the implications of this 

Figure 3-16. Mean choline/creatine (Cho/Cr) concentration ratio ± SD between A. wild-type (WT) and 
GCPII+/- heterozygous (HET) females and B. WT and HET males from postnatal day 35 to 63. Data from the 
same mice were collected over time. Bruker Topspin 1.5 was used to fit a Gaussian peak underneath each 
metabolite peak and quantify metabolite concentration. * indicates a significant difference (p < 0.05) as 
determined with unpaired two-tailed student t-tests assuming unequal variances. †indicates a trend towards a 
significant difference between genotypes at a single time point (0.05 < p < 0.07). 
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change are unclear (Mu, 2011). The changes in Cho levels observed in females could reflect 

specific changes in the development of neural membrane composition. The lack of difference 

between HET and WT mice shows that phospholipid membrane turnover is not changed in 

schizophrenia. This confirms that schizophrenia is a neurodevelopmental, not neurodegenerative, 

disorder.  Based on our findings, Cho/Cr ratios are not a good indicator of schizophrenia. 

 

Glutamate and Glutamine to Creatine Results 

There were no significant differences found for Glx/Cr ratios at any time point or 

between time points for either sex or genotype (Figure 3-17). 

 

 

 

Figure 3-17. Mean glutamate and glutamine/creatine (Glx/Cr) concentration ratio ± SD between A. wild-
type (WT) and GCPII+/- heterozygous (HET) females and B. WT and HET males from postnatal day 35 to 
63. Keys above graphs indicate sex and genotype. Data from the same mice were collected over time. 
Bruker Topspin 1.5 was used to fit a Gaussian peak underneath each metabolite peak and quantify 
metabolite concentration. * indicates a significant difference (p < 0.05) as determined with unpaired two-
tailed student t-tests assuming unequal variances. No asterisks indicate the lack of significant findings. 
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Glx and Relevance to the Glutamate Hypothesis 
 

Glx or Glx/Cr ratios were found to be increased (Chang et al. 2007), decreased 

(Ohrmannet al., 2007), and the same (Bustillo et al., 2001, Wood et al., 2008) in various brain 

structures (white matter, prefrontal cortex, broad brain region, and hippocampus) of 

schizophrenia patients compared to controls. Previous work that combined male and female data 

found complex trends in Glx/Cr ratios where HET mice had higher Glx/Cr ratios than WT mice 

on PND 63 and Glx/Cr levels significantly increased from PND 49 to 63 for HET mice (Mu, 

2011). Our finding, that there were no differences in Glx/Cr ratios between HET and WT mice, 

contrasts with previous work, yet supports studies that found no differences in Glx/Cr ratios 

between schizophrenia patients and controls. Our study that analyzed ex vivo metabolite levels in 

the cortex of the same mouse model (GCPII+/- HET) similarly found no effect of genotype on 

Glx/Cr ratios (Schaevitz et al., 2011).  

The glutamate hypothesis is based on NMDAR hypofunction, which is caused by 

reduced Glu and increased NMDAR antagonism by NAAG. We expected Glx/Cr ratios to be 

reduced in HET mice compared to controls to reflect decreased levels of Glu, as Tsai et al. 

(1995) found Glu levels were reduced in the hippocampus of schizophrenia patients compared to 

controls. However, we found Glx/Cr ratios to remain unchanged between genotypes. These 

results were not surprising as Glu and Gln are separately affected in schizophrenia. Glx is a 

combined measurement of the metabolites of Glu and Gln and reflects the total glutamatergic 

pool available for synaptic–metabolic activity while separate levels of Glu and Gln reflect their 

respective distribution in neuronal and glial cells (Yuksel and Ongur, 2005). Though Glx/Cr 

ratios remained the same, it was possible that the proportions of Glu to Gln were different 

between genotypes.  
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Schaevitz et al. (2011) found the Glu to Gln ratio was significantly increased by 15% in 

the cortex of HET mice compared to controls, but determined no difference in Glu/Cr or Gln/Cr 

levels. The increased Glu to Gln ratio was hypothesized to occur from a decrease in glutamine 

levels rather than a change in glutamate levels (Shaevtiz et al., 2011). An increased Glu/Gln ratio 

reflects reduced glutamatergic neurotransmission, as Gln is a precursor to Glu (Yuksel and 

Ongur, 2005). Glutamate-glutamine cycles that reflect this imbalance have been found in rodents 

given NMDAR antagonists (Schaevitz et al., 2011). This is promising as GCPII regulates 

NMDAR function and NMDAR antagonists in normal individuals mimic the biochemical 

pathways of schizophrenia. 

Few studies have specifically examined Glu and Gln in the hippocampus, which makes it 

difficult to compare our results.  Further, there is a wide range of possibilities for the Glu to Gln 

ratio in HET mice compared to controls. Given what previous studies have found, our results 

support an increased Glu/Gln ratio, which aligns with reduced GCPII function. The ability to 

separately resolve Glu and Gln would likely make our results more conclusive as changes in 

these metabolite levels are an indirect way of determining NMDAR function.  

 
Individual Metabolite Level Trends 

Metabolite/Cr trends for four mice, one mouse of each genotype and sex, from the same 

litter were examined (Figure 3-18). Mouse 459 (WT-M), 458 (HET-M), 463 (WT-F), 462 (HET-

F) from Litter 77 were used for this analysis. These were the same mice used to investigate 

individual volume trends.  
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Female HET and WT mice had higher Tau/Cr levels than male HET and WT mice at all 

time points (Figure 3-18B), suggesting a sex difference. No studies could be found that reported 

sex differences in Tau or Tau/Cr levels in humans or mice. Tau acts as a neuroprotectant and 

levels of Tau are hypothesized to elevate in response to increased oxidative stress. The release of 

different sex hormones may result in synaptic wiring that alters stress responses, thereby 

affecting Tau levels.  

Figure 3-18. Metabolite/creatine (Cr; 3.0 ppm) levels in the hippocampus of a wild-type (WT)-male 
(M), GCPII+/- heterozygous (HET)-M, WT-F, and HET-F mouse (459, 458, 463,462) from PND 35 to 
63. All mice were from the same litter (77). Metabolites analyzed were A. Glutamine and Glutamate 
(Glx) /Cr B. Taurine (Tau)/Cr C. Choline (Cho)/Cr D.  Key on the bottom indicates genotype and sex of 
each mouse.  Bruker Topspin 1.5 was used to fit a Gaussian peak underneath each metabolite peak and 
quantify metabolite concentration.  
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Female HET and WT mice had higher Cho/Cr levels than HET and WT males at all time 

points (Figure 3-18C). These findings agree with a study by Buckley et al. (1994) that found 

male schizophrenic patients had less NAA and more Cho in frontal cortex compared to female 

patients. 

Male HET and WT (NAA+NAAG)/Cr levels were slightly greater than those of female 

HET and WT mice on PND 49 (Figure 3-18D). This contrasts with a study by Charles et al. 

(1994) that found no differences in NAA levels between males and females, and a study by 

Buckley et al. (1994) that found male schizophrenic patients had less NAA in frontal cortex 

compared to female patients. However, it is difficult to align our results with these findings as we 

examined a different brain region and could not resolve NAA and NAAG separately.  

Glx/Cr trends were the least clear. The female HET mouse appeared to have a much 

lower Glx/Cr than all other mice at all time points (Figure 3-18A). This was interesting, as no 

studies have reported differences in Glx metabolite levels between male and female humans or 

mice. 

All observed differences were not apparent when data from several mice were combined, 

suggesting a litter effect. With a larger sample size, it would be possible to see if characteristics 

of schizophrenia are affected by litter differences.  
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Summary of MRS Findings 

- Sex differences were found in Cho/Cr ratios for HET mice 

- There were no significant differences between HET and WT mice in NAA/Cr, Cho/Cr, 

Tau/Cr or Glx/Cr ratios at any time point 

- HET and WT mice exhibited similar development in Cho/Cr ratios 

- Tau/Cr levels significantly decreased from PND 35 to 63 for female HET mice. 

- (NAA+NAAG)/Cr ratios were greater for male HET mice than male WT mice at all time 

points and trended towards significance on PND 35. 

 

While MRS findings did not reveal significant differences between genotypes, we found 

interesting developing trends that may be attributed to reduced GCPII function. 

 

4  General Conclusions and Future Work 
In this study, we found distinct morphological, neurochemical and sex differences in 

HET mice compared to WT mice. Volume data showed HET mice to exhibit asymmetric 

hippocampi and enlarged ventricle (fourth, third, and lateral) to WBV ratios. Metabolite data 

showed apparent differences in (NAA+NAAG)/Cr levels, but no significant effect of genotype 

on (NAA+NAAG)/Cr, Cho/Cr, Tau/Cr, or Glx/Cr ratios. Sex differences were found in 

cerebellum to WBV ratios of HET and WT mice, and hippocampus asymmetry and Cho/Cr 

levels in HET mice. Future work should increase the sample size such that differences between 

genotypes are significant at multiple time points. Later time points may also reveal distinct 

differences between genotypes. This is especially true for volume data, as certain brain structures 

may exhibit progressive growth or delayed, abnormal growth in schizophrenia patients. It is also 

possible that the mutation in this mouse model does not reflect all morphological and 

neurochemical characteristics of schizophrenia in humans. 
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There are other factors that may have contributed to fewer than expected significant 

differences. Difficulties in tracing may have caused large standard deviations in the volume data, 

as certain structures, such as the hippocampus and lateral ventricles, were difficult to trace if the 

outline of the structure was not apparent. For metabolite data, the Glx and (NAA+NAAG) peak 

each represented two metabolites, Glu and Gln and NAA and NAAG, respectively. The ability to 

separately resolve Glu, Gln, NAA, and NAAG would allow us to determine the exact 

concentration of each metabolite and make our results more conclusive. In the future, ex vivo 

studies could compare metabolite levels in the hippocampus of HET mice compared to controls. 

It would also be interesting to see how ex vivo data from the hippocampus compare to in vivo 

results from the cortex and ex vivo data from the cortex (Schaevtiz et al., 2011).  

Results from individual volume and metabolite ratio trends indicated the possibility of 

litter effects. Future work should investigate these effects by quantifying individual brain volume 

or metabolite ratios of mice in the same litter with the same sex and genotype for each time 

point. Additionally, it would also be interesting to see if the litter effects are related to weight, as 

mice in the same litter tend to be in the same weight range. 

Our findings from this study are exciting, as they show that the GCPII+/- mouse model 

mimics several of the characteristics of schizophrenia and that reduced GCPII function replicates 

certain aspects of the biochemical pathways in schizophrenia. This study has widened our 

understanding of the morphological and neurochemical abnormalities that may arise from 

reduced GCPII function in schizophrenia. With a greater sample size, this mouse model has the 

potential to test treatments that focus on the glutamatergic pathways of schizophrenia, offering 

help to those affected by this debilitating psychiatric disorder. 
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Appendix A: Tracing Guide 
  

This guide should be used as a reference for tracing structures in a mouse brain. Below 
are twenty-one contiguous slices, or images, of a male HET mouse brain on PND 35. Each 
image is labeled with a number and as the number increases, the images go from posterior (back) 
to anterior (front) of the brain. Notes on tracing appear underneath the images. Some regions 
may be difficult to trace due to lack of distinction or outline, thus it may be necessary to refer to 
a mouse brain atlas and/or use your best judgment. When tracing, the most important thing to 
remember is to be consistent in how you define a region.  
 

Regions of interest were traced using the region of interest tool in Analyze 10.0, image 
analysis software. Each region is outlined by a different color and labeled with an abbreviation 
(Table AA-1) 
 
Table AA-1. Abbreviation and outline color of brain regions and images in which the regions 
were traced.  
 

Brain Region  Abbreviation  Outline Color  Images with the Region 
Whole Brain  WB  Red  All 
Cerebellum  CB  Green  2,3,4,5,6 

Fourth Ventricle  4V  Yellow  3,4,5 
Left Hippocampus  L-HP  Dark Blue  8,9,10,11 

Right Hippocampus  R-HP  Bright Purple  8,9,10,11 
Left Lateral Ventricle  L-LV  Teal  9,10,11,12,13,14 

Right Lateral 
Ventricle  R-LV  White  9,10,11,12,13,14 

Third Ventricle  3V  Peach  9,10,11,12,13 
 
 

 
 
Images 1-3 

Tracing begins in the most posterior slice that the cerebellum can be seen (Image #2). 
The cerebellum is recognizable as it appears striated and rests on top of the brain stem. In slices 
with the cerebellum, the whole brain region is traced as all tissue excluding the cerebellum. 
While this may seem like the cerebellum isn’t part of the whole brain, whole brain volume is 
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calculated as a summation of all regions traced during analysis. The fourth ventricle appears 
white and triangle-shaped (Image #3). 
 

If there are smaller regions to be traced inside a larger region, such as the fourth ventricle 
within the whole brain in Image #3, then the larger region is traced first such that the smaller 
region is not “over-traced” (middle arrow, Image #3). Avoid tracing external areas that appear 
white as they are likely fat or connective tissue and not part of any brain region (bottom arrow, 
Image #3) 
 

 
 
 
Images 4-6 

The lobes of the cerebellum, or paraflocculi, appear in Image #4. Occasionally the 
paraflocculi will appear disconnected from the brain, but they should still be traced. In Image #6, 
the colliculi appear and should be traced as part of the whole brain (top arrow). The cerebellum 
is distinct from the whole brain in Image #6, as it is striated. 
 

 
 
Images 7-9 

The left and right hippocampi appear in Image #8. The left and right lateral ventricles 
appear white in Image #9 and are usually adjacent to the left and right hippocampi, respectively. 
Also in image #9 is the third ventricle down the center; the third ventricle may not appear 
connected. In image #9, the bottom arrows indicate connective tissues that should not be traced. 
The connective tissues are distinctly triangle-shaped. 
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Images 10-12 

Continue tracing the left and right hippocampi, left and right lateral ventricles, and third 
ventricle. Again, the connective tissues that appear triangle-shaped should not be traced. In 
Image #12, the lateral ventricles connect with the third ventricle. In our tracing we defined the 
lateral ventricles as outer edges right up until they curve inward.  
 

 
 
Image 13-15 

Continue tracing the left and right lateral ventricles, and third ventricle. Eventually, the 
third ventricle ends (Image #13) and the lateral ventricles continue (#14). 
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Images 16-21 

Continue tracing the whole brain until there is no more brain tissue to trace. Generally, 
there is no more to trace when the eyes are no longer visible (Image #21). 
 
Other important notes (Mu, 2011) 
 

• When tracing, you will often not be able to finish tracing an entire region without lifting 
the pen. When adding to the region, use the edit tool; do NOT continue using the trace 
tool. Otherwise when the area is being calculated a chunk will be missing in the middle 
as shown below- 
 

 
 
 
 

• The “undo” button is near the bottom of the window. Pressing Ctrl + Z does not work. 
• The “delete button” is near the undo button, and is a picture of a trash can. 
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• Pressing “Esc” on the keyboard will force quit the ROI window, and deletes any unsaved 
work. Analyze will not save any work automatically. Save often and avoid that corner of 
the keyboard! 
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Appendix B: The R168X Mouse Model of Rett Syndrome and Viability 
 

Rett syndrome (RTT) is a neurodevelopmental disorder that is the second leading cause 
of mental retardation in girls. RTT is primarily caused by a random mutation in the X-linked 
gene that encodes methyl-CpG-binding protein 2 (MeCP2; Rett Syndrome Fact Sheet, 2007). 
MeCP2 specifically binds to methylated DNA and regulates the transcription of other genes. If 
MeCP2 is mutated, insufficient or abnormal amounts of MeCP2 are produced which leads to 
irregular expression of these regulated genes (Chen, 2001). The effects of the mutation are 
severely debilitating; symptoms of RTT, such as breathing abnormalities, are often responsible 
for premature deaths. There is no cure for RTT and effective treatments are limited because early 
diagnosis is difficult.  

Previous work in this lab attempted to establish early detection and monitoring methods 
for RTT treatment development by investigating, in vivo, the longitudinal brain morphology and 
neurochemical profile of MeCP2R168X , a mouse model of RTT (Huang, 2011). These mice are 
unique in that they have R168X, one of the most common mutations in patients with RTT, 
knocked into the Mecp2 gene. The Mecp2R168X mouse model exhibits many features similar to 
RTT, such as hypoactivity, forelimb stereotypies, breathing irregularities, weight changes, hind 
limb atrophy, scoliosis, and a reduction in UBE3A RNA and protein products (Lawson-Yuen, 
2007).  
 

Through a longitudinal study on the MeCP2R168X mouse model, we hoped to better 
understand the developmental and neurochemical basis of RTT to identify, monitor, and treat 
RTT. We hypothesized that our findings on the MeCP2R168X mouse model would reflect studies 
conducted on RTT patients and other mouse models of RTT. However, breeding and breathing-
related complications arose that prompted us to terminate this study. 

 
The non-invasive techniques of Magnetic Resonance Imaging (MRI) and Spectroscopy 

(MRS) were used to examine male mutated (null) and normal (wild-type; WT) mice on postnatal 
days (PND) 21, 28, 35, and 49. In this study, only male mice were examined because null male 
mice exhibit more severe symptoms of RTT compared to the mutant, or heterozygous, female 
counterparts. MRI allowed us to visualize brain structures and quantify their volumes, which 
reflect neural development. With MRS, we determined neurometabolite concentrations, whose 
levels are known to be indicators of neuronal health. MRS data were collected from the 
hippocampus, a region in the brain known to function differently in RTT patients.  
 

In early experiments, breathing abnormalities were observed- null mice exhibited shallow 
breathing or would cease breathing for brief intervals. Over time, breathing abnormalities in the 
new litters were more severe. Mice are normally sensitive to the isoflurane, where a slight 
decrease or increase in % isoflurane/O2 gradually causes breaths per minute (bpm) to increase or 
decrease, respectively. However, null mice appeared to be hypersensitive to isoflurane increases, 
but resistant to decreases. For example, if isoflurane/O2 levels were increased slightly, bpm 
would plummet, but when isoflurane/O2 levels were decreased, bpm would remain constant or 
continue to fall. Null mice survived the two hour-long experiments, but ceased breathing post-
anesthesia during recovery on a heating pad. When the mice were genotyped, it was determined 
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that all the mice that had died were null. The cause of death was likely related to breathing 
abnormalities from the MeCP2 mutation combined with stress and isoflurane exposure.  

Plasma levels of epineprhine are known to increase in isoflurane-anesthesized in 
MeCP21lox mice, a different MeCP2 deficient model, compared to controls (Ladas et al., 2009). 
Ladas et al. (2009) hypothesized that this hypersecretory phenotype may alter the sensitivity of 
MeCP2 null mice to stress. Our experiments found that null mice exhibited an exaggerated 
response to stress compared to control, which confirms these findings.  

Upon consultation with the Wellesley College veterinarian, Dr. Lynn Jackson, it was 
determined that the R168X mutation was becoming more severe as the mice exhibited more 
genetic homogeneity. Backcrossed mice older than six generations began to exhibit almost 
exclusively homozygous or hetereozygous characteristics (Figure AB-1). Our null mice were 
backcrossed for approximately six generations and were congenic to heterozygous mice at the 
loci of the R168X mutation. 
 

 
Figure AB-1. Genomic homogeneity and heterogeneity during the creation of a congenic strain.  
The reciprocal points on each line indicate the percentage of loci in the genome of each 
individual animal that will be homozygous for the inbred partner allele or heterozygous with the 
donor allele at each generation backcrossing. Adapted from Wellesley College Animal Care 
Facility Manual (2011). 

Interestingly, a congenic strain is usually desirable, as homozygous and heterozygous 
mice would be 100% different at the loci of the R168X mutation and could be compared for 
phenotypic differences. However, as the loci became more homozygous in null mice, viability 
declined. Attempts to maintain loci percentage below 100% would have been ideal to maintain 
viability, but not feasible. Even if the homozygous mice were outbred to a different strain of WT 
mice to reduce percentage homozygous loci, the mice would have shortly returned to genetic 
homogeneity after several backcross generations.  

Several measures were taken to prevent mouse death. The PND 21 imaging date was 
removed to limit the amount of stress experienced in one day, as mice were also weaned, or 
removed from the mother into a separate cage, on PND 21. Isoflurane levels were kept as low as 
possible so that bpm would not plummet, however bpm fell even with low levels of isoflurane. 
Resuscitation techniques were also attempted on mice that stopped breathing during recovery. 
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The plunger of a syringe was removed and the narrow end of the syringe was inserted into the 
mouse mouth. The large and open end of the syringe was used to blow small puffs of air into the 
mouse’s mouth. This technique was not successful, as it was difficult to insert the syringe into 
the mouse’s mouth. Further, even if the syringe was thoroughly inserted, there was no seal to 
direct the air into the mouse’s lungs.  

As the experiments continued, it also became apparent that MeCP2R168X litters produced 
few progeny and fewer males than females; there were approximately two males in every litter. 
The cause of these problems were unknown, but likely related to the more severe symptoms 
experienced by male null mice compared to heterozygous female mice. These breeding problems 
made it difficult to collect data with a sample size large enough for analysis.  
 

The R168X mutation is one of the most common mutations found in human RTT patients 
and causes the most severe symptoms. These human symptoms relate to the breathing and 
breeding abnormalities issues found in the MeCP2R168X mouse model. The origins of these 
problems were thought to be associated to a hypersensitive stress response to isoflurane and null 
mice exhibiting genomic homogeneity. Attempts were made to reduce the stress-related 
breathing problems, but they were unsuccessful as the mice continued to die post-anesthesia. 
Given the inability to collect data due few male progeny and sudden post-anesthesia deaths, we 
determined that the MeCP2R168X mouse model of Rett syndrome is not viable.  
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Appendix C: Development of a “Green” MRI Phantom 
 

A phantom is an object that can hold NMR tubes to assess the image intensity of 
solutions in MRI experiments. Traditionally, these phantoms were made by suspending three 
NMR tubes in a large conical tube using agarose, a gel-like material (Figure AC-1). The 
phantom was then wrapped with paper towels until wide enough to fit securely in the MRI probe. 
The agarose used for these phantoms was expensive and could not be removed or re-used, thus a 
new phantom had to be made for every experiment. A new “green” phantom was designed to 
eliminate the need to re-make phantoms. This is a guide on how the “green” phantom was 
developed and created.  

 

 

 

Phantom Design 

The phantom had to meet the following criteria: 

- Must be re-usable 
- Must hold a several 3-mm or 5-mm NMR tubes 
- Must incorporate a way to distinguish among NMR tubes in MR images 

The first phantom design was made to be a single solid piece to be printed with a 3D printer 
(Figure AC-1). The phantom could hold four 5-mm NMR tubes. Hollow slits were positioned 
around the tube and could be filled with a contrast agent so that the solutions in each tube could 
be differentiated in an MR image.  

 

Figure AC-1. Old MRI Phantom 
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When the original phantom was created it was determined that the plastic material used in 

the 3D printer was porous and could not hold any liquid contrast agent (Figure AC-3). Further, 
the holes for the NMR tubes were too small to fit NMR tubes and the body of the phantom was 
too big to fit into the probe. This phantom taught us many lessons. We realized that 
measurements must be exact to the tenth of a millimeter and that a solid piece may not be the 
best option. 

 
 

  

 
The final phantom design incorporated pieces made from a 3D printer and laser cutter. 

Instead of being a solid piece, the phantom was made of a hollow outer-casing (Figure AC-4) 
and an NMR tube holder made of interchangeable pieces (Figure AC-5).  

Figure AC-2. Original phantom design. 

Figure AC-3. Front (left) and back (right) view of the original solid phantom. 
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The outer-casing was designed by modifying the structure of the original phantom made. 

Several short (~3 cm) hollow rings of different sizes were then printed to ensure that the 
phantom would have the correct diameter to fit snugly into the MRI probe. Once a size was 
determined, the entire outer-casing was printed with the 3D printer.  

The NMR tube holder shown in Figure AC-3 can hold eight 3-mm NMR tubes where one 

Figure AC-4. Outer-casing of phantom. 

Figure AC-5. Assembled NMR tube holder displayed on SolidWorks 
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tube can be placed outside of the ring and act as a marker. The inner pieces were designed such 
that the disks could be modified to hold a different number or type of NMR tubes. Again, pieces 
of different sizes had to be cut to determine which size allowed all the pieces to fit snugly 
together.  

Table AC-1. Images of the final phantom: 

Image  Description 
 

 
 

 

Outer-casing (above) and NMR tube 
holder with a 3-mm NMR tube (below) 

 

 
 

 

Outer-casing (right) and NMR tube 
holder with a 3-mm NMR tube (left) 

 

 
 

 

NMR tube holder halfway inserted into 
outer-casing with a 3-mm NMR tube 

 

 

NMR tube holder completely inserted 
into outer-casing with a 3-mm NMR 

tube 
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When imaged, the solutions inside the NMR tubes were all visible and the tube 
positioned outside of the ring of tubes served as a marker (Figure AB-6). 

       

 
The design and creation of a “green” MRI phantom was successful. The new phantom is 

completely re-usable, can hold eight NMR tubes, and has a method to identify tubes inside an 
MR image. 

 
Methods 

Laser Cutter 

A sheet of Delrin, a general-purpose thermoplastic, was selected based on desired 
thickness (1/8” Delrin was used for all phantom pieces). Phantom designs were made on 
SolidWorks, 3D CAD design software, and drawn as flat images. These images were then 
converted into .PDF format and transferred to a computer connected to the laser printer. On this 
computer, CorelDrawX3, a graphic design program, was used to make the outline of all the 
shapes red so that the laser printer could identify which regions to cut. The red image was then 
transferred to Trotec Job Control 7.4.9, a laser cutter program. The sheet of Delrin was placed 
into the Trotec Speedy 300 ™ laser cutter. After the laser was calibrated with the computer and 
laser-setting were selected (P:100%, f=10,000; V=1.0), the pieces were cut. 

3D Printer 

A Dimension 1200es 3D printer was used to create pieces of the phantom that could not 
be made with the laser cutter. These pieces were designed on SolidWorks and then transferred to 
Catalyst EX, a 3D printer program, which printed the design with ABS plastic. 

 
 

Figure AC-6. Magnetic resonance image of the final 
phantom holding seven NMR tubes that contain different 
concentrations of contrast agent 
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