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Supplementary Fig. 1∣A simplified model of Pt (111) surface decorated by (a) single Ni 

atom species [Ni(OH)2 species, simplified as Ni] and (b) 1-2 nm nanoparticles, with grey 

representing regular Pt (111) surface site, red representing activated Pt atoms with Ni 

neighbor, and green representing sites blocked by Ni. (c) Comparing different types of Pt 

sites for the single atom and nanoparticle decorated Pt surface in the simplified model in a 

and b. For a Pt (111) surface  with a total 1394 Pt sites decorated with 190 single Ni atoms   

(green), there are a total of 1204 exposed Pt atoms, with 933 having a Ni neighbor (red) and 

271 having no Ni neighbor (blue); while for the same Pt (111) surface (a total of 1394 initial 

Pt surface sites) decorated with 1-2 nm Ni nanoparticles, there are only 557 exposed Pt 

atoms on surface, with 356 having a Ni neighbor and 201 without Ni neighbor. This 

comparison highlights the single atom modifications activate a lot more surface sites (with 

Ni neighbors) while blocking much fewer Pt sites. 
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Supplementary Fig. 2∣ (a) TEM images of PtNi alloy nanowire and (b) TEM images of 

SANi-PtNWs. (c) CV in 0.1 M HClO4 of PtNi alloy NWs at different scan cycles. (d) ECSA 

evolution of the nanowire samples with increasing number of dealloying CV cycles (error 

bars showing the variations from ten independent batches). (e) The acidic CO stripping 

curves for Pt17Ni83 nanowires de-alloyed at different cycles. (f) Comparison of the ECSA 

evolution (vs. the number of dealloying CV cycles) derived from Hupd and CO stripping, 

respectively. (g) HER polarization curve for Pt/C and PtNi nanowires dealloyed with 

different numbers of CV cycles. (h) The mass activity of the dealloyed nanowires as a 

function of the number CV cycles, with the peak HER activity achieved after the 180th CV 

cycles (error bars showing the variations from ten independent batches), when the surface 

decorating species is in single atomic state to ensure maximum activation and the least 

surface blockage.  
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Supplementary Fig. 3∣ (a) XANES spectra of Pt L3-edge and (b) XANES spectra of Ni 

K-edge. (c) The XPS result for Ni 2p of SANi-PtNWs post electrocatalytic test. 
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Supplementary Fig. 4∣Fitting results of SANi-PtNWs, Pt foil and PtO2 at Pt L3-edge. 

(a) (d) (g) The k space fitting curves. (b) (e) (h) The FT-EXAFS fitting curves. (FT range: 

2-12.5 Å-1; fitting range: 0.8-3.4 Å). (c) (f) (i) The inversed FT-EXAFS fitting curves.  
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Supplementary Fig. 5∣Fitting results of SANi-PtNWs, Ni foil and Ni(OH)2 at Ni k-

edge. (a) (d) (g) The k space fitting curves. (b) (e) (h) The FT-EXAFS fitting curves (FT 

range: 2-12.5 Å-1; fitting range: 0.8-3.4 Å). (c) (f) (i) The inversed FT-EXAFS fitting curves. 
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Supplementary Fig. 6∣ HER performance of the SANi-PtNWs and Pt/C under 

harsher conditions. (a) ECSA normalized HER LSVs for Pt/C and SANi-PtNWs in 4 M 

KOH with 95% iR-compensation at the scan rate of 5 mV/s. (b) ECSA normalized HER 

LSVs for Pt/C and SANi-PtNWs at 313 K and 333 K, respectively. The measurements were 

conducted in 1 M KOH with 95% iR-compensation at the scan rate of 5 mV/s.  
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Supplementary Fig. 7∣HER chronopotentiometry test of SANi-PtNWs, in 1 M KOH at a 

constant current density of 5 A/mgPt.  

  



 9 

 

Supplementary Fig. 8∣DFT models for HER activity calculation. To better distinguish 

the sites in Models A, C, E, and F, we use two letters to label the adsorption sites. The first 

letter indicates whether the site is top (T), bridge (B), FCC hollow (F) or HCP hollow (H), 

the second letter indicates whether the site is in a cavity (C), on the step (S), or on the terrace 

(T). For the adsorption sites in Models B, D and G, there are no cavities so we use simple 

labels to represent whether the site is top (T), bridge (B), FCC hollow (F) or HCP hollow 

(H). The local minima sites are in red color. The adsorption free energies (∆GH – ∆GH
Pt (111)) 

for all the adsorption sites are shown in Supplementary Table 3. Besides that, we also 

directly write the adsorption free energies on the adsorption sites. The local minima sites 

are in red color. (a) Model A with 4×4 unit cell and 5 layers. BS1 and BS2 are the most 

stable adsorption sites. By symmetry, there are 3 BS1 and 6 BS2 sites in one unit cell. Since 

they will be occupied first and they will block TS1, TS2 and FT1 sites, FT3 and TT1 sites 

will become the local minima sites. The TC site in the cavity is another local minimum. (b) 

Model B with 5×5 unit cell and 5 layers. Model C has a larger cavity than Model A, but 

there are many similarities. The BS sites are still the most stable sites. The TS sites have 

lower energies than TT3, FT2 and FT3, but they are blocked by the BS sites, so the local 

minima sites on the terrace are TT3, FT2, FT3 and FT4. The TC site in the cavity is still a 

local minimum site. (c) Model C of Pt (553) stepped surface. (d) Bond lengths (Å) in model 

C. The Pt-Pt distance in bulk is 2.81 Å. Model C is Pt (553) surface and it’s a model for the 

step defect. We find the fcc hollow sites, such as F1, F2 and F3 are destabilized compared 

to Pt (111), which could be explained by the strain effect. In this figure, we can see that the 

bond lengths between the terrace atoms are about 3.5% less than the normal distance in the 

Pt bulk. (e) Model D with 3×3 unit cell and 5 layers. Model D is the (OH) bounded Ni single 

atoms decorated Pt (111) surface. B1 is the most preferred site, then T3, T2 and T1 sites 

will be covered if more H is adsorbed. Since all the other sites are blocked, T4 will be 

covered if one more H atom comes in although it’s not a local minimum. If higher coverage 
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is reached, the fcc sites and B2 site rather than the top sites will be covered. (f) SANi/Pt 

model with 3×3 unit cell and 5 layers. This model has no OH groups binding to the Ni, the 

fcc hollow sites F1 and F2 are the locally stable sites, and they are less active than Pt (111). 

(g) Model E with 4×4 unit cell and 5 layers. This is another model of Pt (111) with a cavity. 

(h) Model F with 5×5 unit cell and 5 layers. This is another model of Pt (111) with a cavity. 

(i) Model G with 3×3 unit cell and 5 layers. Model G is an isomer of model D, which is also 

(OH) bounded SANi decorated Pt (111) surface, it’s 0.027 eV higher in energy. All the sites 

on this model are also more active than Pt (111). 
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Supplementary Fig. 9∣Adsorption free energy of hydrogen on a 4×4 unit cell of Pt (111) 

surface as a function of URHE at various coverage in pH=14 solution. This figure shows that 

in experimental condition of -70 mV vs. RHE, the Pt (111) surface adsorbs 1 monolayer of 

H. 
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Supplementary Fig. 10 ∣Reaction profile for MOR on Ni(OH)2/Pt(111) (top) and Pt(111) 

(bottom). A continuum solvent model with dielectric constant 78.4 was used, together with 

a potential of 0.65 V vs. RHE.  
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Supplementary Fig. 11∣The CO stripping results for (a) 10% Pt/C, (b) pure-PtNWs, and 

(c) SANi-PtNWs. The measurements were conducted in 1 M KOH at the scan rate of 25 

mV/s. 
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Supplementary Table 1∣Structural parameters extracted from the Pt L3-edge EXAFS 

fitting. (S0
2=0.78) 

Sample Scattering 

pair 

CN R(Å) σ2(10-3Å2) ΔE0(eV) R factor 

SANi-

PtNWs 
Pt-Pt 8.9 2.74 7.1 5.4 

0.01 

Pt foil Pt-Pt 12* 2.79 4.3 7.7 0.0062 

PtO2 bulk Pt-O 2* 1.97 3.2 
7.5 

0.0043 

Pt-O 4* 2.05 4.1 

Pt-Pt 2* 3.12 3.4 13.6 

S0
2 is the amplitude reduction factor; CN is the coordination number; R is interatomic 

distance (the bond length between Pt central atoms and surrounding coordination atoms); 

σ2 is Debye-Waller factor (a measure of thermal and static disorder in absorber-scatterer 

distances); ΔE0 is edge-energy shift (the difference between the zero kinetic energy value 

of the sample and that of the theoretical model). R factor is used to value the goodness of 

the fitting. * This value was fixed during EXAFS fitting, based on the known structure of 

Pt metal and PtO2 bulk. 

Error bounds that characterize the structural parameters obtained by EXAFS spectroscopy 

were estimated as N ± 20%; R ± 1%; σ2 ± 20%; ΔE0 ± 20%. 
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Supplementary Table 2∣Structural parameters extracted from the Ni K-edge EXAFS 

fitting (S0
2=0.77). 

Sample Scattering 

pair 

CN R(Å) σ2(10-3Å2) ΔE0(eV) R factor 

SANi-

PtNWs 

Ni-O 2.3 2.04 5.3 -2.5 0.01 

Ni foil Ni-Ni 12* 2.49 5.9 6.1 0.0013 

Ni(OH)2 

bulk 

Ni-O 6* 2.05 5.3 4.3 0.0038 

Ni-Ni 6* 3.12 6.4 7.2 

 

S0
2 is the amplitude reduction factor; CN is the coordination number; R is interatomic 

distance (the bond length between Ni central atoms and surrounding coordination atoms); 

σ2 is Debye-Waller factor (a measure of thermal and static disorder in absorber-scatterer 

distances); ΔE0 is edge-energy shift (the difference between the zero kinetic energy value 

of the sample and that of the theoretical model). R factor is used to value the goodness of 

the fitting. * This value was fixed during EXAFS fitting, based on the known structure of 

Ni metal and Ni(OH)2 bulk. 

Error bounds that characterize the structural parameters obtained by EXAFS spectroscopy 

were estimated as N ± 20%; R ± 1%; σ2 ± 20%; ΔE0 ± 20%. 
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Supplementary Table 3∣Adsorption Free Energies for Adsorption Sites in Models A-G 

(unit: eV).‡ 

 

model A ΔΔG model B ΔΔG model C ΔΔG model F ΔΔG 

BC 0.341 BC 0.218 B1 0.044 BC 0.235 

BS1 -0.180 BS1 -0.118 F1 0.049 BS1 -0.121 

BS2 -0.047 BS2 -0.123 F2 0.089 BS2 -0.104 

BT1 0.077 BS3 -0.109 F3 0.033 BS3 -0.110 

FC 0.349 FC 0.197 F4 0.163 BS4 -0.134 

FT1 0.011 FT1 -0.039 F5 0.131 BS5 -0.117 

FT2 0.088 FT2 0.066 H1 0.100 FC 0.205 

FT3 0.039 FT3 0.115 H2 0.108 FT1 -0.028 

HT1 0.105 FT4 0.099 H3 0.087 FT2 0.040 

HT2 0.081 HC 0.199 T1 0.151 FT3 0.072 

TC 0.161 HT1 0.071 T2 0.087 FT4 0.114 

TS1 0.049 HT2 0.137 T3 0.090 FT5 0.017 

TS2 0.024 TC 0.116 T4 0.069 FT6 0.017 

TT1 0.055 TS1 0.023   FT7 0.073 

TT2 0.066 TS2 0.022   FT8 0.082 
  TT1 0.088   HC 0.198 

  TT2 0.100   HT1 0.075 

  TT3 0.049   HT2 0.090 

      HT3 0.088 

model D ΔΔG model E ΔΔG model G ΔΔG HT4 0.118 

B1 0.030 BC 0.241 B1 0.156 HT5 0.123 

B2 0.145 BS1 -0.127 B2 0.156 HT6 0.068 

B3 0.148 BS2 -0.104 F1 0.111 TC 0.126 

B4 0.098 FT1 -0.039 F2 0.112 TS1 0.042 

F1 0.127 FT2 0.070 F3 0.096 TS2 0.085 

F2 0.097 FT3 0.101 H1 0.126 TT1 0.059 

F3 0.175 HC 0.218 H2 0.134 TT2 0.086 

F4 0.120 HT1 0.068 T1 0.091 TT3 0.091 

F5 0.100 HT2 0.118 T2 0.072 TT4 0.061 

H1 0.146 TS1 0.035 T3 0.071 TT5 0.083 

H2 0.142 TS2 0.020   TT6 0.103 

T1 0.108 TT1 0.033     

T2 0.087 TT2 0.080     

T3 0.042       

T4 0.120       

 
‡The adsorption free energy is expressed in ∆GH – ∆GH

Pt (111) (ΔΔG), which is the difference 

between the actual free energy ∆GH and the adsorption free energy on Pt (111) surface ∆GH
Pt 

(111).  
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Supplementary Table 4∣CO adsorption energies for adsorption sites shown in Fig. 5f. 

 

Adsorption site ΔE/eV 
Pt (111) -1.77 

T1 -1.54 
T2 -1.64 
T3 -1.71 
T4 -1.69 

 

 

 


