Accepted Manuscript

Temperature Dependence of Calcite Dissolution Kinetics in Seawater

John D. Naviaux, Adam V. Subhas, Nick E. Rollins, Sijia Dong, William M. Berelson, Jess F. Adkins

PII: S0016-7037(18)30667-7
DOI: https://doi.org/10.1016/j.gca.2018.11.037
Reference: GCA 11032

To appear in: Geochimica et Cosmochimica Acta

Received Date: 1 August 2018
Revised Date: 26 November 2018
Accepted Date: 27 November 2018

Please cite this article as: Naviaux, J.D., Subhas, A.V., Rollins, N.E., Dong, S., Berelson, W.M., Adkins, J.F., Temperature Dependence of Calcite Dissolution Kinetics in Seawater, Geochimica et Cosmochimica Acta (2018), doi: https://doi.org/10.1016/j.gca.2018.11.037

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Temperature Dependence of Calcite Dissolution Kinetics in Seawater

John D. Naviaux a*, Adam V. Subhas b, Nick E. Rollins c, Sijia Dong c, William M. Berelson c, Jess F. Adkins a

aCalifornia Institute of Technology, Pasadena, CA, 91125, USA
bWoods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
cUniversity of Southern California, Los Angeles, CA, 90089, USA

*Corresponding Author
Email: jnaviaux@caltech.edu
Phone: 626-395-8679

Abstract

Knowledge of calcite dissolution kinetics in seawater is a critical component of our understanding of the changing global carbon budget. Towards this goal, we provide the first measurements of the temperature dependence of calcite dissolution kinetics in seawater. We measured the dissolution rates of 13C-labeled calcite in seawater at 5, 12, 21, and 37°C across the full range of saturation states (0 < Ω = [Ca^2+][CO_3]^- / K_sp < 1). We show that the dissolution rate is non-linearly dependent on Ω and that the degree of non-linearity both increases with temperature, and changes abruptly at “critical” saturation states (Ω_crit). The traditional exponential rate law most often utilized in the oceanographic community, R = k(1-Ω)^n, requires different fits to k and n depending upon the degree of undersaturation. Though we calculate a similar activation energy to other studies far from equilibrium (25±2 kJ/mol), the exponential rate law could not be used to mechanistically explain our near equilibrium results. We turn to an alternative framework, derived from crystal nucleation theory, and find that our results are consistent with calcite dissolution kinetics in seawater being set by the retreat of pre-existing edges/steps from Ω=1-0.9, defect-assisted etch pit formation from Ω=0.9-0.75, and finally homogenous etch pit formation from Ω=0.75-0. The Ω_crits for each mechanism are shifted significantly closer to equilibrium than they occur in dilute solutions, such that ocean acidification may cause marine carbonates to enter faster dissolution regimes more readily than would be expected from previous studies. We use the observed temperature dependence for each dissolution mechanism to calculate step kinetic coefficients (β, cm/s), densities of active nucleation sites (n_s, sites/m^2), and step edge free energies (α, mJ/m^2). Homogenous dissolution is well explained within the surface nucleation framework, but defect-assisted dissolution is not. Dissolution is initiated via step-propagation at all temperatures, but the defect-assisted mechanism is skipped over at 5°C, potentially due to a lack of nucleation sites. The surface nucleation framework enhances our understanding of calcite dissolution in seawater, but our results suggest that a complete theory will also need to incorporate the role of solution/surface speciation and complexation.
1. Introduction

Calcium carbonates are among the most abundant and reactive minerals on Earth, and they are an integral part of the ocean alkalinity cycle (Morse and Mackenzie, 1990). The steady state ocean alkalinity balance is set by input from terrestrial weathering and output from carbonate burial in sediments. Marine calcifiers currently produce approximately four times as much carbonate as is buried in sediments, meaning that 3/4 of the mineral carbonate produced must dissolve in the sediment or water column (Milliman et al., 1999; Morse et al., 2007). The geologic record of marine carbonates is often used to make inferences about past climates, but it is difficult to constrain changes in the production of carbonate alkalinity versus burial without knowledge of dissolution kinetics (Archer, 1991; Boudreau and Luo, 2017). Modeling the present and future ocean depends on knowledge of carbonate dissolution kinetic formulations.

Carbonate dissolution has been extensively studied for decades, but the functional form of its kinetic rate law is still debated. The simplest formulation, and the one used most frequently in the oceanographic community, is based upon an assumption that calcite dissolves via attack of water at the surface:

\[
\text{CaCO}_3 + \text{H}_2\text{O} \rightleftharpoons \text{Ca}^{2+} + \text{CO}_3^{2-} + \text{H}_2\text{O}
\]

(1)

In transition state theory, the overall dissolution rate \(R_{\text{diss}} \) is the sum of simultaneous forward \((R_f) \) and back \((R_b) \) reactions, each with their own rate constants \((k_f, k_b) \) such that:

\[
R_{\text{diss}} = R_f - R_b = k_f - k_b [\text{Ca}^{2+}]^m [\text{CO}_3^{2-}]^m
\]

(2a)

Here, \(m \) is a constant describing the stoichiometry of the dissolution reaction. The forward rate depends solely on \(k_f \) in this formulation, as the activity of the solid is assumed to be 1. Substituting in the definitions of \(k_f/k_b \) and \(\Omega = [\text{Ca}^{2+}] [\text{CO}_3^{2-}] / K_{sp} \) yields (Lasaga, 1998):

\[
R_{\text{diss}} = k_b K_{sp}^m - k_b [\text{Ca}^{2+}]^m [\text{CO}_3^{2-}]^m = k (1 - \Omega^m)
\]

(2b)

Here, \(k \) is the net dissolution rate constant per unit area and \(1 - \Omega^m \) is a measure of the thermodynamic driving force of the solution. Absent of mechanistic understanding, the oceanographic community has historically fit dissolution rates using the empirical equation (Berner and Morse, 1974; Morse, 1978; Keir, 1980):

\[
R_{\text{diss}} = k (1 - \Omega)^n
\]

(2c)

Here, \(n \) is referred to as the reaction order.

There is an ongoing conversation in the oceanographic community about whether calcite dissolution in natural waters obeys linear kinetics \((m=n=1) \), or if a higher order \(n \) is required. The answer has important mechanistic implications, as values of \(n \) other than 1 imply that reactions beyond Eq. (1) set the dissolution rate of calcite in the ocean. Linear kinetics may be a reasonable approximation for synthetic calcite in non-seawater solutions (Svensson and Dreybrodt, 1992) far from equilibrium \((\Omega<0.8, \text{Cubillas et al., 2005}) \) or with packed calcite beds (Boudreau, 2013; Sulpis et al., 2017), but results with suspended particles both in the laboratory (Morse and Berner, 1972; Keir, 1980; Keir, 1983; Walter and Morse, 1985; Teng, 2004; Gehlen et al., 2005; Xu et al., 2012; Subhas et al., 2015) and in-situ...
have consistently reported non-linear relationships between dissolution rate and undersaturation. The discrepancy cannot be attributed solely to uncertainties in calcite's apparent solubility product (Hales and Emerson, 1997), as recent work using updated K_{sp} values has confirmed non-linear kinetics for synthetic (Subhas et al., 2015; Subhas et al., 2017; Dong et al., 2018) and biogenic (Subhas et al., 2018) calcites at the near equilibrium undersaturations ($0.7<\Omega<1$) most relevant to the modern ocean water column (Olsen et al., 2016).

The oceanographic community has focused on the $(1-\Omega)^n$ rate law, but alternative theories dating back to Burton and Cabrera (1949; Burton et al., 1951; Cabrera and Levine, 1956) argue that the solution driving-force is a necessary, yet ultimately insufficient predictor of reaction kinetics. Crystals are made up of heterogeneous distributions of steps, kinks, defects, and dislocations, and their differing reactivities constrain both the rates and mechanisms of growth/dissolution. For example, it has been shown, using atomic force microscopy (AFM), that calcite dissolution in dilute solutions is limited to pre-existing steps until critical Ω thresholds are surpassed, at which point the overall rate increases dramatically as edge and screw dislocations open to become etch pits (Teng, 2004 and references therein). Models based upon the observed spread of 2D etch pits (Dove et al., 2005; Dove et al., 2008) or pulsing stepwaves (Lasaga and Lüttge, 2001; Lüttge, 2006; Fischer and Lüttge, 2018) allow for these mechanistic transitions and have been used to describe dissolution for a variety of minerals.

The temperature dependence of calcite dissolution kinetics has been extensively studied as a means to understand the mineral's dissolution mechanism, but no study has investigated this dependence in seawater. Knowledge of the elementary reactions and surface complexes responsible for dissolution (Plummer et al., 1978; Busenberg and Plummer, 1986; Chou et al., 1989; Arakaki and Mucci, 1995; Pokrovsky and Schott, 2002), and their respective activation energies (Plummer et al., 1978; Pokrovsky et al., 2009) is limited to simple non-seawater solutions far from equilibrium. It is generally agreed that the dissolution rate of calcite is linearly dependent on the concentration of H^+ for $\text{pH}<4.5$ (Plummer et al., 1978; Plummer et al., 1979; Busenberg and Plummer, 1986; Chou et al., 1989; Arakaki and Mucci, 1995; Alkattan et al., 1998), and that the activation energy for the reaction is on the order of 8-10.5 kJ/mol (Sjöberg and Rickard, 1984; Morse and Arvidson, 2002). The dissolution mechanism becomes more complicated at higher pH values as the system enters a regime of mixed transport and surface reaction control (Rickard and Sjöberg, 1983; Sjöberg and Rickard, 1984). Rate constants collected in the mixed control regime combine several processes, so bulk dissolution studies frequently report “apparent,” rather than true activation energies. Apparent activation energies vary with solution composition and experimental design, but tend to range from 14-25 kJ/mol when measured under atmospheric pCO$_2$ levels (Sjöberg, 1978; Sjöberg and Rickard, 1984; Gutjahr et al., 1996; Gledhill and Morse, 2006; Finneran and Morse, 2009). Apparent activation energies can reach as high as 60 kJ/mol at elevated pCO$_2$ (Pokrovsky et al., 2009). AFM studies can calculate activation energies for specific surface processes (MacInnis and Brantley, 1992; Liang et al., 1996; Liang and Baer, 1997; Xu et al., 2010), but dissolution rates
derived from scaling up AFM measurements frequently disagree with those from bulk dissolution measurements (Arvidson et al., 2003; Morse et al., 2007)

The goal of our work is to provide the first measurements of the temperature dependence of calcite dissolution kinetics in seawater. Using the 13C tracer method of Subhas et al. (2015), we dissolve labeled calcite powders in a closed system at 5, 12, 21, and 37°C across the full range of saturation states. Our experiments are conducted in filtered seawater, and the sensitivity of the 13C tracer method allows us to resolve the near equilibrium Ω most relevant to the ocean. We gain further insight by applying the surface nucleation model of Dove et al. (2005) to our data to identify changes in dissolution mechanism and to parse the near-equilibrium effects of temperature on the physical and energetic properties of calcite.

2. Methods

Following the methods of Subhas et al. (2015), 13C labeled calcium carbonate powder was purchased from Sigma Aldrich (SKU 492027, >99 atom%) and wet sieved (solution information below) into 70-100 and 20-53 μm size fractions. The total specific surface areas for each fraction were determined by Kr gas BET to be 900±40 cm2/g for the 70-100μm fraction, and 1520±60 cm2/g for the 20-53 μm fraction. Dissolution rates in the literature are frequently normalized by average geometric surface area (270 and 625 cm2/g for our samples), but we use BET normalized rates as they produce a tighter agreement between our size fractions. The use of geometric surface area does not affect our results, and for comparison, both geometric surface area rates (g/cm2/day) and mass normalized rates (g/g/day) are reported alongside our BET surface area rates in the Appendix (Table A1).

It has been shown that a mineral’s reaction history can alter densities of steps, edges, and/or etch pits, thereby changing the dissolution rate that is eventually measured (Arvidson et al., 2003; Arvidson and Luttge, 2010; Fischer et al., 2012; Fischer et al., 2014). To ensure that our dissolution rates were not an artifact of our choice of sieving liquid, we compared dissolution rates of powders sieved in: (1) pure 18.2MΩ cm$^{-1}$ water, (2) 18.2MΩ cm$^{-1}$ water adjusted to pH 8.5 with ammonium hydroxide, and (3) Dickson standard seawater (https://www.nodc.noaa.gov/ocads/oceans/Dickson_CRM/batches.html) adjusted to Ω≈1 via HCl addition. A subset of powder that had been sieved in pH 8.5 ammonium hydroxide was also baked at 80°C under vacuum for 7 days. No differences in subsequent dissolution rates were observed (Fig. S1), so data are reported for powders sieved in 18.2MΩ cm$^{-1}$ water unless otherwise noted.

Experimental bags were prepared by placing 1-5mg of Ca13CO$_3$ powder inside a 1-L Supelco bag (part no. 30336-U) that had been modified (Subhas et al. 2015) to include an extra sampling port. The additional ports housed 0.2 μm filters to retain the carbonate powder during sampling. Bags were heat sealed and evacuated to remove all headspace. Experimental fill waters were made separately by first siphoning Dickson standard seawater (Batches 144-165) into another evacuated Supelco bag, and then titrating its total alkalinity (and therefore Ω) to the desired level via injection of 0.1M HCl. Silicate and phosphate differed between Dickson seawater batches, but only varied between 1-7 and 0.3-0.6 μmol/kg,
respectively. Though phosphate adsorbs strongly to calcite surfaces (de Kanel and Morse, 1978; Millero et al., 2001) and is thought to be an inhibitor of dissolution (Berner and Morse, 1974; Sjöberg, 1978), variations in phosphate concentrations did not impact our results. The range of concentrations investigated in this study is much smaller than in studies that have documented significant inhibition (50 μmol/L, Walter and Burton, 1986), and preliminary experiments with seawater spiked to 20 μmol/L phosphate showed no inhibitory effect (not shown).

Each run began by siphoning 50g of fill water into the experimental bag to pre-rinse the calcite grains and remove any fine particles. The rinse water was subsequently taken out through the sampling port and discarded, after which the bags were filled with ~300g of seawater and placed in a recirculating water bath set to 5, 12, 21, or 37°C. The water bath maintained its temperature to ±0.1°C and was placed on a shaker table set to 85rpm. No change in dissolution rates were observed at higher shake speeds, but rates dropped significantly when stirring below 60rpm (Subhas et al., 2015). We used a rate of 85rpm to ensure that chemical transport was not limiting in our experiments. At no point was any headspace introduced into the system, so there was no change in the dissolved inorganic carbon (DIC) of the water due to exchange with the atmosphere. Fill water was always equilibrated to the desired temperature before being introduced into the experimental bags to ensure that initial measurements were not affected by a gradient in temperature between the bag and the water bath. Although not as important for experiments that ran for several days, this equilibration was crucial in achieving reproducible results in undersaturated waters below Ω<0.5. Bags were sampled every 6-12 hours over the course of 2-5 days.

The samples were analyzed for DIC and 13C using a Picarro cavity ringdown spectrometer. The δ^{13}C values were converted to moles dissolved per time, with typical traces shown in Fig. 1. The data become linear after an initial equilibration time <24 hours (Subhas et al., 2017), and points between 24 and 72 hours were fit with a linear regression using Microsoft Excel's Linest function, with the resulting slope taken as the dissolution rate. The relative error on the slope was used as the rate error and typically ranged from 1-5%. Total alkalinity was measured by open-system Gran titration and compared against the alkalinity expected from dissolution, as derived from the 13C mass balance. The agreement between these alkalinitities was always within 1-4 μmol/kg. The final saturation state was calculated by CO2SYS using measured DIC, total alkalinity, and temperature. Standard errors in DIC (±2-4 μmol/kg) and alkalinity (±1-3 μmol/kg) were propagated using a Monte Carlo approach, giving a final error on Ω of 0.01 to 0.04 units. We used the carbonate system dissociation constants from the Dickson and Millero (1987) refit to Mehrbach et al.’s (1973) data, sulfate dissociation constants from Dickson et al. (1990), and a borate to salinity ratio from Uppström (1974).

Our dissolution rates were not affected by isotopic exchange. Experiments in supersaturated conditions (Ω=1.3) using the same methods saw no enrichment over the course of nine days beyond an initial increase in δ^{13}C of 1-3‰ (Subhas et al., 2015). Rate calculations rely on the rate of change of the δ^{13}C signal versus time, so the time independent exchange signal we observed does not alter our measurements of the net dissolution rate.
3. Results

Figure 2 shows our experimental results in the 1-Ω framework. Data in this plot cover a range of DIC and alkalinity of 1740-2050 and 807-2045 μmol/kg, respectively, corresponding with a calculated pH range of 5.7-7.65 on the total proton scale (Fig. S2). Our methodology allowed for rate data from each individual experiment to be collected under conditions of constant solution saturation and unchanging mineral surface area. Typical δ¹³C dissolution signals were on the order of 5-40‰, where a 20‰ increase corresponds to a decrease in surface height of ~7-8 nm, an addition of just 1 μmol/kg of alkalinity, and the release of 10⁻⁷ mol of calcium (Subhas et al., 2015). This is the first work to measure the near-equilibrium temperature dependence of calcite dissolution with this level of sensitivity, and our analytical constraints mean that the observed rate changes may be more directly attributed to temperature dependent effects on the dissolution mechanism.

We can see from Fig. 2b that, although calcite dissolves at a similar rate in freshwater (Cubillas et al., 2005) and seawater at Ω ≈ 0, the mineral responds fundamentally differently in each media to changes in saturation state. The dissolution rate in freshwater increases almost linearly as Ω drops (left to right on the plot), but seawater dissolution is highly non-linear at all temperatures and consists of multiple different slopes in log-log space. Our data show that calcite dissolution rates increase by four orders of magnitude as Ω decreases from 1 to 0.

Calcite dissolution kinetics in seawater respond to temperature in a complex manner. Dissolution rates appear least sensitive to temperature for Ω>0.9, but they transition to a regime where the temperature sensitivity increases greatly from 0.9>Ω>0.75. This strong dependence weakens after Ω ≈ 0.75, and the rate offsets between each temperature remain nearly constant as the solution approaches Ω = 0.

4. Discussion
4.1. Analysis within the 1-Ω framework

Previous work in freshwater has successfully fit calcite dissolution kinetics with near-linear rate laws (Svensson and Dreybrodt, 1992; Cubillas et al., 2005), but it is clear that this approach cannot describe our seawater data. Our results are highly non-linear against 1-Ω and exhibit a similar trend far from equilibrium as observed in previous bulk dissolution experiments in seawater (Fig S3). Consistent with reports of a near equilibrium Ω_crit value in seawater (Subhas et al., 2015; Subhas et al., 2017; Dong et al., 2018), we observe an abrupt change in the dissolution rate response to saturation at every temperature at Ω ≈ 0.75. Due to this change, no single rate law of the traditional k(1-Ω)^n form can describe the dissolution rate of calcite across the full range of saturation states. York regression fits to the reaction orders (n) and net dissolution rate constants (k) are therefore calculated for data Ω<0.75 and Ω>0.75, with the results plotted in Fig. 3 and listed in Table 1.

The deeply undersaturated (Ω<0.75) rate constants agree with values typically reported for calcite in solutions above pH >5 under atmospheric pCO₂ (order 1•10⁻¹⁰ mol/cm²/s, Plummer et al., 1978; Keir, 1980; Sjöberg and Rickard,
and may be used to plot the expected behavior for a linear rate law by inserting them into Eq. (2c) with $n=1$ (the dashed lines in Fig. 3). In the region near equilibrium that is most relevant to the modern ocean ($\Omega>0.7$), linear kinetics overestimate our measured rates by more than two orders of magnitude. The use of smaller k_s would reduce the difference between the calculated and actual rates near saturation, but the resulting fit would be entirely empirical and no longer grounded in the theory behind the $1-\Omega$ rate law. Imposing linear kinetics also guarantees that dissolution rates across large ranges of Ω will be systematically over or underestimated. Our near equilibrium data require the reaction order to change with temperature from 0.34 to 2.47, and the rate constant to increase by over two orders of magnitude. These changes are interesting, but they represent simple curve fits and do not allow for meaningful mechanistic interpretations.

The temperature dependence of the far-from-equilibrium k_s may still be used to gain insight into the dissolution mechanism. The apparent activation energy (E_a) of the dissolution reaction can be evaluated using the Arrhenius relation:

$$\ln(k) = \ln(A) - \frac{E_a}{R} \frac{1}{T}$$

Here, A is a pre-exponential factor (mol/cm2/s), E_a is the apparent activation energy (kJ/mol), and R is the molar gas constant (kJ/mol/K). Plotting the far-from-equilibrium rate constants in Arrhenius space (Fig. 4) yields a value for E_a/R of 3021 ± 229, corresponding to an apparent activation energy of 25 ± 2 kJ/mol. This E_a agrees with results of previous studies in which calcite was dissolved in low pCO$_2$ media (Table 2), suggesting a common mechanism controls far-from-equilibrium dissolution regardless of the solution.

Calcite dissolution is linearly dependent on the concentration of H$^+$ for pH<4.5, is transport limited, (Plummer et al., 1978; Plummer et al., 1979; Busenberg and Plummer, 1986; Chou et al., 1989; Arakaki and Mucci, 1995; Alkattan et al., 1998), and exhibits a relatively small activation energy (8-10.5 kJ/mol Sjöberg and Rickard, 1984; Morse and Arvidson, 2002). Larger activation energies, like those compiled in Table 2 generally seen at higher pHs, indicate that dissolution is not purely transport limited and that additional reactions are occurring at the mineral surface (Sjöberg and Rickard, 1983; Morse and Arvidson, 2002). The exponential rate law (Eq. 2c) is a statement of mechanism if the dissolution rate is linear ($n=1$) versus undersaturation, but our data clearly show that n varies with Ω. Given the magnitude of the E_a and the strong non-linearity of our data, a different mechanistic framework is required to understand the near-equilibrium dissolution rate of calcite in seawater.

4.2. Identification of changes in dissolution mechanism

As did Subhas et al. (2017), we applied a mechanistic framework originally developed for crystal growth (Chernov, 1984; Malkin et al., 1989) that was subsequently and successfully adapted by Dove et al. (2005, 2008) to describe dissolution. Dove et al.’s work is based upon AFM observations of silica minerals dissolving at different solution undersaturations. The authors saw three distinct dissolution mechanisms: retreat of pre-existing steps at edges and screw
dislocations near equilibrium, opening of 2D “pancake” etch pits at defects farther from equilibrium and, finally, opening of 2D etch pits homogenously across the mineral surface at deeper undersaturations (see schematic in Fig. 5). The onset of each mechanism was accompanied by an increase in dissolution rate. The same general transitions observed by Dove et al. (2005) for quartz dissolution also occur in the non-seawater dissolution of calcite (Teng, 2004), although the size and shape of calcite etch pits can differ from 2D “pancakes” due to interactions with ions in solution (Ruiz-Agudo and Putnis, 2012; Klasa et al., 2013 and references therein). Other calcite dissolution models have been proposed (Lasaga and Lüttge, 2001; Fischer et al., 2012), but we continue with the Dove framework because it allows for the identification of dissolution mechanisms from bulk rate data and it can parse the effects of temperature on various kinetic and energetic parameters.

The exponential 1-Ω framework only considers the solution saturation state, but the Dove framework allows for changes in dissolution mechanism and incorporates information about a crystal’s physical and energetic properties. This information is encapsulated in two equations describing the three different dissolution mechanisms: one equation for the spread of 2D etch pits, and one for the retreat of pre-existing steps. Recent observations have demonstrated that etch pits spread via pulsing stepwaves in deeply undersaturated solutions, and that the speed of the wave varies with the distance from its source (Lasaga and Lüttge, 2001; Fischer and Lüttge, 2018). The Dove rate equations make the simplifying assumption that the step speed does not depend on the source, and therefore uses a single equation to describe both defect-assisted and homogenous dissolution. This assumption is likely valid for bulk dissolution, as step speeds converge on a constant value within a new nanometers from the pit source (Fischer and Lüttge, 2018). Full derivations of the Dove equations may be found in the appendix. The overall rate of dissolution by either defect-assisted or homogenous 2D etch pit growth (R_{2D}) is given by:

$$\ln\left(\frac{R_{2D}}{(1-\Omega)^{\frac{1}{2}}\sigma}\right) = \ln(h\beta C_e(h^2 h n_s a)^{\frac{1}{3}}) - \frac{\pi \alpha^2 \omega h}{3(k_b T)^2}\left[\frac{1}{\sigma}\right]$$

(4a)

Here, the left hand term is now the normalized dissolution velocity (m/s), $|\sigma|=\ln(\Omega)$ is a measure of the solution driving force, h is the step height (m), β is the rate constant for surface retreat (step kinetic coefficient, m/s), ω is the molecular volume (m3), n_s is the density of active nucleation sites (sites/m2), a is the lattice spacing (m), α is the step edge free energy (mJ/m2), k_b is Boltzmann’s constant, T is the temperature (Kelvin), and C_e is the mineral solubility. The rate equations were derived for a single component crystal, so C_e has units of molecules/m3. Calcite is a two component crystal, but we relate calcite K_{sp} (mol2/kg2) in seawater to C_e by assuming constant $[Ca^{2+}]=0.01$M, such that $K_{sp}/[Ca^{2+}]=C_e$ after converting from mol/kg to molecules/m3.

Although it appears complex, Eq. (4a) describes a straight line with a slope set by a single term (the step edge free energy, α), and an intercept set collectively by the kinetic coefficient (β) and the number of active nucleation sites (n_s). All other
terms are either fundamental mineral properties assumed to be constant \((h, \omega, \sigma)\), or are determined by the experimental conditions \((C_0, T, \Omega, \sigma)\).

Dissolution by the retreat of pre-existing steps and screw dislocations \((R_{\text{step}})\) is given by a different equation:

\[
\ln \left(\frac{R_{\text{step}}}{(1 - \Omega)^{1/2}} \right) = \ln \left(\frac{\omega \beta C_e m h}{P} \right) + \ln \left(\frac{1}{\sigma} \right) - \ln \left(1 + 8 \left(\frac{\omega \alpha}{P K_b T} \right) \right)
\]

Here, the added terms are the number of elementary steps \((m, \text{order 1})\) and the perimeter of the screw dislocation core sourcing the steps \((P, \text{proportional to } 2\pi m h)\).

An advantage of this model is that bulk rate data exhibit distinct slopes when plotted as normalized rate versus \(\frac{1}{\sigma}\) (Fig. 6), depending on the dominant dissolution mechanism. Even though both homogenous and defect-assisted dissolution are fit by Eq. (4a), we can distinguish between them based upon the distance from equilibrium. By definition, homogenous dissolution has a greater number of nucleation sites than defect-assisted dissolution. Data collected during homogenous dissolution are therefore expected to have a greater y-intercept than for defect-assisted dissolution. Additionally, we would expect the defect-assisted mechanism to have a shallower slope versus \(\frac{1}{\sigma}\), as defects impose strain on the calcite surface and locally decrease the free energy of step formation per unit step height \((\alpha)\). The step-retreat mechanism is described by equation (4b), and curves upwards versus \(\frac{1}{\sigma}\). Under this set of equations, it is important to note that the absolute rate always decreases as the solution approaches equilibrium (Fig. 3), and it is only the normalized rate that increases. The apparent increase near equilibrium is driven by the third term in Eq. (4b), where we take the natural log of \((1-\frac{1}{\sigma})\) \((\alpha \text{ is negative})\), and \(\frac{1}{\sigma}\) becomes very large, and ultimately undefined, as \(\Omega\) approaches 1.

Our results are plotted across the full range of saturations in Fig. 7, and they demonstrate each of the three expected trends in the surface framework. The non-linear nature of the x-axis emphasizes data collected at \(\Omega > 0.95\), so the axis is truncated from 0 to 25 \((0 < \Omega < 0.96)\) in Fig. 8a-d to help view the data and fits more clearly. All temperatures exhibit a steep linear slope where \(\frac{1}{\sigma} < 2.5\). Closer to equilibrium, dissolution at 12, 21, and 37°C shifts to a shallower linear slope, but this is not observed in the 5°C data. Experimental dissolution rates measured at 12 and 37°C begin to ‘curve upwards’ after \(\frac{1}{\sigma} > 10\) \((\Omega > 0.9, \text{see also Fig. 7})\).

We interpret each of the slope changes as mechanistic transitions that occur as the solution approaches equilibrium and falls below two critical energy barriers.
Seawater calcite dissolution is dominated by homogenous etch pit formation from \(\Omega = 0 \) to \(\Omega \approx 0.75 \), at which point etch pit formation may only occur at defects. These defect-assisted etch pits set the dissolution rate between \(\Omega = 0.75 \) and \(\Omega \approx 0.9 \), and dissolution at higher saturation states may only occur at pre-existing steps on edges and at screw dislocations. At 5°C, dissolution appears to skip over the defect-assisted mechanism and instead transitions directly to the step-retreat mechanism.

The critical \(\Omega \)s for mechanistic transitions that we have identified in seawater are much closer to equilibrium than they are in freshwater. Compared to observations by Teng (2004) in weak electrolyte solutions, the \(\Omega_{\text{crit}} \) for the opening of defect-assisted etch pits in seawater is \(\Omega = 0.9 \) versus \(\Omega = 0.54 \), and the \(\Omega_{\text{crit}} \) for homogenous etch pit formation (defined by Teng as \(\Omega_{\text{max}} \)) is \(\Omega = 0.75 \) versus \(\Omega = 0.007 \). The rate of seawater calcite dissolution will be set by the density of pre-existing steps for \(\Omega > 0.9 \), and by the defect-density for \(\Omega_{\text{crit}} > \Omega > \Omega_{\text{max}} \) (0.9 > \(\Omega > 0.75 \)). At colder temperatures relevant to the deep ocean, dissolution will be set by the density of pre-existing steps for 1 > \(\Omega > 0.75 \). Once homogenous 2D dissolution is activated at \(\Omega < \Omega_{\text{max}} \) (\(\Omega < 0.75 \)), the overall rate will be limited by the maximum pit spreading rate.

The shift of calcite-seawater mechanistic transitions towards equilibrium is significant because it means that any model based upon a single rate equation, regardless of its reaction order, will not accurately capture dissolution responses to changes in saturation state. Our results suggest that typical ocean water column \(\Omega \)s (>0.7) and temperatures (≤5°C) currently limit calcite to dissolution at pre-existing steps, but the oceans are acidifying due to fossil fuel burning and lowering both calcite and aragonite saturation states (Feely et al., 2004; Doney et al., 2009; Byrne et al., 2010; Feely et al., 2012). These perturbations in \(\Omega \) may activate new surface mechanisms and elicit highly non-linear dissolution responses, both due to absolute changes in \(\Omega \) and as regions where \(\Omega < 1 \) occur in warmer waters. As a rough comparison, we can calculate the magnitude of the offset between oceanographic models that assume linear (\(n = 1 \)) kinetics for Eq. (2c) (Hales and Emerson, 1997; Dunne et al., 2012; Ilyina and Zeebe, 2012) and our 5°C data. Arbitrarily beginning with a total alkalinity of 2230 μmol/kg at surface pressure, calcite is saturated (\(\Omega = 1 \)) at a pH of ~7.6 at 5°C. Decreasing the pH by 0.1 units lowers \(\Omega \) from 1.0 to ~0.8, maintaining step retreat as the rate-determining mechanism at 5°C and minimally affecting calcite dissolution rates. Further decreasing pH by 0.1 units drops \(\Omega \) from ~0.8 to ~0.65, activating homogenous dissolution of the calcite surface. This second pH drop would increase calcite dissolution rates by a factor of ~25, whereas linear kinetics would predict only a factor of ~2. The discrepancy between the different rate laws will only widen as the oceans continue to acidify.

Models based upon the non-linear \(n = 4.5 \) reaction order from Keir (1980) (Archer, 1991; Berelson et al., 1994; Jahnke et al., 1994; Archer, 1996; Jansen et al., 2002; Archer et al., 2009) are similarly inadequate to describe dissolution. The high reaction order employed in these models is only applicable for 0 < \(\Omega < 0.75 \) (Table 2) and does not capture the change in dissolution response when transitioning mechanisms near equilibrium. We find that the dissolution rate at 5°C is relatively constant versus \(\Omega \) for 1 > \(\Omega > 0.75 \), so a reaction order of \(n = 4.5 \) will correctly predict
far-from-equilibrium dissolution while systematically underestimating rates near equilibrium. A more appropriate approach would be to employ two different rate equations at 5°C, one for step retreat $\Omega>0.75$, and one for homogenous dissolution $\Omega<0.75$. This recommendation maintains the simplicity of the empirical rate equation while accounting for changes in dissolution mechanism.

4.3 Using temperature dependence to extract physical and energetic parameters of calcite dissolution in seawater

The inherent variability in step and defect densities between minerals complicate rate comparisons between studies (Arvidson et al., 2003; Fischer et al., 2014), but we can still advance our knowledge of calcite dissolution kinetics by analyzing the temperature dependence of our results within the surface framework. All of our calcite powders were sourced from the same batch and may be presumed to have the same initial step and defect densities. Tight control of solution saturation means that dissolution rate changes within each mechanistic regime may be directly related to the temperature dependence of fundamental physical and energetic properties in the calcite-seawater system. We step through each mechanism and calculate step edge free energies (α), kinetic coefficients (β), and active nucleation site densities (n_s). We also use the temperature dependencies of β and n_s to estimate the activation energy for detachment from retreating steps (ϵ_{step}) and the kinetic energy barrier for removing an ion to initiate an etch pit (ϵ_{init}).

The fitted slopes and intercepts (Fig. 8) are resolved for both homogenous and defect-assisted etch pit formation (Table 3); the cutoff of each fit is set to $\left|\frac{1}{\sigma}\right|=3.5$ ($\Omega=0.75$) to remain consistent with our analysis in the 1-Ω framework. Our results are not sensitive to the precise cutoff choice. As noted in Section 4.2, dissolution at 5°C appears to skip over the defect-assisted mechanism, so only $\left|\frac{1}{\sigma}\right|<3.5$ for the 5°C data is included in our analysis of etch pit dissolution. The 5°C data have the highest density of measurements near equilibrium, so it will be used later to evaluate the energetics of the step retreat mechanism.

By analyzing the fits to Eq. (4a) and making some simplifying assumptions, we can extract the physical parameters β, n_s, and α, and clarify their roles in setting the overall dissolution rate as a function of temperature. The intercepts and slopes are plotted in Fig. 9 for homogenous ($0<\left|\frac{1}{\sigma}\right|<3.5$) and defect-assisted ($3.5<\left|\frac{1}{\sigma}\right|<10$) dissolution. The data are linear versus $1/T^2$ and are fit according to:

$$\text{Intercept}_2D = \ln \left(h\beta C_e (\omega^2 h n_s a)^{\frac{1}{3}} \right) = I_o + I_1 \cdot \frac{1}{T^2} \quad (5a)$$

$$\text{Slope}_2D = -\frac{\pi \alpha^2 \omega h}{3(k_b T)^2} = S_o + S_1 \cdot \frac{1}{T^2} \quad (5b)$$

such that the overall rate is given by:

$$\text{Rate}_2D = \text{Intercept}_2D + \text{Slope}_2D \cdot \left|\frac{1}{\sigma}\right| = \left(I_o + I_1 \cdot \frac{1}{T^2} \right) + \left(S_o + S_1 \cdot \frac{1}{T^2} \right) \cdot \left|\frac{1}{\sigma}\right| \quad (5c)$$

I_1 and S_1 describe the temperature sensitivities of the intercept (proportional to β and n_s) and slope (proportional to α) terms of Eq. (4a). The values of I_o, I_1, S_o, and S_1 are listed in Table 4.
4.3.1. Dissolution by Homogenous Etch Pit Formation

Homogenous dissolution exhibits a relatively weak temperature dependence in its β and n_s terms (Fig. 9a). We can isolate the effect of β on the intercept term by making the simplifying assumptions that β is independent of Ω and that n_s is saturated at its maximum value when calcite is undergoing homogenous 2D dissolution. Direct observations of homogenous 2D calcite dissolution in non-seawater solutions place the maximum n_s between 10^{12} (Teng, 2004) and 10^{13} sites/m² (Ruiz-Agudo et al., 2009). Assuming an average n_s of 5×10^{12} sites/m², we solve for β using the fitted intercepts (Table 3), rearranging Eq. (5a), and substituting in the constants given in Table 5. The resulting βs are 0.40 ± 0.02, 0.54 ± 0.05, 0.53 ± 0.01, and 1.17 ± 0.26 cm/s at 5, 12, 21, and 37°C, respectively.

The βs we derive agree with those observed in AFM studies in non-seawater solutions. In the surface nucleation equations, the speed of a moving step, v, is related to β and the solution saturation state via (Chernov, 1984; Malkin et al., 1989):

$$v = \omega \beta C_e (1 - \Omega)$$

(6)

By extrapolating to $\Omega=0$ and substituting the values for w, C_e, and β at each temperature, we calculate upper limits for v of 6.2, 7.8, 10.3, and 16.4 nm/s at 5, 12, 21, and 37°C, respectively. Although faster than typical calcite values of 0.5-4 nm/s (Lea et al., 2001; De Giudici, 2002; Arvidson et al., 2006; Harstad and Stipp, 2007; Ruiz-Agudo et al., 2009), they are in the range for observations at the edges of coalescing etch pits of 7.9-14.3 nm/s (Vinson and Luttge, 2005). Etch pit coalescence is expected when the calcite surface is saturated with nucleation sites, so our high step speeds support our assumption that the mechanism in this Ω region is homogenous 2D etch pit formation. We note that these equivalences of β are based upon non-seawater measurements of n_s. If the saturated value of n_s is different in seawater, then our βs will change accordingly.

We can use the temperature dependence of our derived kinetic coefficients to estimate the activation energy of detachment from steps (ϵ_{step}) on the calcite surface. β is related to ϵ_{step} via an Arrhenius-style relation (Chernov, 1984; Malkin et al., 1989; Zhang and Nancollas, 1992; Xu et al., 2010, Eq. A.8 in appendix), and measuring the slope of $\ln(\beta)$ versus $1/T$ yields a value of -2700 ± 700, corresponding with an ϵ_{step} of -22 ± 6 kJ/mol (Fig. 10a). This is the first estimate of ϵ_{step} for calcite dissolution in seawater. It agrees with the value of -25 ± 6 kJ/mol derived from AFM measurements of β for obtuse step retreat (Xu et al., 2010), further lending confidence to the strength and sensitivity of our bulk solution measurement approach.

Our calculated ϵ_{step} in seawater is not significantly different from that in freshwater, suggesting that changes in absolute ionic strength (IS) have little effect on step detachment energetics. Few studies have specifically measured the effect of IS on ϵ_{step}, so we cannot make a direct comparison with past research. The results are also unclear for the effects of IS on the bulk calcite dissolution/precipitation rate. Several studies have shown little to no effect of IS on calcite dissolution (Rickard and Sjöberg, 1983; Buhmann, 1987; Pokrovsky et al., 2005) and
precipitation (Zhong and Mucci, 1989) rate, while others have found IS to catalyze precipitation (Zuddas and Mucci, 1998) and inhibit dissolution (Gledhill and Morse, 2006; Finneran and Morse, 2009). More remains to be done to understand how calcite dissolution mechanisms are affected by IS.

Our results further suggest that the sharp increase in rate at \(\Omega \approx 0.75 \), that has been reported in previous seawater studies (Berner and Morse, 1974; Keir, 1980; Subhas et al., 2015; Subhas et al., 2017; Dong et al., 2018), occurs when calcite transitions from defect-assisted to homogenous 2D dissolution after overcoming a critical step edge free energy. \(\beta \) and \(n_s \) provide kinetic information on the dissolving calcite surface (i.e., how fast etch pits spread and how many sites are actively dissolving), but they do not tell us anything about the energetic constraints for when homogenous dissolution is activated. For this, we can look at the slopes of the data below \(|\frac{1}{\alpha}| < 3.5 \), as they are proportional to \(\alpha \). The calculated slopes (Table 3) are plotted in Fig. 9b versus \(1/T^2 \) and overlaid with lines of constant \(\alpha \). The overlaid lines trend downward with increasing temperature because the slope term in Eq. (4a) also contains \(1/T^2 \). The trend for homogenous dissolution (Fig. 9b triangles) follows a line of constant \(\alpha = -35.4 \text{ mJ/m}^2 \). Though the scatter appears large, the squared dependence on \(\alpha \) means that the step edge free energies are well constrained. Averaging the \(\alpha \) values in Table 5 across temperatures yields 35.4±2.0 mJ/m². This \(\alpha \) is lower, but of the same order of magnitude as the 60-68 mJ/m² range calculated for the spontaneous precipitation of calcite in non-seawater solutions (Koutsoukos and Kontoyannis, 1984; Pokrovsky, 1998a). Our observation suggests that homogenous dissolution is activated on the calcite surface once a critical surface energy barrier, \(\alpha_{\text{homogenous}} = -35.4 \pm 2.0 \text{ mJ/m}^2 \), is surpassed, regardless of temperature. It may also explain our earlier observation in Section 4.1 for why bulk dissolution studies historically recover similar rates far from equilibrium in seawater. Each study had surpassed \(\alpha_{\text{homogenous}} \) and was measuring the dissolution rate of a single mechanism, homogenous 2D etch pit formation.

4.3.2 Dissolution by defect-assisted etch pit formation

Temperature has a much larger effect in the region 3.5<\(|\frac{1}{\alpha}| \)<10 associated with defect-assisted dissolution. According to Fig. 9a, the fitted intercepts for defect-assisted dissolution decrease with temperature by nearly four natural log units, compared to just one for homogenous dissolution. To understand this dependence, we must again attempt to distinguish between the effects of \(\beta \) and \(n_s \) on the intercept term of Eq. (4a). We can no longer assume a constant \(n_s \), but our analysis of homogenous dissolution provides new constraints on the values and temperature dependencies of \(\beta \). Both mechanisms initiate differently, but once started, they are assumed to proceed via the same opening and spreading of 2D pits. We therefore assume that the same \(\beta_s \)s that we calculated for homogenous dissolution also apply for defect-assisted dissolution. We refer to this shared term as \(\beta_{2D} \) and list its values in Table 5. Given this assumption, we solve for \(n_s \) by again rearranging the intercept term and substituting in the constants and \(\beta_{2D} \) from Table 5. We calculate active nucleation site densities of 4.7±1.2×10⁵, 1.3±0.1×10⁷, and 1.8±0.9×10⁹ sites/m² at
12, 21, and 37°C, respectively. Increasing temperature increases the number of pit nucleation sites.

The temperature dependence of n_s is related to the kinetic energy barrier for removing an ion from the surface to initiate an etch pit, ϵ_{init}. (Eq. A.9 in appendix Dove et al., 2005). This energy barrier is distinct from the step edge free energy, as ϵ_{init} is related to initiating an etch pit, whereas α is related to stabilizing an etch pit. Newly initiated pits will quickly be eliminated unless a critical free energy barrier, that is in turn dependent on α, T, and Ω per Eq. (A.6), is surpassed. Taking the natural log of n_s versus $1/T$ gives a value of $-2.7 \pm 0.4 \times 10^4$, corresponding with an ϵ_{init} of -230 ± 30 kJ/mol (Fig 10b). This is the first time that ϵ_{init} has been estimated for calcite in seawater.

It is evident that the slope term for defect-assisted dissolution is strongly temperature dependent in a way that is not explained by the theory and runs counter to what was observed for homogenous dissolution. Whereas homogenous dissolution follows the prediction for a single, critical $\alpha_{\text{homogenous}}$, the energy barrier for defect-assisted dissolution, α_{defect}, changes by nearly a factor of three (S_1 terms in Table 4) and has the opposite temperature dependence. This suggests that opposing kinetic and energetic effects set the overall rate of defect-assisted dissolution. Temperature has a positive effect on calcite dissolution rate by increasing n_s and β, allowing for more active nucleation sites and faster pit spreading rates. Warmer temperatures also increase the local step edge free energy, though, making it more difficult to form a stable etch pit. The change in the temperature trend of α implies that there are additional factors beyond α, β, and n_s that influence near-equilibrium dissolution rates.

4.3.3 Dissolution by retreat of pre-existing steps

It is difficult to set experimental waters to Ωs very near equilibrium, but the limited number of points we have suggest that dissolution initiates via step retreat at all temperatures and continues from just under saturation until an Ω_{crit} near 0.9. Dissolution at 5°C skips the defect-assisted mechanism seen at warmer temperatures and maintains the curved slope indicative of step retreat (Eq. 4b) from saturation until $\Omega \approx 0.75$ (Fig. 7). Substituting in the constants in Table 5 to Eq. (4b), the 5°C data from $3.5 < \frac{1}{\eta} < 25$ fit a step edge free energy of -0.5 ml/m^2 and a β_{step} of 3×10^{-5} cm/s. The kinetic coefficient required to fit the data is four orders of magnitude smaller than that used for homogenous/defect-assisted dissolution, but similar discrepancies between mechanisms have been seen in other minerals (Dove et al., 2005).

Of the temperatures investigated in this study, the 5°C experiments are most relevant to the modern ocean. The 5°C results are also the first evidence that the onset of a dissolution mechanism may be temperature dependent in seawater. We are unable to say with certainty why the defect-assisted dissolution mechanism is not activated, but one hypothesis is that the kinetic energy barrier to etch pit initiation is too large for etch pits to form at defects at 5°C. Projecting back the fitted intercept for defect-assisted dissolution reported in Table 4, we calculate an active nucleation site density of only 5 sites/cm2 at 5°C. Considering that our grain size is
on the 10s to 100s of microns scale, this would essentially mean that there are zero etch pits forming at defects. In this case, only step retreat is possible until the solution driving force overcomes $\alpha_{\text{homogenous}}$ and initiates homogenous dissolution.

Calcite has been shown to undergo simultaneous dissolution and precipitation across the full range of Ωs (Arakaki and Mucci, 1995; Subhas et al., 2017), so it is also possible that a temperature dependent change in the balance of these gross fluxes could explain the behavior we observe at 5°C. Precipitation is known to be influenced by the temperature and Mg:Ca ratio of the solution (Mucci and Morse, 1983; Mucci and Morse, 1984; Mucci, 1986), and temperature dependent step changes in behavior have already been observed in the calcite system (Morse et al., 1997). Precipitation occurs preferentially at high-energy sites (Burton and Cabrera, 1949; Burton et al., 1951), so any change in its rate could suppress the formation of etch pits at defects. This effect would be amplified if there were few available defects. Since back-precipitation may be identified on our calcite grains by areas of elevated 12C (Subhas et al., 2017), we will be able to quantify the role of back-precipitation in the future by dissolving calcite surfaces near equilibrium at low temperatures.

4.4 Role of Solution Chemistry

The surface theory has provided valuable insights into calcite dissolution mechanisms across a wide range of saturation states, but phenomena such as the reversal of the temperature dependence of α and the skipping of defect-assisted dissolution at 5°C indicate that the theory is not complete. The surface framework we have used contains only indirect information about the chemical speciation of the solution and the mineral surface itself, despite the known importance of these effects (Arakaki and Mucci, 1995; Pokrovsky et al., 2009; Sand et al., 2016 and references therein). The surface model encapsulates all the effects of speciation in its step edge free energy term. This is because α is dependent upon the local crystal bonding environment, and this bonding environment is affected by interactions with ions in solution (Chernov, 1984). The speciation of the calcite surface is well understood in dilute solutions (Van Cappellen et al., 1993; Pokrovsky, 1998b; Pokrovsky and Schott, 2002; Pokrovsky et al., 2005; Wolthers et al., 2008; Pokrovsky et al., 2009; Schott et al., 2009), and significant work has been done to relate these species to dissolution and precipitation kinetics (Chou et al., 1989; Arakaki and Mucci, 1995; Pokrovsky and Schott, 2002; Pokrovsky et al., 2005; Pokrovsky et al., 2009; Wolthers et al., 2012). Surface speciation models have only recently begun to include interactions with individual major seawater ions such as SO_4^{2-} and Mg^{2+} (Song et al., 2017; Dobberschütz et al., 2018, and references therein), and these models have yet to be applied to the kinetics of seawater dissolution. Our measurements imply that a complete understanding of a dissolution rate law for calcite in seawater will require a surface energetic framework that incorporates the chemical complexation of the solution and mineral surface.

The role of solution chemistry on the dissolution rate of calcite in seawater has been supported by recent work by Subhas et al. (2017) using carbonic anhydrase (CA) to increase the re-equilibration rate of H_2CO_3 in seawater. With the addition of CA, the authors observed a $\sim 250x$ increase in calcite dissolution rates
above Ω>0.7, compared to seawater at the same pH without CA. This saturation region is associated with defect-assisted dissolution, which is the mechanism we found to have the strongest temperature dependence. Given that the rate constant for the hydration of CO$_2$(aq) to H$_2$CO$_3$ increases exponentially with temperature in dilute solutions (Wang et al., 2010), it is possible that the behavior we have observed for Ω>0.75 may be partially explained by an elevation in the formation rate of H$_2$CO$_3$. Future work evaluating the temperature dependence of calcite dissolution in the presence of carbonic anhydrase will help to further parse the effects of solution chemistry and surface processes on the overall dissolution rate.

5. Conclusions

We dissolved 13C-labeled calcite in seawater over a range of temperatures and found that the dissolution rate is highly non-linear across the full range of saturations. Although we recovered the same activation energy and dissolution rates at Ω = 0 as those found in non-seawater solutions, the strong non-linearity of our data near equilibrium necessitated the use of a different mechanistic model beyond the traditional, empirical rate law, $R=k(1-Ω)^n$. Using a surface-based framework developed by Dove et al. (2005), we found that our results were consistent with calcite dissolution being dominated by the retreat of pre-existing steps for 1>Ω>0.9, defect-assisted etch pit formation for 0.9>Ω>0.75, and homogenous etch pit formation for Ω<0.75. Calcite surface energetics are dramatically altered by seawater, as the mechanistic transitions we identified occur significantly closer to equilibrium than they do in dilute solutions. The shift towards equilibrium suggests that ocean acidification may cause marine carbonates to enter faster dissolution regimes more readily than anticipated from previous studies. Our work also provides the first seawater estimates of kinetic coefficients (β), nucleation site densities (n_s), and step edge free energies for each mechanism (α), as well as the activation energy for detachment from steps (ϵ_{step}) and the kinetic energy barrier to etch pit initiation (ϵ_{pit}). Several unexplained phenomena suggest that a complete theory will require the combination of a chemical speciation model with knowledge of the rate constants and energies we have measured for each of calcite’s dissolution mechanisms.

Acknowledgements

We would like to thank the anonymous journal reviewers as well as Oleg Pokrovsky and Henry Teng for the insightful comments and suggestions they gave that helped to improve this manuscript. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1745301, as well as NSF grant Numbers OCE1220302 and 1559215. John Naviaux and Adam Subhas would also like to thank the Resnick Sustainability Institute at Caltech for fellowship support.

References

Fischer C., Kurganskaya I., Schäfer T. and Lütgge A. (2014) Variability of crystal

Mucci A. and Morse J. W. (1984) The solubility of calcite in seawater of various magnesium concentrations, l=0.697 m at 25°C and one atmosphere total

Wolthers M., Charlet L. and Van Cappellen P. (2008) The surface chemistry of divalent metal carbonate minerals: A critical assessment of surface charge and
potential data using the charge distribution multi-site ion complexation model.
Acta 77, 121–134.
50–70°C: An atomic force microscopic study under near-equilibrium
Zhong S. and Mucci A. (1989) Calcite and aragonite precipitation from seawater
Zuddas P. and Mucci A. (1998) Kinetics of calcite precipitation from seawater: II. The
Dove et al. (2005) found that the same equations originally developed to describe crystal growth (Burton et al., 1951; Chernov, 1984; Malkin et al., 1989) could also be used to describe dissolution. Although developed for a single component crystal, we step through the model below as it may still provide useful insight into the behavior of CaCO$_3$. According to the surface model, dissolution occurs via the consecutive removal of crystal layers, where each dissolving layer has a defined thickness, h (step height, nm), and retreats along the face of the crystal with a velocity, v (cm/s). There can be several, simultaneous dissolution fronts, and the average spacing between them, λ (nm), influences the overall rate. Closer spacings (smaller λ) allow for more dissolution fronts and a faster rate, whereas farther spacings (larger λ) can only support slower rates. Conceptualized this way, the normalized dissolution rate (length/time) is given by

$$R = \frac{hv}{\lambda}$$ \hspace{1cm} (A.1)

The generalized form of Eq. (A.1) holds true for dissolution mechanisms that are not limited by the rate of transport to/from the mineral surface.

The retreat velocity, v, is linearly dependent on the step kinetic coefficient for the solid, the thermodynamic driving force, and the volume element being dissolved. It is classically formulated as (Chernov, 1984; Malkin et al., 1989)

$$v = \omega \beta C_e (1 - \Omega)$$ \hspace{1cm} (A.2)

where β is the step kinetic coefficient (cm/s), ω is the molecular volume (cm3) and C_e is the equilibrium concentration of dissolved species in solution (molecules/cm3).

The step spacing is the only term in Eq. (A.1) that changes depending on the dissolution mechanism, and it is therefore what sets the functional form of the rate equation. At low driving forces near $\Omega \approx 1$, dissolution occurs primarily via the retreat of pre-existing steps at edges and/or screw dislocations. The step spacing is then derived assuming spiral retreat around a dislocation exceeding a “critical radius,” r_c, that is set by the local bonding environment of the crystal and the solution driving force. It is given by (Chernov, 1984; Chernov et al., 1986)

$$\lambda = \frac{8r_c + P}{m} \quad \text{with} \quad r_c = -\frac{\omega \alpha}{k_BT|\sigma|}; \quad |\sigma| = \ln(\Omega)$$ \hspace{1cm} (A.3)

where m is the number of elementary steps (order 1), P is the perimeter of the core of the dislocation (proportional to $2\pi mh$), k_b is Boltzmann’s constant, T is the temperature (Kelvin), $|\sigma| = \ln(\Omega)$ is a measure of the solution driving force, and α is the free energy of step formation per unit step height (mJ/m2). A larger α implies a slower dissolution rate, as the formation/retreat of a step produces a greater increase in the local surface energy of the crystal. The step edge free energy varies depending upon the local bonding environment of the material, where the bonding environment is affected by solid-solid interactions (whether dissolution is at a kink, step, dislocation, flat surface, etc.) and solid-solution interactions (changes in the chemical speciation of the surface). α is therefore distinct from the average surface energy of a perfect crystal (Burton and Cabrera, 1949; Burton et al., 1951; Cabrera et al., 1954; Cabrera and Levine, 1956; Chernov, 1984).
As the solution undersaturation increases, 2D etch pits begin to form first at crystal defects, and then homogenously across the mineral surface. Although step-retreat continues, it is limited to a single direction (the direction of the step), so its contribution to the overall rate is small once the production and radial spread of etch pits is activated. 2D dissolution therefore changes the dominant shape of the dissolving front from a spiral (Eq. A.3) to a spreading area, and in doing so changes the relevant step spacing to use in Eq. (A.1).

The spacing of etch pits of average area, λ^2, is related to the speed of propagation (v from Eq. A.2) and the steady-state rate of pit opening, J (cm$^{-2}$ s$^{-1}$). The lifetime of a pit is given by (Chernov, 1984):

$$\frac{1}{v} = \frac{1}{J} \lambda^2$$

(A.4)

Substituting (A.4) into (A.1) gives a new equation that describes the rate of 2D dissolution, either at defects or homogenously across the surface:

$$R_{2D} = h(v^2/J)^{1/3}$$

(A.5)

Eq. (A.5) may be further expanded to account for the solution's effect on the steady-state rate of pit opening, J. The rate of pit opening depends on two things: the frequency of new site formation (sites/time) and the probability of surpassing some critical free energy barrier, ΔG_{crit}^{2D}. The overall energy barrier is, in turn, a function of the local step edge free energy α, and the driving force of the solution, σ. It is given by (Malkin et al., 1989)

$$\Delta G_{crit}^{2D} = -\frac{\pi \alpha^2 \omega h}{k_b T |\sigma|}$$

(A.6)

We can see from Eq. (A.6) that the required ΔG_{crit}^{2D} to stabilize and open a pit decreases for constant α as the solution becomes more undersaturated (greater $|\sigma|$). The frequency of new site formation is related to the density of active nucleation sites (n_s sites/cm2), the lattice spacing (a, nm), and the spreading rate constant for the material (β).

The probability of opening a pit is set by ΔG_{crit}^{2D} via an Arrhenius-style relation, where the pre-exponential factor contains the steady-state frequency of new site formation, $n_s a \beta$.

$$J = J_0 \exp\left(-\frac{\Delta G_{crit}^{2D}}{k_b T}\right) \text{ with } J_0 = |\sigma| \frac{1}{2} n_s a h C_e \beta$$

(A.7)

The step height, h, and the lattice spacing, a, are physical properties of the mineral that do not change with temperature or solution undersaturation. C_e exhibits a temperature dependence, but this effect is well documented in seawater (Mehrbach et al., 1973; Dickson and Millero, 1987) and simple to account for in the model. Therefore, the crystal parameters in J_0 that set the overall, steady-state nucleation rate are the density of active pit nucleation sites, n_s and the step kinetic coefficient, β.

β is expected to exhibit temperature dependence according to (Chernov, 1984; Malkin et al., 1989; Zhang and Nancollas, 1992; Xu et al., 2010):

$$\beta = \beta_0 \exp\left(-\frac{\varepsilon_{step}}{k_b T}\right)$$

(A.8)
Here, the interpretation of ϵ_{step} changes depending upon which of two potential dissolution pathways is occurring. In the first pathway, the dissolving species directly detaches from a kink/step and enters the solution. In the second pathway, the species does not directly detach, but instead diffuses away from a kink/step to become an adatom that can subsequently desorb from the surface. ϵ_{step} in the first case is the energy of direct detachment from a kink/step, and ϵ_{step} in the second case is the energy of surface diffusion. Surface diffusion is hindered on calcite by water (Liang and Baer, 1997) and dipoles on the calcite surface (Gratz et al., 1993), so ϵ_{step} in our system is the energy of direct detachment from kinks/steps.

n_s exhibits a temperature dependence according to (Chernov, 1984; Chernov et al., 1986; Dove et al., 2005):

$$n_s = n_{s0} \exp \left(-\frac{\epsilon_{\text{init}}}{k_b T} \right)$$ \hspace{1cm} (A.9)

Here, ϵ_{init} is the kinetic energy barrier for removing a species from the surface to initiate a new etch pit. ϵ_{init} is distinct from Eq. (A.6) because, while etch pits can initiate on the surface, they will not be stable and propagate across the mineral face unless $\Delta G_{\text{crit}}^{2D}$ has also been surpassed. The pre-exponential factors in Eq. (A.8) and (A.9) contain entropy terms (Burton et al., 1951).

Substituting Eq. (A.7), (A.6) and (A.2) into (A.5) and rearranging yields an equation describing dissolution by either homogenous or defect-assisted 2D dissolution (Eq. 4a in the text)

$$\ln \left(\frac{R_{2D}}{(1 - \Omega)^{3/2} \sigma^{1/2}} \right) = \ln \left(h \beta C_e \left(\omega^2 \hbar n_s a \right)^{1/3} \right) - \frac{\pi \alpha^2 \omega h}{3(k_b T)^2} \left[\frac{1}{\sigma} \right]$$ \hspace{1cm} (A.10)

We arrive at a similar equation for dissolution by step retreat by substituting Eq.’s (A.3) and (A.2) into (A.1) and rearranging (Eq. 4b in the text)

$$\ln \left(\frac{R_{\text{step}}}{(1 - \Omega)^{3/2} \sigma^{1/2}} \right) = \ln \left(\frac{\omega \beta C_e m h}{P} \right) + \ln \left(\left(1 - \Omega \right)^{1/3} \left[\frac{1}{\sigma} \right] \right)$$ \hspace{1cm} (A.11)

FIGURES
Fig. 1: (a) Raw dissolution vs. time of two different size fractions of 13C-labeled calcite at $1-\Omega = 0.83$, normalized by the total fraction of powder dissolved. Curves become linear after 24 hours and the slope of the subsequent data points is taken as the rate (dashed/solid lines in the figure). The 20-53µm size fraction dissolves more quickly than the 70-100µm size fraction (2.3×10^{-3} vs. 1.4×10^{-3} g/g/day), but both yield the same rate when corrected for BET surface area (1.8×10^{-13} mol/cm2/s).

(b) Raw dissolution vs. time at constant $1-\Omega = 0.80$. Increasing the temperature increases dissolution rate non-linearly.
Fig. 2: Comparison of calcite dissolution rates (mol/cm2/s) plotted vs. 1-Ω (a) near equilibrium, and (b) in Log-Log 1-Ω space from 1>Ω>0. Dissolution in seawater behaves differently than in freshwater (black squares in b). The y-error bars reflect the error on the linear fit to the dissolution vs. time data from 24 to 72 hours and do not include the uncertainty in surface area.
Fig. 3: Rate vs. 1-Ω at 5°C (a), 12°C (b), 21°C (c), and 37°C (d) overlaid with best-fit lines to the data before and after Ω = 0.75, not including data where Ω > 0.9 (fitted values for k and n are listed in Table 1). The dashed lines in each panel show the expected behavior for a linear (n=1) dissolution rate law. The linear rate law is anchored by the rate constant at Ω=0, and greatly overestimates dissolution near equilibrium.
Fig. 4: Arrhenius plot of rate constants derived from far-from-equilibrium ($\Omega<0.75$) experiments. A linear fit to the data yields a slope of -3021 ± 229 corresponding to an activation energy of 25 ± 2 kJ/mol.
Fig. 5: Simplified model of a dissolving calcite crystal where each cube represents a CaCO$_3$ unit cell. Numbered arrows demonstrate different dissolution mechanisms, while letters show surface features. At low driving forces, dissolution is limited to the retreat of pre-existing steps (1), kinks (a), and adatoms (b). Steps are frequently sourced from screw dislocations, but are only shown at edges here for simplicity. Defects such as edge-dislocations (c) impart strain on the crystal lattice, resulting in localized areas of excess surface energy. As the solution becomes more undersaturated, these areas become available for defect-assisted 2D dissolution (2). At even greater undersaturations, 2D dissolution occurs homogenously across the calcite surface (3) without the need for pre-existing defects. Both (2) and (3) produce 2D etch pits (d) that will propagate radially until they reach the edge of the mineral or encounter another etch pit and are eliminated.
Fig. 6: Expected data trends as the calcite surface transitions between dissolution mechanisms. Far from equilibrium (left panel), 2D etch pits open homogenously across the surface and the data are described by Eq. (4a). At intermediate driving forces, 2D dissolution may only proceed at defects (middle panel). Very near equilibrium, the solution driving force is only strong enough to support dissolution at pre-existing steps or screw dislocations (right panel). Data resulting from step retreat are described by Eq. (4b). Absolute rates of dissolution are slowest for step retreat, but the normalized rate curves upwards versus $\left|\frac{1}{\sigma}\right|$ as the solution approaches equilibrium.
Fig. 7: The same data as in Fig. 2b, but recast as dissolution velocity (m/s) vs. $\frac{1}{1/\sigma}$ over the full range of undersaturations (0<Ω<0.99). Saturation state increases from left to right. Rates at 5, 12, and 37°C “curve upwards” as Ω approaches equilibrium, indicating dissolution by retreat of pre-existing steps. Tick marks on the top axis show Ω in increments of 0.1, with an additional tick at 0.95 to emphasize the highly non-linear nature of $\frac{1}{1/\sigma}$ axis.
Fig. 8: Dissolution velocities (m/s) at 5 (a), 12 (b), 21 (c), and 37°C (d) from 0<\(|\Omega|<25 \ (0<\Omega<0.96)\). Saturation increases from left to right. All temperatures are fit to Eq. (4a) from 0<\(|\Omega|<3.5. 12, 21, 37°C are fit to Eq. (4a) between 3.5<\(|\Omega|<25 while 5°C is fit to Eq. (4b). The intercepts (stars on Y-axis) and slopes of the fits to Eq. (4a) are presented in Table 3.
Fig. 9: Temperature dependence of kinetic and energetic parameters of calcite dissolution in seawater. (a) Change in the intercept (proportional to β and n_s) and (b) slope (proportional to α) of the fit to Eq. (4a) for homogenous ($0<\frac{1}{\sigma}<3.5$, triangles) and defect-assisted ($3.5<\frac{1}{\sigma}<25$, circles) dissolution. Lines for constant α are plotted in (b) for comparison with the data. Fits to the data are presented in Table 4.
Fig. 10: Arrhenius plots for the kinetic coefficient (a) and nucleation site density (b) derived from fits to Eq. (4a). (a) The slope of $\ln(\beta)$ versus $1/T$ is -2700 ± 700, corresponding to an activation energy of detachment from kinks/steps of 22 ± 6 kJ/mol. (b) The slope of $\ln(n_s)$ versus $1/T$ is $2.7 \pm 0.4 \times 10^4$, corresponding to a kinetic energy barrier to etch pit initiation of -230 ± 30 kJ/mol.
Fig. S1: BET rates (mol/cm²/s) versus 1-Ω at 21°C for 20-53μm (open circles) and 70-100μm (closed circles) size fractions, as well as 20-53μm grains with different treatments (see text for details). The majority of the data were collected using powders sieved in 18.2 MΩ cm⁻¹ water, but the different symbols show the consistency of our rates across a range of powder size fractions and rinse treatments.
Fig. S2: Calcite dissolution rates (mol/cm²/s) versus in-situ pH\textsubscript{total} calculated from CO2Sys using measured alkalinity and DIC pairs. Note that the dissolution rate at each temperature changes by nearly three orders of magnitude over 0.3 pH units. Seawater dissolution rates decrease sharply at a lower pH than in freshwater.
Fig. S3: Comparison of calcite dissolution rates (mol/cm²/s) in this study at 21°C versus previously published rates in freshwater (FW), seawater (SW), and artificial seawater (ASW) at 25°C. All data were taken directly from the published papers and were not adjusted to account for updated carbonate system equilibrium constants. Each study is normalized by BET surface area except for Cubillas et al. (2005), which is normalized by geometric surface area. The points from Berner & Morse (1974) combine the data for SW with 1.6 μmol/L phosphate and ASW with 0.5 μmol/L phosphate in Appendix Tables B and C, respectively. Data from Walter & Morse (1985) are for synthetic calcite and were taken from Fig. 1 of their paper and normalized using BET surface area from Table 3.
Table 1: York Fits to Log(R) = Log(k) + nLog(1-Ω)

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>Ω > 0.75</th>
<th></th>
<th>Ω < 0.75</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log_{10}k (mol/cm^2/s)</td>
<td>n</td>
<td>Log_{10}k (mol/cm^2/s)</td>
<td>n</td>
</tr>
<tr>
<td>5</td>
<td>-13.07±0.18</td>
<td>0.34±0.09</td>
<td>-10.01±0.10</td>
<td>4.81±0.07</td>
</tr>
<tr>
<td>12</td>
<td>-11.51±0.15</td>
<td>1.92±0.07</td>
<td>-9.95±0.27</td>
<td>4.09±0.15</td>
</tr>
<tr>
<td>21</td>
<td>-11.06±0.10</td>
<td>2.15±0.05</td>
<td>-9.83±0.12</td>
<td>4.18±0.07</td>
</tr>
<tr>
<td>37</td>
<td>-10.50±0.13</td>
<td>2.47±0.05</td>
<td>-9.56±0.35</td>
<td>4.58±0.22</td>
</tr>
</tbody>
</table>

Table 2: E_a Compilation for bulk calcite dissolution far from equilibrium

<table>
<thead>
<tr>
<th>Study</th>
<th>Solution</th>
<th>Temperature (°C)</th>
<th>pH</th>
<th>Ω</th>
<th>Activation Energy (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plummer et al., (1978)</td>
<td>DI Water</td>
<td>5-60</td>
<td>2.5</td>
<td>0*</td>
<td>8.4 (from Eq. 5)</td>
</tr>
<tr>
<td>Salem et al., (1994)</td>
<td>DI Water</td>
<td>15-35</td>
<td>9.2</td>
<td>0-0.04</td>
<td>8.7</td>
</tr>
<tr>
<td>Sjöberg (1978)</td>
<td>0.7M KCl</td>
<td>3-50</td>
<td>3.0</td>
<td>0*</td>
<td>10.5 (crystal)</td>
</tr>
<tr>
<td>Sjöberg & Rickard (1984)</td>
<td>0.7M KCl</td>
<td>1-62</td>
<td>2.7-3.7</td>
<td>0*</td>
<td>13±1 (Iceland Spar, from Fig. 7)</td>
</tr>
<tr>
<td>Finneran & Morse (2009)</td>
<td>0.07-5M Ionic Media</td>
<td>25-85</td>
<td>5.5-6.5</td>
<td>0.4-0.8</td>
<td>20±2</td>
</tr>
<tr>
<td>Gledhill & Morse (2006)</td>
<td>50-200g/L Brine</td>
<td>25-82.5</td>
<td>5-6.2</td>
<td>0.2-1</td>
<td>21±1</td>
</tr>
<tr>
<td>Gutjahr et al. (1996)</td>
<td>Ionic NaCl</td>
<td>20-70</td>
<td>7.9</td>
<td>0.4-1</td>
<td>24±3 (k_{diss} from Table 2)</td>
</tr>
<tr>
<td>Sjöberg (1978)</td>
<td>0.7M KCl</td>
<td>3-50</td>
<td>8.3</td>
<td>0*</td>
<td>25.7 (crystals)</td>
</tr>
<tr>
<td>Sjöberg & Rickard (1984)</td>
<td>0.7M KCl</td>
<td>1-62</td>
<td>8.4</td>
<td>0*</td>
<td>31-36 (Carrara Marble, Eq. 9)</td>
</tr>
<tr>
<td>Pokrovsky et al. (2009)</td>
<td>0.1M NaCl, (pCO_2 2-50atm)</td>
<td>25-100</td>
<td>4.0</td>
<td>0*</td>
<td>48.2±4.6**</td>
</tr>
<tr>
<td>This study</td>
<td>Natural Seawater</td>
<td>5-37</td>
<td>5.5-6.5</td>
<td>0-0.75</td>
<td>25±2</td>
</tr>
</tbody>
</table>

*Ω is not reported, but the solution composition suggests Ω=0
**Pokrovsky et al. (2009) adjust this E_a to 14.7±3.5 when correcting for chemical transport

Table 3: Fits to Eq. (4a) for 2D Dissolution

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>Homogenous Dissolution</th>
<th>Defect-Assisted Dissolution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01<</td>
<td>1/α</td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>Slope</td>
</tr>
</tbody>
</table>
Table 4: Coefficients for the Observed Temperature Effect on the Intercepts and Slopes of Equation (4a) for 2D Dissolution

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>(\ln (h\beta C_e(\omega^2 h n_s a)^{1/3}))</th>
<th>(\frac{\pi a^2 \omega h}{3(k_B T)^2})</th>
<th>(\ln (h\beta C_e(\omega^2 h n_s a)^{1/3}))</th>
<th>(\frac{\pi a^2 \omega h}{3(k_B T)^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-24.02 ± 0.02</td>
<td>-1.83 ± 0.04</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>-23.71 ± 0.04</td>
<td>-1.47 ± 0.03</td>
<td>-29.40 ± 0.90</td>
<td>-0.07 ± 0.11</td>
</tr>
<tr>
<td>21</td>
<td>-23.75 ± 0.01</td>
<td>-1.29 ± 0.03</td>
<td>-27.79 ± 0.25</td>
<td>-0.19 ± 0.04</td>
</tr>
<tr>
<td>37</td>
<td>-23.00 ± 0.11</td>
<td>-1.39 ± 0.06</td>
<td>-25.74 ± 0.26</td>
<td>-0.42 ± 0.05</td>
</tr>
</tbody>
</table>

Table 4: Coefficients for the Observed Temperature Effect on the Intercepts and Slopes of Equation (4a) for 2D Dissolution

<table>
<thead>
<tr>
<th>Condition</th>
<th>(I_0)</th>
<th>(I_1 \cdot 10^5)</th>
<th>(S_0)</th>
<th>(S_1 \cdot 10^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogenous 0.01<1/</td>
<td>(I_0)</td>
<td>(I_1 \cdot 10^5)</td>
<td>(S_0)</td>
<td>(S_1 \cdot 10^5)</td>
</tr>
<tr>
<td>(I_0)</td>
<td>(I_1 \cdot 10^5)</td>
<td>(S_0)</td>
<td>(S_1 \cdot 10^5)</td>
<td></td>
</tr>
<tr>
<td>0.01<1/</td>
<td>(I_0)</td>
<td>(I_1 \cdot 10^5)</td>
<td>(S_0)</td>
<td>(S_1 \cdot 10^5)</td>
</tr>
<tr>
<td>3.5<1/</td>
<td>(I_0)</td>
<td>(I_1 \cdot 10^5)</td>
<td>(S_0)</td>
<td>(S_1 \cdot 10^5)</td>
</tr>
<tr>
<td>25</td>
<td>-19.1 ± 1.18</td>
<td>-3.8 ± 1.0</td>
<td>0.33 ± 1.2</td>
<td>-1.5 ± 1.0</td>
</tr>
<tr>
<td>3.5<1/</td>
<td>(I_0)</td>
<td>(I_1 \cdot 10^5)</td>
<td>(S_0)</td>
<td>(S_1 \cdot 10^5)</td>
</tr>
<tr>
<td>25</td>
<td>-5.82 ± 1.29</td>
<td>-19.1 ± 1.1</td>
<td>-2.38 ± 0.12</td>
<td>1.9 ± 0.1</td>
</tr>
</tbody>
</table>
Table 5: Constants and calculated values for β, n_s, and α

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>5</th>
<th>12</th>
<th>21</th>
<th>37</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>m</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>h</td>
<td>m</td>
<td>3×10^{-10}</td>
<td>3×10^{-10}</td>
<td>3×10^{-10}</td>
<td>3×10^{-10}</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>m</td>
<td>3×10^{-10}</td>
<td>3×10^{-10}</td>
<td>3×10^{-10}</td>
<td>3×10^{-10}</td>
<td>1</td>
</tr>
<tr>
<td>w</td>
<td>m3</td>
<td>6.12×10^{-9}</td>
<td>6.12×10^{-9}</td>
<td>6.12×10^{-9}</td>
<td>6.12×10^{-9}</td>
<td>2</td>
</tr>
<tr>
<td>P</td>
<td>m</td>
<td>1.88×10^{-9}</td>
<td>1.88×10^{-9}</td>
<td>1.88×10^{-9}</td>
<td>1.88×10^{-9}</td>
<td>3</td>
</tr>
<tr>
<td>K_{sp}</td>
<td>mol/kg2</td>
<td>4.309×10^{-7}</td>
<td>4.318×10^{-7}</td>
<td>4.296×10^{-7}</td>
<td>4.151×10^{-7}</td>
<td>4</td>
</tr>
<tr>
<td>C_e</td>
<td>atoms/m3</td>
<td>2.595×10^{22}</td>
<td>2.600×10^{22}</td>
<td>2.587×10^{22}</td>
<td>2.500×10^{22}</td>
<td>5</td>
</tr>
</tbody>
</table>

Homogenous 2D Dissolution (Eq. 4a)

$n_{s,\text{homogenous}}$	sites/m2	5$\times 10^{12}$	5$\times 10^{12}$	5$\times 10^{12}$	5$\times 10^{12}$	1, 6
β_{2D}	m/s	$4.0 \pm 0.02 \times 10^{-3}$	$5.4 \pm 0.05 \times 10^{-3}$	$5.3 \pm 0.01 \times 10^{-3}$	$11.7 \pm 0.26 \times 10^{-3}$	this study
$\alpha_{\text{homogenous}}$	ml/m2	-37.6 ± 0.7	-34.5 ± 0.8	-33.2 ± 0.7	-36.5 ± 1.6	this study

Defect-Assisted 2D Dissolution (Eq. 4a)

| $n_{s,\text{defect}}$ | sites/m2 | - | $4.7 \pm 1.2 \times 10^{15}$ | $2.5 \pm 0.1 \times 10^{17}$ | $1.3 \pm 0.9 \times 10^{9}$ | this study |
| α_{defect} | ml/m2 | - | -6.8 ± 5.9 | -12.7 ± 2.7 | -20.1 ± 2.3 | this study |

Step-Propagation (Eq. 4b)

| β_{step} | m/s | 3×10^{-7} | - | - | - | this study |
| α_{step} | ml/m2 | - | -0.5 | - | - | this study |

2. From calcite density of 2.71 g/cm3
3. Estimated assuming a burgers vector $b = mh$, $P = 2 \pi h$ analogously to Dove et al. (2005)
4. CO2SYS equilibrium K_{sp} in seawater at each temperature. Sal = 35 psu
5. $K_{sp}/[Ca^{2+}]$, converted to molecules/m3, $[Ca^{2+}]$=0.01M
6. Ruiz-Agudo et al. (2009)