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CHAPTER 1

INTRODUCTION

System bugs such as faults/errors and security vulnerabilities are significant concerns

for software applications. Any coding operation that causes the system to behave unusually

is defined as a bug. When addressing buggy software applications (defined as those in which

there are numerous coding errors within a particular software process), some side-effects

include user interface (UI) issues or inconsistent output. Many software application bugs

cause invalid output to the user, crashes of the application, and performance issues [8].

Additionally, security bugs are also system vulnerabilities; these bugs increase the chance

for the application and system to be exploited.

To prevent bugs and reduce vulnerabilities, we need software security. Software se-

curity is the practice and art of building security into the code or development process to

reduce vulnerabilities. Most software projects create artifacts, which include the source code,

but some additional artifacts include the creation of bugs. Often, security is considered an

afterthought during application development and many applications are not resilient to at-

tacks [6]. Security bugs are also common when software developers use vulnerable APIs such

as strcpy in the C programming language.

A widespread practice is to reduce the number of coding mistakes and errors by

improving the code with quality assurance measures. However, writing code leads to writ-

ing/scripting mistakes that manifest as bugs. It is also difficult to improve security by only

Figure 1.1. Requirement and Implementation Coding Issues [6]

1



improving quality assurance because software assurance testing focuses on testing functional-

ity and often does not include security requirements. If security requirements are also poorly

communicated or inadequate, it may be difficult for a programmer to understand those se-

curity requirements, given their complexity. This lack of understanding leads to increased

security risk. Figure 1.1 illustrates the relationship between requirements and implemen-

tation [6]. Software system requirements overlap implementation, which encompasses bugs

and security problems. The combination of bugs and security problems cause major issues

in an application. In general, standard system requirements do not cover many security

requirements.

Figure 1.2. Software Analysis Scope (Execution Time vs Analysis Type) [6]

To improve applications when dealing with security issues and bugs, the advent of

code reviews and commercial tools help in addressing software system security issues. Fig-

ure 1.2 shows various tools and features for analysis [6]. Different tools have different scopes

and execution times for analyzing applications. Theses analysis scopes could help companies

understand applications better compared to manual analysis approaches. However, com-

panies still employ expertise in both security- and software-related fields to perform code

reviews. Depending on the size and complexity of software, these code reviews take days

or months to complete and can still have system issues. These reviews include functional

and nonfunctional testing. While functional and nonfunctional testing on an application

examines the requirements, these tests often do not focus on the security of applications.

In many cases, these tests overlook security problems because security problems might not
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violate the requirements.

For companies that do use tools, they have an assortment of issues. In general,

industry professionals focus on commercial applications for bug and security vulnerability

detection in code [27, 28], while academics and researchers focus more on open source tools.

Companies spend effort on commercially-developed tooling due to the lack of usability and

single functionality of many open source tools. However, there drawbacks for commercial

and open source tools. Commercial applications are expensive, which deters many academics

from using them. Many open source tools require a high-level of instrumentation for code

analysis. Commercial applications aim for generalization in support languages, while open

source tools focus on specific security bugs. Business tools such as AppScan can find numer-

ous issues in the source code, while many open source tools can only identify a few problems

in a given program1. Both sets of tools are prone to false positives (sections of code that

have been misidentified as vulnerabilities by tools).

Many of the commercial tools used for analyses of programs are prohibitively ex-

pensive for the individual consumer. In addition, the current tooling do not detect bugs

effectively, thereby increasing the cost to find and address these bugs; companies, such as

Google, offer bug bounties upwards of thousands of dollars to locate bugs only in one appli-

cation. The reward amount can increase for mission-critical or government applications as

a small bug can result in life threatening situations. Due to the cost of commercial tools for

identifying bugs, many companies outsource their bug and vulnerability detection. However,

this process is also expensive. External analyses of applications with commercial tools can

cost twice as much as the actual product.

Commercial and open source tools also struggle with false positives because software-

related security bugs are a severe problem at the design and implementation level and can

be hard to detect. In critical systems, flaws can lead to security attacks [27, 28]. While

software testing offers a means of eliminating software bugs, this can be expensive (in terms

of money, time, and resources). The cost of software bugs is directly related to the time

1http://www-03.ibm.com/software/products/en/apps
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programmers spend fixing bugs [22]. Maintenance, including handling security issues, can

make up over 70% of the total life-cycle cost for a given program, and the number of bug

reports can exceed the technical staff available to work on such problems. Many bug reports

generated through routine maintenance include duplicate bugs; for example, studies have

revealed that as many as 36% of bug reports were duplicates or invalids, which can further

increase costs [22]. In 2005, software maintenance cost companies $86 billion dollars [17].

This number has increased over the years. Reporting bugs is costly for everyone involved

in the development process. A report by Hay et al. [20] stated that, according to the

Department of Commerce, activities focused on improving the quality of bugs accounted

for 50% of the budget for the average software company and cost companies $59.5 billion

annually.

There are many security and common bug types reported for various applications [29,

30]. These bugs can manifest at the coding level, such as a null pointer caused by a unique

edge condition in an application. They can also stem from communication issues between

multiple applications. Further, vulnerabilities such as cross-site scripting in the application

and interconnection between complex applications are issues for companies. In order to ad-

dress bug reports, developers must diagnose the cause, produce a patch that could fix the

bugs, and commit the patch to a repository. This process involves bug triaging, which may

require particular expertise. An expert would handle patching a DOS attack differently from

resolving a source code overflow, and specific knowledge would be required to understand

both coding issues. Experts fixing bugs in application require modifying foundational sec-

tions of the code base. Therefore, information collection and bug triaging can be expensive

and time-consuming processes that can take days or weeks.

Categorizing bugs is also a unique challenge for experts in software security and bug

analysis when dealing with many bug types. For example, all security bugs are bugs, but not

all bugs are security bugs. Although it is desirable to generate patches for all bug reports

in a generalized format, realistically, that is extremely difficult [27]. Many bug reports are

invalid, incomplete, or unrepresentative, which means it is challenging to build automatic
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fixes. Using only security bug fix reports is not a viable option for understanding the security

risk involved with a system. Some solutions require a full redesign of the algorithm and

additional features. Classifying bugs is challenging because, with the compilation process

levels, bugs have different meanings. Bugs would include finding null pointers and be off

by one error [2, 23, 24]. Commercial software applications identify errors such as cross-site

scripting (XSS) and authentication issues.

Many security tools can handle inter-language problems. Past research on tools has

focused on theories for finding issue in multiple languages [16]. The advantage of the theoret-

ical approaches is that many of the ideas and algorithms can extend to numerous languages

and applications. Open source tools use theoretically-based algorithms and have several

limitations when finding issues in applications. These theoretical foundation limitations also

occur in commercial applications. A well-known example of this issue is defects character-

ized as generic and context-specific [6]. Generic flaws, such as buffer overflows and exception

handling, are common to all programs. Depending on implementation, there may be some

difficulty associated with determining the cause of a buffer overflow. Context-specific defects

are created in formal requirement documents. Just as it can be challenging to identify a

generic defect, finding context-specific errors is extremely difficult when using a detection

algorithm. However, during the analysis process, it is important to consider both defects

visible to debugging algorithms and other software issues that are visible in the design phase.

Security bugs such as input validation, API issues, and error handling can be classified as

either general or specific context-based bugs.
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CHAPTER 2

MOTIVATION AND BACKGROUND

Addressing software bugs is important and it is currently necessary to utilize manual

analysis to understand a program. Manual analysis is a process during which the coder

searches for flaws. However, bugs are often found after an exploit has occurred. Manual

analysis can be time-consuming; if the exploit is not detected, the vulnerability can take

years to fix [13]. An approach for addressing such an issue is to use patch information, which

provides details related to how a code has changed over time. This allows for the use of

domain data that cannot be captured easily with only static analysis. Static analysis can

help in terms of analyzing the code before compiling, but it is difficult to introduce static

analysis tools during the latter phase of a software project. It is also necessary to implement

software diagnosis tools into the build process rather than scanning code at the lexical level.

This would allow for the detection of software clone coding, which has increased in the de-

velopment process as consistent changes can cause some issues for developers. Furthermore,

research by Li et al. has shown that semantic issues are the cause of many bugs [26]. Typos

or copy-paste actions can be the source of various software bugs. The key is to avoid verbose

solutions in order to mitigate both false positives and false negatives [26]. Thus, basing the

automated static analysis on patching can reduce the overall quantity of false positives.

While research has shown that there is a benefit to using traditional static analysis,

there are still problems with current static or manual analysis tool-chains (e.g., concur-

rency, memory, and semantic bugs), which indicates that further research is necessary in

this area [41]. Currently, only a small amount of extant research has addressed utilizing

patch information to detect potential software bugs [3, 39, 40, 47]. Also, some programming

research has considered the minimization of plug-in tools to address failure side effects within

software applications [34, 39]. However, extant research has not focused on fixing the cause

of the issue in the system.

The motivation for this research is to address issues associated with preemptively
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locating, identifying, and mitigating software bugs by leveraging patch information. To

achieve the motivation of this work, I create techniques and approaches that complement

others using learning techniques. One of the goals of this work is to find at-risk functions,

which include risky functions and operations that may not be currently vulnerable. By using

learning techniques and creating workflow, these functions or locations of risky methods can

be noted and tested with an application security testing tool. Vulnerabilities and at-risk

functions can also be reviewed by domain experts or developers who know how to mitigate

the issue.

2.1. Objective

The objective of the present work is to create a code analysis framework to support a

software build process. This will require code analysis that identifies the root cause of some

vulnerabilities. LLVM has been shown to be a pivotal compiler infrastructure to address

code analysis while maintaining the code properties at an intermediate level. The secondary

objective of this research is to automate the process and evaluate code analysis techniques

using learning algorithms. These objectives can be summarized as follows:

• Build a core graph representation of a program that captures relevant vulnerabilities.

• Develop novel feature extraction and learning models for predicting vulnerabilities

or at-risk methods in applications using an intra-procedural analyses.

• Test against different datasets (NIST’s SARD datasets and OpenSSL)

– Analyze program code

– Evaluate learning models

2.2. Contributions

The contributions of this research are a hybrid code property graph using LLVM

that maintains source code metadata, a framework for testing vulnerabilities based on clone

code detection, and an analysis of the approach against Software Assurance Metrics And

Tool Evaluation(SAMATE) project testing dataset and OpenSSL. I executed vulnerabilities

represented by LLVM and analyzed the effectiveness. The approach focuses on detecting vul-
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nerabilities based on historical data. The overall contribution is defining practical methods

for finding security-relevant coding issues. This study’s contributions include

• Hybrid code property graph

• Framework for testing vulnerabilities based on clone code detection

• Test against different datasets (NIST’s SARD datasets and OpenSSL)

• Vulnerability Analytics using the hybrid code property graph

2.3. Threats to Validity

Throughout the project, I discovered several threats to validity involving this study’s

methodology and domain challenges in security. One threat to validity was that I used

only modules (files) with known vulnerabilities for analysis. The decision to focus on fewer

modules was based on the assumption that, as the size of the graph increases, the time it

takes for analysis would dramatically increase. Thus, to minimize the number of modules

and reduce the runtime, I focused on files with known vulnerabilities. Additionally, this led

to a focus on riskier modules that had known vulnerabilities over other modules without

any known issues. Since I mapped vulnerable functions tested on issues seen during normal

operation, the modules under investigation have functions related to code that runs during

normal user operation. If this study focused on analyzing functions across a whole code base,

the tested models would have required evaluation of a great deal of code that is not used

during normal operation. This includes Quality Assurance(QA) testing code and specific

testing code for testing SSL clients. When focusing only on vulnerable patch changes in the

associated file on OpenSSL, the models target the directories involving apps, crypto, engines,

and SSL in the main OpenSSL project. Many of the functions tested are key parts of the

OpenSSL Library.

Limited configuration regarding builds constituted another threat to validity. I used

a standard configuration when building OpenSSL on an Ubuntu workstation. This means

that one could assume that the analysis is limited to only Ubuntu systems with similar

configurations. However, the code only have slight variations depending on the platform and

configuration used during compile time. For example, OpenSSL can be compiled on BSD.
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While compiling on different systems causes different code changes, in most cases, the overall

code structure is the same.

The next threat to validity involves zero knowledge vulnerabilities. Vulnerabilities

have a time window involving the discovery, the actual exploit on the system, and when

the patch is applied to the system. Usually, in the process of discovering a vulnerability,

an exploit is created that leverages the vulnerability. The next phase is the development

of the zero knowledge vulnerability, which is the vulnerability itself. Zero knowledge does

not mean hackers do not know of the exploit or are not exploiting the application, but that

the public does not yet know of the issue. The vulnerability window is the time it takes for

an IT admin to fix the issue after becoming aware of the problem. While this dissertation

provides a foundation for finding at-risk functions, this does not fix the issue. While this is a

threat to validity, it is not a limitation because the responsibility of assessment, mitigation,

and repair of any issue is up to specific users of any applications; the approach discussed in

this study aims to help users find locations in the code that have a high risk of issues.

Another threat to validity of the study’s methodology is the inability to find exact

vulnerabilities. The approach developed in this dissertation does not allow for the identi-

fication of exact vulnerabilities because it focuses on instruction types to determine at-risk

functions. By looking at function types and converting the data into dot notation that

maintains information on the application, such as the locations in code, precision in terms

of finding the actual vulnerability is lost. However, focusing only on the instruction types

allows for generalization of the application so that data can be constructed as learning based

problems.

The final issue when dealing with patch data stored in a version control repository is

that a vulnerability patch can lead to new vulnerabilities. Patches for major vulnerabilities

are released fast, and a given patch might not fix the vulnerabilities. When a zero-day is

release and is publicly available for a major application or tool suite, a patch can be avail-

able in a few days, A hotkey, which is a quick solution that should mitigate an issue for an

application, can be available publicly within hours. When patches or hotfixes are released
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fast, these patches or hotfixes might not fix the original problem and instead could create

new problems. Patches can create other vulnerabilities, which can cause new issues for de-

velopment teams. I addressed this concern in several ways throughout this study. First,

I focused on trusted, third-party organizations and data sources such as the National In-

stitute of Standards and Technology (NIST), the National Vulnerability Database (NVD),

and Common Weakness Enumeration(CWE) to verify and confirm vulnerabilities and patch

data. These trusted sources include review of many stages involved with validating patching

for major open-source projects. Large teams such as the OpenSSL development team review

patches to understand whether the application patch fixes the issue or not. With critical

applications, such as OpenSSL which is used to secure almost all applications and the Inter-

net, patches and hotfixes are reviewed by a large amount of experts before being released to

the public.

Even though bad patching is a concern, Li and Paxson [25] found that only 7% of

patches failed to completely remedy a security hole. This means that 93% percent of all

security patches do fix the issue. Patch information can be better than bug reports which

can go unused by development teams. Weimer found that patch data is more relevant

than bug reports because bug reports with relevant patch information are more likely to be

fixed [49]. In this study, if a patch fixed an issue but led to another vulnerability, I translated

the two patches into two different vulnerabilities. Each vulnerability and patch had code

properties that could be extracted. This process of capturing information regarding multiple

vulnerabilities is the same as extracting features for one issue.

2.4. Bugs and Security

Software bugs within code are different from security bugs; however, further research

on this topic is necessary. There are several software bug types, including performance,

user interface, and coding errors. Bug types are categorize further into many sub-categories.

Performance bugs can affect an entire system and are often classified as “optimization bugs,

security bugs, or as security performance bugs” [28, 53]. User interface bug issues are related

to the software/human, interface, and system as these are the means for which attackers can
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exploit user assumptions and behavior. Further, software coding errors are issues within

programming that may include null pointers and off-by-one mistakes. Many performance

bugs relate to the optimization of the system, or inefficiency, and can affect system security by

over burdening and taxing the system. Coding an algorithm to more efficiently accommodate

new or current tasking is a more desirable strategy, where any mistake in a hashing algorithm

will generate a wrong hash that can potentially be exploitable. As the level of abstraction

and complexity increases within a software code, finding a bug and understanding its effects

becomes critical. Software programming complexity may require new tools and skills to be

developed to address the evolving issue of bug identification. Increased software program

complexity and the lack of expertise to address the vulnerability could contribute to an

increased number of zero-day vulnerabilities.

Dowd et al. addressed a contrast between bugs and vulnerabilities [33]. Dowd et

al. noted that ”vulnerabilities are specific flaws or oversights in a piece of software that

allows attackers to do something malicious and these are errors that create undesirable

behaviors”. Their work provides a foundation to connect security vulnerabilities as a specific

bug type. However, this could lead to “application exploitation,” which is the process of

taking advantage of a software system that has a security vulnerability. While security

policies may prevent such exploits, these security policies often go unused. For example, a

well-known system vulnerability would be cross-site scripting (XSS) which can be located by

accessing web pages. Given the amount of the requests a website sends between each page,

there are many locations a malicious user can leverage to exploit a system. Thus, many XSS

issues go unfixed.

Additionally, there are three main software language-related bug categories: logical,

implementation, and coding errors [6]. Logical issues stem from errors that arise from the

design implementation of a software application. For example, missing functional require-

ments at the design level can create security or general issues. If a programmer adds a

button to UI that was not in the requirements, that implementation would be considered as

a logical issue. The concern is not related to the software coding, but rather to the lack of
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implementation or the logic in negating the original framework requirements. Implementa-

tion issues are defined by the software code rather than the logic. Specifically, if the logic is

correct/consistent with respect to the requirements, but the system has issues, it can be de-

fined as an implementation issue. For example, consider a program that calculates the mean

of financial records. An implementation error would be a miscalculation that would result

in an erroneous final result. The issue is likely not logical, because the programmer’s logic is

sound. Therefore, the issue falls into implementation error category. Finally, coding errors

can be divided into two groups: run-time errors and compiler errors, which are strongly

dependent on the software language. For example, GCC and G++ are likely to have no

compiler warning messages using default configuration for Null pointer issues. Null pointers

is commonly used to initialize a pointer when the object reference is unknown. When that

pointer is referenced while Null, there can be significant security issues. Referencing a null

pointer will retrieve information that may crash the system. The main difference between

run-time errors and compiler issues is that compiler issues can be detected when compiling

code, while run-time issues are usually difficult to show before computation execution.

Dowd et al. further classified vulnerable and common threats related to design and

implementation [33]. They have an additional classification referred to as “operational bugs.”

These design vulnerabilities are also logic errors and are a result of an oversight in the software

design. In this case, the developers would need to address critical issues such as vague or

misunderstood requirements. Implementation vulnerabilities present a problem when a task

is preformed incorrectly. This occurs during the implementation phase in the Software

Development Life Cycle. Operational vulnerabilities are unique because they happen during

the execution of an application. In many cases, these issues are caused by compatibility

issues with the application and the software environment. There can be several other causes

such as issues resulting from social engineering. These issues could include: input and data

flow issues, trust relationship, misplaced trust, and the assumptions developers and business

leaders have concerning the end user. It is also important to note that input and data flow

issues account for the majority of problems with software applications.
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2.5. Relationship between Security and General Bugs

While all security bugs are bugs, not all bugs are security bugs. Security bugs have

a direct relationship to confidentiality, integrity, and availability (the CIA triad). Confiden-

tiality is very similar to privacy in that the goal is to stop attacker from releasing sensitive

information. For example, a bug can allow for an attacker to read an application’s memory,

including addresses that should not have been accessed. Personal information, such as API

credentials or banking details changes, are saved at specific memory addresses, which affects

the confidentiality of an application. Bugs can be caused by unsanitized input to a system,

which presents as a buggy input field that does not respond properly. Integrity is closely

related to the stability of an application. The application should maintain the accuracy of

the data. However, if an attacker figures out how to do stack smashing, they can crash

the application or change data to cause an application to send the wrong information to

different processes. This will affect the output of the application. Stack smashing can also

be an example of issues in availability. If an attack brings down the system, it has to have a

direct effect on the application. All these issues originate from the bug that also has security

implementations.

2.6. Detour in Compiler Theory

Compiler theory is a foundational topic for software development and code related

vulnerabilities research [1]. Software focused literature is rooted in compiler theory, program-

ming languages, or automata theory, and these topics have overlapping concepts. The key

concept in compiler theory is computability and how a compiler functions. All languages, in-

cluding compiler or scripting, go through phases of computation. In general, a compiler uses

a source program and outputs targeted machine code to produce a typical compile language

such as C/C++. With a target program, input is passed through a compiler to produce an

output. A executing program may not use any input. With interpreters, the machine inter-

prets a source program and input to generate an output. Python or JavaScript are script

interpreters that aid the programming process. The key difference between the interpreter

and compiler is that the compiler produces a target program proper for execution. Most
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modern languages rarely employ pure interpreters. In general, there are more hybrid than

pure interpreters. When Python compiles code to a .pyc file, it becomes a hybrid compiler.

Hybrid compilers translate the source program into an intermediate program. The gener-

ated intermediate program feeds into a virtual machine which produces an output. These

concepts are important because CLANG/LLVM is a hybrid compiler that creates LLVM-IR

code for analysis. CLANG is a front-end compiler for languages such as C and C++. The

original goal of Clang was to create a new, C-based language front-end. LLVM provides

the middle layers of a complete compiler system, taking intermediate representation (IR)

code from a compiler and producing an improved IR. There are several advantages to using

an intermediate program, compared to using binaries or raw source code. The key benefit

to using intermediate program operations is that it allows for the extraction of program

representations without lexical issues for application security research.

When considering the static analyzers that address analysis at distinct levels of ap-

plications, most of the work is based on compiler theory concepts. Figure 2.1 shows the

translation process for a compiler [1]. The foundation is the source program and source

code. The source code depends on the standards and the requirements for the compiler, but

it is possible to write a program without compiling it. Research by Mark et al. focused

on creating a collection of documents for finding software vulnerabilities [33]. Much of the

research mentioned in Mark et al. focus on the application without analyzing code proper-

ties [33] and focus on analyzing a program at a lexical level. However, it is necessary to focus

on code properties and extracting information from the source code. Further, some static

analysis tools focus on user-defined variables to infer information about the program which

is a problem. During a raw code level analysis, analysis works on information provided at a

higher levels of the compilation phases. For example, if there is a hash public key encryption

program, but the application’s function parameter takes a private key for a method call, and

the parameter name of the function’s first variable is public, there would be an issue. Static

analysis at a source level would address this issue but not be able to address issues beyond

a lexical level. A solution would be to name the public key data as a private key.
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Figure 2.1. Translation of an assignment statement [1]

After the lexical analyzer, the compilation phase allows for the identification of the

variable names, which can be defined in a symbol table. The lexical analyzer keeps track of

the token names and attributes values [1]. The syntax analyzer gives structure to the lexical

units produced by the lexical analyzer. Within the compiler process, related syntax bugs are

visible within program grammar. When a program is at the semantic level, the compiler has

a syntax tree that can be used to generate semantics about the program. A main focus of the

semantic analyzer is to type check the supported language. The compiler verifies that the

two value types are matched. Also, implicit type conversion events occur when needed. The

convergence between numeral types is an example of these conversion events. Intermediate

code generation takes in the semantic information and outputs and allows for the formation

of machine-like code. Multiple analyzers can be used for this phase of compiler analysis.
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Specifically, compilers such as Clang operate at the intermediate level and LLVM-IR code is

a representation of the middle-ware, described by code language, that can generate the code.

The intermediate code generated focuses on getting rid of redundant or inefficient code.

Many programs at the semantic level of analysis are rooted in code optimization techniques,

which are the next step in the compiler phase. This optimization occurs before the code

generator phase. Code generation output data is produced for the machine to interpret and

the results are binary and compile analysis. Binary code can be analyzed by Ida-pro and

other tools; some compilers include parser generators. Most languages use a static scope and

block structuring with precise control. Thus, programs can be broken down into modules,

produces, and blocks. Compiler theories often subdivide blocks into different basic blocks

and sub-blocks. With Clang, the blocks are further characterized as modules, functions,

basic blocks, and instructions.

The compilation phases comprise important tools and representation. The parser

generates the syntax analyzers from a grammar. Data-flow analysis has information on how

values flow between components [15]. This is an integral part of code optimization. Many

of these steps in a compiler occur in parallel. Most modern processors leverage instructions

running in parallel. Many compilers have been influenced by RISC: a complex instruction

set computer (CISC) [14]. For understanding compilation phases, it is also significant to

address environments. Programs keep track of states of a program. These practices are so

common in programming that many people do not realize that many languages build on

these concepts.

Figure 2.2. LLVM IR Pass Flow [31]

LLVM/Clang, also known as the LLVM project, is a collection of projects [31]. In this
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document, the terms LLVM and CLANG are used interchangeably; however, Clang denotes

the front-end compiler and LLVM is the back end. The LLVM project is the main compiler

for many companies, including Apple. It is also is one of the more modern compilers that

have a core set of libraries that translates source to a target that is, in theory, language

independent. While CLANG primarily supports C and C++, developers and researchers

can take a program in different languages and output a common, well-formed representation

or machine code. That representation is known as LLVM IR. LLVM is heavy documented

which is useful to those attempting to conduct compiler or any code analysis research. The

Clang/LLVM project started off as a project at the University of Urbana-Champaign and

is one of the top recognized compilers for C and C++. LLVM also has built in the LLBD

library, which is a natively built de-bugger used to help debug memory issues. There are

also many projects built using LLVM, such as LLVM Lint and Klee, used for analysis of

programs for quality and coding issues. Though many people know LLVM for its support

for C and C++, it also has support for many other languages, including Python, Haskell,

Java, PHP and Pure for analysis using plugins. LLVM also supports standard libraries for

C++ and is backward compatible with GCC. If a source can compile with GCC or G++, it

compiles using LLVM. LLVM IR is used for research where programs are represented in the

LLVM IR form before compilation. Figure 2.3 shows the benefits of using IR [38]. Clang is

the front-end that generates the IR code. Another part of LLVM is the pass modules that

plug into the application to perform different analysis. Passes can be used to inspect the

code or to transform the code before outputting machine code. There can be many passes

before machine code is generated.

Figure 2.3. Source Code to Machine Code [38]
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LLVM gives users the power to determine what functions, either call or callee, run in

a program at any point during a pass. A function is a collection of basic blocks, which are

similar to compilers’ basic blocks; if a given basic block is called, all that code is executed.

At the basic block level, LLVM also allows the user to see who the caller or callee is. The

collection of basic blocks in the same module and function can be used to generate the

control flow graph for a given function. Basic blocks contain instructions, which are actual

single code operation similar to RISC code. The advantage of having RISC-like code is

that operations have corresponding types and people can infer information on whether a

particular code is a pointer related type or instruction. Another unique features of LLVM

is that the LLVM IR form assumes an unlimited amount of registers. LLVM IR code is

readable compared to machine code,meaning that programmers with little RISC or machine

experience can read LLVM IR code. LLVM IR is expressive, typed, extendable, and well-

formed. Like many languages, LLVM IR has opcodes such as add bitcast, return, and prime

types such as void and i32. LLVM IR also has global and local identifiers. Global identifiers

are functions and global variables begin with the @ symbol. Local identifications are register

names and types that begin with %. Global variables and functions have different linkage

types, which are important for users. Global values with a private linkage make it so the

objects that can only be accessible by that module. Sample LLVM IR code is provided

here 1.

define i32 @mul_add(i32 %x, i32 %y, i32 %z) {

entry:

%tmp = mul i32 %x, %y

%tmp2 = add i32 %tmp, %z

ret i32 %tmp2

}

1http://releases.llvm.org/2.6/docs/tutorial/JITTutorial1.html
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2.7. Source Representation Analysis

There are some disadvantages to using LLVM-IR compared to other methods such

as analyzing a program only at a lexical level. First, simple code in one language becomes

very complex when represented in the RISC-like form. This is because things like complex

expressions are extended throughout instructions. What might be achieved in one line of code

might take several lines with control dependencies and several basic blocks to be expressed

in LLVM IR. While LLVM provides the flexibility to compute data for different analysis, this

analysis still requires computation time. LLVM uses algorithms to determine the best way to

generate data for analysis; however, many techniques are still quite inefficient. Implementing

advance analysis leads to more complex analysis on the source code, which can take longer

depending on the complexity of both the code and algorithms used. There are two sides to

this issue, which creates a trade-off environment. Either developers pick fast compilation and

less accurate results, or slow compilation and more accurate results regarding checking for

issues. Since computers are complex, getting exact, fast, and correct results is a challenging

task. By default, LLVM only provides iterations over different groups: Modules, Functions,

basic blocks, and instructions. Additionally, LLVM requires modules for analyzing code

dependencies.

2.8. Limitations of Source Representation Analysis and Other Research

Many publications have focused on representing problems in different forms [12, 45,

50]. Dietz et al. found that compilers have different results when dealing with unsigned

integer types. My study differs because the code properties can be used to learn from

previous code patterns, including the behavior of the compiler when fixing these issues.

Many SAST companies highlight one feature that is based on a specific representation.

Yamaguchi et al. created what is known as a call graph [50].The call graph is very similar to

the interprocedural graph, but contains more information. The authors put the information

into the graph database and performed queries against datasets. They were able to create an

automatic process for analysis, which is lacking in many other papers. Though the study’s

contributions to the field included search patterns and feature maps for source code, the
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approach used by Yamaguchi et al. does not help when a programmer purposely adds a

vulnerability into the application. The approach used in the my study differs because, in

an instance in which a backdoor is patched, it is possible to learn from the code in terms

of property graphs and to indicate other areas of the code that could be vulnerable. Sui et

al. used LLVM to generate better pointer analysis [45]. They created an analysis tool that

plugs into LLVM and took all the pointer locations and statements. They also provided a

full suite of tools, which are available for analysis. The approach in my study differs because

my focus is on finding issues, rather than just analyzing programs.

There are several drawbacks to the approaches used in the research mentioned previ-

ously. In both papers, the authors focused more on representation than on the severity and

vulnerability of finding a bug in source code. It is important to show how different program

representations can be used to find security bugs in applications. This is a critical part

of any research on static analysis. Thus, my study highlights this oversight, while aiming

to maintain effectiveness of finding issues in applications. Through using abstraction tech-

niques, potentially vulnerable code locations can be found by extracting information from

the system.

2.8.1. Program Representations

Figure 2.4. The Software Similarity Problem [5]

Clone code detection is a key aspect of this dissertation. Thus, it is important to

review clone code concepts. The problem addressed in my study is a subset of clone code

detection: the attempt to find program similarities between two code sections. My focus

is on a smaller subsection of code. For example, if there are two programs, the goal is to
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find a birthmark that not only indicates that these programs are similar, but also identifies

that vulnerable codes share similar properties. Figure 2.4 shows the relationship between

birthmarks and different programs [5]. The goal is to find distinct birthmarks in a project

so that, if their properties are tested, it would be possible to determine whether the given

birthmarks are matched or different. In the case of two different programs that have a

similar birthmark, there is a match and those programs are the same. There are several

definitions below that can explain these constraints [5]. These definitions can be used to

formally express the problem involved with program matching.

Definition 2.8.1. Let r be a property for program p if for all possible executions r

is true.

Definition 2.8.2. A program q is a copy of program p if it is exactly the same as p

or it is the result of a semantic preserving transformation over p.

Definition 2.8.3. Program p and q are similar if they are derived from the same

works.

Definition 2.8.4. Let p, q be programs. Let f be a method for extracting a set of

characteristics from p . f(p) is a birthmark of p , only if both of the following conditions

hold.

• f(p) is obtained only from p itself

• Program q is a copy of p→ f(p) = f(q)

Definition 2.8.5. Let p, q be programs or program component. Let f(p) → a and

f(q) → b be the birthmarks extracted from p and q. Let s(a, b) → [0, 1] be a similarity

function and a value e < 1. The birth marking system is resilient if p and q are similar and

1− s(a, b) < e

Definition 2.8.6. Let p and q be independently written programs. The software

birth marking system is credible if the system can discriminate between the programs; that

is s(f(p), f(q)) < 1− e
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Definition 2.8.7. Given a set of programs and their classes {(p1, c1)...(pn, cn)}, the

software classification function c′ = h(f(p)) will yield a similar classification as close as

possible to the true data set.

Software similarity can be divided into different categories: malware classification,

software theft detection, plagiarism detection, and software clone detection. My focus is on

a subset of software clone detection intended to find vulnerabilities in the source code. All

programs have features which include syntactic and semantic features, such as raw code,

abstract trees, variable pointers, and even instructions. Several definitions can be used to

understand clone code detection or any area pertaining to coding birthmarks. If there is a

program p with all the possible executions and q is a derivative of p, then there should be a

formal equation that can transform the program from p to q such that p′ = f(p) = q. The

goal is to determine what f() is in order to determine q. If p and q are programs, then p is

used to infer a function such at p → f(p) = f(q). This means that, if the function can be

determined, then there is an equation: f(p) = f(q). If there is a function to compute the

bounded similarity between p and q, then the values of that function would be between [0, 1].

If there is a variable e that is greater than s(a, b), which is determined from the birthmarks,

we can access the similarity of two birthmarks a and b. The difference between one function,

say s() so s() < 1− e, and other functions can be determined. This means that s() can also

be evaluated. If there is the program p and the properties o, the similarity can be computed

by a function c′ = h(f(p)).

The following set of definitions address different properties or features in a program.

It is best to start with the raw code because, at this level, the code is viewed as a string

over the alphabet. This can be viewed as a syntactic feature. Similar to compilers removing

comments for the syntactic feature, we remove comments in the code. The raw code would

be nothing more than the symbols and variables allowed in the language. Thus, the raw

code is all possible symbols allowed by the language in the alphabet. The abstract syntax

tree can be defined as r : P → S so p → s, s,
∑

. Instructions are combinations of a given

operand and any number of operands. Basic blocks contain a set of instructions (defined as
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I) that can be used to execute operations. Each set of instructions makes up a basic block.

Definition 2.8.8. Let
∑

be an alphabet of a symbol. The raw code of the program

p is defined by the function r that evaluates to a string over the alphabet.

Definition 2.8.9. Let I be set of all instructions such that I = {(opcode, opcode1 .. operandn)}

Definition 2.8.10. Let InstSequence be a string of instructions such that InstrSewuence ∈∑
∗
∑

= I

Definition 2.8.11. Let InstSequence(b) be a string of instructions such that InstrSequence ∈∑
∗,
∑

= I for basic block b

Definition 2.8.12. A program uses a set of procedures F = procedures(p) =

{f1, ..., fn}

Basic blocks are used to make up procedures and functions that make up a program.

Therefore, a procedure would be the set of all functions in the program. At this point, a

simple program is defined as one that has no interconnections. While the functions and

the makeup of functions are available, there is no way to connect the basic blocks or the

functions together to make a program.

The next set of definitions relate to the control flow of a program. The control flow

is a directed graph that shows the connections between basic blocks. Basic blocks show the

flow of control between instruction sets and which basic blocks dominates over others.

Definition 2.8.13. The control flow graph of procedure f is the directed graph

C = (B,E) such that B is the set of basic blocks and E is the set of edges between them.

Definition 2.8.14. d dom n or node d dominates a node n if every path form the

start node to n must go through d.

Definition 2.8.15. A node d strictly dominates a node n if d dominates n and d

does not equal n
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Definition 2.8.16. The immediate dominator or idiom of a node n is the node that

strictly dominates n but does not strictly dominate any other node that strictly dominates

n

Definition 2.8.17. A dominator tree is a tree where each node’s children are those

nodes it immediately dominates

Definition 2.8.18. The call graph of a program is the directed graph CallGraph =

(F,E) such that F is the set of procedures and E is the set of edges between them. The

interprocedural control flow graph combines the control flow graph with the call graph. It

is defined as ICFG = (B′, E):

• The set of control flow graphs

• Each control flow graph is given an additional exit node, which is a successor to the

set of return nodes in the CFG

• For all basic blocks, a call instruction divides the block into two parts. the first part

is connected to a call return node, and that in turn is connected to the remaining

basic block path.

• For each basic block that now ends with a call instruction, the block’s successor is

added the control flow graph of the call target. The successor of the exit node of

the target control flow graph is additionally the call return node.

Control Flow Graphs are important in programs. All return statements in a CFG are

terminating nodes. It is important to note that the path is a sequence of nodes in a CFG.

The inter-procedural CFG is the CFG with call graphs. Control flow analysis also saves

the execution order regarding program statements. All the possible execution paths create

paths in the graph; multiple paths can create many programs. Recursion and other looping

constructions can also mean that, for a given program, the amount of the time covered in a

section of code can be large. CFGs show the flow between control given sets of instruction.

Instruction sets occur when the control block is entered in the application. Basic blocks have

one entry and one exit. For example, the program can exit a basic block only by executing
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all the instructions in the basic block. The last node in a CFG is the exit node that will point

to another node or could be the terminating node for the application, like the main function.

The main function is a special function that exits and causes a termination. Edges show

how the code will change the different flows, while nodes are the basic blocks. All paths in

the program are exist in the program graph. With program dependence graphs, the goal is

express dependencies between instructions or even blocks or code. In this case, instructions

are considered. It is essential to show what instruction depends on other instructions for

security purposes, but also in terms of program optimization and parallelization. A program

dependence graph uses data and control dependencies. In terms of nodes on graphs, going

between nodes that are dependent would show which nodes influence each other. Instruction

data dependency shows how a value flows between locations in a program. The compiler

generates correct code, detects illegal programs, and is involved with the management of the

instructions. If there is an instruction or memory location that depends on another, that

place has a data dependence on the other location. If there is a relocation, then that location

no longer depends on the previous location. An advantage to using SSA forms in the source

is that it is easier to discern dependence between values. If there is a chance of dependence

between nodes, many techniques assume the existence of a relationship between data because

register allocation is an NP-complete problem. It is also important to address the nuances of

each program representation. The call graphs show functions and all the connections between

nodes. They are popular in IDEs and can show recursion. Call graphs are different from

CFGs because call graphs handle functions, whereas CFGs are isolated to functions. In the

context of static analysis, all paths represent possible graphs. A control dependence shows

if a location in the code will always occur before another location. All ways between that

location have different relationships, such that items must come through. Strict dominance

means that a location will occur before another and is not the same location. Further, strict

dominance means that the two nodes are the same. Normal dominance implies a node’s

dominance over another and that the latter node can call itself. Immediate dominance means

a basic block will occur immediately before another block. Post dominate is the inverse of
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dominates; it implies that, if a program were to hit a given block, the program also has

control dependencies: properties of graphs. Every path from Node 1 to the termination

must go through Node 2. Control dependence determines that, if another value will execute,

a node can also be control dependent on itself. The program dependence graph combines

the control dependence graph and data dependency graph, which shows dependency and

influence. Pointers are hard to handle in programs. Aliasing and ambiguity are bug issues

involving pointers. LLVM has some basic functionality in terms of building pointer available

information for a program.

Yamaguchi used a core graph to detect vulnerabilities using a pattern-based ap-

proach [50] and built a core graph representation. He combined the Abstract Syntax

Tree (AST), Control Flow Graph (CFG), Decesion Tree (DT), Program Dependency Graph

(PDG), and Post Dominance Tree (PDT). They developed refinement parsing for their anal-

ysis and used the ANtrl4 for generating their custom parser. ANTLR is a parser generator.

There are several drawbacks to their solution. Though it was very ambitious to build a novel

grammar and intermediate parser, the trade-off was that their solution will only work with

a limited amount of coding languages. Second, the SSA form provides more information not

found in their approach. Using SSA is a key difference from my approach from Yamaguchi’s

approach.

Figure 2.5. Vulnerabilities breakdown [18]

The following sections address different vulnerabilities. Guelzim et al. created a

breakdown of different vulnerabilities [18]. This information is summarized in Figure 2.5,
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which shows different vulnerabilities encountered in different applications. Failed origin

checks and boundary checks occur in many applications. Configuration errors were the

least prevalent, compared to the other analyzed vulnerabilities. He showed that applications

have vulnerabilities and finding occurrences of those vulnerabilities is a difficult problem to

address.

2.8.2. Null Pointer

Null pointers are a major issue for developers, and static analysis can detect some

subsets of null pointer vulnerabilities [2]. For example, null pointer vulnerabilities can expose

databases and cause numerous issues that can cause an application to crash [36]. My study

is different because it contains analyses of different types of vulnerabilities, including null

pointers. Null pointers have effects on even languages that are supposed to be pointer safe.

Ayeawah et al. stated that ”the Java coding standard recommends that if null is supplied

for a parameter that is required to be non-null, a Null Pointer Exception should be thrown.

Thus, if a de-reference of a potentially null parameter and an explicit throw of the parameter

is null, both result in the same behavior (although an explicitly thrown exception might

include a message that names the parameter that is null)” [2]. Many researchers confuse

null pointer bugs with a potential for null pointer de-referencing. Having a null pointer is

not a significant issue given some design flows. It is a widespread practice to have pointers

that are initialized to null. Null de-referencing is the issue developers want to avoid. This

is not a design choice, but rather an issue that leads to other issues in the system. In some

cases, null de-references can only occur if a precondition is not set. In many cases, given

all the properties of a given application, a precondition that yields a null pointer might not

ever occur. However, common vulnerabilities in applications indicate that a case for null

de-referencing is not reachable and that segment of code not causing dereferencing of a null

pointer constitute two very different assumptions about the code. One concern with null

pointers, as Ayewah et al. identified, is that many null pointer issues often persist through

patch versions. Null pointers can persist in an application for a long period of time before

they are patched. Hovemeyer et al. used static analysis tools to find null pointer bugs by
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creating algorithms to see null pointer exceptions at runtime [23]. The authors were able

to pinpoint 50-80% of defects involving null pointers. The present study differs because my

framework includes null pointers and other vulnerability-causing software defects.

Basic analysis approaches involve looking for a null pointer detection without pointer

analysis. Basic analysis approaches also involve an attempt to generate model values and

look at control flows. Def use and aliasing approaches are used to extend the basic review

to increase confidence concerning whether something is a pointer and thus should be deref-

erenced. Sui et al. created tools to analyze values and pointers [45]. They produced several

different representations of the program so their analysis could generate inferences about the

programs. They endeavored to show that programs that are heavily dependent on control

and data dependencies had unsafe memory access. Hazardous memory access can cause

bugs and unexpected behavior. Call graphs can be exploited when conducting interproce-

dural static value flow analysis, so they built techniques to review a program. SVF is a

pointer analysis and value flow construction framework. The present study is different from

the work of Sui et al. because code properties are used to capture data that can show the

null pointer issue without having to analyze the def use cases.

2.8.3. Resource Drains

Resource draining in applications is another performance issue that can be exploited.

This is a common way for DDOS systems. Once an attacker finds a resource that does not

have controls in place to check values, he or she can exploit the system by constantly request-

ing for the resource in order to bring down the system. This will affect the availability of the

system, which is a security concern. If an application is a developed while avoiding many

runtimes and compile issues, the application can still have resource drain issues. Unbounded

resources can lead to resource drain in applications. If a client can continue creating an

object without boundary checks for that array of objects to an upper or lower limit, this will

lead to a resource drainage issue. It is important to note that resource drain is very different

from computational tasks that require significant resources to operate. Specific tasks can

take a long time to generate results and require a lot of computational power. Resource
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drain, compared to computational tasks, is a resource that, when exploited, can cause issues

in a system.

2.8.4. Integer Overflow

Figure 2.6. Number Handling [12]

Integer overflow bugs are hard to handle, hard to find in the source code, and can

also cause fault errors in applications [12]. Figure 2.6 shows the different types of integer

issues and an example of silent breakage [12]. Number handling issues are an assortment of

problems involving overflows as well as underflows and truncation issues. Number handling,

like many other issues, can lead to significant problems in an application. Many integer issues

are well defined and are usually unique to a given language. Pre-defined integer type issues

can be a considerable security risk. For example, the refactoring of Google’s Native Client

could cause 1 << 32 to be evaluated incorrectly with respect to security checks [12]. In the

source code in Figure 2.6 , depending on the compiler, the conditionals would label INT

MAX+1 as larger or smaller than INT MAX. This undefined behavior is bad for a system.

Undefined behavior can create time bombs, in which the system randomly breaks on a given

operation. Issues in the source code can involve integer overflow. There are both well-defined

and undefined behaviors linked to intentional and inadvertent causes. Developers struggle

to understand issues when applying algorithms involved with critical operations.

2.8.5. Number Handling

Number handling involves bugs such as integer overflow or integer overflow causing

wraparound. Wraparound is not only assuming indexing into arrays, but also is when the
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value should be more substantial than the initial or original value. This is an exploit or

weakness involving taking advantage of calculations, which is a problem because an attacker

can exploit it to gain control of the system. For example, if a check operation that requires

integer boundary checking occurs before user input is used to run a given command, it can

be exploited. These bugs can cause unexpected behavior that can have negative side effects.

Many program controls use integer handling, such as loop controls. Further, defining memory

allocation uses integer information to determine calculations. Different CWEs address several

other issues involved with integer-related overflow and wraparound. For example, number

handling can cause incorrect calculations and improper input validations. Improper input

validation can create attack vectors for attackers. These consequences can lead to a high

chance of infinite loops. Infinite loops have a high chance of also causing a resource drain.

Resource drain is when the system keeps using a resource which affects the performance of

the system.

2.8.6. Memory Corruption

Whenever a code performs operations in memory in an unintended way that leads to

corruption, that issue is called a memory corruption. Some memory issues are pointer related.

If a system has a buffer, that system can over-read or under-read data if the algorithms are

poorly coded. While Android devices include Address Space Layout Randomization (ASLR)

to reduce memory corruption attacks, the best way to prevent this is to find the locations in

the code. Qin et al. expressed concerns about how memory management and user-related

issues could be analyzed deterministically [43].This includes allocating memory in a location

that can lead to corruption. They created a proxy system that took in system input to

recover from a failure. In their Rx system, Qin et al. built a reporting system to handle

reporting errors. They also developed methods for environment wrapping and rollback in

case an error occurred. Although it is good to nullify the pointer after freeing memory, many

developers code poorly, which can lead to memory corruption [52]. The present study differs

from that of Qin et al. because there is no requirement for the end user to understand how

memory corruption works, as long as they have some related historical patch data. In many
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cases, isolating the root cause of the memory corruption is a difficult problem to address.

2.8.7. Concurrency Handling

Identifying concurrency issues requires two actions. When people consider concur-

rency issues, they generally only think of data races, conditions, and deadlocks [22]. Dealing

with concurrency bugs entails several issues. First, concurrency bugs are hard to find. Any

processing operation that can cause issues when running at the same time can cause a

concurrency handling issue. These programs are also hard to maintain because of their

non-deterministic interleaving usage in shared memory access [19]. There can be several

threads using the same resource. Also, the advent of multicore processors has created an

environment in which developers are encouraged to build applications that support concur-

rency. The second issue in terms of concurrency handling problems is that they are hard

to reproduce. Also, researchers have focused on data races and deadlocks rather than other

order violations [29]. Finally, concurrency issues are hard to fix as it is currently hard to find

and reproduce bugs in large programs that are not found easily. When someone must deal

with issues that require two or more operations to occur, it becomes hard to find in many

applications. Many deadlock issues are never fixed. Lu et al. conducted a comprehensive

study on concurrency bug characteristics [32]. Around 1/3rd of concurrent bugs use multiple

variables to create a concurrency issue. More surprisingly, many of the bugs found were not

fixed on the first patch.

2.8.8. Injection

Cross-side scripting and SQL injection, which are forms of injection, are critical issues

with applications. These types of vulnerabilities are a problem, especially for web-based ap-

plications. The cause of this problem is that, often, developers do not think about developing

an application securely. For example, when a team is developing a web application, many

times, developers do not consider all the possible ways a program can be exploited. Query

parameterization is a common way to stop attackers involved with user data. Without query

parameterization, users can exploit server code and pass arguments to the database. Con-
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versely, some programs have the ability to show information to a user who can then exploit

the browser by using cross side scripting. Another popular form of attack is remote execu-

tion, in which the attacker’s end goal is to run OS commands on the server to exploit the

system. Some attacks include deserialization, which exploits dependent vulnerable libraries.

Guelzim et al. stated that code injection and execution is when “an attacker alters the

sequence of executed program instructions by injecting code at a specific memory location

and altering indirectly a CPU instructor pointer to that malicious code region” [18].

2.8.9. Other Vulnerabilities

There are many other vulnerabilities that are not addressed in this dissertation. Fur-

ther, many CWE reports exist concerning these different vulnerabilities. One common vul-

nerability is execution handling. Knowing when a program will fail or should fail an exception

is an art. Exception handling is a subset of missing checks in the source code that leads to

vulnerabilities in the application [51]. Often, manually auditing the application is necessary

to detect a missing check in each application. Yamaguchi et al. built an application to

check for missing checks in given applications. They were able to discover unknown appli-

cation vulnerabilities in two applications using their methodology of looking at the source

and detecting missing conditions. A common patching technique involves adding execution

handling code to stop the exploitation of a vulnerability. However, this is often treating the

side effect rather than the cause of the vulnerability. This can lead to the vulnerability never

being fixed and attackers finding new attack vectors.

2.9. Literature Review

This section highlights differences between this work and extant research, and sum-

marizes some of the key points addressed in previous sections. Several extant papers have

focused on bug or defect predictors. One of the earliest published papers, by Menzies et

al. [35], addressed how to learn defects. They found that the manner in which attributes

are used to build the defect predictors is more important than the attributes being used.

They were able to identify defect predictors with a 71% probability of success. This was
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better than the IEEE evaluation of manual software review, which suggested that people

could find, on average, 60% of the bugs. McCabe focused on using a graph-theoretic com-

plexity measurement to show how to understand program complexity. He also looked at

different approaches for building feature spaces used to predict defects. By using different

combinations of filters and learner algorithms, he was able to achieve a detection of around

71% with a probability of false alarm at 25%. McCabe’s study found that defect predictors

should be built using all attributes rather than focusing on a subset of attributes for a given

domain. The present study differs from earlier research because different features are tested

for during feature extraction as expansion of the number of types of models are tested for

analysis. This allows for the exploration of both properties and learning algorithm config-

urations. Neuhaus et al. [39] addressed bug prediction for Mozilla using machine learning;

uniquely, they built classification labels and determined whether a file was vulnerable. They

built their feature space on the import/include statements found in each file and evaluated

this using an SVM. Out of all the vulnerable functions used to evaluate the model, their

system detected and labeled 45% of the files as vulnerable. For all the components flagged

or labelled as vulnerable, 70% were vulnerable. This means that the system misclassified

30% of components. Neuhaus et al. focused on the module, which is a limitation because

it will not find where the vulnerabilities are found in the function. Thus, it can only be

generalized to the class file. Further, their work does not address when a file’s vulnerability

is patched and they did not cover how to address whether the function was patched and the

effects it would have on the model. Mens et al. conducted one of the first studies to intro-

duce the use of historical data to predict bugs in an application [34]. Their work noted that

some modules are more valuable than others and focused on understanding the impact of

problem domain, code complexity, historical data, and several other areas affecting a defect

predictor. They suggested that complexity, problem domain, evolution, and process are key

factors that make programs defective. They found that complexity metrics correlate with

defects, but there is no well-defined universal metric. The present study is different because

different models and approaches are combined to gain understanding of predictors used.
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Figure 2.7. History of software defect prediction studies [37]

Figure 2.7, in Nam’s study, chronological review includes more recent publications [37].

Nam surveyed current approaches since 2014 and presented the issues involved with future

research [37]. Nam reviewed the defect prediction process and techniques used, including

metrics, models, and algorithms, across several papers. Figure 2.7 shows all the different

approaches Nam identified, including the categories used for software defect prediction. Nam

found that the algorithms covered in other papers included classification, regression, active

learning, and semi-supervised learning. Nam identified the most common measurements

used to evaluate different prediction models are F-measure, recall, and area under the curve

(AUC). An overwhelming number of researchers used size as a default predictor. CK (Chi-

damber & Kemerer) size, object-oriented features, and McCabe features were the second

most popular defect prediction metrics using frequency. Classification and regression tech-

niques were used in most papers with logistic regression; Näıve Bayes, and decision trees as

the most frequently used models. My study not only considers these models but also includes
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cross prediction using different programs available in the testing datasets and expands on

the analysis process.

D’Ambros et al. created a meta-model for handling software artifacts and imple-

mented their framework and analysis techniques [9, 10]. They noted that bug prediction

can be based on changes in metrics, earlier defects, code metrics, entropy, and churning of

the code. They found that using features based on CK size and object-oriented metrics was

the best approach, in terms of data, when using Spearman’s correlation coefficient. They

found that bug prediction based on a single metric did not work well and that the best

weighting was achieved by using past information from the application using linear models.

The present study differs because my focus is at the function level, rather than looking at

all the files. Focusing on the functions enables a greater granularity for analyzing applica-

tions. Though object-oriented program properties are important, the solutions developed

using these properties will not work for non-object-oriented program paradigms.

Nguyen et al. used historical data in addition to dependency graphs to predict where

the vulnerability is in a program [40]. These dependency graphs were based on the rela-

tions between components, functions, class, and variables. They tested their dependency

graph predictors using the JavaScript Engine used by Firefox. They tested several classifiers

including Bayesian Network, Random Forest, Support Vector Machines, and Näıve Bayes.

They used information generated from Doxygen, a documentation tool, to find vulnerabil-

ities in components. The present study differs because it fits into the build process of an

application. Another key difference is that code property and information generated by the

compiler were used to improve the model performance.

One of the first papers to introduce text mining for bug prediction and the use of

android applications was published by Scandariato et al. [44, 47]. The work of Scandariato

et al. is different from other papers which focused on desktop and web-based applications

because the authors found that they could create prediction models for Android applications

and that prediction technique can forecast reliable performance in vulnerable files for later

versions of Android applications. It was also the first paper to show that some models
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in applications can also work in a different applications. In the present study, different

applications were found and performance was compared to other applications. Comparisons

between several models were made to evaluate the performance when testing against different

applications.

Wang et al. introduced the idea of using semantic features to learn defects in a

given application [48]. They used vector tokens based on the Abstract Syntax Tree and

belief networks as the learning model. Their study showed that using semantic features can

work for bug prediction. Their approach differs from the one used in my study, which is

based on the IR form. This not only makes my approach application independent, but also

language independent. Wang et al. proved that semantic features can help bug prediction.

The improvements in their study were based on semantic features and not on a classification

algorithm. Pianco et al. sought to understand what could be learned from patch history [42].

Though their research did not analyze the program using learning techniques, they were

able to differentiate between vulnerable and non-vulnerable code using information based on

change history. Unlike Pianco et al., in the present study, the cause of the vulnerability is

determined using several learning algorithms to evaluate performance. Pianco et al. did not

adequately analyze the performance of using learning models and instead used a high-level

approach. For testing against Eclipse, the support vector machine tested had 67% precision

and random given defect packages of 37%. They also found that the more code changes that

occur in a given part, the more likely that part is to have issues. However, they did not

test the results against other applications and using different techniques. In my study, we

consider multiple applications and techniques..

2.10. Performance Metrics

Many metrics are required in order to analyze the performance of different models and

classifiers. Common metrics used include precision, F1 measure, recall, and accuracy. These

metrics give a single value that represents model performance with respect to a contingency

table. A more general name for a 2 by 2 contingency table is a confusion matrix, which

shows the total population. Each cell shows a predicted and true condition. Many metrics
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are calculated using the contingency table. The confusion matrices show the outcome with

respect to the table. A true positive means that the model classifies an item properly.

This mean that the item is classified in the correct group. A false negative means that

the model classified something as false when it is true. This is bad for any classification

of vulnerabilities as a presence of vulnerability is classified as non-vulnerable condition. A

false positive is when a model classifies something as positive when it is not positive and was

instead supposed to be classified as false. Many times, this is referred to as a false alarm,

in which someone is alerted when nothing is wrong. A true negative is when something is

classified as negative when it is actually negative.

Metrics such as precision, recall, and F1 score can be built against a model using the

contingency matrix. The precision is how many items are selected, while recall is the number

of relevant items that are selected. Precision is calculated by the number of relevant retrieved

items over the number of retrieved items. The recall is the number of the relevant retrieved

items over the number of relevant items. Formally, accuracy is the proximity measurement

of the results based on the actual values. Accuracy shows the systematic error and is the

number of correctly calculated items over the sample size. This means that the accuracy is

calculated by the number true positive and true negatives over the number of true positives,

true negatives, false positives, and false negatives. The F1 score is the final metric used. It

is the harmonic means between precision and recall (F1 = (2×precision×recall)
precision+recall

). F1 score is a

balance between precision and recall.
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CHAPTER 3

DESIGN AND PROCEDURE

The objective of my study was to find vulnerabilities involved with historical source

code information. The area of this study is categorized within areas such as bug prediction

and as a subset of clone code detection. This section includes information on the datasets

involved in the evaluation of the approaches. The next section includes a discussion on the

core graph based on LLVM IR code. The core graph is a vital part of this research. The

next section also includes the novel approaches created using rules and other historical data

to decide diverse types of vulnerability classes. This section also covers different approaches

for finding patterns to detect vulnerabilities in a given application. The contributions of this

study are:

• Construction of a core graph using LLVM CLANG IR

• Framework for evaluating code based on code properties

• Several novel historical approaches for detecting vulnerabilities in applications based

on historical data augmented with learning techniques

3.1. Hybrid TF-IDF for Vulnerability Detection

A hybrid TF-IDF approach was created, which is addressed throughout the method-

ology and results sections. This hybrid approach was used because of the need to summarize

vulnerable functions in a few core properties. While these properties are features, all the in-

formation used is not as important as other properties. Alternatively, an approach that used

only the frequency based on the number of instruction type pairs and edge relationship could

have been developed. However, specific instruction types and relationships occur frequently

in a given module, which can cause issues with the model’s performance. Thus, I chose a

hybrid approach, which takes the Cartesian product of the instruction and relationship pair

and multiplies it by the unique pairs in the module. This gives the vulnerable function a

unique marker, rather than looking at the most frequent operations.
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TF and IDF can also be viewed as two different scoring metrics that use the dot

product. The tf score shows how important the instruction type or instruction relationship is

to a function, but does not show how its proportionality to the frequency of other instructions

and relationships shown in the dataset. Consequently, the inverse document frequency is

calculated because it because it adds a collection of ranking and weighting to the current

frequency. This allows rare items to become more relevant based on the high weights for the

combinations of ranked frequency.

3.2. NIST SAMATE

The NIST SAMATE is a collection of projects used to evaluate the efficiency of static

code analysis tools. While, in this document, I use NIST SAMATE to refer to many as-

pects of that collection of programs, it took several teams to build all the tooling chains.

Over the years, third-parties have also contributed to the datasets. The NIST SAMATE

group hosts the data repository involved with Stonesoup T&E. Stonesoup stands for Se-

curely Taking on New Executable Software of Uncertain Provenance (STONESOUP), and

was a project funded by several groups with the goal of neutralizing different weakness types

in programs. Some of these groups focused on looking for coding flaws and protecting appli-

cations automatically. The Test and Evaluation eXecution and Analysis System (TEXAS)

is the command line component that interacts with the datasets.

The NIST Samate tooling environment offers many benefits because it provides a

means to evaluate an approach while maintaining the integrity of the application under

test through application build up and build features. The NIST test environment can plug

into this other security tools by changing the build process and environment variables. The

NIST Samate tooling environment is one of the most complete testing environments for static

analysis solutions. NIST Samate includes a collection of vulnerabilities that developers and

application vendors can evaluate their approaches against. The NIST Samate project’s goal

was to reduce the number of vulnerabilities by improving assurance, which was accomplished

through the development of techniques that allow for software evaluation and measure the

effectiveness of current tooling. Another goal was to identify gaps in applications, and
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Samate’s scope ranges from source code security to SCADA systems. The project has gained

users from developers and large code analysis vendors. The key goals of the project were to

enable research on large test sets, improve tools, and improve tool adoption 1. The project

was proposed by the Department of Defense, and began in late 2004. NIST maintain the

software assurance reference dataset (SARD), which is a community-driven repository of

vulnerabilities artifacts. As of late 2016, they had more than 170,000 test cases in different

languages with different flaws.

The main goal of the Samate research was to neutralize vulnerabilities in software and

address common implementation weaknesses in applications. They developed a three-phase

process by which to neutralize the percentage of vulnerabilities found in different SDLC

programs. Another key difference in Samate’s tooling compared to other tooling is that

their focus was on analyzing programs rather than the result of the problem. This involved

looking at what caused the flaws rather than the vulnerabilities in the given applications.

The goal was to apply protection and patching without requiring developers’ intervention.

One of the future goals for the tooling was to be able to track user input at runtime, which

is now available in some RASP solutions. Figure 3.1 shows information corresponding to the

different vulnerabilities tested using my approach:

Figure 3.1. Samate Programs [11]

Figure 3.1, shows some of the programs included in the Samate dataset. These are

not all the programs, but rather some of the critical applications included in the dataset. The

programs ranged from services to GUI-based applications. Most GUI-based applications have

1https://samate.nist.gov/index.php/Introduction to SAMATE.html
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similar functionality in the back end when comparing applications. Versions of applications

provide a baseline, which allows static analysis tools to run against the same application.

The applications’ size ranged from a few lines to millions of lines of code.

Many of the applications are real-world applications that are available online now.

For example, FFmpeg is a tool used to play and convert mp3 files. It used several other

programs to extend those applications’ support. GIMP is an open source application used

for photo editing. Many artists use GIMP as an alternative to Adobe Photo Shop and

other image processing tools. OpenSSL, which is a key application of interest for this work,

is a cryptographic toolkit. It includes many security tools involved with TLS and SSL.

It is commercial grade in design and functionality, compared to many other tooling. It is

also a general-purpose cryptography library. There is no UI for OpenSSL without using a

third-party tool or building a wrap around. Subversion is a version control tool. Finally,

Wireshark is a packet monitoring tool used by security specialists to watch network traffic

going between a device and the application.

Figure 3.2. Samate Number of Complexity [11]

Figure 3.2 shows the different program properties. The complexity features include

control, data flows, and different data types. Even though it might seem easy to use only

control and data flow, these are common properties that make up a program. Any applica-

tion that has any meaning will have some operations involving control and data flow. The

combination of distinctive features creates an enormous range of different test applications

that many static analysis tools can be evaluated against. Over 1,700 different vulnerability

classes are generated for the application. In general, the applications focus only on one vul-

nerability; there can be any number of these types of vulnerabilities in a given application.

One real application code often has several vulnerability classes in various locations and
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modules. This implies that tools or algorithms used on this dataset can easily extend their

applicability to real-world applications.

Figure 3.3. Weakness Classes [11]

Figure 3.3 shows the makeup of different vulnerabilities. In the Samate datasets,

these are referred to as weakness classes. This section includes a review of the different

classes in the Samate dataset. One fundamental difference is that not all classes capture

concepts in different languages. There were no vulnerabilities recorded as using tainted data

and error handling involved with C and binary applications. Applications other than the

one illustrated in Figure 3.3 have vulnerabilities as well. Applications in the core group

of applications were not found to have any issues with memory corruption or null pointer

errors. The weakness class corresponds to the CWEs related to the application; however,

this does not necessarily mean they make up the total number of applications in a given test

suite.

• Injection

– CWE-78,CWE-88,CWE-89

• Concurrency Handling

– CWE-363,CWE-367,CWE-412,CWE-414,CWE-479,CWE-543,CWE-609,CWE-

663CWE-764,CWE-765,CWE-820,CWE-821,CWE-828,CWE-831,CWE-833,

• Number Handling

– CWE-190,CWE-191,CWE-194,CWE-195,CWE-196,CWE-197,CWE-369,CWE-

682,CWE-839,
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• Resource Drains

– CWE-400,CWE-401,CWE-459,CWE-674,CWE-771,CWE-773,CWE-774,CWE-

775,CWE-789,CWE-834,

• Null Pointer

– CWE-476,

• Memory Corruption

– CWE-120,CWE-124,CWE-126,CWE-127,CWE-129,CWE-134,CWE-170,CWE-

415,CWE-416,CWE-590,CWE-761,CWE-785,CWE-805,CWE-806,CWE-822,CWE-

824,CWE-843 Access of Resource Using Incompatible Type (‘Type Confusion’)

3.3. Core Graph Representation

A large part of this research focuses on program representation. I based the develop-

ment of the core graph representation of each program in this study on SSA in LLVM IR.

The core graph is the graphical representation of a program, which includes the program

dependency graphs and the ICFG graphs involving an application. A similar study was

conducted by Yamaguchi et al. [50]; however, it was unlike this study because my imple-

mentation is based on SSA from LLVM IR, which makes this approach closer to language

independence. Additionally, I expanded this study to take advantage of functionality added

to LLVM through its release cycles. Another advantage of this study is that my approach

can easily plug into the build process, whereas the process developed by Yamaguchi et al.

requires an independent compilation process for the generation of results.

Given that this study relies on LLVM to build the initial SSA form, its compilation

cost is higher than other approaches that rely only on the raw source code. Any non-linear

addition to the graph or analysis could have significant computational time compared to

other approaches. This is a concern, but it does not take away from the merit of this

work. Many static analysis techniques take a long time to analyze source code; all these

techniques, to best of my knowledge, suffer from similar issues. Secondly, the graphs can be

exported nightly or over the weekend, which aids in running analysis without slowing down

the development. This provides a flexibility that earlier research methodologies did not have.
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I used several libraries to analyze the graphs. Given the dot language, even the graphs

themselves can be used by different programs or tools that can parse the dot language. One of

this study’s goals was to strive for language and analysis independence for later research that

would have a cost in computation or analysis time. Thus, I developed an archiving system

for handling the vast amount of different program files involved with the build process. This

work relied on the file structure with the commit hash to decide what changed between the

files. Additionally, I stored all source code as bitcode and dot files in the corresponding files

for improved search speed, while trading off on build time and storage. By permutating the

file extensions, it was possible to easily decide whether a c file was built, and what the other

output files were. If a .ll file was not found, this meant that there was also no dot file in

the same folder. This process, though expensive on the file system, made it possible to run

analyses more efficiently, compared to building the program each time.

3.3.1. Program Structure and Composition

I investigated several applications using the sample dataset. Table 3.1 shows the

application extracted for the purposes of my study. This study did not address, in depth,

why some programs did not compile, because there could be several environmental issues

with the system, which is beyond the scope of this dissertation. Below in the table shows

the makeup of the different applications. There two parts to this research: an analysis on

using machine learning concepts against the SARD dataset and analysis on machine learning

concepts against real-world OpenSSL application. For the purposes of the NIST part of this

study, my focus was on PSQL, OSSL, GREP, CTRE, and FFMP.

In Table 3.1, different numbers of application versions were able to compile, which

have different vulnerability classes. OpenSSL has several types of vulnerabilities. Altogether,

I pulled more than 4,000 test cases from Samate across different applications. I then reduced

the number of test cases to more than 2,000. Each test case corresponding to the CWEs had

at least 15 related test cases. Some CWEs, such as CWE-476 and CWE-089, included more

than 100 cases. For the analysis, I used all the SAMATE applications shown in Table 3.1.

Each test case had different variants. The variants were based on the CWE, program,
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Application Used in Testing Application Ignored

PSQL 637 SUBV 638

OSSL 636 WIRE 637

GREP 380 GIMP 637

CTREE 380

FFMP 637

Table 3.1. SAMATE Applications

and various program properties. This included taint source, data type complexity, data flow

complexity, and control flow complexity. There were also different increments associated with

each test case. These increments were used to stop collisions. There were 10 types of cases

that used the unique increment. The incremented counter shows the developer generated

vulnerabilities for test cases. In Table 3.1, most of the types were about 100, given all the

test cases analyzed. There were several injection points used throughout the programs. The

injection points are specific to the program. The ID used can be same; however, given the

code properties, they can refer to various locations in code. For example, for the OpenSSL

test applications, there were around 160 different injection locations throughout all the test

cases. The taint source (TS) showed the area of the general cause and location. This is the

location affected by the vulnerabilities. Different vulnerabilities can affect various systems

in diverse ways. There were four types of test cases: environment variables, file contents,

sockets, and shared memory. Java, C, and binary could have any of these areas that reflect a

given vulnerability. Most of the weaknesses in the OpenSSL test cases were C088A, C476G,

C476D, and C476A. Figure 3.4 shows the distributions of different vulnerabilities generated

at different levels in the code: injection point(IP), data type(DT), data flow(DF), and control

flow(CF). It shows the variability between the total number of classes of properties. For the

case of OpenSSL, there was an elevated level of variability dealing with the injection points.

To summarize the OpenSSL data, I generated different figures related to the properties

with the CWE occurrence information. Thus, I made a pair point graph using the CWE,
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Figure 3.4. BP SM OSSL TS Count

IP, TS, DT, DF, and CF. The pairwise graph shows the relationship between each program

property given the CWE; the diagonal information displays the one property given the

different CWEs. Though their CWEs are not in any given order, the HUE changes still show

the changes between CWEs. The graph shows how the types of CWEs encountered in each

test case change and the related properties change as well. This means that vulnerabilities

for the same dataset indicate a relationship between the properties and CWEs.

Given the complexity of the dataset, I also analyzed the clustering of the data. I

generated the Paired Density and Scatterplot Matrix, which shows the density relationship

between pairs of program properties. Figure 3.5 illustrates separation between the CF and

DF properties. With the distinctive features, Figures 3.5 and 3.6 shows that the properties

can cluster together. I identified a large number of clustering between properties. This

means that several properties do have some relationship to each other.
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Figure 3.5. PP SM OSSL TS Features

Figure 3.6. PG SM OSSL TS Features
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3.4. System Configuration

For the environment, I set up a workstation machine running Ubuntu 16.04 LTS. The

reason I chose to use a workstation over using a standard device was that the construction

of graphs and computation involved with calculations for code analysis was computationally

intensive. The configuration of the machine consisted of the following features:

• Machine - Ubuntu 16.04 LTS

• Memory - 62.8 GiB

• Processor - Intel Xeon(R) CPU E5-2670 at 2.60GHz x 32

• OS Type - 64-bit

3.5. Current Version of OpenSSL and Commit History

OpenSSL, one of the most popular cryptography toolkits used by developers for TLS,

has 131 known vulnerabilities listed in the National Vulnerability Database (NVD). Of all the

known vulnerabilities of OpenSSL, 72% were found after 2009. One of these vulnerabilities

was the heart-bleed attack, which allowed hackers to access sensitive data from 24-55% of

popular websites [13].

To help mediate the risk and prevent future vulnerabilities, a great deal of work is

being undertaken on different techniques, such as using control flow graphs to detect vul-

nerabilities or generating malformed certs to detect when a TLS implementation will accept

invalid certificates [4, 21]. While both papers [4, 21] focused on finding new vulnerabilities

in different implementations of TLS, neither tried to find the root causes and similarities

between groups of vulnerabilities. Given that many of the implementations of TLS are re-

compiled versions and analyses of the past actual vulnerabilities, this shows, at a minimum, a

signature of different exploits and, in the best case, a repeating pattern. Additionally, many

vulnerabilities are officially recognized by several engineering groups such as the MITRE

Corporations Common Vulnerabilities and Exposures (CVE) and NIST’s National Vulnera-

bility Database (NVD). By backtracking through different resources and implementations, I

found and analyzed historical versions of applications. My findings indicate that, out of 90

48



Last Commit Hash 3503549ee8bd59d23d00b9dbbc2444e91fc44746

Commit Date July 8 2016

Version 1.0.2l

Home Page https://www.openssl.org/

Download Link https://www.openssl.org/source/

Table 3.2. OpenSSL Version Information

commits to fix exploits in OpenSSL, 83% occurred in a single file or function and more than

half of the vulnerabilities were direct error handling exception bugs.

Since many of the packages are re-compilations of OpenSSL, it is essential for internal

developers and code reviewers to be aware of these occurrences. This is relevant because

the results found on error handling exception bugs are attack unspecific. I extracted data

from the NVD database2, OpenSSL source code3, and from OpenSSL’s homepage about

CVE vulnerabilities4. Since the NVD database builds on the CVE with information such

as the products affected, I used NVD. Using scripts, I conducted a search for the listed

vulnerabilities on OpenSSL referring to CVE vulnerabilities, and found a total of 131 entries.

I then searched the NVD for the related commit files for each vulnerability. Since a part of

this study involves analyzing the source files, I extracted all the products affected. Initially,

I found 56 reports. After further analysis, I obtained 34 additional commits by reviewing the

descriptions and meta-data in the NVD database, OpenSSL site descriptions, and advisory

reports.

I used the descriptions on the vulnerabilities from the NVD database, information

from OpenSSL advisory reports, and descriptions in the commit files for analysis. I collected

17,231 commits from OpenSSL source code 5. Table 3.2 provides summary information on

2https://nvd.nist.gov/

3https://www.OpenSSL.org

4https://www.openssl.org/news/vulnerabilities.html

5Links last checked: 10/11/2018
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the OpenSSL version used for this study. With the commit hash, the repository can be

reversed back to a different version of OpenSSL. Until 1999, no commits to the source codes

were found mapping to CVE reports. This may be due to the poor reporting practices and

a lack of coordination with large vulnerability databases. All five of the first vulnerabilities

were buffer overflow related. These range from flaws in ASN1 to issues with Kerberos

implementations. Prior to 2008, the ratio between file changes and the commits for each

vulnerability was high. This meant that the number of files changed in each commit was

high when repairing known issues. I found reports after 2008 that contain most of the

vulnerabilities.

Figure 3.7. Attacks Through Time

Figure 3.14 shows the trend of CVE reports over the years in OpenSSL. After 2012,

there is a positive trend with fewer files changed in the commits to fix major vulnerabilities.
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For the purposes of this study, I divided the vulnerabilities into overlapping groups based

on the analysis of the meta data and source code. Figure 3.7 shows several types of attacks

over the years. Unknown attacks refer to any attack that could not be classified properly

into any of the other groups. This means that either the CVE for the attack is not specific,

or it is unclear how to determine the cause of the attack. A crash vulnerability, as the name

implies, causes the program to crash. For example, CVE-2006-3738 is a buffer-over-flow

issue in the SSL in which shared ciphers caused the program to have an overflow. When a

client connects to the malicious SSL server, it could crash the client. A race condition refers

to any condition in which two operations should not have occurred at the same time. Race

conditions occur when dealing with multi-threaded operations. Side-channel attacks are

any processes that gave information on implementation. Usually, these vulnerabilities occur

when people try to improve performance through code optimization. Leak data, through

any attack, is any information able to be captured. These could be buffer overflow or buffer

underflow attacks. Buffer-overflow is any program that overwrites the boundary of a given

buffer. A denial-of-service (DOS) attack can create a buffer-overflow. A DOS attack is any

attack that causes repeated connection to a system. Memory-based attacks are any memory

related attacks that rely on pointer issues that affected the memory. If several attacks were

related in the code and description, they are counted as different vulnerabilities.

Figure 3.8. OpenSSL Function Calls in Diff Changes

I analyzed each vulnerability diff file to assess how the files were repaired for any

vulnerability in order to show if more complexity was being added to the codebase. Figures3.8
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and 3.9 show the changes in the files and how many new lines were added or original lines

were removed. The number of lines of code increases when functions are modified. This

finding was independent of the type of vulnerability.

Figure 3.9. Line Modifications in Diff Changes

Figure 3.10 shows the difference between authors, reviewers, and committers when

patching issues in an application. To keep the users’ personal information private, I converted

the actual names into IDs for the corresponding user. These figures show the meta complexity

of a given application. Most of the code changes are performed by a few people. For each

graph, two people account for more of than 50% of each pie chart.

Figure 3.10. OpenSSL CVE: Authors vs. Reviewers vs. Committers

Using control flow graphs is a very popular way to detect vulnerabilities in source

code. I used the graphs to perform static analyses on code to tell key differences. The graphs

show all the paths that can be traversed through a program during run-time as well as the

relationship between reachable calls. I extracted all the c files, before and post commit, to
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Figure 3.11. CVE

2014 3512(Old): Pre-

Source Code Change

Figure 3.12. CVE

2014 3512(New): Post-

Source Code Change

see whether there were key differences between control flow graphs. Figures 3.12 and 3.11

show the control flow graphs, pre-and-post, for CVE-2014-3512. The vulnerability involved

multiple buffer overflows created in crypto/srp/srp lib.c. I used a diff checker to rank all the

file modifications. The change between these two files was 56.13%. The repair made was a

Null and value check over three variables to makes sure they were less than a given large

number. The function changed, initialized, and updated the digest of a hash. Small code

changes can significantly change the control flow of a program.

Most of vulnerabilities seen were DOS-based and the second most relevant vulner-
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abilities were crashes due to exploits. The least common attacks were exploits based on

side- channels and race conditions. After 2012, the DOS-based attacks increased signifi-

cantly. There was also an increase in side-channel-based and unknown-based attacks. There

were no records of side-channel based attacks prior to 2009. The only attacks sent in 2006

were DOS, buffer-overflow, and memory-based attacks. Similarities between vulnerabilities

can better prepare internal developers to tackle code audits or find or repair vulnerabilities,

since many of the TLS implementations, especially smaller ones, are forks from different

tools. Thus, I looked at some preliminary statistics on the function calls and other static

features between vulnerabilities, then went deeper by looking at all the control flow graphs

in each C program. The reasoning for focusing only on the C program files was because

the majority of the OpenSSL project was implemented in C and most of the critical code

sections were also in C.

Figure 3.13. OpenSSL: Source Code Diff Features

I investigated the individual file changes to the whole file structure. In part of the

work, I focused on the commit files, while in the other part, I focused on the complete

files involved with the security vulnerabilities. The reason for focusing on a single file was

that many security bugs are found in a single function or file. For the purposes of the

preliminary study, I addressed each vulnerability diff file and how the files were repaired

for any vulnerability in order to see whether more complexity was added to the code base.

54



Figures 3.8 and 3.9 show the changes in the files and how many lines were added or removed.

My findings show that the functions are removed, but the number of lines of code actually

increased. This was independent of the type of vulnerability.

Figure 3.14. OpenSSL: Vulnerabilities throughout the years

Most of the features I checked are available in many languages, with the exceptions

of TLS such as related features certificate check. Additionally, error function returns were

also common. This tells us that error checking is of interest when considering vulnerability

detection. Using a return statement causes execution to leave the current sub-routine. The

less crucial features are related to certificate or ASN1 notation. This is because OpenSSL is

for many operations, other than just certification and verification.

Figure 3.15. OpenSSL: Vulnerabilities Applications
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At the preliminary stage, each code change was manually classified in terms of whether

it was an isolated issue and whether the vulnerability is causally related to error handling. I

found that the majority of the vulnerabilities repaired were isolated to either one function or

file. However, in the commit logs, I identified multiple files that are not related to security.

Major vulnerabilities can be created with small code sections. Less than 20% of all the

patches to the source code base to fix vulnerabilities require changes in more than one file.

A good percentage of these commits make changes to other files for documentation purposes.

I classified bugs according to each vulnerability fix entry in terms of whether it was

for error handling or different issues. I identified 54% handling exceptions. Exception han-

dling refers to vulnerabilities caused by improperly checking a logical or syntactical boundary

condition. Half of the vulnerabilities were related to isolated error handling. ASM or as-

sembly instruction calls are used in repairing code. I only identified three instances that

used the ASM function. Using assembly instructions is an uncommon practice for fixing

vulnerabilities.

The sizable percentage of vulnerabilities seen in OpenSSL was based on exception

handling and most of the vulnerabilities involved in a single file. This supports the findings

of Zaman et al. that vulnerabilities are found in fewer files compared to other bugs [53].

There was enough evidence to show that developers should pay close attention to exception

handling when developing SSL and TLS packages.

3.6. Experiment Setup

I developed both a workflow and a framework for analyzing the programs. A workflow,

as defined in this research, is the process during the analysis, and a framework shows the

overall flow associated with the workflow. Showing both is important, as the workflow shows

the actual execution process, while the framework shows how the method works overall.

Figure 3.17, shows the workflow used for the experiments. The approach is merged into the

build process provided by Samate. Thus, I used Wllvm in order to backtrack to build the

LLVM-IR. Wllvm is meant for building llvm bitcode files using source files. Wllvm stores

information on the locations so the utility can be used to generate the bitcode file. After
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Figure 3.16. Framework

the compiler is replaced to use Wllvm and once the file built, the bc can be extracted.

LLVM gives support to take the bc to llvm-ir form. I also used BEAR for backup using

the build process. The main function of BEAR is to listen to all the calls running during

the build process. BEAR runs and generates the build information. Adding BEAR into

the build process increases the build time, but with a few commands, the program can be

rebuilt using the same configuration presets as the first build. A dump is all the environment

information that was created so the environment can remain the same as during the build

process. The final item in the process is to run the make and build process. The next step

is to analyze the build process, which is addressed in more detail in the framework section.

Given the current technique used, if the build process fails, the program execution will end

there. This is similar for many of the current static analysis tooling. If the system cannot

compile, the analysis is not run. If the file can be built, there will be several artifacts: the

compiled code, metadata, and the source. The metadata has information on how to find the

data to link the files together, then bitcode is extracted. From the bit file, some reversing is

done so it can cover the built code back to LLVM-IR. Graphs are generated using a custom

llvm parser.

Figure 3.16 shows the framework used for the experiments. For the analysis, I used
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Figure 3.17. Workflow

graphs and patch, and captured the locations using the workflow process. The framework

entails two steps: modeling and analysis. The assumption is that some vulnerability data

information is available in the vulnerability database. For the purposes of this analysis, I

stored the vulnerability locations in memory or the file system. For a more robust system

that supports distributed computation and storage, it would be recommended to use an

actual relational or graph database. I used a non-relational database because dot language

converts easily to a JSON or XML file. If multiple files need to be built, graphs are linked

together during analysis. The modeling stage shows the different options available. Once

I generated the graphs, the whole program could be seen in different modules. Depending

on the algorithms and vulnerabilities, I performed data cleansing, optimization, or program
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Nodes

Node Color

Function Light Blue

Basic Block Green

Instruction Grey

Edges - Basic

Call Graph Blue

Domain Transform(Function to BB) Red

Control Flow Graph Green

Domain Transform(BB to Instruction) Pink

Instruction Control Flow Grey

Edges - Adv

Data Dependence Orange

External Dependence Purple

Control Dependence Navy

Table 3.3. Graph Properties

slicing. For program slicing, I extracted functions. To isolate vulnerabilities, I focused on the

function level, rather than the basic block level during development. Functions are usually

a common marker to show issues. After isolating the code, I continued graph pre-processing

using a pattern repository. For the purposes of this study, I used custom heuristics. The

training model is when different models are used in conjunction with the pattern repository.

The final part is doing the scoring modeling. This involves using known vulnerabilities

to assess performance. For the analysis process, I used predicted vulnerabilities to create

classifications.

In the graphical representation, the goal is to gain the most meaning while minimizing

the trade-off involving representation. I followed the known patterns with LLVM, which

have a node structure such that the hierarchy is Module(M) ==> Function(F ) ==>
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BasicBlock(BB) ==> Instruction(I). This is the same for LLVM IR. The coloring in

the language was used to show types of nodes and transfers between domains. Table 3.3

shows the types of nodes and edges used in the graph representation. Nodes are either

functions, basic blocks, or instructions. Each graph denotes one module. The reasoning for

separating the graphs was for the benefit of reducing the overall size of the graph while still

allowing for the exploration of linkage between modules. Given the configuration, exploration

between graphs would have been implemented on the developers’ end. There are two types

of edges. One set of edges shows the change in domains and the connections between the

instructions. This allows an algorithm to change between domains over a given edge of

the proper domain. The advance edges show more complex relationships. I computed

the control and data dependency. The control flow graph is captured as a normal edge.

With so much information in the graph, the results of the analysis extends to any graphical

representation. Inside each node, LLVM uses addresses corresponding to memory locations

during the compile phase. While these addresses change depending on the creation of any

graph, there are several advantages to using memory locations rather than strings. Using

the memory locations gives a user the ability to do a regex (regular expression matching) to

find all places that access that memory location with a direct cost associated with it.

Most graphical representations do not give dependences backed by internal mapping

between instructions if they use the LLVM IR form. However, with external mappings, there

are dependencies between functions. Thus, a very wide range of graphical representations

can be inferred using the information provided. This allows for flexibility of extending the

representations using different methods.

3.7. Learning Models

I built rules and used learning algorithms for the analysis of the different datasets.

Traditional programming involves data and a program that passes information to the com-

puter to generate output. Machine learning takes in data and output to then feed that

information to a computer to generate a program. The program generated is the model

that is re-used in many cases. Machine learning is for the purpose of information extrac-
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tion, debugging, and security. Like graph problems, machine learning techniques rely on

a significant number of program representations. Machine learning includes decision trees,

support vector machines, and even building sets of rules. I used several learning techniques

throughout this work based on the properties on the node frequency and inverse group fre-

quency. For the purposes of this analysis, the group is the program’s functions. There are

also several types of learning techniques. In this study, my focus was on supervised learning,

which is inductive learning. This is when the training data has information about the desired

output. In unsupervised learning, the training data does not have information on the desired

output. While there are also categories of semi-supervised learning, reinforcement learning,

and neural networks, this work focuses on predictions using graphical representation. I used

different techniques to evaluate the approach, including assessing the precision, recall, and

f1-scores. I did not include other evaluated metrics, such as squared error, involving per-

formance. Tan et al. stated that precision and recall as precision determines the fraction

of records that turn out to be positive in the group the classifier has declared as a positive

class. The higher the precision is, the lower the number of false positive errors committed

by the classifier. Recall measures the fraction of positive examples correctly predicted by

the classifier. Classifiers with large recall have very few positive examples misclassified as

the negative class. The value of recall is equivalent to the true positive rate [46].

3.8. Extracting Meaning from the Core Graph

The core graph I used to analyze programs is a directed graph G that is a tuple with

a vertex set V (G), and an edge set E(G). The relationship between vertices is a function of

an assigned edge as an ordered pair of vertices. There are endpoints to and from locations

that use nodes and vertices interchangeably. There is no simple graph, because there are

many loops and several edges between vertices. Some of the feature extraction techniques I

used are listed in Table 3.4.

To analyze the data, I processed the data and converted it into features, which I

used for my machine learning models as a feature space. Instructions make up a program

based on features of the number of nodes. As a working example, C-C196A-OSSL-05-ST04-
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Base Op (Stemming and Lemmatization) Second Level Analysis Modifiers

Instruction Type Op(op) Node Frequency TF-IDF Variation

Instruction Type Op1(op1) Edge Frequency

Instruction Type Opn(opn) Node Edge Frequency

Table 3.4. Feature Extraction Techniques

DT03-DF13-CF22-01 01 is a work test case that shows the different data pre-processing

techniques. This function generates 1,223 nodes with 1,847 edges; the average in and out

degree is around 1.5. From a general perspective, given that each instruction references

different registers, each one is unique and will not give much meaning for analysis in that

form. The instruction “%7 = load i8, i8* %incdec.ptr, align 1, !dbg !277, !tbaa !235” is

generated by the program. The instruction is highlighted in grey in my dot form. The node

is labeled “load: incdec.ptr” and during the analysis phase, the compiler used the address

0x17c3388 to point to the instruction. To handle the variation between instructions without

removing too much data, the instruction was based on operand type. In the case of that

instruction, it would be load: 15. This means that this instruction is a store and location

type 15. There are 55 functions: Op, Op1, and Opn. Op defines both the operator and

operand in an array where the first index is the operator and all other indexes are operands.

Op references to only using the op as the base feature such a call or br. Op1 means that the

process used the op and the first item in the operation. Opn means to take all the operator

and all value information after the op. Changing between op and opn affects the overall

performance of the machine learning models. When I use Opn, the number of features in the

feature space would be far larger than the feature when just using the Op or Op1. Reducing

and changing the op type is known as stemming and lemmatization. This approach omits

some information to gain a better analysis. If everything is included in the instruction, the

feature space becomes too large. Therefore, I used ordering to figure out how to reduce the

instruction type. Since this is a tiny language, reductions can increase significantly. The

amount of instruction is several times larger than the amount of the basic blocks. When
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looking at the instructions, there several types of call operators. However, the loads also

occurred frequently throughout the module. If those points are taken based on the node and

edge counts and put on a graph, the vector where each item is located is an axis. With a

small dataset, it is possible to analyze the data with only the count vectorizers.

There are two problems I needed to address after count vectorization: the first relates

to the graph if any regression is created, and second is having features found far out from the

other nodes (i.e., the data representation does not cluster well). When key features are too

far apart, the performance of calculations is hurt by under or overfitting. However, count

vectorizers still have some meaning. If the count vectorizers are thought of as a feature

space, Euclidean distance can be used to calculate the Euclidean norm. I examined the

norm between vectors and reported the difference. While this research included the Hughes

effect, also called the curse of dimensionality, this can be addressed with a more extensive

dataset (i.e., training data). I treated frequent nodes as stop words in this research: for

example, term references to the nodes in the core property graph and how they stand for

the data. These can be the node and the edge properties. The document is the delimiter.

The Property Link Frequency is the frequency of connections to each different node. Some

connections provide this depending on the op level set at the first start. Increasing the degree

of the feature space involved with the instructions means increasing the number of individual

property instructions. As a program increases in size, the number of types of instructions will

normalize out to the point where using opn becomes a practical feature space. The vertices

edge function inverse vertices edge function is a novel approach borrowed from machine

learning TF-IDF. In many ways, TF-IDF is an extension of the bag of words where types

or words are counted. Since this technique is borrowed from text classification, I viewed the

texts as items and the documents as collections. These items can be anything from types of

instructions to names of the building. The goal is to get the data into vectors, so the data can

be analyzed. When looking at figures discussed previously, many data points occur often,

which will have adverse effects on the dataset and analysis. To address these concerns,

I encoded the frequencies of words to improve the overall performance. Using TF-IDF, I
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transformed the data into a normalized term frequency weight by applying a normalization.

Shown below is the TF-IDF algorithm:

(1) tfi,j =
ni,j∑
k nk,j

(2) dfi = log
|D|

|d : ti ∈ d|

3.9. Addressing the Core Graphs Features and Classes Problem

Converting core graph to features is a hard problem. As a core graph, the data is

in a rich form, which saves a lot of information about the program’s problems. However, in

graph form, the graphs are not easily converted for different problems. Further, given that

not all problems using the graph need all properties, it is necessary to develop a systematic

way to transform the graphs into a machine learnable space. Thus, I developed several

variations of the core graph to use for analysis of different vulnerabilities. The second

problem is that, although the core graph has information, it is unknown specifically what

information is important. While it is certain that there are vulnerabilities in the data,

the challenge is deciding what to look for in the applications. A naive approach would be

looking for vulnerabilities vs. non-vulnerable code. However, this approach generalizes all

vulnerabilities. For example, the feature that generates an injection problem is different

from the feature that causes issues with number handling. These problems create several

variations of datasets to analyze, which will yield different performances for models. Unlike

traditional learning problems, there are numerous feature classifications for vulnerabilities.

To address the first problem, I generated several variations of features. By changing the

nodes in the graphs to create a feature space, this creates a permutation in the whole graph

that will affect the performance of different models and rules. I created several variations of

a graph node: Op, Op1 and Opn. Operands are a key part of a program if the focus is to

look only at the operands and ignore the other information, such as the return location. At

this point, LLVM has done some dead global elimination, inlining, and memory promotions.
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The feature would capture information about the loads, stores, call instances, and return

calls. For the op flag, I created a frequency count for all the operations. Op1 implies to

take the operands and first variables. Rather than using the first variable, the variable

types were used so instructions can be generalizable. Opn means including the instruction

with all the instruction property data. By using different vectors, this will increase the

feature space. The next consideration is whether to encode the nodes, edges, or nodes and

edges into the features. Again, this affects the feature space size, but can improve the

performance. I denoted this information by using op, edge and op edge. Op implies only

encoding the nodes in the features space. Edge implies only encoding the edge and not the

ops into the feature size. Finally, op edge means to encode the features space the operands

and the relationship into the feature space. Edge with Opn would have the largest feature

space, compared to the other permutations. Many vulnerability databases have their own

categories. For the scope of this dissertation, I have categorized these into five groups. The

five groups are: stone cwe mapping c, cwe mapping, cas cwe mapping, cwe id, and cwe type

id. These are different class groups. On a larger scale, there are vulnerabilities, groups, and

IDs for specific vulnerabilities. This is a common hierarchical labeling of most vulnerability

taxonomies. CWEs are common software security weaknesses. I removed test cases if I did

not find more than 20 records for given vulnerability classes in stonesoup because having

very few vulnerabilities would make it hard for users to infer the correct properties. From

this information, I used 90 datasets for the NIST analysis. For each testing dataset, the

number of classes ranged by 77 points. I used the min-max between 19 and 96 in terms of

classes to identify types of vulnerabilities and whether the function was identified as safe.

3.10. Other Approaches: Bug Prediction

I compared several bug prediction approaches in the results analysis section. These

include algorithms by Wang, Halstead, and Nguyen [7, 10, 35, 37, 47, 48]. I found Halstead

features to be useful in creating defect predictors based on static attributes by looking at the

complexity of the program. I considered the complexity of the code after it is converted into

the intermediate representation and has captured several additional dependencies involved
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with the application in the graph. The features I used to create the program complexity

features were:

• n1 = the number of distinct operators

• n2 =the number of distinct operands

• N1 =the total number of operators

• N2 =the total number of operands

The next group of listed equations shows the program complexity feature derived from

core features. These features represent the program complexity shown in the application,

but do not address the relationship between connected instructions. The program length is

the total number of operator and operands used in the applications. Halstead does not use

edge information to determine the complexity. The vocabulary size is defined as number of

unique operands and operators. The volume is the information contained in the program.

• Program vocabulary: n = n1 + n2

• Program length: N = N1 + N2

• Calculated Program Length: N̂ = n1log2 n1 + n2log2 n2

• Volume: V = N ∗ log2 n

• Difficulty: D =
n1

2
∗ N2

n2

• Effort: E = D ∗ V

Nguyen created features that included data flow [40]. He defined mode and edge,

as well as component features. However, for the purposes of this study, I focused on the

member node attributes. All of the member node attributes are self-explanatory, other than

the McCabe complexity. McCabe introduced cyclometric complexity, which measures the

complexity of the code. The McCabe complexity (M) shows the increase in changeability.

Once the program graph is created, the complexity M is defined as M = E −N + 2P . E is

the number of edges, N is the nodes of nodes, and P is the number of connected components.

In a small program, connected components are 1.

• L =line of code

• LoC =Lines of comments
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• LB = blank lines

• V = McCabe complexity

• P = the number of parameters in the method signature

• E = the number of return points in the method

The final feature space is built using features introduced by Wang et al. [47]. The

feature space addressed by Wang et al. is similar to Nguyen’s. Wang et al. added fan-out

and fade-in. Fan out is the number of other classes referenced by the class, while fan in is

the number of other classes that are referencing the class under investigation. Wang et al.

also used McCabe’s complexity in their feature space. Features selected for this study from

Wang et al. are:

• L = line of code

• V = McCabe complexity

• MFC = Method Function Count

• FO = Fan-out

• FI = Fan-in

• MR = Method References
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CHAPTER 4

RESULTS

This section is divided into several parts. The first section covers the use of NIST

OpenSSL test cases to evaluate different approaches. For each application in NIST dataset,

I performed an analysis on each vulnerability grouping. I then grouped all NIST datasets

together to form one corpus for testing. The final section goes into OpenSSL testing. Given

the size of the corpus when dealing with the NIST dataset, I focused on the fast models

because some models, such as support vector machines(SVM), have a complexity approxi-

mation of O(sample2 ∗features) based on the implementation used. The amount of storage

increases for the training vectors. Thus, the results are limited to the fast models in the

datasets for performance reasons.

4.1. Analysis of the Data

I created several models to analyze the different performances. Analysis used included

decision trees(DT), stochastic gradient descent (SDG) classifiers, random forest classifiers,

and a few others. I selected classifiers based on the speed at which they could handle

large computation and their ability to handle large datasets. Rather than reporting on all

the information collected, the focus was primarily on the top performing models from the

datasets in the first few sections and summarizing the results in the final sections. For

each section in the first part, the dataset looked at the models that had the most test

cases’ classes classified correctly with a high accuracy, and used a two-fold cross validation.

The following sections address the NIST OpenSSL dataset to evaluate the performance of

the different models. I focused on the decision tree, random forest, and SGD classifiers

due to the computation speed compared to more complex algorithms. The key benefit of

using stochastic gradient descent algorithms for the analysis is the efficiency and ease of

implementation. The drawback is that these are sensitive to feature scaling, which can have

adverse effects on performance. I used the term “performance” in this document to imply a

relationship to the precision, recall, accuracy, or f1-scores. Performance can refer to one or
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all metrics. SGD classifiers create different loss and penalty functions for each class. Decision

trees are a very old modeling technique, but are an effective approach, with the benefit of

being fast compared to other algorithms. Decision trees are a non-parametric, supervised

learning method that is easy to understand. Also, there is a logarithmic cost for building

the trees, which means they can be constructed fast. The key drawback to decision tress is

that the algorithm can be greedy and suffer from overfitting. Random forest is an ensemble

classifier based on decision trees, with the aim of improving predictive accuracy and control

over-fitting. Random forest works by randomly selecting subsets of an independent feature

in the feature space. Then, for each one, they build decision trees based on created leafs.

The collection of decision trees is a random forest. Each decision can perform classification;

however, in a random forest, multiple trees are used to decide based on the majority. I ran

over 400 tests against different model configurations using different feature extraction and

creation techniques. The goal was to explore the limitations and advantages of different

models and model configurations without losing any testing information. Even within these

tests, I used a grid search algorithm to find the best model with different configurations.

The next sections include a discussion of the analysis of the best models, given that I used

a grid search for each graph feature extraction algorithm.

4.2. NIST SAMATE

4.2.1. DT OpenSSL NIST: Simple Classification Using Edges with OpN

Decision trees are powerful when it comes to a multi-output problem, because re-

searchers can generate and view the tree and decision boundaries. In general, decision trees

are also a great starting point for any learning problem. I compared results from the decision

tree analysis using Gini and entropy algorithms. The significant difference is that Gini does

not need the algorithm to compute the logarithmic functions, which are marginally compu-

tationally intensive. Gini addresses misclassification while entropy is an exploratory analysis

of the data. I tested different models with different tfidf configurations. Out of all the feature

extraction techniques used, I found that simple classification based on vulnerable vs. not

vulnerable worked best with the highest average precision. For the best performing model,
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using only the edges with each type operating worked well. For the other testing, DT using

simple classification was able to achieve at or above 90% for precision, recall, and f1-score.

When I attempted to classify vulnerable functions based on CWEs, the performance metric

dropped significantly.

Figure 4.1 shows a confusion matrix involving the best decision tree classifier for

the NIST OpenSSL dataset. There were only five functions misclassified. Four classified

vulnerable functions are not vulnerable. Overall, the model performed well. When only

looking at the confusion matrix, using only a decision tree can be effective for deciding

vulnerabilities in the OpenSSL dataset provided by the NIST SAMATE dataset. The results

show that the best configuration was to use only the edge information and all the operand

information. The best model based on accuracy was Gini while using tfidf; however, the

increase in accuracy was less than 0.1%. For the data obtained using only the OpenSSL

dataset, the model achieved around 98% correct detection when using a decision tree.

Figure 4.1. DT OpenSSL NIST Confusion Matrix: Simple Classification

Using Edges with OpN

Table 4.1 shows the precision, recall, f1-score, and support I used to make the calcu-

lations. I found the decision tree to be effective in determining precision, recall, and f1-score.

The only metric that shows a slight decrease in performance is recall, with only a marginal
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precision recall f1-score support

Safe 1.00 1.00 1.00 11523

vul 0.99 0.98 0.99 178

avg / total 1.00 1.00 1.00 11701

Table 4.1. DT OpenSSL NIST Report: Simple Classification Using Edges

with OpN

change. Using a decision tree, I identified a performance of 98% regarding precision, recall,

and f1-score. I ran 54 tests using different configurations and extraction techniques for the

graphic representation of the dataset.

4.2.2. Random Forest Classifier OpenSSL NIST: Simple Classification Using OpEdges with

Op

Figure 4.2. RandomForest Classifier OpenSSL NIST Confusion Matrix:

Simple Classification Using OpEdges with Op

After my decision tree analysis of SAMATE OpenSSL, further research is needed
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precision recall f1-score support

Safe 1.00 1.00 1.00 11545

vul 0.99 0.89 0.94 156

avg / total 1.00 1.00 1.00 11701

Table 4.2. RandomForest Classifier OpenSSL NIST Report: Simple Classi-

fication Using OpEdges with Op

to explore different models and provide a better understanding of extraction methods and

model configurations. Even though I used cross-validation with training and testing split,

it remains important to see whether the decision tree will scale or fail when comparing the

model against to other learning algorithms and configurations. Random Forest Classifiers

was a good natural progress, given the success of my results with the decision trees. I

used the configuration and knowledge of the decisions to reconstruct, extend and test it

against an ensemble classifier. When looking at only the confusion matrix, the random forest

exhibited a decrease in performance when detecting vulnerabilities. Nineteen functions are

misclassified. However, while using a random forest, I was able to detect many vulnerabilities

as well as classify whether or not they were safe. That brings the best classification for

vulnerable functions down by 1% compared to using the best decision trees model with

features extraction using edge Opn. The best model uses opedge op information, compared

to using the edge information as in the best decision tree. This information is shown in

Figure 4.2.

Table 4.2 shows the overall performance with precision, recall, and f1-score. The

recall decreased, which in turn decreased the f1-score. This constitutes approximately a 10%

decrease in performance compared to just using a decision tree for recall. Looking at the

best configuration, entropy and Gini had a negligible effect on the performance. The number

of estimators was important in improving accuracy. In the optimized model for accuracy,
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precision recall f1-score support

Safe 1.00 1.00 1.00 11523

vul 0.97 0.83 0.89 178

avg / total 1.00 1.00 1.00 11701

Table 4.3. SGD Classifier OpenSSL NIST Report: Simple Classification Us-

ing Edge with OpN

99.8% was the best accuracy, which had five estimators. The results were limited to two and

five estimators. Tfidf was not a commonality in increasing accuracy of the model compared

to the number of estimators. The criteria, such as normalization techniques for the tfidf, did

not have much of an effect either, given that tfidf was not a commonality.

4.2.3. SGD Classifier OpenSSL NIST: Simple Classification Using Edge with OpN

The final model I tested against the OpenSSL SAMATE dataset was a stochastic

gradient descent classifier. My intention in this was to get away from using only tree-based

models and investigate a different algorithm with fast computation. The speed comes from

the way SGD solves a problem as a minimization problem rather than trying to solve as a

convex optimization problem.

Figure 4.3 shows that, while the overall performance was good for the tuned stochastic

model, it’s precision was not as good as the best DT and random forest classifiers. There

was a 1% decrease in precision compared to the best of random forest approaches. The

recall also decreased to 83%. The best performing model was able to detect many of the

vulnerabilities, but with some error.

Figure 4.3 shows the confusion matrix. At this point, there was an increase in the

number of false negatives and false positives. The confusion matrix shows around 17%

percent of misclassifications involved with using the best SGD classifier. Out of the three
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Figure 4.3. SGD Classifier OpenSSL NIST Confusion Matrix: Simple Clas-

sification Using Edge with OpN

classifiers, the SGD classifier, based on the best model on the accuracy, performed the worse

compared to random forest and the decision tree. The SGD classifier was unable to detect

as many vulnerable functions as the other two models.

The best configuration was to use only the edge information and edge opn. This is

the same feature extraction for the best decision tree that gave high accuracy. In general,

using log function showed the best accuracy compared to using tfidf, which did not have a

significant impact on the accuracy of the model. I did not find tfidf or tfidf normalization

techniques to be a strong factor in predicting how well the models would perform based on

accuracy.

4.2.4. DT Classifier NIST: Simple Classification Using Edge with Op1

One important question is: how well does this approach scale to different vulnerabili-

ties and applications? Thus, I combined all the data from different SAMATE datasets to see

how well these approaches would perform. The next set of results shows the walk through of

using DT on the NIST dataset. DT was the best overall model given my focus on OpenSSL

in SAMATE. Significantly, the number of vulnerable functions increased dramatically, while
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Figure 4.4. DT Classifier NIST Confusion Matrix: Simple Classification

Using Edge with Op1

the number of vulnerable functions used for cross-validation and testing had a little less than

double the amount of test cases.

In evaluating the confusion matrix for the optimized algorithm based on accuracy,

Figure 4.4 show performs on par with best decision tree model tested against NIST OpenSSL.

The best performing model was able to detect many of the vulnerabilities. The results showed

that using any simple, vulnerable classification led to the best performance of the model than

trying to identify the classification based on the CWE groups.

4.2.5. Random Forest Classifier NIST: Simple Classification Using OpEdge with Op1

The next model tested used random forest against the whole dataset. Since different

classification models have distinct advantages and limitations, I considered best performing

models while using a grid search. To validate the model, I identified the test data, which had

43,557 safe functions and 420 vulnerable functions. We can observe that for every 100 safe

functions, there was one vulnerable function. There were significantly more vulnerable func-

tions than non-vulnerable functions. Figure 4.4 shows that the model performed well, but

not as well as the decision tree. The best data configuration involved using only two classes
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precision recall f1-score support

Safe 1.00 1.00 1.00 43557

vul 0.98 0.94 0.96 420

avg / total 1.00 1.00 1.00 43977

Table 4.4. Random Forest Classifier NIST Report: Simple Classification

Using OpEdge with Op1

and required using operands and edges, but only limiting the information to the operand and

only one vector type. This configuration is different from the best NIST OpenSSL model

using the random forest classifier. For analysis, I used varying sizes of trees, ranging from

two to five branches. I also used different criteria, including tfidf online and different tfidif

normalization. Normalization had a little effect on the overall performance. There was a

notable increase in accuracy around 0.003 when the number of trees were increased. Also,

the configuration using entropy exhibited better performance than Gini. In all cases, Gini

performed better compared to using the different random forest configuration.

4.2.6. SGD Classifier NIST: Simple Classification Using Edge with Op1

The SGD classifier represents linear classifiers based on using stochastic gradient

descent training. The loss is estimated based on the samples at the time the model is updated.

Figure 4.5 shows the confusion matrix. I chose to employ the confusion matrix throughout

the results section because it is a simple but effective way to show the overall performance

of the model, and is intuitive for anyone to understand. The best SGD performed worse

than the DT and the random forest models. The SGD model misclassified 137 functions. It

misclassified 10 vulnerable functions as non-vulnerable, while misclassifying 127 that were

not vulnerable as vulnerable. This means that 70% of the vulnerable functions are correctly

classified. While the SGD model is a good model, it does not perform as well as the other
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Figure 4.5. SGD Classifier NIST Confusion Matrix: Simple Classification

Using Edge with Op1

two: decision tree and random forest.

Table 4.5 shows the metrics involved with the model testing data evaluation. Further,

it shows that recall is affected the most, compared to precision for a same tuned model. This

means that it classifies the wrong classes as a different label, as seen in the confusion matrix.

The recall for this model was at 70% for detecting vulnerable functions. However, the

precision was at 97% for detecting vulnerable functions. The precision, recall, and f1-score

were high when determining whether a function was safe.

Figure 4.6 shows the roc curve for the SGD model: 0 denotes safe while 1 denotes

vulnerable (vul). Interestingly, the area of the curve is the same for both the vulnerable

and safe functions. However, there is sharp increase in the area under the curve compared

to using vulnerable functions. The micro curve shows good performance based on the area

under the curve. Overall, the roc curve shows that performance for predicting vulnerable

and non-vulnerable functions is good using the tuned SGD classifier.
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precision recall f1-score support

Safe 1.00 1.00 1.00 43550

vul 0.97 0.70 0.81 427

avg / total 1.00 1.00 1.00 43977

Table 4.5. SGD Classifier NIST Reports: Simple Classification Using Edge

With Op1

Figure 4.6. SGD Classifier NIST ROC: Simple Classification Using Edge

with Op1

4.3. OpenSSL

For the next sections, feature extraction is kept the same to determine how well my

approach worked against OpenSSL. Likewise, isolating the feature extraction methods given

the environment could be tuned against the model, while still using cross-validation. This

section contains results when analyzing the data extracted from OpenSSL.
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4.3.1. DT Classifier: OpenSSL

Thus far, I have addressed using different learning techniques against generated data.

While these functions show real vulnerable functions, they are not vulnerabilities seen in real

applications. This is because it was important to consider how the process techniques would

be able to perform in generated data before I tested against real applications. The application

under investigation was OpenSSL, which is a very popular open source application that

many larger companies use to test their tooling for vulnerable functions. Many non-crypto-

companies rely on OpenSSL to provide end-to-end security for their web applications or

even networked applications that run in the background. One issue that became apparent

during testing was that the datasets were unbalanced. Given that the classification was

unbalanced, the models were scaled to weigh in favor of the vulnerable functions. If this

step were not taken, the number of false positives and false negatives would increase. As

addressed in the previous sections, trying to use precise labels was a problem. Thus, my

focus was on the simple labels, as they were shown, to perform better compared to trying

to classify vulnerable functions manually in the last section. When looking at the confusion

matrix and other metrics, my goal was to get above 50% of the number of true positives,

which proved to be an area of success with different models.

Figure 4.7. DT Classifier Normalize Confusion Matrix : OpenSSL
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Figure 4.8. DT Classifier Confusion Matrix: OpenSSL

The best decision tree model performed not as well to tests ran against the SAMATE

dataset. Figure 4.7 shows the percentage-based confusion matrix while Figure 4.8 shows

the count. When detecting vulnerable functions, the model was only able to detect around

47% of vulnerable functions. The same model was able to detect around 98% of vulnerable

functions when detecting whether a function was safe. It is important to note that a safe

classification does not mean the function is safe. Rather, it means that the application did

not find properties similar to the ones found in previous vulnerable functions. The model

was predicting more vulnerable functions as being safe than being not vulnerable functions.

However, the results show that the model performs well when it comes to predicting safe

functions correctly.

Figure 4.9 shows a gains/lift chart generated by the best performing model. The

line in the middle shows how well picked predictions for a given class would perform if

randomly selected. Though there is no wizard line in the figure, the wizard shows the best

performance. The larger the line, the better the performance of the model. The x-axis shows

the percentage of the samples, while the y-axis shows the percentage of positive responses.

The lift curve shows the prediction of the response model and calculates the percentage of

positive responses for the percent of the functions classified correctly. The reason for the
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Figure 4.9. DT Classifier Cumulative Gain Curve: OpenSSL

precision recall f1-score support

Safe 0.96 0.98 0.97 531

vul 0.61 0.47 0.53 36

avg / total 0.94 0.95 0.94 567

Table 4.6. DT Classifier Report: OpenSSL

safe classification being so close to the random is because the majority of safe functions are

classified as safe. The cumulative gain curve shows that using the decision tree was effective

regarding the gain curve.

Figure 4.6 shows an evaluation of the model using the test data. The precision, recall,

and f1-scores are still in the 90% range while vul classification is around 50% for all metrics.

The ratio for vul to safe in my evaluation data was 1:14. Given the vast amount of safe

functions, the low performing vul metrics had little impact on the overall performance and

indicated a large number of safe functions.
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Figure 4.10. DT Classifier Life Curve: OpenSSL

Figure 4.10 shows a lift curve. Similar to the to gain chart, the lift curve checks

the rank ordering of the probabilities. The graphs show that, at the beginning, the lift to

vulnerable functions is good; however, after the sample increases, the lift decreases quickly.

This shows that this model has a poor lift curve. Ideally, it would be preferable for the lift

curve to remain high throughout the calculations.

Figure 4.11 shows the precision-recall curve over the percentage of sample space.

The graph shows that, as sampling increases, recall and precision decrease quickly. This is

especially the case when trying to determine whether a function is vulnerable or not given

the current data. The graph shows a sharp drop for determining whether a function is

vulnerable or not when compared to detecting when a non-vulnerable function should be

safe.

In Figure 4.12, the roc curve shows the relationship between specificity, which is the
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Figure 4.11. DT Classifier Precision Recall Chart: OpenSSL

Figure 4.12. DT Classifier ROC Curve: OpenSSL

true negative rate, and sensitivity, which is the true positive rate. The higher the position

of the curve over the middle line, the better the performance. Both classification ROCs are

around 70%, which means that classification is fair. Anything above 80% would be a good
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result for any classification model.

4.3.2. Random Forest Classifier: OpenSSL

I conducted the next test using a random forest classifier. The random forest classifier

yielded good results against the NIST dataset. Random forest also had the added benefit of

being able to find features that might be overlooked through random sampling of the feature

space.

Figure 4.13. Random Forest Classifier Normalized Confusion Matrix: OpenSSL

Figure 4.13 shows the confusion matrix for the best random forest classifier based

on accuracy. The random forest was better at detecting safe function calls in the methods

tested. However, the random forest technique used was worst at detecting vul functions

compared to other learning methods used for testing. For instance, 81% percent of the

vulnerable functions were classified as safe. Figure 4.14 suggests that the model classified

two vulnerable functions as safe. This matrix indicates that the majority of vulnerable

functions are being classified as safe.

Figure 4.15 shows the cumulative gain curve for the best random forest model. The

gain table also shows how much of one label will be obtained with a given percentage of the

data. Both lines in Figure 4.15 are measured in percentages, which is why the safe label is
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Figure 4.14. Random Forest Classifier Confusion Matrix: OpenSSL

Figure 4.15. Random Forest Classifier Cumulative Gains: OpenSSL
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precision recall f1-score support

Safe 0.95 1.00 0.97 531

vul 0.78 0.19 0.31 36

avg / total 0.94 0.95 0.93 567

Table 4.7. Random Forest Classifier Report: OpenSSL

the trending new middle line.

Figure 4.7 shows the confusion matrix. Classification of the safe function was high.

Vul function classification was low, compared to the decision tree model tested. Having a

low recall pulled the f1-score down to 31%. This f1-score is much lower than scores shown

using the random forest shown in both the NIST OpenSSL and SAMATE OpenSSL. With

the recall for detecting safe functions at 100%, the recall for detecting vulnerable functions

is at 19%. The precision is fair at 78%. The recall for this model is about 20% lower than

what was seen on the whole dataset, when running the random forest classifier.

Figure 4.16 shows the KS gains involving the random forest. Figure 4.16 shows good

separation between both labels, until the 40% point. The chart shows that, early in the

process, there is good separation between classes; however, as more data is collected, the

model becomes poorer at determining the difference between labels. The maximum distance

between the lines is the KS value. The graph shows an estimate of a KS value around 50%.

The greater the KS value, the better the model might perform. As more data is consumed,

the KS value goes down at a sharp rate. Early on in the data, the KS value is high compared

to when more data is read into the model. The KS value also has a sharp trend around 20%

of the data between both labels.

Figure 4.17 shows a lift curve, which is different from the one shown in the best

decision tree model. The random forest lift curve indicates a straight down trend. However,

both curves are near 0 when the data is around 40%. There are several small spikes in the lift
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Figure 4.16. Random Forest Classifier KS: OpenSSL

Figure 4.17. Random Forest Classifier Lift Curve: OpenSSL
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curve as well, which show small but sudden changes with how the model segregates classes.

Figure 4.18. Random Forest Classifier Precision Recall Curve: OpenSSL

Figure 4.18 shows the precision-recall curve. The x is the recall and the y is the

precision. This shows that, for the vulnerable class, the recall drops fast. The safe functions,

precision, and recall stay high compared to the vulnerable class.

Figure 4.19 shows the ROC curve for the random forest classifier. The ROC of the

classifications involving vulnerable functions has a higher area under the curve compared to

the vul function. The area under the curve is initially higher for the vul function. However,

total area under both curves is the same.

4.3.3. Linear SVC Classifier: OpenSSL

I also tested LinSVC using the OpenSSL dataset. This testing performed the best,

compared to other approaches. It achieved 72% when it came to detecting vulnerabilities

when looking at the recall. Figures 4.20 and Figure 4.21 show the confusion matrix. Al-

though there is a significant decrease in precision, there is an increase in the ability to detect

vulnerable functions. Further, only 16% of safe functions are classified as vulnerable. This

was the highest percentage compared to the other models tested thus far using the OpenSSL
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Figure 4.19. Random Forest Classifier ROC Curve: OpenSSL

dataset for detecting vulnerable functions. The 72% means that the best model was able

to classify more vulnerable functions while not misclassifying as many as not vulnerable. In

the confusion matrix, the results detected 26 out of the 36 vulnerable functions in the test

data.

Figure 4.20. Linear SVC Classifier Normalize Confusion Matrix: OpenSSL
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Figure 4.21. Linear SVC Classifier Confusion Matrix: OpenSSL

precision recall f1-score support

Safe 0.98 0.84 0.90 531

vul 0.23 0.72 0.35 36

avg / total 0.93 0.83 0.87 567

Table 4.8. Linear SVC Classifier Report: OpenSSL

Table 4.8 shows the metrics for the model. Recall is at 72% for the model. How-

ever, the precision drop shows that this model would classify more non-vulnerable items as

vulnerable compared to some other tested models.

4.3.4. SGD Classifier: OpenSSL

Another model tested against the OpenSSL dataset was an SGD classifier. In previous

tests, this model produced good results in terms of accuracy and precision. Figure 4.22 shows

the confusion matrix; this model breaks the 50% goals for a model by 8%. The majority

of the vulnerable functions were classified correctly. Around 19% of the safe functions were
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misclassified as safe, which accounts for 100 functions. The SGD performed better than

the decision tree when trying to detect vulnerabilities, but worse than the random forest

algorithm. Figure 4.23 shows the total values for the testing datasets. The matrix shows that

the model was able to predict more than 50% of the vulnerabilities, compared to other tested

approaches over the Linear SVC model. The tuned Linear SVC classifier preformed better

than the tuned SGD classfier. This means that this model is the second best performing

model overall, when tested against the OpenSSL dataset. Predicting safe functions was not

bad either, given the best model configuration.

Figure 4.22. SGD Classifier Normalize Confusion Matrix: OpenSSL

Figure 4.24 shows the cumulative gain chart. There is a higher area under the curve

using the vulnerable functions compared to the safe functions. This could have led to overall

better performance.

Table 4.9 shows the metrics of evaluation for the best SGD model. In this model, the

precision is still low, even though it performs worse than the best model used for classifying

Vulnerabilities in OpenSSL. The recall is around 58% while the recall for the detecting safe

functions is around 81%. 81% for detecting safe function is high when compared to several

other models tested.

The next figure shown in this results section is the lift curve. The lift curve is shown
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Figure 4.23. SGD Classifier Confusion Matrix: OpenSSL

Figure 4.24. SGD Classifier Cumulative Gains: OpenSSL

in Figure 4.25. Ideally, a high point midway through the curve is best. However, in this

curve, the lift curve has a high spike and then drops early. There is then a short rise and

drop around 0.2%. The lift is fair, given the overall performance of the model.

The precision and recall curve is shown in Figure 4.26. The precision shows a sharp

drop as the recall goes up. This is not the same for the safe function calculations where the
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Figure 4.25. SGD Classifier Lift Curve: OpenSSL

Figure 4.26. SGD Classifier Precision Recall Curve: OpenSSL
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precision recall f1-score support

Safe 0.97 0.81 0.88 531

vul 0.17 0.58 0.27 36

avg / total 0.92 0.80 0.84 567

Table 4.9. SGD Classifier Report: OpenSSL

precision stays high throughout. The average is decent, although there is a sharp drop when

looking at the recall and precision for the vulnerable functions.

Figure 4.27. SGD Classifier ROC Curve: OpenSSL

Figure 4.27 shows the ROC curve. There is 1% difference between the vul and safe

curves. The safe classification shows the higher percentage. The safe function curve overlaps

the vul function about halfway through as shown in Figure 4.27.

94



4.4. OpenSSL: A Comparison of Different Bug Prediction Learning Approaches

I adapted several learning algorithms for this work. I modified algorithms by Wang,

Halstead, and Nguyen in the area of bug prediction to compare these against the model using

the OpenSSL dataset. I altered their feature space to the learning problem and analyzed

using a grid search algorithm to find the best performing algorithm at a function/method

level. I only tested linear SVC models, since I found those models to be the best performing in

the prior tests. I removed features directly related to internal module level comparisons from

the respective feature space. The reasoning for comparing the approaches was to determine

whether this work has covered feature extraction techniques that performed better.

4.4.1. OpenSSL: Halstead Core Features

Figure 4.28. Halstead Core Features Linear SVC Classifier Normalize Con-

fusion Matrix: OpenSSL

Figure 4.28 shows the normalized confusion matrix when constructing a model using

a Linear SVC. The best model used the squared hinge function with a class weight that

was set to balance. The model using the Halstead feature space was worse at predicting

vulnerabilities, compared to this study’s approach, by about 7%. Additionally, the best

model was able to detect 11% more of the safe functions. Figure 4.28 also shows that using
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my approach would misclassify fewer functions.

4.4.2. OpenSSL: Halstead Features

Figure 4.29. Halstead Features Linear SVC Classifier Normalize Confusion

Matrix: OpenSSL

Halstead extended the feature space to include complexity metrics that measure pro-

gram complexity. In this study, the program’s complexity is focused on the change area

in the LLVM IR code, which is a novel approach in comparison to those used in extant

research. Figure 4.29 shows the normalized confusion matrix when constructing a model

using a Linear SVC. The best model created in this work is around 10% better than those

using the Halstead algorithm. Linear SVC was about 10% better at classifying safe func-

tions. There is a drop of 1% compared to using the Halstead approach, relative to the best

performing approach in the testing environment. Additionally, the best model was able to

detect 11% more of the safe functions. Figure 4.29 also shows that using this approach re-

sults in misclassification of fewer feature functions. When comparing the Halstead core with

the Halstead program’s complexity features, the core features performed slightly better in

both classifying safe and vulnerable functions. Further, using the core features improved in

terms of classifying vulnerabilities. All metrics in the confusion matrix are around ±2%for
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misclassifications and correct classifications.

4.4.3. OpenSSL: Nguyen

Figure 4.30. Nguyen Features with Linear SVC Classifier Normalize Con-

fusion Matrix: OpenSSL

Nguyen’s algorithm is based on code changes with complexity metrics. The code

changes include lines, blank lines, and comment changes. Figure 4.30 shows the normalized

confusion matrix Nguyen algorithm. When classifying safe functions, Nguyen’s algorithm to

build the feature space performs 4% better than the feature extraction technique used in this

work. For classifying vulnerabilities, I was able to achieve nearly 20% better performance

when classifying vulnerabilities than the Nguyen algorithm.

4.4.4. OpenSSL: Wang

The final feature extraction technique I tested was Wang’s feature space, using the

Linear SVC model. While Wang’s features are similar to those of Nguyens model, Wang

added several metrics, including blank lines, as well as introducing the number of the fan-in

and fan-out calls in the function. Figure 4.31 shows the normalized confusion matrix for

classifying vulnerable functions in OpenSSL using a Linear SVC. The table shows that the
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Figure 4.31. WangFeatures with Linear SVC Classifier Normalize Confusion

Matrix: OpenSSL

model based on their feature space was able to classify 85% of the safe functions, but was

only able to classify 53% of the vulnerable functions.

4.5. Summary Performance Reports

To gain a better understanding of how different groups of models were performing, I

averaged difference metrics to gain an understanding of how different groups of classifiers or

feature space were performing. Averaging the data across different sets shows how well given

feature spaces or classifiers performed for detecting vulnerable or non-vulnerable functions.

Table 4.10 shows the NIST Vul Prediction Summary. This data includes the NIST OpenSSL

data and has the average precision, recall, and f1-score across all types of feature spaces. In

the NIST dataset, the decision tree classifier performed the best compared to the other tree

classifiers. All the tree classifiers performed better than the SGD classifier in terms of the

average, precision, recall, and f1.-score. The f1-score drops by around 20% in terms of the

difference between in performance the decision tree and SGD classifier. When considering

the f1-score between the extra tree classifier and the random forest classifier, the extra tree

classifier performed better than the random forest classifier. Extra tree classifier perform
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Classifier Avg. precision Avg. recall Avg. f1-score Avg. support

Decision Tree 0.966 0.952 0.957 426.778

Extra Trees Classifier 0.948 0.931 0.938 425.111

Random Forest Classifier 0.95 0.923 0.937 425.111

SGD Classifier 0.849 0.707 0.768 426.778

Table 4.10. NIST Vulnerability Classification Prediction Summary

slightly better with average precision than the random forest classifier. My testing method-

ology allowed me to keep the average supports around 425. Support shows the number of

predictions or test cases used to evaluate a given model.

Table 4.11 shows the average f1 score for the NIST data as well as all the feature

spaces, with their corresponding f1-scores, for each classifier. For the decision tree classifier,

using the edge op, feature space increased in performance when considering the f1-score. I

identified many instances in which the f1-score increased in performance when the dataset

size increased. Even the SGD classifier increased when the data was expanded from OpenSSL

to the complete SARD dataset. Table 4.11 shows that the overall f1-score tends to increase

in relation to the amount of data increase when building a classifier. When looking at the

average across models, all feature spaces’ f1-scores were above 89%, which is high. The extra

trees classifier performance across features spaces is the near the same performance of the

decision tree classifier.

Table 4.12 shows the summary report of the overall performance for OpenSSL with

different classifiers. This table shows the average precision, recall, and f1-score for each

classifier. When considering the average f1-score for determining vulnerable functions, the

decision tree classifier performed the best. In terms of determining where a function was

not vulnerable, all the classifiers had average f1-scores of around 97%. The high accuracy

means they were effective at predicting whether a function was vulnerable or not vulnerable.

All the three classifiers achieved above 60% regarding the average precision, but had low

recall. However, the LinSVC was able to achieve around 72% average recall when detecting
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Feature Space DT SGD Extra Trees Random Forest avg.

Nist Openssl: edge op 0.94 0.8 0.94 0.91 0.9

Nist Openssl: edge op1 0.97 0.86 0.95 0.94 0.93

Nist Openssl: edge opn 0.99 0.89 0.95 0.96 0.95

Nist Openssl: op op 0.88 0.74 0.91 0.91 0.86

Nist Openssl: op op1 0.91 0.75 0.89 0.88 0.86

Nist Openssl: op opn 0.89 0.8 0.9 0.9 0.87

Nist Openssl: opedge op 0.96 0.83 0.92 0.94 0.91

Nist Openssl: opedge op1 0.99 0.86 0.96 0.95 0.94

Nist Openssl: opedge opn 0.99 0.9 0.97 0.95 0.95

Nist: edge op 0.95 0.75 0.93 0.93 0.89

Nist: edge op1 0.99 0.81 0.97 0.95 0.93

Nist: edge opn 0.99 0.83 0.97 0.96 0.94

Nist: op op 0.91 0.7 0.9 0.92 0.86

Nist: op op1 0.92 0.72 0.93 0.91 0.87

Nist: op opn 0.91 0.69 0.91 0.92 0.86

Nist: opedge op 0.96 0.72 0.92 0.93 0.88

Nist: opedge op1 0.99 0.81 0.96 0.96 0.93

Nist: opedge opn 0.99 0.88 0.95 0.95 0.94

avg. 0.95 0.8 0.94 0.93

Table 4.11. SARD F1 Score Vulnerability Classification Summary

whether a function is vulnerable. SVC and SGD performed the worst in terms of detecting

vulnerable functions.
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Classifier Avg. precision Avg. recall Avg. f1-score Avg. support

Vul:DT 0.61 0.47 0.53 36

Vul:Extra Trees Classifier 0.62 0.28 0.38 36

Vul:LinSVC 0.23 0.72 0.35 36

Vul:Random Forest Classifier 0.78 0.19 0.31 36

Vul:SGD Classifier 0.17 0.58 0.27 36

Vul:SVC 0.44 0.31 0.36 36

Safe:DT 0.96 0.98 0.97 531

Safe:Extra Trees Classifier 0.95 0.99 0.97 531

Safe:LinSVC 0.98 0.84 0.9 531

Safe:Random Forest Classifier 0.95 1 0.97 531

Safe:SGD Classifier 0.97 0.81 0.88 531

Safe:SVC 0.95 0.97 0.96 531

Table 4.12. OpenSSL Vulnerability Classification Summary Report
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CHAPTER 5

DISCUSSION

Using my graphical representation, feature extraction techniques, and recommended

learning models, it is evident that the results generated from the NIST dataset are impressive:

72% effective in terms of finding vulnerabilities in the OpenSSL testing dataset.

5.1. Samate Dataset

The sample dataset performed very well with most learning models under investiga-

tion. Most models performed well when using simple classification labels, compared to the

OpenSSL. Modifying the feature space by using different instruction classification levels,such

as Op, Op1, or Opn, did not improve the performance much in the case of the NIST dataset.

Further, difference in configuration did not lead to a significant increase in accuracy involv-

ing decision trees. While some models did show noticeable improvements, the performance

was generally good running against the NIST dataset.

5.1.1. Vul Misclassification Problem

One major challenge in the results was trying to keep the accuracy high with different

models and pre-determined vulnerabilities. It seems intuitive that models would perform

better when class labels are defined based on a taxonomy. For example, if all null pointer

related issues could be grouped, the performance of the models would improve, since the

model would have well-defined classes. However, this assumption was proved to be false in

this study; in every instance tested, using defined classes yielded low accuracy, precision,

and recall.

Figures 5.1 and 5.2, and Table 5.1 show the confusion matrices and evaluation of the

best model using a decision tree. The model classes are based on CWE grouping and IDs that

do not fit into those CWEs. There is an issue with misclassification for the major grouping.

For example, in 771 (CWE-771: Missing Reference to Active Allocated Resource), the issue

occurs across the clusters: concurrency handling, memory corruption, and null pointer errors.
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Figure 5.1. Normalized Confusion Matrix: NIST Dataset CWE Mapping

using DT

However, there is no reason way the vulnerability classes could not be across different domains

or groups. Such issue is a limitation in terms of detecting the type of vulnerability with

manual analysis. Even within the groupings, there are several misclassifications.

With the issues faced when trying to build groups, it is very challenging to build an

appropriate group that captures properties that do not cross domains. One suggestion would

be to build bigger groups. However, as addressed in the results section, classifying based
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Figure 5.2. Confusion Matrix: NIST Dataset CWE Mapping using DT

on vulnerable properties vs. functions does not reflect how vulnerabilities work. Building

subsets would just truncate to the superclass, which in the case of this research, are vulner-

ability functions. Based on results from many different testing and model configurations,

I can conclude that the simpler the classes label, the more significant the improvement in

performance.
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precision recall f1-score support

400 0.33 0.25 0.29 4

401 1.00 0.50 0.67 2

674 0.50 0.33 0.40 3

771 0.00 0.00 0.00 3

775 0.33 0.50 0.40 2

78 0.20 0.50 0.29 2

88 0.17 0.25 0.20 4

89 0.42 0.28 0.33 18

Concurrency Handling 0.48 0.43 0.45 28

Memory Corruption 0.58 0.47 0.52 30

Null Pointer Errors 0.34 0.43 0.38 28

Number Handling 0.27 0.33 0.30 21

Safe 1.00 1.00 1.00 11545

avg / total 0.99 0.99 0.99 11690

Table 5.1. Report: NIST Dataset CWE Mapping using DT

5.2. The Pre-Post Patch Problem

During the analysis phase, I identified an issue involving determining when a function

was vulnerable. This problem was deemed a pre-patch and post-patch problem. A post-patch

function is the function or group of functions that changed to reflect the mitigation, while

the pre-patch function is the function or group of functions involved with the vulnerability

before patching the issue. I removed post-patch functions from the original dataset because

the number of properties between patches is low. As previously discussed, the number of line

changes is relatively low compared to the patch. Because this change is low in the overall

code structure, it is difficult for a model to determine the difference between vulnerable
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and non-vulnerable functions. The pre and post patch function problem can be defined as:

PrePatchFunctionX and PostPatchFunctionsx. If X is the same function, the number of

changes in the function is near 0. A good example of this is when a developer changes an

integer value to fix an overflow issue. That small change is not captured well in the current

approach. As addressed earlier in this dissertation, programs p and q are similar if they are

derived from the same work. This definition also works when considering different functions.

When looking for a birthmark between two functions, s(a, b)→ [0, 1] is a similarity function

with a value of e < 1. Then p and q are similar and 1− s(a, b) < e. Similar functions have

similar properties. Thus, in most cases when dealing with pre and post patch functions, e is

relatively small, unless the function is overhauled. Thus, I removed the post patch function.

5.3. Current Version of OpenSSL

The current version of OpenSSL showed the limitations of not only using synthetic

data, but also some approaches that can be important for any analysis of security vulnera-

bilities using learning approaches. In the initial testing period, trying to classify vulnerable

functions yielded low precision and recall. Modifying the classes to be binary improved

the recall to around 40-50%. At that point, most models exhibited an issue with labeling

many non-vulnerable functions. Ideally, to achieve a practical solution, improving the model

performance is necessary. The probability of any model not classifying to the right class is

higher. This problem is also referred to as over and underfitting for a given class. There are

many ways to approach this problem. For example, for a random forest algorithm, the num-

ber of trees or max number of features used could be increased. The depth of the tree could

also be checked. For each different sample, it would be necessary to handle the unbalanced

data used to model properties. Another solution would be restricting the number of safe

functions, which forces the data to balance. Although this would work, the model itself does

not capture the data. While I could have used a more uniform sample but there exist up or

down sampling minority classes. Down sampling removes data from the significant level to

prevent that class dominant having a larger affect on the learning algorithm. Up sampling

is when sampling replaces the same classes to reinforce that class. Thus, this work weight
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balance the models during evaluation.

5.4. Pre-Patch Problem

One issue I encountered during analysis was a post-patch problem, also known as

the post-patch paradox. This problem spans any vulnerability detection algorithms that

do not rely purely on historic data or vulnerability. The paradox is that the post-patch

function is no longer the sample. For all general purposes, this could be classified as a safe

function. The pre-patch function is vulnerable. Thus, it can be classified as vulnerable. If

learning models are built based on the vulnerability, and the features from other functions

including the vulnerable function are used, the safe version of the function will be classified

in the group of vulnerabilities. This can be avoided by removing overlapping properties;

however, the end result would then have to handle program slices. Additionally, it may be

necessary to find meta data about the program properties, because this can lead to finding

more at-risk functions. The paradox is that, if a model is built with all information on

the pre-patch function, it will classify the post-patch function similarly to the pre-patch

function. Of course, if there are dramatic changes between the functions, this might not be

an issue. However, for the general vulnerability patch, this constitutes a few lines of code.

When there are a few lines of the code that change, it is difficult to distinguish between

both functions with the isolated fix. Isolating the fix might create a need to acquire more

information on other function calls or other callee functions. This is a challenging problem,

which I chose to address by removing the pre-patch function from the dataset. I chose this

approach in order to allow the model to learn from not only the patch properties, but also the

properties in the function. There are several advantages to this: the model can learn from

surrounding functions, compared to being isolated. Secondly, many patches add more code

to handle exception handling. Therefore, using program slicing might become a challenge

for any algorithm to determine whether a function is vulnerable without domain knowledge

in other functions that might be vulnerable.
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5.5. Patch Limitations

In this study, I focused on intra-procedural functions rather than inter-procedural

functions. This means that, if a vulnerability was caused by inter-procedural or intercon-

nected functions, the patch isolated the change to one function and the actual vulnerable

information might need to be recorded for all involved functions. This is a limitation of this

work; however, this study’s purpose was to find vulnerable functions, as well as function

locations of code at risk for a specific vulnerability type. It is also important to note that

functional concepts expand to include neighboring functions without much instrumentation.

This approach can go as deep as needed to capture all the properties of the function. This

is powerful, because the end user can adjust the system to meet their needs with an under-

standing that they would need to tune the related models. Another warning in relation to the

methods section and results is that most SSL-related vulnerabilities could be isolated to an

individual function rather than several functions. Of course, there can be cases where several

functions or a complete program need to be rewritten; however, at that level, this solution or

any other methods would be challenging for any tooling. Once the problem distance becomes

so large, such as a null variable but the vulnerable is found their several pointer changes,

and can go several functions deep, which most tooling solutions have issues with. Another

issue involving patching relates to whether the patch was vulnerable or not. Several studies

state that vulnerabilities in patches are not accurate. The way to get around this issue is to

focus on patches with known vulnerabilities and related CVEs or NVDs. This information is

validated and confirmed by security specialists, so it is known that the vulnerability exists.

One major advantage is that, often, when a patch is created, it is linked to the NVD and

provides information that conveys where the patch is in the source code. Most of this work

leverages this for the learning algorithms. This information can be expanded to different

applications, since this information is provided to the end user through NVD and CVE. The

patches provide information on the known fix for the given vulnerability. However, given

that a patch is implemented in diverse ways for different applications, another issue is cap-

turing the created information about vulnerable function properties. This is not a problem
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with the approach used in this study because my focus was on the properties around the

vulnerability and the vulnerability itself.
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CHAPTER 6

CONCLUSION

The findings from this study show that modeling based on vulnerabilities is a difficult

problem to automate without additional research and domain knowledge. Preliminary stud-

ies have revealed that either the graph with feature extraction techniques does not span well

for each vulnerable domain or vulnerabilities in source code do not model well for each vul-

nerable class. After testing many supervised learning models and configurations, my results

indicate that identifying the best way to model unknown vulnerabilities against unknown

vulnerable functions is a challenging problem. However, post-patch functions need to be

removed from the dataset to make any approach a practical solution. The problem found

with using the pre-patch function is that they have so many properties that are similar to

the vulnerability. Given that the property graphs tested are based on types, the feature

extraction technique is important for determining the best learning models.

The feature extraction techniques employed in this study show the best improvement

in accuracy, recall, and precision scores, compared to other models tested using features

extracted from the code graph. Further, the configuration changes tested show a small effect

on the overall function. While the approach used in this study involved simplifying the clas-

sification problem to only vulnerable functions and functions that had not shown any issues,

the results show that many models tested had impressive performance compared to testing

different classification techniques. It is harder to classify vulnerabilities among functions us-

ing information on the vulnerability than by using a binary classification method (i.e., safe

vs. vulnerable). This study’s approach can be applied to many security-related domains

in the future to offer improved performance, compared to models that group vulnerabilities

in similar clusters. The metrics collected show that a LinSVC model can be created that

detects 72% of the known vulnerable functions in OpenSSL, based on historical data. In real

applications, a developer or security specialist could apply the same model against a source

code repository to highlight areas in the code that might be vulnerable.
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This research can be expanded to any application that has vulnerable data available.

Beyond the testing environment, the results of this study indicate that it is possible to

automate the detection of issues in applications. This work shows a security bug finding

process built into the debug process that is automated without requiring a researcher to

have any domain knowledge of the applications. If an application is large enough and gets

vulnerability patch reports, this vulnerability testing framework can be automated and added

after NVD issues are listed. Thus, with limited user interaction, stakeholders can gain

insight about the system through the analysis of their application by using learning models.

The time it takes to analyze a program is relative, because after the programs are cached

into graphs in the system, the process of building and evaluating models is fast. As new

vulnerabilities are found, those vulnerabilities can be cached and inserted into a model

and used for future analysis. The same models can be used to evaluate LTS, beta, or alpha

versions of a given application when a discovery of a vulnerability is found outside the scope of

normal testing. When new vulnerabilities are found, the earlier version of an application can

be scanned to check for hidden vulnerable functions that have been overlooked throughout

the development process. This can be done ad-hoc or during a weekly build. The entire

process can be accomplished during the development process to gain a better understanding

of the application and possible vulnerable areas of the code.

In tests against other feature extraction algorithms used to build models, my im-

plementation outperformed all other algorithms for bug prediction approaches. In a few

cases, my model was able to achieve more than 20% improvement compared to other bug

prediction techniques. My approach outperforms tested models when predicting whether a

function is vulnerable. The results of the study also indicate that bug prediction is strongly

dependent on not only edge relationship in graphs but also how nodes are determined, the

importance of model selection, and feature extraction techniques. Models that also used

graph properties closely related to the nodes and edges performed better than algorithms

that focused on complexity properties.
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CHAPTER 7

FUTURE WORK

Traditional machine learning techniques were used for most of the study. Due to the

scope of this dissertation, different learning techniques were not explored. Future studies

should focus on the exploration of current teachings in complex neural networks. Neural

networks would also work for users wanting to avoid the process of decomposition graphs

using past data and general tricks to evaluate the system. The extra information could also

be used to adjust the neural network. This could have overall improved results compared to

not using normal networks.

One aspect of this research that was stress was the fact that the learning model is

a search for at-risk functions rather than vulnerable functions. This means that what the

models find is not necessarily vulnerable functions, but functions that have properties of pre-

patch vulnerable functions in the source code. For this work, the focus was on the feature

extraction, model construction, and model tuning. Deep explorations were not done on the

causes of vulnerabilities, how the performance of the mode could be manually improved,

and also if misclassifications were also a vulnerability. Future work will detail out key

vulnerabilities, classify them, determine if there are vulnerability. This would require an

analysis of each misclassification and vulnerability to see if they are indeed vulnerable and

if the classification is wrong. Another step would be to determine if there is a way to extend

to a finding that is not domain specific to that location of the code. In many research

projects, the findings are domain specific and also many times case-by-case specific to the

point that not many of the techniques can be expanded to other areas. Going deeper with

this approach means also being able to maintain the generalizability to other vulnerable

functions and applications. This will involve creating custom models and analyzing each

vulnerability.

Dot representation of a program was used to allow for the analysis to run using other

languages. This helps support any analysis against the graphs. However, this approach
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limited the number of properties that can be collected during graph construction. The

LLVM pass was created to generate the graphs. By doing the analysis inline during the pass

to analyze the program, it provided more information on the program. Thus, more work

can be done to interact with this current research with the learning techniques such that it

could be streamlined into the C++/C application for testing. One major advantage is that

one can use the build in linting and simple cast analysis that LLVM supports to improve

this analysis. This can also become features for learning models such that the results of the

feature extraction and graphing techniques can improve.

For most of this research, the focus was on supervised learning. The findings showed

that this is the viable solution for addressing finding vulnerabilities. However, it only touches

a tip of what is possible given advancements in techniques and algorithms. Learning al-

gorithms can be broken into 3 key areas: supervised, semi-supervised, and unsupervised

learning. It would be important to see if the learning algorithm can be improved by using

a semi-supervised approach in order to gain a better understanding of mis-classifications.

This can all be handled through the approach and provide additional details in the program

study.

Another project could be examining how one could interact with actual instruction

information into the models such that models can be built off of actual instruction infor-

mation without losing generalizability. Another project could provide more information to

enable more accurate classification of vulnerabilities, while using learning models. This is

an important to create a better understanding of the application beyond a type properties

graph. The biggest challenge would be learning how to model the application in such a way

that the information on the instruction can be used without having too many features that

would have issues with the learning model.

The final proposed future project would be adding aliasing informing. Dependency

information on the given application was captured for this research, but this is vastly different

from adding alias and pointer information to the model. Though information about where

the instruction was related to pointer operations was captured, the relation between points to
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different parts of the program was not shown. This direction would require interprocedural

analysis to be adopted to handle the issues with pointers and references to other functions.

However, if this is partnered with a way to convert between types and instruction, researchers

and algorithms would have a better view of the application and understand better how to

resolve issues.
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