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Age Differences in Central (Semantic) and Peripheral
Processing: The Importance of Considering
Both Response Times and Errors

Philip A. Allen, Martin D. Murphy, Miron Kaufman,
Karen E. Groth, and Ana Begovic

In this project we examined the effect of adult age on visual word recognition by using combined reaction time (RT)
and accuracy methods based on the Hick—-Hyman law. This was necessary because separate Brinley analyses of RT
and errors resulted in contradicting results. We report the results of a lexical decision task experiment (with 96
younger adults and 97 older adults). We transformed the error data into entropy and then predicted RT by using
entropy values separately for exposure duration (thought to influence peripheral processes) and word frequency
(thought to influence central processes). For exposure duration, the entropy—RT functions indicate that older adults
show higher intercepts and slopes than do younger adults, suggesting an encoding decrement for older adults.
However, for word frequency, older adults show higher intercepts but not steeper slopes than younger adults. Older
adults thus show a peripheral processing decrement but not a central processing decrement for lexical decision.

HERE were two goals in this study. First we wished to

determine if past studies using a lexical decision, semantic
memory task would be replicated when more rigorous methods
are used. Earlier studies of lexical decision processing have
typically observed age decrements in peripheral processing but
not central processing (e.g., Allen, Madden, & Crozier, 1991;
Allen, Madden, Weber, & Groth, 1993; Allen, Sliwinski, &
Bowie, 2002; Allen, Sliwinski, Bowie, & Madden, 2002; Allen,
Smith, et al., 2002, although cf. Balota & Ferraro, 1993, 1996
who found somewhat different results for a naming task). We
assume that lexical decisions consist of word encoding, lexical
access (in which letters strings are matched to representations
stored in long term semantic memory), a stimulus decision stage,
a response selection decision stage, and response execution
(Allen, Sliwinski, Bowie, & Madden, 2002; Allen, Smith, et al.,
2002; Monsell, Doyle, & Haggard, 1989). We assume that the
input and output processes (encoding and response execution) are
peripheral processes and that the lexical access, stimulus
decision, and response selection processes are central processes
(Allen et al., 1993, Allen, Sliwinski, Bowie, & Madden, 2002;
Cerella, 1985; Sternberg, 1967). We assume the present exposure
duration manipulation to manipulate word encoding a periph
eral process (Carr & Pollatsek, 1985), whereas we assume
word frequency effects to measure lexical access a central
process (Monsell et al., 1989).

Our second goal was to develop a method of analysis that
would include both response time (RT, or speed) and accuracy
(error) measures as critical components of analyses instead of
just speed or error measures. Cognitive psychology assumes
that both RT and accuracy or errors are involved in a speed
accuracy trade off (Luce, 1986; Pachella, 1974). That is, the
more processing time taken to make a decision, the more
accurate the decision up to an asymptotic RT.

Previously, we developed an entropy model of age differ
ences in spatial memory (Allen, Kaufman, Smith, & Propper,
1998a, 1998b). Our conclusion from these studies was that older
adults’ increased entropy levels result in less efficient molar
memory networks. By entropy, we mean the level of disorder in
the information processing system. This earlier research was
based entirely on accuracy data (i.e., entropy is computed from
accuracy data). A related approach is the oscillator based as
sociative recall model (or OSCAR model; see Brown, Preece, &
Hulme, 2000; Maylor, Vousden, & Brown, 1999). However,
both the entropy model of Allen and colleagues and the OSCAR
model of Brown and colleagues and Maylor and colleagues are
based on a single dependent variable. Our goal in the present
study was to develop a methodology that would allow
examination of both RT and accuracy data in the same analysis.
This methodology allows both dependent variables to be
modeled with continuous variables.

Although the time accuracy methodology of Kliegl, Mayr,
and Krampe (1994) allows us to examine the onset, rate of
increase, and asymptotic task performance of estimated
processing time (using accuracy data) across age (also see
Madden & Allen, 1991; Salthouse & Somberg, 1982), we
decided not to use this method because it does not use both RT
and errors as continuous variables. Because we were particularly
interested in using both accuracy and RT as continuous variables
in the same analysis, time accuracy methods would not suffice.

We could also use a Brinley plot (Brinley, 1965) to model
the present data. The Brinley method plots older adults’ data on
the y axis and younger adults’ data on the x axis. Although
Brinley plots are typically used for modeling RT (e.g., Cerella,
1985), they can be used to model errors as well (e.g.,
Verhaeghen & Marcoen, 1993). We could produce separate
Brinley plots for both RT and errors, although this would still



not allow us to analyze RT and error data simultaneously. One
potential solution would be for us to plot RT on the y axis and
errors or accuracy on the x axis, drawing younger and older
adults’ functions separately. We could then interpret the
resulting slope and intercept data by using Sternberg’s additive
factor logic (Roberts & Sternberg, 1993; Sternberg, 1967). That
is, intercepts would measure peripheral processes (e.g.,
encoding and response execution) and slopes would measure
central processes (e.g., memory retrieval, memory comparison,
and response selection). Researchers of aging have also
interpreted intercepts and slopes from RT based Brinley plots
as indices of peripheral and central processes, respectively
(Allen, Smith, Jerge, & Vires Collins, 1997; Cerella, 1985).
The advantage of the error RT plot is that researchers take both
error and RT data into consideration rather than just using RT
data and assuming that error data do not confound results.

However, the error RT plot methodology has three potential
limitations. First, researchers of aging have not developed
a theoretical justification for why error rate and RT are
hypothesized to be positively correlated. Although these
researchers certainly have used error rate as a primary
dependent variable in research reports, we know of no
theoretical discussion of how RT and errors are hypothesized
to be related in the relevant literature. It appears that it is
implicitly assumed that RT and errors are both performance
measures that are positively correlated (except in the case of
a speed accuracy trade off). Unlike the basic experimental
literature (e.g., Hick, 1952; Hyman, 1953), however, research
ers of aging have not explicitly discussed the relationship
between RT and errors.

Second, error data tend to be “noisy.” For example, the
variance accounted for by age when an error dependent variable
is used is much lower than that when RT is used (Verhaghaen &
Marcoen, 1993). Third, RT and errors show a curvilinear rather
than linear relation (Hyman, 1953). We believe that we can
alleviate all of these difficulties by using the Hick Hyman law
(Hick, 1952; Hyman, 1953; Shannon & Weaver, 1949).

Hick-Hyman Law

The Hick Hyman law states that RT is a monotonically
increasing function of the amount of information in a stimulus
(Hick, 1952; Hyman, 1953). Here, we define information as the
amount by which uncertainty must be reduced (e.g., Garner,
1962). Using this information theory definition, we find that
“the amount of information which a message conveys is an
increasing function of the number of possible messages from
which that particular message could have been selected”
(Hyman, 1953, p. 188). Given that entropy generally increases
with the amount of stimulus information, RT should increase as
entropy increases (entropy is the level of disorder, or
uncertainty, in a system).

We model entropy (in this case, internal noise) rather than
stimulus information (measured in bits and referred to as
external noise; see Krueger, 1978) in the present study in order
to address age differences. Consequently, the present concep
tual application of entropy uses internal noise (entropy resulting
from information processing; Krueger, 1978) rather than
stimulus defined external noise (Hick, 1952; Hyman, 1953),
although the quantitative methods are identical for both types of
noise.

Hick—Hyman Equations

A fundamental assumption in information theory is that RT
is a monotonically increasing function of the amount of
information in the stimulus (Hick, 1952; Hyman, 1953;
Shannon & Weaver, 1949). Although the Hick Hyman law
makes an accurate prediction in many cases involving serial
processing, it does not do so for parallel unlimited capacity
processing in which RT is not affected by an increasing
stimulus load. However, it should be noted that parallel
unlimited capacity processing in humans is quite rare (see
Miller, 1982, for potential examples). See Luce (1986),
Townsend and Ashby (1983), and Miller (1982) for suggestions
on how to model unlimited capacity, parallel processing data.
Individuals should be careful, though, when using diffusion
models (e.g., Ratcliff, 1981), because of the ‘“boundary
problem,” although Ratcliff, Thapar, Gomez, and McKoon
(2004) have recently applied a diffusion model to aging. RT is
predicted to increase as the amount of information processing
system entropy increases. The regression equation describing
this relationship is

RT =t + 8,5, (1)

where the #; parameter is the y intercept of the function and the
t, parameter is the slope of the function. The S variable reflects
the level of disorder, or entropy, in the information processing
system. Entropy for a subject for a particular stimulus condition
with a set of possible outcomes X;, where j = I, ... N, is
defined as (Allen et al., 1998a; Hyman, 1953)

N
S=- ij Inp;, (2)
I

where p; is the relative frequency of outcome X;.

In the present study, we use Equations 1 and 2 to analyze
data from a lexical decision experiment (a semantic memory
task). We compute entropy, S, by using the frequency of two
possible trial outcomes, that is, correct answers, pcorree: (hits),
and incorrect ansSwers, Pincorrect (Misses), to a given stimulus (hit
and miss rates sum to 1.0 because they are conditional
probabilities that a target word is present):

S= “Peorrect ln(pcorrecl) ~ Pincorrect ln(pincorrect) . (3)

Entropy is typically computed using hits and false alarms,
but we use hits and misses in this study because misses are
errors obtained from words whereas false alarms are errors
obtained from nonwords. Given that word frequency is not
a meaningful manipulation for nonwords, and we are interested
in modeling word frequency effects, we used errors from words
rather than errors from nonwords.

When entropy is plotted as a function of a stimulus variable
(we used exposure duration and word frequency), the intercept
is an index of those processes that are not affected by the
variable. Typically these processes are executed only once (e.g.,
response execution) and they are peripheral. The slope is an
index of the processes that are affected by the stimulus variable
(Iexical access in the case of word frequency and encoding for
exposure duration; see Hyman, 1953). Slope may measure
central or peripheral processes, depending on the type of
process affected by the variable. Word frequency affects lexical



access, a central process; exposure duration should affect
encoding, primarily a peripheral process. When a variable
affects the complexity or amount of processing required, the
effect appears in the slope, whether the process affected is
central or peripheral.

Conceptual Issues Revisited

The present Hick Hyman function methodology has the
potential to solve a key problem with error RT functions (keep
in mind that entropy involves a log transformation of errors).
The Hick Hyman law applied to the entropy based models of
Smolensky (1986) and Allen and colleagues (1998a) provides
a theoretical explanation for why errors and RT tend to be
positively correlated. Namely, both dependent measures are
affected by the disorder of the information processing system.
As the disorder of the system increases, the performance
decreases. Consequently, the Hick Hyman function methodol
ogy is based on theoretical mechanisms that can explain why
RT and errors are typically correlated positively.

Age Differences in Lexical Decision Research
and the Present Study

Earlier lexical decision task research has suggested that older
adults show peripheral process age differences (e.g., larger
case mixing effects) but no appreciable central process age
differences (e.g., older adults show at least as efficient lexical
access as younger adults; see Allen et al., 1991, 1993; Allen,
Lien, Murphy, Sanders, & McCann, 2002; Allen, Sliwinski, &
Bowie, 2002; Allen, Sliwinski, Bowie, & Madden, 2002; Allen,
Smith, et al., 2002c).

Our goal in the present study is to determine if the same
pattern of age differences is present for peripheral and central
semantic processes when both RT and error or entropy data are
examined simultaneously as when RT and errors are used as
separate dependent variables. Earlier research has found that,
for a semantic memory task such as a lexical decision task,
there are age differences in RT intercept but not in slope for
word frequency (Allen, Sliwinski, & Bowie, 2002), suggesting
that age differences appear more strongly in peripheral than
central processes. We now model both dependent measures in
the same analysis, and, consistent with prior work, we expect
age differences primarily in peripheral processes.

Exposure duration, in contrast, ought to affect perceptual
encoding a peripheral process (e.g., Allen, Smith, Lien,
Weber, & Madden, 1997; Carr & Pollatsek, 1985; Dobbs,
Friedman, & Lloyd, 1985; Sternberg, 1967). As exposure
duration decreases, stimulus uncertainty increases along with
the processing requirements of the task. The additional image
normalization required for encoding with short exposure
durations should lead to longer latencies or decreases in
accuracy. As a result, we expect age differences in peripheral
processing to be reflected in both intercept and slope of the
entropy function.

We examine both traditional Brinley plot analyses (for both
RT and word errors misses) as well as accuracy RT and
entropy RT functions. Two issues of interest are (a) whether
analyzing both measures of performance provides a clearer
measure of overall performance relative to separate Brinley

plots, and (b) whether entropy RT functions provide greater
precision than accuracy RT functions.

METHODS

Participants and Apparatus

We tested 96 younger adults (age, M = 22.2 years; range =
17 43 years) and 97 older adults (age, M = 71.1 years; range =
60 87 years). We did not use additional data from 4 younger
adults and 12 older adults because these participants had at least
one empty cell in the five longest exposure durations. The
younger adults were psychology undergraduates who partici
pated for course credit. The older adults were community
dwelling individuals who had no known history of neurological
dysfunction. Each older adult was paid $20 for participation.
All participants reported that they were in good physical health
and had visual acuity of at least 20/40. Data on years of
education, vocabulary, and Digit Symbol Substitution subtests
of the Wechsler Adult Intelligence Scale Revised (WAIS R;
Wechsler, 1981) were collected.

Older adults showed significantly higher vocabulary subtest
scores (44.4) than younger adults (38.3), #191) = —5.67,
p < .001, and more years of education (older = 15.2 years,
younger = 14.0 years), #(191) = —3.51, p < .001. However,
younger adults exhibited higher Digit Symbol Substitution task
scores (68.7) than did older adults (50.1), #(191) = 13.01, p <
.001, as well as better visual acuity (younger = 20/20.1, older =
20/25.4, according to the Rosenbaum pocket vision tester),
#(191) = 8.92, p < .001.

We tested participants individually on personal computers.
We used Micro Experimental Laboratory software (Schneider,
1988). Participants responded by using the left and right arrow
keys (located in the lower right corner of the keyboard), which
they pressed with the index and middle fingers of their right
hand. Half of the participants responded “word” by pressing
the left arrow key, and the remaining half of the participants
responded “word” by pressing the right arrow key. Each letter
in the display subtended a visual angle of approximately 0.28°
horizontally and 0.56° vertically. Participants viewed the
stimuli from 50 cm away from the monitor, and stimuli
showed luminance values of 25 cd/m?.

There were a total of 24 practice trials and 864 experimental
trials (432 word and 432 nonword trials) in the lexical decision
experiment. We took the present words and nonwords from the
stimulus set developed by Allen, Wallace, and Weber (1995).
From each word, we formed a corresponding nonword by
changing one letter (e.g., “loose” to “loost”). The six different
exposure durations were 400 ms, 300 ms, 200 ms, 150 ms, 100
ms, and 68 ms (144 trials per exposure duration block).
However, performance was very close to 50% (chance) for the
68 ms exposure duration condition, so we excluded data from
this condition from further analysis. This exclusion resulted in
720 usable experimental trials rather than 864. We varied word
frequency by using four categories obtained from Kucera and
Francis (1967): very high (240 1,016 occurrences), medium
high (151 235 occurrences), low (40 54 occurrences), and very
low (1 5 occurrences). We blocked exposure duration (using
six different presentation orders across participants), and we
varied word frequency, stimulus type (word vs nonword), and
word length (four, five, and six letters) randomly within each
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Figure 1. Response time (RT) data, plotted as a function of word frequency (H  high, M medium, L
and exposure duration (100 ms, 150 ms, 200 ms, 300 ms, and 400 ms).

block (although there were equal numbers of trials within each
of the randomly ordered conditions within each block). Thus,
there were 18 trials in each of the 5 (exposure duration) X 4
(word frequency) X 2 (stimulus type) condition cells in the pre

sent analyses. Age group was the only between subjects factor.

RESULTS

Lexical Decision Latency Data

We report correct latency and error data in Figures 1 and 2,
respectively. We emphasize the word data because word
frequency is not interpretable for nonwords. We analyzed
latency by using a mixed 5 (exposure duration) X 4 (word
frequency) X 2 (age group) design. We collapsed across word
length because previous research found smaller effects for
word length than word frequency (e.g., Spieler & Balota, 2000),
and collapsing decreased the likelihood of empty cells.

There were main effects for age, F(1, 191) = 43.80, p < .001
(younger mean RT = 773 ms, older mean RT = 933 ms);
exposure duration, F(4, 764) = 16.95, p < .001 (100 ms = 905
ms, 150 ms = 870 ms, 200 ms = 845 ms, 300 ms = 826 ms, 400
ms = 821 ms); and word frequency, F(3,573) =214.19,p <.001
(very high = 825 ms, medium = 828 ms, low = 845 ms, very
low = 915 ms). Older adults took longer to respond than younger
adults, latencies increased as exposure duration decreased, and
latencies increased as word frequency increased. There were also
Age X Exposure duration [F(4,764) =9.92, p < .001] and Word
frequency X Exposure duration [F(12, 2292) = 5.07, p < .001]
interactions, but the Age X Word frequency interaction was not
statistically significant [F(3, 573) = 1.29, p = .28]. The Age X
Exposure duration interaction occurred because older adults
showed a larger cost for briefer exposure duration (100 ms =
1027 ms, 400 ms = 892 ms; difference = 135 ms) than did

low, and V. very low frequencies)

younger adults (781 — 750 = 31 ms). The Word frequency X
Exposure duration interaction resulted from a smaller word
frequency effect for the shortest exposure duration (difference
between highest and lowest word frequencies: 100 ms exposure
duration = 45 ms, 150 ms =92 ms, 200 ms = 114 ms, 300 ms =
113 ms, 400 ms = 89 ms; see Figure 1).

Error Data

We also conducted the analogous analyses for the error data
(see Figure 2). There were main effects for age, F(1, 191) =
12.75, p < .001 (younger mean percent error = 18%, older =
14%); exposure duration, F(4, 764) = 357.89, p < .001 (mean
percent error at 100 ms = 35%, 150 ms = 18%, 200 ms = 13%,
300 ms = 9%, 400 ms = 7%); and word frequency, F (3, 573) =
478.34, p < .001 (mean percent error, very high = 9%, me
dium = 13%, low = 14%, very low = 26%). There was also an
Age X Word frequency X Exposure duration interaction, F(12,
2292) = 3.96, p < .001, that resulted because younger adults
showed a relatively larger word frequency effect for middle
exposure durations than older adults. The key finding from the
error data, though, was the existence of an Age X Word
frequency interaction, F(3, 573) = 35.50, p < .001 (younger
errors for word frequency: high = 13.2%, medium = 13.5%,
low = 15.0%, very low = 31%; older errors: high = 12.0%,
medium = 12.0%, low = 12%, very low = 21%), in which older
adults showed a significantly smaller word frequency effect than
did younger adults.

Signal detection theory analyses. It could be that there are
differential age effects in decision criteria (Green & Swets, 1966)
that might make the sensitivity data difficult to interpret. In order
to examine this issue, we used nonparametric signal detection
theory sensitivity (A’, range = 0 1; larger values represent
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Figure 2. Error data, plotted as a function of word frequency (H
duration (100 ms, 150 ms, 200 ms, 300 ms, and 400 ms).

higher sensitivity) and decision criteria (b”, range = 1 to —1I;
negative scores reflect a liberal response bias) measures
(Snodgrass & Corwin, 1988). Because these analyses have
potential implications for entropy analyses to be reported
separately by exposure duration and word frequency, we
conducted the signal detection analyses separately by exposure
duration and word frequency. For these analyses, we use both
word and nonword accuracy data. A’ (sensitivity) and
b" (decision criterion) are based on hit (responding “word” to
a word item) and false alarm (responding “word” to a nonword
item) data, using formulas suggested by Snodgrass and Corwin
(1988).

The A" and b” conditional means are available from us on
request. For sensitivity analysis conducted on word frequency,
there was a main effect of word frequency, F(3, 573) = 194.87,
p <.001 (high = .89, medium = .89, low = .89, very low = .85),
as well as an Age X Word frequency interaction, F'(3, 573) =
23.70, p < .001 (younger range in sensitivity: high = .89, very
low = .83; older range: high = .90, very low = .87). For the
exposure duration sensitivity analysis, there was a main effect for
exposure duration, F(4, 764) = 478.87, p < .001 (A’ values:
400 ms = .95, 300 ms = .94, 200 ms = .90, 150 ms = .86, 100
ms = .67), but no other effects approached statistical significance
(ps > .20). There were no main effects of age on sensitivity.

In the nonparametric word frequency decision criteria
analyses, there were main effects for age, F(1, 191) = 10.82,

p < .001 (b": younger = —.10, older = —.18), and word
frequency, F(3, 573) = 197.01, p < .001 (b": high = —.23,
medium = —.26, low = —.20, very low = —.11), as well as an

Age X Word frequency interaction, F(3, 573) = 3.48, p < .001.
The main effect for age showed that older adults were more
liberal in their response criterion; the main effect for word
frequency occurred because higher frequency letter strings had
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a more liberal response bias than did lower frequency strings,
and the Age X Word frequency interaction occurred because the
liberal bias for higher frequency items was more pronounced
for older adults. For the exposure duration response bias data,
older adults showed a more liberal overall response bias than
younger adults, F(1, 191) = 32.19, p < .001 (b": younger =
—.05, older = —.20); response bias became less liberal as
exposure duration decreased, F(3, 573) = 11.49, p < .001 (b":
100 ms exposure duration = —.06, 150 ms = —.09, 200 ms =
—.08, 300 ms = —.09, 400 ms = —.21); and older adults showed
a relatively stronger liberal bias as exposure duration in
creased than did younger adults, F(3, 573) = 4.99, p < .001.
Consequently, the sensitivity results are not qualified by the
response bias results in the critical exposure duration condition.
That is, there were no age differences in sensitivity as a function
of exposure duration, and there were no age differences in
response bias for the briefest exposure duration. In general,
younger adults showed little evidence of bias, whereas older
adults were biased somewhat toward responding “word.”

Brinley plot analyses for word RT and errors. The best
fitting, single parameter linear Brinley function (using 20 data
points formed from the crossing of word frequency with
exposure duration) for the present RT data is as follows: Older
RT = 1.27 (Younger RT) — 51 (R2 = .51; see Figure 3).
Although the amount of variance accounted for by function is
somewhat lower than that observed in previous studies, the 1.27
slowing ratio is similar to the 1.46 slowing ratio observed by
Cerella (1985) in his classic meta analysis of age related
slowing. However, the best fitting, single parameter linear
Brinley error function is as follows: Older misses (errors for
words) = .86 (Younger misses) — 1.31 (R? = 92; see Figure 4).
That is, older adults actually showed better performance on the
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Figure 3. Brinley plot for older adults’ (y axis) and younger adults’
(x axis) response time (RT) data, using the 20 data point means
obtained from crossing word frequency (high, medium, low, and very
low frequencies) and exposure duration (100 ms, 150 ms, 200 ms, 300
ms, and 400 ms).

error analysis but poorer performance on the RT analysis.
These results present a strong justification for why looking at
a single dependent variable in isolation can be misleading.

Entropy analyses (see Equation 3). We analyzed the
entropy data as a function of age group separately for both
word frequency and exposure duration (see Figure 5). We do
this so that we can examine the effects of word frequency and
exposure duration separately. For the word frequency analysis,
there was a main effect for frequency, F(3, 573) = 264.63, p <
.001, indicating a word frequency advantage (high, S = .42;
medium, S = .43; low, § = .43; very low, S = .51) as well as an
Age X Word frequency interaction, F(3, 573) = 15.71, p < .001
(S, younger: high = .43, medium = .43, low = .44, very low =
.54; older: high = .42, medium = .42, low = .43, very low =
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Figure 4. Brinley plot for older adults’ (y axis) and younger adults’
(x axis) error data, using the 20 data point means obtained from
crossing word frequency (high, medium, low, and very low
frequencies) and exposure duration (100 ms, 150 ms, 200 ms, 300
ms, and 400 ms).
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Figure 5. Entropy data, plotted as a function of age group (younger
and older), word frequency (high, medium, low, and very low
frequencies), and exposure duration (100 ms, 150 ms, 200 ms, 300 ms,
and 400 ms). EXP  exposure duration, WF  word frequency.

49). It should be noted that by using an analysis of variance
approach we are using an additive model of aging, even though
this is probably an overly simplistic view of aging (see, e.g.,
Faust, Balota, Spieler, & Ferraro, 1999). However, the observed
Age X Word frequency interaction is still inconsistent with
a complexity model because this interaction is subadditive with
increasing age. That is, older adults showed smaller word
frequency effects suggesting more efficient lexical access.
These results are consistent with those observed by Allen, Lien,
etal. (2002), who used a dual task methodology in which Task 2
consisted of a lexical decision task.

There was no main effect for age. Younger adults showed
a relatively larger increase in entropy for lower frequency
words relative to older adults.

For the exposure duration analysis, younger adults showed
slightly higher entropy levels, F(1, 191) = 6.44, p < .05 (S:
younger = .42, older = .39); entropy decreased as exposure
duration increased, F(4, 764) = 511.31, p < .001 (S: exposure
duration for 100 ms = .59, 150 ms = .46, 200 ms = .39, 300
ms = .32, 400 ms = .27); and older adults, relative to younger
adults, showed a larger increase in entropy as exposure duration
decreased, F(4, 764) = 2.71, p < .05 (S: younger: 100 ms =
.60 — 400 ms = .30 = .30; older: 100 ms = .57 —400 ms = .24
= .33).

We formed entropy RT functions for each participant
separately across exposure duration and word frequency (by
regressing RT on entropy). Note that entropy RT functions are
an implementation of the Hick Hyman law (see Equation 1).
Our main goal was to examine slopes of the function predicting
latency from entropy. If, as we hypothesized, older adults show
peripheral but not central process decrements in semantic
processing (e.g., Allen, Sliwinski, & Bowie, 2002; Allen,
Sliwinski, Bowie, & Madden, 2002), then older adults should
show steeper entropy RT slopes than younger adults for
exposure duration but not for word frequency. For the slope
analysis with word frequency, there was no effect for age
(younger slope = 543, older slope = 625), F(1, 191) = .39,p =
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Figure 6. Entropy response time (RT) functions for word frequency (A) and exposure duration (B).

.53 (see Figure 6A). However, for the entropy RT slope
analysis for exposure duration, older adults did show
a significantly steeper slope, F(1, 191) = 19.48, p < .001
(younger slope = 51, older slope = 476; see Figure 6B).
Although it may appear that we are testing an additive model of
cognitive aging, we do not believe that this is the case because
we are testing slopes that are based on a linear model (a
multiplicative model with an additive constant).

In order to determine if these slopes interacted, we conducted
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Figure 7. Error response time (RT) functions for word frequency (A) and exposure duration (B) for both younger and older adults. WF

frequency; EXP  exposure duration.

a2 (age) X 2 (slope type: word frequency vs exposure duration)
mixed analysis of variance. This analysis did reveal an Age X
Slope type interaction, F(1, 191) = 4.55, p < .05. Slopes were
approximately parallel across age group for word frequency,
but exposure duration slopes for older adults were significantly
steeper than those for younger adults; see Figure 6B. (Figures
6A and 7A appear to show a slightly steeper slope for word
frequency for older adults than for younger adults. However,
this is not the case. For entropy RT slopes, younger adults
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show a mean slope of 543 with SD = 421, whereas older adults
show a mean slope of 625 with SD = 1,218. For the error RT
slopes, younger adults show a mean slope of 493 with SD =
408, whereas older adults show a mean slope of 624 with SD =
916).

With regard to the fit of the entropy RT functions (using the
overall mean of individual equations), the 72 for the frequency
data was 0.67 and 0.49 (for younger and older adults,
respectively), and the > for the exposure duration data was
0.15 and 0.48 (for younger and older adults, respectively). Note
that the variance accounted for estimates are based on in
dividual scores rather than on group means traditionally used to
form Brinley plots (e.g., Cerella, 1985). The use of individual
regression equations to compute 7 values results in sub
stantially lower values but provides a measure of individual
differences that are not available when group means are used.

Error RT functions. An important issue with regard to
methodological parsimony is whether we need to transform
errors into entropy values. This method would be simpler if we
could use error RT functions rather than entropy RT functions.
We reanalyzed the present data by using error (misses) RT
derived slopes for each individual and then analyzed these
slopes across age group (young and older adults) and slope type
(exposure duration and word frequency). For the slope analysis
with word frequency, there was no effect for age (younger
slope = 493, older slope = 624); F(1, 191) = 1.63, p = .20 (see
Figure 7A). However, for the entropy RT slope analysis for
exposure duration, older adults did show a significantly steeper
slope; F(1, 191) = 10.35, p < .01 (younger slope = 196, older
slope = 674; see Figure 7B). In the 2 (age) X 2 (slope type:
word frequency vs exposure duration) analysis of variance, the
Age X Slope type interaction, F(1, 191) = 3.68, p = .0565, did
not reach significance. As with the entropy RT analysis, slopes
were approximately parallel across age group for word
frequency, but exposure duration slopes for older adults were
somewhat steeper than those for younger adults however, the
error data were not as reliable as the entropy data, resulting in
a dilution of the age difference in slopes across exposure
duration. With regard to the fit of the error RT functions (using
the overall mean of individual equations), the 7> for the
frequency data was 0.76 and 0.59 (for younger and older adults,
respectively), and the 1* for the exposure duration data was 0.08
and 0.43 (for younger and older adults, respectively).

Do We Need the Entropy Transform? An important issue
concerns whether it is necessary to transform errors into
entropy so that the Hick Hyman law can be applied to research
on aging. Although the Age X Slope type interaction was
significant for the entropy RT function analysis, it was not for
the error RT function analysis; however, we still have not
confirmed why this occurred. To examine this issue, we used
the 20 means from crossing word frequency with exposure
duration to determine whether linear and quadratic components
would be significant for separate analyses conducted on
younger and older adults. The rationale is that typically RT
and errors show a curvilinear (quadratic) relationship, whereas
entropy and RT show a linear relationship (Hyman, 1953). For
the error RT regression analyses (using errors to predict RT),
younger adults showed significant linear [F(1, 19) =22.23,p <

.05] and quadratic [F(1, 19) = 4.95, p < .05] terms, and older
adults showed significant linear [F(1, 19) = 152.24, p < .001]
and marginally significant quadratic [F(1, 19) = 4.10, p =
.0589] terms. However, for the entropy RT regression analyses
(using entropy to predict RT), neither younger [F(1, 19) = 0.28,
p = .60] nor older [F(1, 19) = 1.58, p = .23] adults showed
evidence of a significant quadratic term, although both
showed a significant linear term: F(1, 19) = 33.50, p < .001
and F(1, 19) = 207.27, p < .001, respectively. Because the
existence of a curvilinear term has potentially confounding
effects on interactions (e.g., Ganzach, 1997), the entropy RT
functions (which have a linear relationship between variables)
do appear to be a preferable method over error RT functions
(which tend to have a curvilinear relationship between
variables). If one does use error RT functions, then one should
use quadratic regression.

DiscussioN

In the present study we applied the Hick Hyman method
ology (entropy RT functions) to research on aging. This
methodology allows both RT and errors or entropy to be
modeled together as continuous variables. We also replicated
and extended earlier research on peripheral process and central
process age effects for a common lexical task (lexical
decisions), using a large sample size and entropy RT functions.

Latency and accuracy data. Older adults were slower and
showed a greater cost for decreased exposure durations than did
younger adults for RT analyses, although older adults were more
accurate and exhibited higher levels of recognition sensitivity
(see earlier text on signal detection performance). Furthermore,
older adults actually showed significantly smaller word fre
quency effects. This suggests that older adults actually carried
out lexical access more rapidly particularly for lower fre
quency words than did younger adults (also see Allen, Smith,
et al., 2002). Finally, older adults were actually somewhat more
liberal in their response bias (") than were younger adults for
both the word frequency and exposure duration data (see earlier
text). This is an important finding because response bias effects
cannot be used to account for the differential age effects
observed for word frequency (older adults showed shorter
lexical access) and exposure duration (older adults showed a
greater cost for faster exposure duration indicating slower
perceptual encoding), because older adults showed a similar
pattern of response bias for both word frequency and exposure
duration, yet older adults showed a performance decrement for
exposure duration but not for word frequency.

Brinley plots. Brinley plots for RT showed age related
slowing similar to that reported by Cerella (1985), but Brinley
plots for miss errors showed poorer performance on the part of
younger adults. These results based on relatively large samples
of younger (n = 96) and older (n = 97) adults suggest that
relying on just RT data can result in a biased interpretation of
one’s data. To address this issue, we analyzed RT and error data
(either as miss errors or as log transformed entropy) together.

Entropy RT functions. Older adults showed steeper
entropy RT slopes for exposure duration but not for word fre
quency (see Figures 6A and 6B). These entropy RT functions



were formed by using five exposure durations or four word
frequency entropy values to predict the analogous RT values for
these conditions (and the slopes were obtained separately for each
participant). These semantic task results are quite different from
earlier entropy analyses done for spatial memory tasks (Allen et
al., 1998a, 1998b). Specifically, for spatial memory, older adults
showed greater increases in entropy for central processes than did
younger adults, whereas in the present semantic task, older adults
did not show a decrement for central processes for a lexical task.
Indeed, older adults actually showed more efficient lexical access
performance than did younger adults. However, even for the
present lexical task, older adults continued to show a substantial
decrement in perceptual encoding as measured by the age
decrement in exposure duration. Thus, the present study largely
replicates past RT studies that have also observed no age
differences in semantic memory (e.g., Allen et al., 1991, 1993;
Balota & Ferraro, 1993, 1996; Madden, Pierce, & Allen, 1993),
but significant age differences in nonlexical memory (e.g., Burke
& Light, 1981; Light, 1991; also see Allen, Sliwinski, Bowie, &
Madden, 2002; Lima, Hale, & Myerson, 1991; Mayr & Kliegl,
2000; and Verhaeghen, Kliegl, & Mayr, 1998, for simultaneous
comparisons of semantic and nonsemantic tasks). However, the
presently observed differential age effects across processing
stage provide an additional theoretical framework for interpreting
such age differences a framework that uses both RT and error
data as continuous measures. That is, the Hick Hyman law
provides the conceptual justification for why RT and errors
(actually entropy) should have a linear relationship.

Note that for exposure duration and word frequency, the
steeper the entropy RT slope, the better that entropy predicts RT.
Thus, older adults are more affected by the entropy induced by
exposure duration than are younger adults, but younger and older
adults are equally affected by entropy induced by word frequency.

Error RT functions. Although entropy RT functions were
more sensitive to age differences in exposure duration than
were error RT functions, both methods resulted in the same
pattern of results. In the present error RT function analyses, the
Age X Slope type interaction was not statistically significant
(although it was approaching significance, p < .06), although
this analogous interaction was statistically significant for the
entropy RT function analysis. Consequently, although the
entropy RT method is slightly more sensitive, we believe that
the error RT function method is also quite applicable to many
data sets and is still preferable to the use of just RT alone.
Therefore, a central finding from this article is that it is
important to consider both RT and entropy or errors (preferably
in a composite analysis) rather than solely RT.
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