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Statins induce apoptosis in ovarian cancer cells through activation 
of JNK and enhancement of Bim expression 

Hongli Liu · Shu-Ling Liang · Sheetal Kumar · 

Crystal M. Weyman · Wendy Liu · Aimin Zhou
 

Abstract 
Purpose Ovarian cancer is the leading cause of death 
among all gynecological malignancies in Western coun­
tries. Although therapy for ovarian cancer has been greatly 
improved in the past 20 years, the overall survival for 
patients with advanced ovarian cancer has not changed sig­
niWcantly. The poor survival rates in patients with advanced 
ovarian cancer are due both to late diagnosis and to lack of 
eVective drugs for the majority of patients who have a 
relapse and develop resistance to current chemotherapy 
agents used for ovarian cancer. Thus, developing and dis­
covering eVective novel drugs with diVerent molecular 
structures from conventional chemotherapy agents have 
become an urgent clinical need. 
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Methods Ovarian cancer cells were treated with lovastatin 
and atorvastatin. Apoptosis in these cells and tumor forma­
tion in soft agar were determined. The molecular mecha­
nism by which statins suppress ovarian cancer cell growth 
was evaluated. 
Results Both lovastatin and atorvastatin eVectively 
induced apoptosis in ovarian cancer cells and suppressed 
anchorage-independent growth of these cells in soft agar. 
Further investigation of the molecular mechanism has 
revealed that the expression of Cdc42 and Rac1, small 
GTPase family members, was highly induced in the cells 
by these statins along with the activation of Jun N-terminal 
kinases (JNK). In addition, Bim, a proapoptotic protein, 
was signiWcantly induced by these statins. 
Conclusions Our Wndings provide new insight into the 
molecular mechanism by which statins induce apoptosis in 
ovarian cancer cells and may lead to novel therapies for 
advanced ovarian cancer. 

Keywords Statin · Apoptosis · Small GTPase · 
Ovarian cancer 

Introduction 

Ovarian cancer is the leading cause of death among gyne­
cological malignancies in the Western countries and aVects 
nearly 1 in 70 women aged 50–70 years [1]. According to 
the American Cancer Society, approximately 21,650 
women will be diagnosed with ovarian cancer, and over 
15,520 will die from this disease in 2008, in the United 
States [2]. Ovarian cancer has the highest mortality of all 
cancers associated with the female reproductive system, 
which reXects, in part, a lack of early symptoms and the 
associated diYculty of early detection. Thus, ovarian 
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cancer is often diagnosed at an advanced stage. Most 
patients with ovarian cancer at an advanced stage are 
treated with cytoreductive surgery, followed by combina­
tion chemotherapy. Although an initial complete clinical 
response to chemotherapy is seen in 70% of patients, the 
majority of these patients will experience recurrence of the 
disease within 2 years and the 5-year survival rates are 
approximately 20–25% [3]. The Wrst-line chemotherapy 
drugs approved by the Food and Drug Administration 
(FDA) for advanced ovarian cancer include platinum-con­
taining drugs, such as cisplatin and carboplatin. These 
drugs as well as paclitaxel, a taxane compound, are classi-
Wed as anti-microtubular agents. Other agents, including 
hexamethylmelamine, topotecan, and pegylated liposomal 
doxorubicin, are used as second-line chemotherapy [4, 5]. 
However, patients with recurrent ovarian cancer usually 
develop resistance to these drugs. Therefore, development 
and discovery of new drugs capable of prolonging survival 
either by increasing long-term remission rates and/or dura­
tion of eVective Wrst-line treatment or to augment the 
eYcacy of second-line treatment have become an urgent 
clinical need. 

The statin drug family has been used successfully in the 
treatment of hypercholesterolemia for more than a decade. 
To date, they are still the most powerful drugs for lowering 
cholesterol levels in blood [6–8]. In recent years, statins 
have been considered as potent candidates for treating 
malignant diseases including acute myelogenous leukemia, 
lymphoma, squamous cell carcinomas, colorectal cancer, 
breast cancer and melanoma. The anticancer function of 
statins is based on preclinical evidence of their antiprolifer­
ative, pro-apoptotic and anti-invasive properties. Statins 
can induce apoptosis and inhibit proliferation in a variety of 
cancer cell types [9–13]. In vivo studies have revealed that 
statins can inhibit tumor cell growth, invasion and metasta­
sis [14–16]. In addition, statins sensitize cancer cells to che­
motherapy drugs [17–19]. Lovastatin treatment enhances 
the antitumor activity of doxorubicin, a common chemo­
therapeutic agent for a wide range of cancer [20]. A combi­
nation of atorvastatin and celecoxib synergistically induces 
cell cycle arrest and apoptosis in colon cancer cells [21]. 

Statins are inhibitors of HMG-CoA reductase and thus 
aVect the prenylation of Rho family of small GTPases 
including Rac and Cdc42. Although the expectation is that 
statin would inhibit signaling by these GTPases, recent 
reports indicate that lovastatin can increase expression of 
Rho and cause an increase in the active form of Rho:GTP 
[22]. These GTPases exert similar biological activities in 
cells. However, each of them can also mediate distinct 
cellular functions through interaction with down-stream 
eVector proteins in diVerent cell types [23, 24]. Well-docu­
mented evidence has also shown that there are extensive 
cross talk and cooperation between GTPases and other 

signal transduction pathways. Rac1 and Cdc42 can syner­
gize with Raf to activate ERK [25–27]. Furthermore, Rac1 
cooperates with PI-3 kinase in controlling cell migration 
and polarity [28]. Interestingly, these small GTPases are 
found to mediate apoptosis in a wide-range of cell types. 
Overexpression of active Cdc42 in Jurkat T lymphocytes 
induces increased ceramide levels, resulting in cell death 
[29, 30]. Both Rac1 and Cdc42 mediate apoptosis induced 
by diverse stimuli [31]. It seems that the contribution of 
Rac1 and Cdc42 to apoptosis is to regulate mainly activa­
tion of the JNK pathway [32–34]. 

The eVect of statins on ovarian cancer cell lines is lim­
ited to one study showing lovastatin-induced growth inhibi­
tion [35]. Here we report that statins induce apoptosis in 
ovarian cancer cells and inhibit tumor formation in soft 
agar. Further, we report the novel Wndings that statins can 
also induce the expression of Rac 1 and Cdc42, and subse­
quently JNK activity. Our results suggest that statins alone 
or in combination with other conventional drugs may pro­
vide novel therapies for advanced ovarian cancer. 

Materials and methods 

Reagents and antibodies 

Lovastatin (Mevinolin), atorvastatin,farnesylpryophos­
phate (FPP), geranylgeranylpyrophosphate (GGPP), and 
SP600125, were from Sigma. Antibodies to RhoA, Rac1, 
Cdc42, phospho-c-Jun and /-actin were from Santa Cruz 
Biotechnology, Inc. Antibodies were from diVerent com­
panies: Bcl-2 from R&D system (Minneapolis, MN), Bim 
and Bax from BD Bioscience (San Jose, CA). The anti­
body to /-Actin was purchased from Chemicon (Teme­
cula, CA). 

Cell culture and assay for cell viability 

Hey 1B cells (Dr. Yan Xu, University of Indiana) and 
Ovcar-3 (ATCC) cells were grown in RPMI-1640 (Cleve­
land Clinic Foundation Core Facility) supplemented with 
10% cosmic calf serum (Hyclone) and antibiotics in a 
humidiWed atmosphere of 5% CO2 at 37°C. The viability of 
Hey 1B cells was determined using the colorimetric CellT­
iter 96 aqueous Cell Proliferation Assay (MTT) according 
to the instructions provided by the manufacturer (Promega, 
Madison, WI). BrieXy, cells (1 £ 104 cells per well) were 
seeded in 96-well plates. One day after seeding, the cells 
were treated with or without 10 JM lovastatin in the pres­
ence or absence of 5 JM GGPP or 5 JM FPP for 48 h. At 
the end of incubation, 50 Jl CellTiter 96 Aqueous reagent 
(40% v/v dilution in 1£ PBS) was added to each well. 
Plates were incubated at 37°C for 2 h, and absorbance was 



  

 

  
 

     
 

  

 

 
  

  

 

 

 

  

 
   

 
 

  
 

  
 

 
 
 

  
 

   

  
 

    
 

 
  

   

 

  
 

 

 

    
  

 
 

  

measured at 490 nm with a 96-well plate reader (model 
Spectra Max 340; Molecular Devices). 

Annexin V assay 

Annexin V assay was performed using an Annexin 
V-FITC/propidium iodine apoptosis detection kit (BD Bio­
sciences, San Jose, CA). BrieXy, cells treated with or with­
out 10 JM of lovastatin for 48 h were scraped and 
centrifuged at 1,000£g for 10 min at 4°C, and washed with 
ice cold PBS, and then resuspended in 1£ binding buVer pro­
vided by the manufacturer at a concentration of 1 £ 106/ml. 
FITC-Annexin V (5 Jl) and propidium iodide (5 Jl) were 
added to 100 Jl of the cell suspension and cells were incu­
bated at room temperature for 15 min in the dark. After incu­
bation, 400 Jl of 1£ binding buVer was added to the cell 
suspension and cells were analyzed by two-color cytometry 
using a FACScan™ (Becton Dickinson, Franklin Lake, NJ). 

Caspase assays 

The activity of caspase 3 in the cells treated with lovastatin 
was examined by using the Caspase-GloTM 3/7 (Promega, 
Madison, WI). The assay is based on caspase cleavage of a 
proluminescent substrate linked with the tetrapeptide DEVD, 
resulting in the generation of a “glow-type” luminescent sig­
nal, produced by luciferase. In brief, cells were treated as 
described above and cytosolic extracts were prepared by sus­
pension of cell pellets in NP-40 lysis buVer (10 mM Tris– 
HCl, pH 8.0, 5 mM Mg(OAc)2, 90 mM KCl, 0.2 mM PMSF, 
100 units/ml aprotinin, 10 Jg/ml leupeptin and 2% NP-40). 
After centrifugation at 10,000g for 5 min, cell extracts con­
taining 40 Jg proteins were transferred into a 96-well plate to 
mix with 50 Jl of the Caspase-Glo3/7 reagent added. After 
incubation for 1 h at 37°C, caspase activity was determined 
by a Xuorescent plate reader (Microtiter Plate Luminometer, 
Dynex Technologies, Chantilly, VA). 

Western blot analysis 

After treatments, cells were washed twice with ice-cold 
phosphate-buVered saline (PBS) and collected with a 
scraper. Cytoplasmic extracts were prepared by suspension 
of cell pellets in NP-40 lysis buVer as described above. 
After centrifugation at 10,000£g in a microcentrifuge at 
4°C for 10 min, cell extracts (100 Jg per sample) were frac­
tionated on SDS-10% polyacrylamide gels and transferred 
to PVDF membranes (Millipore, Billerica, MA). The mem­
branes were blocked with 5% nonfat milk in PBS contain­
ing 0.02% sodium azide and 0.2% (v/v) Tween 20, and 
incubated with diVerent primary antibodies for 1 h at room 
temperature. The membranes were then washed with PBS 
containing 0.2% (v/v) Tween 20 and incubated with 

speciWc secondary antibodies conjugated with horseradish 
peroxidase (Cell Signaling, Billerica, MA) for 1 h at room 
temperature. After washing, these proteins were detected 
by a chemiluminescence method according to the manufac­
turer’s speciWcation (Pierce, Rockford, IL). 

Anchorage-independent cell growth 

LMP agar (0.6%) in 3 ml of 1£ MEM plus 10% FBS was 
poured in each well of a six-well plate. After the gel was 
solidiWed, ovarian cancer cells (6 £ 103) mixing with 3 ml 
of 0.35% LMP agar in 1£ MEM plus 10% FBS were laid 
on the top of previous gel in each well. The plate was 
incubated in a humidiWed atmosphere of 5% CO2 at 37°C 
for 1–2 weeks. The cell colonies were counted and the pic­
tures were taken under Olympus model CKX31 at 100£ 
magniWcation at day 7 and 14. 

Results 

Statins induce apoptosis in ovarian cancer cells 

Statins are well known for their cholesterol-lowering eVect. 
Recent studies have revealed that statins inhibit certain can­
cer cell proliferation, invasion and migration in vitro and in 
vivo [9–16]. To determine the direct eVect of statins on 
ovarian cancer cells, we treated Hey 1B cells, a human 
ovarian carcinoma cell line, with lovastatin, a member of 
the statin family, at various doses for 48 h and the lova­
statin-induced Hey 1B cell death could be observed by a 
phase contrast microscope (Fig.1a). To rule out the possi­
bility that this result was cell line speciWc, Ovcar-3 cells, 
another ovarian cancer cell line, were treated with lova­
statin (Fig.1b) and similar results were obtained. Lovastatin 
is a product of fungal fermentation in the statin family. To 
determine, if other statin members have the same eVect on 
ovarian cancer cells, we treated Hey 1B and Ovcar-3 cells 
with atorvastatin, a synthetic compound in this family. As 
shown in Fig. 1a, b, atorvastatin exerted a similar eVect on 
these ovarian cancer cells. The data indicated that statins at 
10 JM were suYcient to induce ovarian cancer cell death in 
vitro. 

To quantitatively analyze statin-induced ovarian cancer 
cell death, the viability of Hey 1B cells in the presence or 
absence of 10 JM lovastatin was analyzed using MTT 
assay according to the manufacturer’s instructions. MTT 
[3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bro­
mide] is a compound that can be taken up by viable cells 
and reduced by a mitochondrial dehydrogenase forming a 
formazan product in living cells. The absorbance of the for­
mazan product at 490 nm is in linear proportion to cell 
numbers. As shown in Fig. 2, the cell viability dramatically 



  

 
 

  
 

     
  

 

 
  

  

  

  

 

 
  

 
 

  
 

 

   
  

 
   

   

 

 

 

 

 

 

  

  
  

Fig. 1 Photomicrographs of 
Hey 1B and Ovcar-3 cells after 
treatment with lovastatin and 
atorvastatin. Photographs of the 
unstained cells were taken under 
Olympus model CKX31 at 
£100 magniWcation after 48 h of 
treatment of Hey 1B (a) and Ov­
car-3 cells (b) with diVerent dos­
es of lovastatin and atorvastatin 
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Fig. 2 EVect of lovastatin on Hey 1B cell viability Hey 1B cells were 
treated with 10 JM lovastatin for 48 h in the presence or absence of 
2.5 JM GGPP or 2.5 JM and 5 JM FPP. The percentage of viable cells 
was measured by using MTT assay (Promega). Experiments were per­
formed three times in triplicate. Data are presented as mean § SD 

decreased after Hey 1B cells were treated with lovastatin. 
Atorvastatin treatment produced a similar result (data not 
shown). 

Inhibition of HMG-CoA reductase by statins results in 
the depletion of several intermediates products in the 
mevalonate pathway. These intermediates include farnesy­
pyrophosphate (FPP) and geranylgeranylpyrophosphate 
(GGPP)—isoprenoids that serve as the substrates for the 
prenylation of Ras and Rho family of small GTPases, 
respectively. To determine whether supplementation of 
GGPP or FPP is able to prevent cells from death, Hey 1B 
cells were co-incubated with 10 JM lovastatin and 2.5 JM 
GGPP or FPP. Treatment of Hey 1B cells with GGPP 
almost completely prevented cell death induced by lova­
statin, but FPP only had a partial eVect. These results indi­
cate that blockage of the geranylgeranylation may be more 
important than prevention of farnesylation for lovastatin­
induced Hey 1B cell death (Fig. 2). 

To determine whether the decreased viability of Hey 1B 
cells is due to lovastatin or atorvastatin-induced apoptosis, 
Annexin V assay was performed. The translocation of 
membrane phospholipid phosphatidylserine (PS) from the 
inner to the outer leaXet of the plasma membrane is an early 
event of cell apoptosis. Annexin V is a 35–36 kD Ca2+ 

dependent, phospholipid-binding protein that has a high 
aYnity for PS. Therefore, FITC-conjugated Annexin V is 
commonly used to identify apoptotic cells at an early stage. 



  

 
 

  
   

  
 

 
  

 

 

  
    

 

 

 

 

 

 

    

 
   

 

  
  

  
 

 
  

 

Hey 1B cells were treated with 10 JM of lovastatin for 48 h 
and subjected to Annexin V assay (Fig. 3). Lovastatin treat­
ment of Hey 1B cells increased the percentage of apoptotic 
cells in the late stage (Annexin V and PI positive) from 13 
to 48%. While GGPP reduced the percentage to 18.1%, 
FPP only slightly decreased the percentage of apoptotic 
cells at that stage to 37.8%. Interestingly, the Annexcin V 
labeled cell population induced by lovastatin was not sig­
niWcantly changed in response to GGPP. This suggests that 
while the Wnal stages of apoptosis induced by lovastatin are 
inhibited by GGPP (Figs. 2, 3), this inhibition occurs at a 
step subsequent to the externalization of phosphatidylser­
ine. To determine whether lovastatin induces apoptosis 
immortalized non-cancerous cells, we treated MC3T3-E1, a 
mouse preosteoblast cell line and WI-38, a human lung 
Wbroblast cell line, with lovastatin. Although lovastatin was 
able to induce apoptosis in these cells, a higher concentra­
tion (30–50 JM) and a prolonged incubation time (72– 
96 h) were required to achieve the similar level of apoptosis 
(data not shown). These results are consistent with the pre­
vious reports that lovastatin at a higher concentration is 
needed to induce apoptosis in myeloma plasma cells, 
smooth muscle cells and endothelial cells [36–38], suggest-

Fig. 3 Determination of apop­
totic cells by Annexin V assay 
Hey 1B cells were treated with 
or without 10 JM lovastatin for 
48 h in the presence or absence 
of 2.5 JM GGPP and FPP. 
Apoptotic cells were analyzed 
by Annexin V assay (BD Pharm­
ingen). Atorvastatin treatment 
produced a similar result (data 
not shown) 

ing that ovarian cancer cells may be particularly vulnerable 
to statin-induced apoptosis. 

Statin treatment activates caspase 3 

To characterize further the statin-induced apoptosis in ovar­
ian cancer cells, we determined the activity of caspase 3 in 
Hey 1B cells after treatment with lovastatin. The activity of 
caspase 3 in the cells treated with lovastatin was examined 
by using a Caspase-GloTM 3/7 assay kit (Promega). Lova­
statin induced the activity of caspase 3 in Hey 1B cells by 
3.5-fold. Consistent with our previous results, supplementa­
tion of GGPP was able to block caspase 3 activation 
induced by lovastatin, more eVectively than FPP (Fig. 4). 

Statin treatment enhances the expression of GTPases 

Small GTPases act as molecular switches to regulate 
diverse biochemical functions in all eukaryotic cells 
through mediating gene expression. Therefore, we investi­
gated the eVect of statins on the expression of certain pro­
teins including the members of the small GTPase family. 
Since we had already determined that inhibition of geranyl­
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Fig. 4 Induction of caspase 3 activity by lovastatin Hey 1B cells were 
treated with 10 JM lovastatin in the presence or absence of 2.5 JM 
GGPP and FPP. The activity of caspase 3 was assayed using the 
Caspase-GloTM 3/7 kit (Promega). Data represent two independent 
experiments in triplicate (mean § SD) 

geranylation rather than farnesylation plays a role in statin­
induced apoptosis in ovarian cancer cells, we focused on 
the Rho family. Intriguingly, we found that lovastatin sig­
niWcantly induced the expression of Rac1 and Cdc42, but 
not RhoA (Fig. 5a, b), in a dose and time-dependent man­
ner. Signaling by Rac1 or Cdc42 is known to activate the 
JNK pathway resulting in phosphorylation of the transcrip­
tional factor c-Jun. Consistent with this, we also determined 
an increase of p-c-Jun (Fig. 5a, b). The supplementation of 
GGPP prevented apoptosis and suppressed the caspase 3 
activity in Hey 1B cells induced by statins. This may be due 
to reduced expression of Rac1 and Cdc42 (Fig. 5c). 

Statin treatment augments the level of Bim in ovarian 
cancer cells 

There are varieties of gene products involved in the process 
of cell apoptosis. A well-known group of these gene prod­
ucts is the Bcl-2 family. The Bcl-2 family includes both 
anti-apoptotic and pro-apoptotic members. Signaling by the 
JNK pathway has been linked to altered expression of sev­
eral Bcl-2 family members in other systems [39]. To deter­
mine if the Bcl-2 family plays a role in statin-induced 
ovarian cell apoptosis, we examined the expression of Bcl­
2, an anti-apoptotic member, in Hey 1B cells treated with 
lovastatin. As shown in Fig. 6a, there was no signiWcant 
diVerence in the expression level of the protein in cells 
treated with lovastatin. We also examined the eVect of lov­
astatin on the expression of Bax and Bim, pro-apoptotic 
members of this family. Interestingly, lovastatin signiW­
cantly induced the expression of Bim, but not Bax in Hey 
1B cells in a dose (Fig. 6b) and time (data not shown) 
dependent manner, suggesting that Bim may mediate lova­
statin-induced ovarian cancer cell apoptosis. Pretreatment 
of Hey 1 B cells with SP600125, an inhibitor of JNK, 

Fig. 5 Lovastatin-induced the expression of Rac1 and Cdc42 Hey 1B 
cells were treated with diVerent doses of lovastatin for 20 h (a); treated 
with 10 JM lovastatin at diVerent times (b); treated with 10 JM lova­
statin in the presence or absence of 2.5 JM GGPP for 20 h (c). Proteins 
in the extracts were separated by 10% SDS-polyarylamide gel electro­
phoresis and analyzed by Western blot using antibodies to Rac1, 
Cdc42, Rho A, p-c-Jun and /-actin (Santa Cruz) 

markedly decreased lovastatin-induced expression of Bim, 
conWrming that JNK activation plays a critical role in sta­
tin-induced apoptosis in ovarian cancer cells (Fig. 6c). 

Statins inhibit tumor formation in soft agar 

Anchorage-independent growth in soft agar is often predic­
tive of tumorigenicity in vivo. Therefore, we performed a 
soft-agar, colony-formation assay to determine the eVect of 
statins on tumorigenicity of ovarian cancer cells. In this 
assay, Hey 1B cells were incubated in soft agar in the pres­
ence or absence of lovastatin or atorvastatin. Interestingly, 
we found that statins signiWcantly inhibited colony-forma­
tion of ovarian cancer cells in soft agar. Colony-forming 
frequencies in soft agar with 10 JM of lovastatin or atorva­
statin were roughly 10-fold lower than that in the control 
(Fig. 7a). The average colony size was dramatically smaller 
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Fig. 6 EVect of lovastatin on the expression of Bcl-2 family members 
Hey 1B cells were treated with 10 JM lovastatin for various doses and 
the expression of the Bcl-2 family members was determined by West­
ern blot analysis using antibodies to Bcl-2 (BD Biosciences), and Bax 
(Santa Cruz) (a); treated with diVerent doses of lovastatin for 20 h (b); 
pretreated with or without 10 JM SP600125 for 2 h and then treated 
with 10 JM lovastatin for 20 h (c), and the level of Bim was deter­
mined by Western blot analysis using a monoclonal antibody to human 
Bim (BD Biosciences) 

in soft agar containing lovastatin or atorvastatin (data not 
shown) after incubation for 14 days, suggesting the thera­
peutic potential of statins in suppression of ovarian tumor 
growth (Fig. 7b). 

Discussion 

Ovarian cancer is often diagnosed at an advanced stage. 
Thus, although ovarian cancer is the fourth most common 
cancer in women, it is the leading cause of death among all 
gynecological malignancies in industrialized countries. The 
current therapeutic strategy for advance ovarian cancer is a 
combination of surgery and antimicrotubular chemother­
apy. However, a majority of these patients relapses and 
develops resistance to these chemotherapeutic agents. 

The link between the etiology of ovarian cancer and lipid 
metabolism has been known for decades [40, 41], yet this 
knowledge has not been exploited in the search for better 
treatment strategies. In addition to their role in lowering 
cholesterol, the statin family of drugs has shown a broad 
range of functions including suppression of cancer cell 
growth in vitro and in vivo [9–16] in many cell types. Sur­
prisingly, the eVect of statins on ovarian cancer is limited to 
one study documenting lovastatin-induced growth inhibi­
tion [35]. In this study, we report that two diVerent statins 
induce apoptosis in ovarian cancer cells and inhibit growth 

B 

Fig. 7 EVect of statins on anchorage-independent cell growth Hey 1B 
cells were grown in soft agar in the presence or absence of 10 JM lov­
astatin; visible colonies were counted after crystal violet staining. The 
mean value § SD of three independent experiments is shown (a). The 
photos were taken under Olympus model CKX31 at £100 magniWca­
tion at day 7 and 14 (b) 

of ovarian tumors in soft agar. Our results suggest that stat-
ins alone, or possibly in combination with other conven­
tional drugs, may represent a novel therapy for advanced 
ovarian cancer. 

Statins are known to inhibit HMG-CoA reductase and 
thus can inhibit the prenylation of several G-proteins by 
reducing geranylgeranylpyrophosphate (GGPP) and farne­
sylpyrophosphate (FPP). Based on this, the expectation 
would be that statins would inhibit the signaling of preny­
lated G-proteins. Recently, however, lovastatin was shown 
to induce the expression of Rho A, B and C in human eryth­
roleukemia cells and to increase the active GTP-bound 
form of Rho by 3.7 fold [22]. Further, lovastatin did not 
aVect the prenylation of Ras in erythroleukemia cells, sug­
gesting that inhibition of geranyl-geranylation was more 
pronounced than inhibition of farnesylation. Neither Rho 
downstream signaling events nor the status of Rac and cdc 
42 were assessed in these cells. Consistent with the Wnding 
that statins can increase the expression of geranyl-gerany­
lated G-proteins, we have shown that lovastatin treatment 
increased the expression of both Rac and Cdc 42 in ovarian 



  

  

  

   

  
 
  
  

  
 

 
 

 

  
 

  

  

  
   

 
 

 
    

   
 

 
 

   

 
   

 

   

 
   

 
   

 

   

    

   

  

  
  

 

 

    
  

  
  

   

  

 
    

   
  

  
   

  

 

 
 

    

 
 

   
  

 
   

cancer cells, which could be abolished by inclusion of 
GGPP but not FPP. However, we did not observe an 
increase of Rho expression in both Hey 1B and Ovar-3 cells 
after statin treatment. This distinction is most likely a con­
sequence of cell types. Possible mechanisms whereby the 
inhibition of prenylation could result in increased expres­
sion of prenylated G-proteins would include the possibility 
that either the unprenylated G-protein aVects the signaling 
pathway controlling its own expression, or the lack of pre­
nylation impacts this pathway through some other mole­
cules. 

Consistent with the fact that JNK is a downstream target 
of Rac and cdc 42 signaling [31, 32], and that phosphoryla­
tion of the transcription factor c-Jun is downstream of JNK 
activation, we observed an increase in the level of active, 
phosphorylated c-jun in the ovarian cancer cells under sta­
tin treatment. Further investigation revealed that the expres­
sion of Bim, a proapoptotic protein, is signiWcantly induced 
in the cells by statins. These Wndings are consistent with the 
observation that Bim induction in neurons deprived of NGF 
is regulated by c-Jun [42]. SP600125 is a competitive 
inhibitor of ATP binding to JNK and some other kinases 
[43]. Pretreatment of Hey 1B cells with SP600125 signiW­
cantly reduced lovastatin-induced expression of Bim, con-
Wrming the role of JNK in induction of Bim in these cells. 
Our results demonstrating statin-induced apoptosis and 
inhibition of anchorage independent growth of ovarian can­
cer cells suggest the validity of investigating the use of stat-
ins as a treatment for ovarian cancer. Further, our 
investigation of the molecular mechanism involved in statin 
signaling in ovarian cancer cells provides novel potential 
targets for therapeutic manipulation. 

ConXict of interest statement None. 
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