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Abstract

Optical microscopy has been contributing to the development of life science for more than three
centuries. However, due to strong optical scattering in tissue, its in vivo imaging ability has been
restricted to studies at superficial depths. Advances in photoacoustic tomography (PAT) now
allow multiscale imaging at depths from sub-millimeter to several centimeters, with spatial
resolutions from sub-micrometer to sub-millimeter. Because of this high scalability and its unique
optical absorption contrast, PAT is capable of performing anatomical, functional, molecular and
fluid-dynamic imaging at various system levels, and is playing an increasingly important role in
fundamental biological research and clinical practice. This Review discusses recent technical
progress in PAT and presents corresponding applications. It ends with a discussion of several
prospects and their technical challenges.
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1. Introduction

By zooming in on tiny features, optical microscopy has driven the development of life
science. However, no matter how sophisticated the optical microscope, its imaging signal
fades exponentially with imaging depth (1,2). As a photon travels through tissue, multiple
scattering events eventually lead to randomization of its propagation direction, i.e., photon
diffusion, and thus blur the image (3). The mean propagation distance for a photon to diffuse
is termed the transport mean free path (TMFP), which is typically 1 mm in tissue (2). No
existing optical microscopy technologies can penetrate beyond one TMFP, where many
biological processes and diseases occur. Therefore, there is a need for non-invasive in vivo
imaging with high resolution in deep tissue.

Photoacoustic tomography (PAT), an emerging powerful optical imaging modality using
optical absorption contrast and ultrasonic resolution, has broken through the fundamental
barrier of one TMFP imaging depth (2,4-9). Most importantly, all the key characteristics of
PAT are highly scalable. PAT has become one of the fastest growing fields in biomedical
imaging (7). To avoid overlapping with recent Review articles, this Review mostly focuses
on progress since the second half of year 2009. It is organized in the following order: (1)
fundamentals of the photoacoustic effect and photoacoustic imaging, (2) multiscale PAT
systems, based on their image formation mechanisms, (3) anatomical and functional PAT
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using intrinsic contrasts, (4) molecular and chemical PAT using exogenous contrasts, (5)
PAT of fluid dynamics, and (6) prospects and challenges for PAT development in the near
future.

2. Fundamentals of photoacoustic tomography

Based on the photoacoustic effect, discovered by Alexander G. Bell in 1880 (2), the
principle of PAT is illustrated in Fig. 1. Typically, the PA effect starts from a target within
tissue irradiated by a short laser pulse. The pulse energy is partially absorbed by the target
and converted into heat, which generates a local transient temperature rise, followed by a
local pressure rise through thermo-elastic expansion. The pressure propagates as ultrasonic
waves, termed PA waves, and is detected by ultrasonic transducers placed outside the tissue.
A PA image is then formed by resolving the origins of the ultrasonic waves from their
arrival times. Because the PA signal amplitude is proportional to the product of the local
absorption coefficient and local fluence, PAT is essentially listening to the optical
absorption contrast of tissue. Meanwhile, because PAT uncouples signal generation and
detection, the diffused photons also contribute to the resultant PA signals without degrading
the signal quality. For biological tissue, because ultrasonic scattering is about two to three
orders of magnitude weaker than optical scattering, PAT can achieve high spatial resolution
deep in tissue. In addition, unlike other coherent imaging techniques, PAT is speckle free
(10).

3. Multiscale photoacoustic tomography systems

From organelles to organs, currently, PAT is the only imaging modality spanning the
microscopic and macroscopic worlds. The high scalability of PAT is achieved by trading off
imaging resolutions and penetration depths (11). Higher acoustic frequency contributes to
higher spatial resolution, but is attenuated more by tissue, thus resulting in a shallower
penetration depth, and vice versa. In addition, optical attenuation is another limiting factor
for penetration depth, since PA waves are generated only where photons can reach.
According to their imaging formation mechanisms, PAT systems can be classified into four
categories: raster-scan based photoacoustic microscopy (PAM), inverse-reconstruction
based photoacoustic computed tomography (PACT), rotation-scan based photoacoustic
endoscopy (PAE), and hybrid PAT systems with other imaging modalities. A thorough side-
by-side comparison of different PAT systems can be found in recent Review articles (9,11).

3.1. Raster-scan based photoacoustic microscopy

By using a single focused ultrasonic transducer, usually placed confocally with the
irradiation laser beam, PAM forms a 1D image at each position, where the flight time of the
ultrasound signal provides depth information. A 3D image is then generated by piecing
together the 1D images obtained from raster scanning, and thus no inverse reconstruction
algorithm is needed. PAM has two forms, based on its focusing mechanism. In acoustic-
resolution photoacoustic microscopy (AR-PAM), the optical focus is usually expanded
wider than the acoustic focus, and thus acoustic focusing provides the system resolution
[Fig. 2(A)] (12,13). Because the resolution is not affected by optical scattering, by using a
focused ultrasonic transducer with a 50-MHz central frequency and a 70% nominal
bandwidth, a transverse resolution of 15 um and axial resolution of 45 um have been
achieved with a maximum penetration depth of 3 mm in live animals. However, to further
improve the resolution by increasing the acoustic frequency is quite challenging, because of
the strong acoustic attenuation at high frequencies (14). The other form of PAM, termed
optical-resolution photoacoustic microscopy (OR-PAM), has an optical focus much tighter
than the acoustic focus, and thus the system resolution is provided by optical focusing. Since
the optical wavelength is much shorter than the acoustic wavelength, OR-PAM can easily
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achieve high spatial resolution, down to the micrometer or even sub-micrometer scale [Fig.
2(B)] (14,15). However, like traditional optical microcopy, OR-PAM generally obeys the
one TMFP limitation due to photon scattering, which, however, is still deeper than the
acoustic solution mentioned above.

PAM usually suffers from slow imaging speed due to raster scanning. To improve this,
different scanning mechanisms have been proposed to replace the traditional mechanical
scanning. These include optical scanning using Galvo mirrors (~2 Hz frame rate) (16),
mechanical scanning using a voice-coil motor (~15 Hz frame rate) (17), and hybrid scanning
with optical scanning on one axis and mechanical scanning on the other axis (~6 Hz frame
rate) (18).

3.2. Inverse-reconstruction based photoacoustic computed tomography

Despite its high spatial resolution and improved imaging speed, PAM usually has a limited
focal depth and is not yet capable of video-rate imaging (19). In contrast, PACT is typically
implemented using full-field illumination and a multi-element ultrasound array system to
improve penetration depth and imaging speed [Fig. 3(A)] (20-24), though some PACT
systems use a single-element transducer with circular scanning [Fig. 3(B)] (25). The spatial
distribution of acoustic sources needs to be inversely reconstructed. The ultrasound array
can be fabricated in different geometrical forms such as circular (20), semi-circular (23),
quarter-circular (26), hemisphere (24), linear (22), and square (27), depending on the
application. Mainly determined by the laser repetition rate and data acquisition speed, PACT
has been reported with a cross-sectional frame rate of up to 50 Hz (11). Meanwhile, the
penetration depth can reach several tens of TMFPs in live tissue. The imaging resolution is
usually compromised to several hundreds of micrometers due to the low ultrasound
frequency used.

In addition to PACT implementations using piezoelectric ultrasonic transducers, there has
been a growing interest in detecting PA signals using optical methods (28-32). Optical
detection can potentially improve the imaging sensitivity and eliminate the coupling medium
between the sample surface and the ultrasonic transducer (28,31).

3.3. Rotation-scan based photoacoustic endoscopy

Even though the penetration depth of PACT can reach several centimeters, internal organs
such as the cardiovascular system and gastrointestinal tract are still not reachable. Non-
invasive tomographic imaging of these internal organs is extremely useful in clinical
practice. Besides pure optical and ultrasound endoscopy (33-35), photoacoustic endoscopy
(PAE) is another promising solution for this clinical need (6). The key specifications of PAE
are the probe dimensions and imaging speed. The first PAE was designed by Yang et al.,
and applied to animal studies (Fig. 4) (36). Here, the PAE probe has a diameter of 4.2 mm
and the cross-sectional scanning speed is 2.6 Hz.

3.4. Photoacoustic tomography integrated with other imaging modalities

Combining complementary contrasts can potentially improve diagnostic accuracy. Because
of its excellent optical absorption contrast, PAT has been integrated into various imaging
modalities, such as ultrasound (US) imaging (mechanical contrast) [Fig. 5(A)] (17,37,38),
OCT (optical scattering contrast) [Fig. 5(B)] (39-41), confocal microscopy (scattering/
fluorescence contrast) (42—44), two-photon microscopy (fluorescence contrast) (45), and
MRI (magnetic contrast) (46). Different modalities in hybrid systems usually share the same
imaging area, thus their images are inherently co-registered.
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4. Anatomical and functional photoacoustic tomography using intrinsic

contrasts

Theoretically, any intrinsic chromophore that has an optical absorption signature can
potentially provide PAT contrast, as long as appropriate irradiation wavelengths are applied
and the system sensitivity is sufficient. Here, we review the currently used intrinsic
contrasts, in the order of hemoglobin, melanin, water, lipid, and nucleic acid.

4.1. Photoacoustic tomography of hemoglobin

In the visible spectral range (450-600 nm), oxyhemoglobin (HbO,) and deoxyhemoglobin
(HbR) account for most of the optical absorption in blood (47). The absorption coefficient
ratio between blood and surrounding tissues is as high as six orders of magnitude; hence,
PAT can image with nearly no background RBC-perfused vasculature, the functional
vascular subset responsible for tissue oxygen supply. Furthermore, because PA signal
amplitudes depend on the concentrations of HbO; (Cox) and HbR (Cge), spectroscopic
measurements can be performed to quantify Cyy and Cge by solving linear equations (48).
From Cgy and Cge, the total hemoglobin concentration (HbT) and oxygen saturation of
hemoglobin (sO,) can be derived. Alternatively, HoT and sO, can also be recovered by
analyzing the acoustic spectrum (49).

4.1.1. Whole-body photoacoustic tomography of small animals—Small animals,
especially mice, are extensively used in preclinical research on human diseases (50,51).
Non-invasive whole-body imaging of small animals with high spatial resolution is extremely
desirable for systemic studies of such as tumor metastases (52), drug delivery (53), and
embryonic development (54).

Laufer et al. have recently reported whole-body images of the vasculature of transgenic
mouse embryos, using Fabry-Perot interferometer (FPI)-based PACT [Fig. 6(A)] (30). The
vasculature of the head, heart, and spinal cord is clearly visible. This work may enable
longitudinal studies of the effects of genetic knockouts on the development of vascular
malformations. Brecht et al. reported the first in vivo whole-body PAT images of a mouse
[Fig. 6(B)] (23). The 3D tomography clearly shows blood-rich internal organs such as the
liver, spleen, and kidneys, as well as large and small vasculature. Buehler et al. developed a
novel PAT scanner capable of fast whole-body imaging in vivo (55). The system has
achieved cross-sectional animal imaging with video-rate data acquisition. Imaging
performance was demonstrated by resolving the mouse kidney anatomy, which was
congruent with the corresponding histological results [Figs. 6(C-E)].

4.1.2. Photoacoustic tomography of human breast—As the leading cause of cancer
death among women, breast cancer can be diagnosed earlier by periodic screening (56).
Currently, X-ray mammography is the only tool used for mass screening, and it has helped
to increase the survival rate of breast cancer patients (57). However, in addition to the
accumulation of ionizing radiation dose during lifetime screening, mammography also
suffers from low sensitivity for early stage tumors in young women (58). To solve these
problems, non-ionizing-radiation based techniques have been investigated, such as
ultrasound, MRI, and PAT (24,59,60). Among these techniques, PAT is superior in contrast,
sensitivity, and cost effectiveness. The PAT contrast is contributed by the angiogenesis-
associated microvasculature around and within the tumor.

Ermilov et al. have used PAT to image breast cancer in humans (60). They imaged single
breast slices in craniocaudal or mediolateral projection with at least 0.5 mm resolution. Fig.
7 shows an example of the superior contrast of PAT breast cancer imaging over X-ray
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mammography on a radiologically dense breast. A poorly differentiated infiltrating
carcinoma can hardly be localized in the mammography image, but it can be easily
visualized in the PAT image, with well-defined boundaries. Statistically, preliminary clinical
studies demonstrated that PAT was able to visualize 18 malignant tumors out of 20 detected
by biopsy, while X-ray mammography only detected 14 o them.

4.1.3. High-resolution functional photoacoustic tomography of
microvasculature—Muicrovasculature, the distal portion of the cardiovascular system,
delivers oxygen, humoral agents, and nutrients to the surrounding tissue and collects
metabolic waste (61). Almost any microvasculature-associated parameter has important
pathophysiological indications. PAT is highly desirable for microvasculature imaging
because of its high spatial resolution and endogenous hemoglobin absorption contrast (11).
Three representative applications are introduced here.

Non-invasive, high-resolution PAT of mouse brain activity may help to understand the
human neurological diseases. Mouse cortical vasculature and vessel-by-vessel sO, mapping
obtained by OR-PAM are shown in Figs. 8(A) and (B), respectively (9,62). Major vascular
landmarks can be well identified. The strong capability of PAT for functional brain imaging
will greatly advance neurological studies.

Many eye diseases are associated with altered eye microvasculature. So far, PAT has been
demonstrated to be safe for ocular and retinal microvasculature imaging in small animals
[Figs. 8(C-D)] (39,63-66). All the major vascular components can be clearly visualized
under the ANSI safety standard for the eye. sO, in the iris microvasculature is also imaged
spectrally. PAT offers significant promise for radiation-free monitoring of eye diseases.

Anti-angiogenesis is an important cancer treatment strategy (67). PAT is an ideal tool for
angiogenesis-associated studies and has been applied to various tumor models, such as
melanoma, glioblastoma, adenocarcinoma, carcinoma, and gliosarcoma (8). Fig. 8(E) shows
an implanted human colorectal adenocarcinoma LS174T imaged by FPI-PACT (31). The
image reveals a poorly and heterogeneously vascularized tumor core supplied by larger
vessels around its periphery, which is a known feature of this type of tumor. PAT
characterization of tumor vasculature will aid the development and refinement of new
cancer therapies.

4.2. Photoacoustic tomography of melanin

Although it is the foremost killer among skin cancers, melanoma can be cured if detected
early (68). PAT has been investigated for non-invasive melanoma imaging using melanin,
the light-absorbing molecules in melanosomes, as the contrast (12,15,69,70). The absorption
of melanin is ~1000 times that of water at 700 nm, which can potentially enable PAT to
detect early melanoma in deep tissue.

Fig. 9(A) shows the blood vessels (in red) and melanoma (in brown) in the ear of a nude
mouse imaged by OR-PAM (15). The melanoma generated stronger PA signals than the
vessels and can be easily identified from the blood vessels by taking the difference before
and after the injection of tumor cells. Because of the high scalability of PAT, the spatial
resolution can be scaled down to sub-micrometer for single melanoma cell imaging by using
an optical objective with higher NA [Fig. 9(B)] (15), or scaled up to sub-millimeter for brain
melanoma growth monitoring with intact skull and scalp by changing to acoustic resolution
[Fig. 9(C)] (69).
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4.3. Photoacoustic tomography of water

Water is the most abundant chemical in human body (57% of the body weight) (71). The
body water content can reflect a disease state. Because water has much stronger absorption
than other tissue components in the spectral range between 920 to 1040 nm (72), PAT isa
promising tool to provide high resolution water imaging with high sensitivity. Fig. 10 shows
the first PAT water imaging in a tissue phantom (73). First, spectral measurements of water-
ethanol mixtures demonstrate that water concentration can be resolved by multi-wavelength
excitation [Fig. 10(A)]. Second, a tissue phantom (2% agar embedded in fat) experiment at
975 nm shows that PAT can be used for water detection at low concentration, such as in fat
[Figs. 10(B-C)]. In vivo PAT water imaging is expected in the near future.

4.4. Photoacoustic tomography of lipid

Cardiovascular disease (CVD) has been the number one cause of death in the United States
for over a century. The majority of CVD is due to atherosclerosis, characterized by plaques
building up inside the arterial wall (74). Lipid is a common constituent in atherosclerotic
plaques, the location and area of which are closely related to the progression of the disease.
PAT is well suited for lipid imaging: compared with water-based tissue components, lipid
has a distinct absorption spectrum between 1150 nm and 1250 nm [Fig. 11(A)] (75-77). A
recent advance in PAT lipid imaging was reported by Allen et al. (77). A human aorta
containing a raised lipid-rich plaque [Fig. 11(B)] was imaged at 1200 nm [Fig. 11(C)]. The
plaque is clearly identified due to the strong absorption by lipid. The results demonstrate that
spectroscopic PAT is a promising tool for lipid detection in atherosclerosis.

4.5. Photoacoustic tomography of cell nuclei

Cell nuclei are organelles where major cell activities take place. Compared with those of
normal cells, nuclei of cancer cells have folded shapes and enlarged size (78). Imaging cell
nuclei plays a critical role in cancer diagnosis. Traditional imaging of cell nuclei needs
tissue sectioning and histological staining, which are not applicable for in vivo studies.
Because nucleic acids, the major components of DNA and RNA in cell nuclei, have strong
absorption in the ultraviolet range (79), PAT is a good choice for imaging of cell nuclei
using nucleic acids as intrinsic contrast.

By exciting DNA and RNA at 266 nm, Yao et al. have recently reported the first label-free
PA ex vivo and in vivo images of cell nuclei (Fig. 12) (80), termed UV-PAM. Cell nuclei in
the epithelia of the mouse lip and the intestinal villi were imaged ex vivo [Figs. 12(A-B)].
Cell nuclei in the ear skin of a nude mouse were imaged in vivo at depths greater than 100
um [Fig. 12(C)]. UV-PAM is cable of 3D noninvasive cell nuclei imaging without staining.

5. Chemical and molecular photoacoustic tomography using exogenous
contrast agents

Even though the intrinsic contrasts in biological tissue are promising, exogenous contrast
agents can extend the power of PAT. So far, optically absorptive organic dyes,
nanoparticles, reporter genes (81), fluorescent proteins, microbubbles, and nanobubbles (82)
have been successfully applied to PAT imaging. A thorough discussion of these agents can
be found in a recent Review article (8), and only a few new applications are presented here.

Organic dyes, such as indocyanine green (ICG), IRDye800-NHS, methylene blue (MB),
Evans blue (EB), and Congo red are widely used in PAT applications, including brain
cortical structure enhancement (83), kidney perfusion (55), brain hemodynamic monitoring
(20), tumor targeting (84), sentinel lymph node (SLN) mapping (37,38,85), capillary
enhancement (86), and amyloid plaque staining (87). These dyes usually have peak
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absorption wavelengths within the near-infrared range, where blood and water have weak
absorption; hence, the penetration depth can be improved. Fig. 13 shows an example of SLN
mapping using MB as the contrast (38). An imaging depth of greater than 2 cm was
demonstrated. This study is an important step towards the clinical translation of PAT. In
addition to increasing the penetration depth, when conjugated with other functional ligands,
organic dyes can specifically target cellular sites of interest, such as tumor cell membranes.

Nanoparticles are of great research interest in PAT applications, and they have proven
effective in delivering therapeutic agents by targeting specific sites (88,89). Because the
properties of nanoparticles are highly size-dependent, their absorption spectra can be
optimized by adjusting the particle geometry and dimensions, which makes them more
flexible than organic dyes (8). In addition, targeted nanoparticles can significantly improve
the imaging specificity of PAT (90). So far, different kinds of nanoparticles, including
nanocages, nanoshells, nanorods, nanotubes, nanobeacons, and nanowontons, have been
explored as PAT contrasts for different applications, such as cerebral cortex imaging (91),
SLN mapping (92), macrophage imaging in atherosclerosis (93), and solid tumor targeting
(94). Nanoparticle enhanced PAT has become a hot topic in biomedical studies.

As fluorescent proteins have totally redefined the ways in which biologists investigate the
cellular and subcellular progress, deep fluorescent protein imaging by PAT has extended the
ways we use these proteins (4,81,95). The multispectral PAT technique is capable of
detecting fluorescent proteins within highly light-scattering organisms (81,96). Razansky et
al. showed the feasibility of resolving tissue-specific expression of mCherry proteins in vivo
(25). As shown in Fig. 14, whole-body spectroscopic PA imaging was performed on an adult
zebra fish. The location of mCherry expression was accurately resolved [Fig. 14(D); red
corresponds to the mCherry-expressing vertebral column]. The PAT image resolution is
better than 40 um at depth >1 mm, while confocal microscopy can hardly penetrate 500 um
[Fig. 14(G)].

6. Photoacoustic tomography of fluid dynamics

Flow, an important contrast for biomedical imaging, provides much useful
pathophysiological information. PAT is receiving increased attention as a tool to measure
flow, as in PAT flowmetry. PAT flowmetry keeps all the merits of PAT and can perform
better than scattering-based optical flowmetries in deep tissue.

So far, several principles have been proposed for PA measurement of flow. Fang et al.
discovered the photoacoustic Doppler effect (PAD), and used an intensity-modulated CW
laser to measure the flow speed based on the PAD frequency shift (97). Sheinfeld et al.
extended this method by using pulsed sinusoidal (burst) excitation to attain axial information
(98). Brunker et al. quantified the Doppler time shifts via cross-correlation of pairs of
photoacoustic waveforms to measure the flow speed (99). Wei et al. extracted flow
information based on rod-to-sphere shape transformations of gold nanorods induced by
pulsed-laser irradiation (100). Fang et al. invented M-mode particle flowmetry by measuring
the traveling time of absorptive particles across the optical illumination area (101). Yao et
al. have reported a transverse flow imaging strategy on the basis of Doppler bandwidth
broadening [Fig. 15(A)] (102,103). Using this method, the blood flow of an artery-vein pair
in a mouse ear was imaged [Fig. 15(B)]. Chen et al. demonstrated a similar idea but
conducted the analysis via auto-correlation in the time domain (104).

7. Prospects and summary

From organelles to whole bodies, from superficial microvasculature to internal organs, from
anatomy to functions, PAT is playing an increasingly important role in basic physiological
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research and pre-clinical studies. Exciting events are happening in this fast growing field.
Several prospects and corresponding challenges are discussed here.

Integration of the state-of-the-art techniques in system implementation will eventually lead
PAT to commercialization for clinical practice. For PAM, a fast scanning mechanism and a
high repetition rate laser with a wide tuning range of wavelengths are necessary for real-time
functional imaging without compromising the spatial resolution. Also, a better optical and
acoustic focusing method is needed to maintain the resolution in the depth dimension. For
PACT, new techniques for assembling ultrasound arrays help to increase the imaging
sensitivity and improve the spatial resolution (105). More homogeneous beam expansion
over the sample surface is necessary for whole-field illumination. Parallel, real-time data
acquisition is also important for further improving the imaging speed. For PAE, time gating
may be necessary for eliminating motion artifacts induced by heart beating and breathing.
Moreover, element minimization can still be improved to reduce the probe size to less than 1
mm in diameter. For PAT systems integrated with other modalities, multimodal contrast
agents show great promise in providing complementary information (106).

Robust, fast, and automatic data processing will greatly enhance PAT performance.
Currently, different inverse reconstruction methods have been used to improve PAT image
quality, such as compressed-sensing (107), deconvolution (108), and wavelet filtering (109)
based algorithms. However, each method usually works well only under some specific
conditions, and the 3D reconstruction speed is usually too slow for clinical usage. In
addition, the heterogeneity of optical fluence and sound speed distribution within the imaged
plane may also degrade the reconstructed image. Therefore, a fast, quantitative, universally
applicable image reconstruction algorithm is desirable. Besides image reconstruction, pre-
processing of raw data and postprocessing of reconstructed images are also important. The
former can help image reconstruction by de-noising and data compressing, while the latter
can aid physicians in analyzing the results and thus making better diagnosis.

New imaging principles will be explored using PAT. In the PA effect, as irradiation
intensity increases, mechanisms such as saturation of the optical absorption or multiphoton/
multistep absorption can occur, resulting in a nonlinear dependence of the photoacoustic
signal on the excitation pulse fluence (110,111). Danielli et al. recently reported a relaxation
photoacoustic microscopy (rPAM) (111). From the saturation of the optical absorption,
picosecond relaxation times of different chromophores were measured using nanosecond
laser pulses. Nonlinear photoacoustic tomography will potentially become an interesting
direction.

New parameters can be measured by PAT. For example, by combining the oxyhemoglobin
concentration and volumetric blood flow, the metabolic rate of oxygen can be computed in
the region of interest (6). Moreover, if the blood glucose concentration is also measured by
PAT, aerobic and anaerobic metabolism of glucose can be quantified, respectively, which
will be extremely useful for cancer diagnosis and treatment evaluation.

In summary, photoacoustic tomography perfectly complements other biomedical imaging
modalities by providing unique optical absorption contrast with highly scalable spatial
resolution, penetration depth, and imaging speed. In light of its capabilities and flexibilities,
PAT is expected to play a more essential role in biomedical studies and clinical practice.
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Figure 1.
Illustration of the photoacoustic (PA) effect and PA imaging
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Figure 2. Raster-scan based photoacoustic microscopy (PAM)

(A) Schematic diagram of a dark-field acoustic-resolution photoacoustic microscope (AR-
PAM). A transverse resolution of 15 um and axial resolution of 45 um are achieved,
together with the maximum penetration depth of 3 mm in live animals. AD: analog-digital
convertor. (B) Schematic diagram of an optical-resolution photoacoustic microscope (OR-
PAM). Close-up: diagram showing the confocal alignment of the optical objective and the
ultrasonic transducer. An organelle level resolution of 220 nm has been achieved with a
penetration depth of 200 um. Reproduced with permission from Refs. (12,15).
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Figure 3. Inverse-reconstruction based photoacoustic computed tomography (PACT)

(A) Schematic diagram of a 128-element-based PACT system for human breast imaging
using a hemisphere ultrasound array. Here, a 250 um spatial resolution over a 64 mm x 64
mm x 50 mm field of view is achieved, and one volumetric image takes about 24 sec. (B)
Schematic diagram of a multiwavelength photoacoustic tomography system using selective-
plane illumination and a single element transducer. The sample is rotated to enable in-plane
image reconstruction. Three-dimensional data acquisition is enabled by vertical scanning of
imaging plane using a translational stage. Cross-sectional data acquisition normally takes 2
min at each wavelength. Red, illuminating light beam; blue, generated ultrasonic waves.
Reproduced with permission from Refs. (24,25).
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Figure 4. A photoacoustic endoscope with a miniaturized imaging probe

(A) Schematic diagram of the photoacoustic endoscopic probe. GM, geared micromotor; JB,
jewel bearings; MN, magnets; OF, optical fiber; PM, plastic membrane (imaging window);
SM, scanning mirror; UST, ultrasonic transducer. (B) Photograph of the distal end of the
probe with laser emitting through the central hole of the transducer. The probe diameter is
4.2 mm. (C) Photoacoustic endoscopic image of a carbon fiber (6 m in diameter): polar
coordinate representation. Reproduced with permission from Ref. (36).
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Figure 5. Hybrid systems combining PAT with other imaging modalities

(A) Experimental setup of a photoacoustic imaging system combined with a clinical

Page 19

ultrasound (US) imaging system (iU22; Philips Healthcare). A fiber bundle is attached to the
US probe for light delivery. The imaging plane of the US probe is coaxially aligned with the

rectangular optical beam on the targeted area. (B) Schematic diagram of the combined

photoacoustic and optical-coherence microscope. SLD, superluminescent diode. Solid lines
represent single-mode optical fibers. Arrowhead solid lines show data flow. Arrowhead
dashed lines show the flow of system control signals. Reproduced with permission from

Refs. (38,39).
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Figure 6. Whole-body photoacoustic tomography

(A) Vertical maximum amplitude projection of a 3D photoacoustic image (left) and
photograph (right) of an ex vivo transgenic mouse embryo. 1, head; 2, heart region; 3, spinal
region. (C) 3D whole-body photoacoustic image of a nude mouse. (C) Stack of
representative slices of a 3D dataset of the pelvis and kidney region of a mouse. (D-E)
Photoacoustic image (D) and photograph (E) of a cross-sectional slice. 1, vena cava; 2,
portal vein; 3, kidneys; 4, spinal cord; 5, backbone muscles; 6, spleen. Reproduced with
permission from Refs. (23,30,55).
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(A) Mammography (B) PAT

Figure 7. Photoacoustic tomography of human breast cancer
(A) Breast cancer image from mediolateral X-ray mammography. (B) Breast cancer image
from mediolateral PAT. Reproduced with permission from Refs. (60).
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Figure 8. Photoacoustic tomography of microvasculature

(A) OR-PAM image of the mouse cortex vasculature with skull removed and scalp intact.
(B) Oxygen saturation (sO) mapping of mouse brain microvasculature by OR-PAM. (C)
Volumetric image of retinal structure of a rat by PA ophthalmoscopy (PAOM). BV, blood
vessel; RPE, retinal pigment epithelium. (D) OR-PAM ophthalmic angiography of the iris
microvasculature of a mouse, superimposed by the sO, mapping. CP, ciliary process; MIC,
major iris circle; RCB, recurrent choroidal branch; RIA, radial iris artery. (E) FPI-PACT
image of a human colorectal adenocarcinoma LS174T implanted under the skin of a nude
mouse. Reproduced with permission from Refs. (9,31,62-64).
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Figure 9. Photoacoustic tomography of melanin

(A) OR-PAM image of blood vessels (red) and melanoma (brown) taken four days after the
injection of melanoma cells (NA of optical objective: 0.6). MT, melanoma tumor. (B) OR-
PAM image of a single melanoma cell (NA of optical objective: 1.23). (C) Deep-reflection
mode PAM image of a mouse brain taken 14 days after the injection of melanoma cells. (D)
Invasive anatomical photograph after the mouse was sacrificed. M, brain melanoma.
Reproduced with permission from Refs. (15,69).
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Figure 10. Photoacoustic tomography of water

(A) PA spectral measurements of water-ethanol mixtures at different water concentrations.
(B) Photograph of a tissue phantom made of fat with an embedded 2% agar object. (C)
Cross-sectional PACT image of the tissue phantom. Reproduced with permission from Ref.
(73).
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Figure 11. Photoacoustic tomography of lipid

(A) Optical absorption spectra of fat and other tissue components. (B) Photograph of an
aorta sample with a raised lipid rich plaque (the horizontal dotted line represents the scan
line). (C) Photoacoustic image obtained at 1200 nm when illuminating through saline.
Reproduced with permission from Ref. (77).
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Figure 12. Photoacoustic tomography of cell nuclei

(A) UV-PAM image of cell nuclei of epithelia in the ex vivo lip of a mouse. (B) UV-PAM
image of cell nuclei of epithelia in the ex vivo intestinal villi of a mouse. (C) In vivo UV-
PAM images of cell nuclei in the ear skin of a nude mouse at depths of 0, 53, and 105 pm.
Reproduced with permission from Ref. (80).
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Figure 13. Photoacoustic tomography of sentinel lymph node (SLN) using methylene blue (MB)
(A) Postmortem photograph of a rat acquired after PACT imaging and skin removal. Inset:
dissected SLN stained by using MB. (B) Co-registered photoacoustic (in color) and
ultrasound (in gray) B-mode images of rat SLNs acquired in vivo with a 2-cm thick turkey
tissue layer for increased imaging depth. (C) Confirmation of MB accumulation in SLNs by
spectroscopic PA imaging. Reproduced with permission from Ref. (38).

Contrast Media Mol Imaging. Author manuscript; available in PMC 2012 September 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vVd-HIN

Page 28

(A)

(C)
(D)

xtinction (arb. scale)

,_
-

o

~J
)

500 540 580 620
th

Waveleng

(nm) Absorption (a-u-)1

(G) -

Figure 14. Photoacoustic tomography of deep-seated fluorescent protein mCherry of a zebrafish
N VIVO

(A) Photograph of an adult zebrafish. The solid line indicates the location of the imaging
plane (the short axis thickness is 2.5 mm). (B) Regular histological section of the imaging
plane. (C) Extinction spectra of mCherry (red) and the intrinsic background (blue, vertebral
column; green, muscles). (D) Spectrally resolved PACT image of mCherry distribution in
the intact animal. (E) Histological epifluorescence image of dissected tissue at
approximately the same imaging plane (red color corresponds to mCherry-expressing
vertebral column). (F) Epifluorescence image of a living zebrafish. Red curves show the
surface outline. (G) Coronal confocal image at a depth of 500 um from the surface.
Reproduced with permission from Ref. (25).
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Figure 15. Photoacoustic tomography of blood flow using Doppler broadening of bandwidth

(A) Beam geometry of PA Doppler bandwidth broadening. (B) PA imaging of blood flow in
a mouse ear. The positive and negative flow directions are defined by the arrows.
Reproduced with permission from Ref. (102).
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