
Subscriber access provided by Caltech Library

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Communication

Alternate heme ligation steers activity and selectivity in
engineered cytochrome P450-catalyzed carbene transfer reactions

Kai Chen, Shuo-Qing Zhang, Oliver F. Brandenberg, Xin Hong, and Frances H. Arnold
J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.8b09613 • Publication Date (Web): 29 Oct 2018

Downloaded from http://pubs.acs.org on October 30, 2018

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216294782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Alternate heme ligation steers activity and selectivity in engineered 
cytochrome P450-catalyzed carbene transfer reactions
Kai Chen,†a Shuo-Qing Zhang,†b Oliver F. Brandenberg,a Xin Hong,*b Frances H. Arnold*a

a Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA.
b Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.

Supporting Information Placeholder

ABSTRACT: We report a biocatalytic platform of engineered 
cytochrome P450 enzymes to carry out carbene-transfer reactions 
using a lactone-based carbene precursor. By simply altering the 
heme-ligating residue, we obtained two enzymes that catalyze 
olefin cyclopropanation (Ser) or S–H bond insertion (Cys). Both 
enzymes exhibit high catalytic efficiency and stereoselectivity, thus 
enabling facile access to structurally diverse spiro[2.4]lactones and 
α-thio-γ-lactones. Computational studies revealed the mechanism 
of carbene S–H insertion and explain how the axial ligand controls 
reactivity and selectivity. This work expands the catalytic 
repertoire of hemeproteins and offers insights into how these 
enzymes can be tuned for new chemistry.

Cytochromes P450, a class of heme-dependent proteins, natively 
function as oxygenases and transfer oxygen to hydrocarbons or 
heteroatoms.1, 2  Our group and others have repurposed P450s to 
perform non-natural carbene- and nitrene-transfer reactions.3‒5 In 
the presence of diazo reagents as carbene precursors, 
iron‒carbenoid intermediates can form in the enzyme active site 
and enable carbene addition to unsaturated carbon‒carbon bonds6 
or insertion into heteroatom‒hydrogen bonds.7 Until now, these 
catalysts have accepted a narrow set of diazo reagents (e.g., ethyl 
2-diazoacetate),6 which limits the structural diversity of the 
products. In addition, mechanistic profiles of carbene insertion into 
X‒H bonds (e.g., X = S) remain underexplored,8 which has 
impeded further development. Exploration of biocatalytic 
scenarios using structurally diverse carbenes together with 
mechanistic studies would significantly expand the synthetic value 
of these methods and aid our understanding of how the enzyme 
scaffold promotes high catalytic efficiency and selectivity.

Lactones are an important class of organic moieties with 
applications in synthetic chemistry,9 materials science10 and 
medicinal chemistry.11 A few studies have demonstrated that α-
diazo lactones can be utilized by rhodium complexes for carbene-
transfer reactions.12 However, these rhodium‒carbenes are prone to 
β-hydride migration,13 which gives rise to undesired unsaturated 
lactones; optimization of the rhodium catalysts and cryogenic 
reaction conditions are  required to attenuate these side reactions.12a 
Additionally, no enantioselective versions of these transformations 
have been reported. Our previous work on engineering 
hemeproteins for transfer of acyclic carbenes highlighted the power 
of directed evolution to shape protein active sites and greatly 
improve both reactivity and selectivity.6a‒e We therefore speculated 
that aptly engineered hemeproteins would be capable of generating 

and stabilizing lactone-carbene intermediates, circumventing 
unwanted β-hydride migration, and facilitating subsequent 
carbene-transfer reactions with exquisite stereocontrol. This 
proposed enzymatic approach would provide a concise route to a 
broad array of lactone-containing products.

We initially focused on constructing cyclopropane-containing 
spiro-lactones using α-diazo-γ-lactone (LAD) and styrene (1a) as 
substrates. Transfer of a cyclic carbene to an olefin double bond is 
expected to form a spiro-carbon center. Quaternary stereogenic 
centers frequently occur in biologically relevant molecules and 
medicinal compounds,14 but are challenging to make due to the 
highly congested nature of these centers.14, 15 Moreover, the 
anticipated reaction produces a strained, three-membered ring and 
furnishes two chiral centers in a stereoselective manner, which 
necessitates precise control of the three-dimensional orientation of 
two coupling partners. We believe this is a good challenge for an 
enzyme catalyst.
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Figure 1. Comparison of P411 variants for forming spiro[2.4]-
lactone 2a. Reactions were performed in quadruplicate: 
suspensions of E. coli expressing P411 variants (OD600 = 30), 10 
mM 1a, 10 mM LAD, 25 mM D-glucose and 5 vol% EtOH in M9-N 
buffer at room temperature under anaerobic conditions for 12 
hours.

We began by testing a panel of cytochrome P411 (Ser-ligated 
P450) variants, expressed in Escherichia coli (E. coli) and used as 
whole-cell catalysts, with LAD and 1a as substrates (Figure 1). 
Variant P411-CIS,16 previously engineered to react with ethyl 2-
diazoacetate and transfer the corresponding α-mono-substituted 
carbene to styrene to forge a cis-cyclopropane, showed modest 
reactivity towards spiro-lactone formation, with 120 ± 10 total 
turnovers (TTN) and 90% de. Several P411 variants with various 
active site mutations (e.g., T268A or T438S) were tested but did 
not exhibit substantial improvements in activity (Figure S1). 
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However, to our delight, P411-CIS double mutant L437F T438Q 
(referred to as P411-G8), previously evolved for carbene transfer 
to heteroatom-substituted olefins,17 was found to have 10-fold 
higher reactivity, providing 1320 ± 190 TTN while also showing 
improved stereoselectivity (97% de). A variant with two additional 
mutations, L75Y and L181I (referred to as P411-G8S18), was an 
even better biocatalyst, furnishing the desired spiro-lactone product 
2a in 3090 ± 120 TTN, 99% de and >98% ee. Control experiments 
showed that free heme does not catalyze this reaction.

To examine whether the serine axial ligand of this P411 variant 
played a significant role in promoting in vivo cyclopropanation 
activity, we mutated serine back to the canonical P450 axial ligand 
cysteine and found that the resulting P450-G8S variant synthesized 
2a with much lower activity (380 ± 20 TTN) but the same 
stereoselectivity (Figure S2).
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Figure 2. Scope of spiro[2.4]lactones with variant P411-G8S. a5 
mM olefin, 5 mM LAD. bAbsolute configuration not determined. 
See SI for details.

With this highly active and selective P411-G8S variant, we next 
explored the scope of olefin substrates for spiro-lactone 
construction (Figure 2). Electron-rich styrenyl olefins (1b and 1c) 
are particularly good substrates, with over 10,000 TTNs. Halides 
(1e, 1f and 1h) are also well-tolerated, offering opportunities for 
further derivatization through coupling methods. Fluorine-
containing substrates, despite the strong electron deficiency, are 
also accepted (e.g., 1g). Additionally, steric bulk (e.g., 2-vinyl 
naphthalene 1i) did not have a significant influence on reactivity. 
All tested styrenyl substrates gave (E)-spiro[2.4]lactone products 
with high-to-perfect stereoselectivity (98.6 to >99.9% de, and 98.3 
to 99.8% ee). Unactivated aliphatic olefins such as 4-phenyl butene 
are also accepted by this biocatalytic system with 1740 TTN. 
Interestingly, NMR analysis revealed a (Z)-configuration of 
product 2j, which indicates potentially different binding modes for 
aromatic vs. aliphatic olefins in the enzyme’s active site. The 

enzymatic reactions are also readily scalable and maintain 
stereoselectivity and high reactivity. Products 2b and 2c were 
prepared in hundred-milligram quantities with good isolated yields 
(71% yield, 6500 TTN and 95% yield, 6970 TTN). The absolute 
configurations of products 2b and 2f were unambiguously assigned 
as (1S, 2S) by X-ray crystallography.19

Having established this biocatalytic platform for the efficient 
synthesis of spiro-lactones, we speculated that the active-site 
environment of P411-G8S may be especially suited to stabilize the 
lactone-carbenoid intermediate. We were eager to examine whether 
this P411 variant can catalyze the transfer of this lactone-carbene 
to other functionalities, such as thiols. Carbene S‒H insertion is 
poorly developed among carbene-transfer reactions; one challenge 
is that thiols can poison transition-metal catalysts through 
coordination. To date, only a few catalytic systems have been 
developed for asymmetric carbene S–H insertion, and these exhibit 
limited catalytic efficiency20 and/or low stereoselectivity.21 Fasan 
and coworkers reported carbene S‒H insertion with up to 49% ee 
by an engineered myoglobin.7b Whereas carbene Si–H and N–H 
insertions with iron-porphyrin (bio)catalysts have been revealed to 
undergo concerted Si‒H insertion22 and nucleophilic attack by 
amine at the carbene center,8c the mechanism of carbene S–H 
insertion remains obscure.23 We thus decided to take a closer look 
at lactone-carbene S–H insertion with the current enzymatic 
system.
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Figure 3. Lactone-carbene S‒H insertion: comparison of 
reactivity and selectivity of P411-G8S and P450-G8S, and 
overlay of P450-CIS (PDB: 4h24, in green) and P411-CIS 
(PDB: 4h23, in purple) active-site structures. Reactions were 
performed in quadruplicate: suspensions of E. coli expressing G8S 
variants (OD600 = 30), 10 mM thiol, 10 mM LAD, 25 mM D-
glucose and 5 vol% EtOH in M9-N buffer at room temperature 
under anaerobic conditions for 40 minutes.

Using P411-G8S as a whole-cell catalyst, thiophenol 3a reacted 
with LAD to give the desired α-thio-γ-lactone product 4a in 300 ± 
30 TTN, but with poor enantioselectivity (15 ± 2% ee). In an effort 
to improve reactivity and selectivity, we wanted to explore how the 
identity of the heme axial ligand affected the S‒H insertion 
process.24 We thus tested this reaction with a library of mutant 
enzymes made by site-saturation mutagenesis of the axial-ligand 
residue S400 in P411-G8S. To our delight, simply replacing the 
axial serine with cysteine (the native ligating residue in P450 
enzymes) substantially improved reactivity and selectivity, to 1610 
± 60 TTN and 84 ± 1% ee (Figure 3). We next evaluated the 
substrate range of this cysteine-ligated P450-G8S variant for 
lactone-carbene S‒H insertion (Figure 4). Thiophenols with meta-
OMe and para-halide substituents were successfully converted into 
the corresponding α-thio-γ-lactone products (4b to 4e) with good 
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TTNs and enantioselectivities. However, para-(fluorinated)alkyl 
groups (3f to 3h) or a bulkier aromatic ring (3j) gave lower 
reactivity and selectivity, suggesting that steric hindrance may 
affect substrate orientation. Products 4d and 4e were also 
synthesized in hundred-milligram scale under modified conditions; 
good isolated yields were obtained, with slightly improved 
enantioselectivity.
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Figure 4. Scope of α-thio-γ-lactones with variant P450-G8S. See 
SI for details.

It struck us as interesting that the P411/P450-G8S variants 
behaved so differently in the S–H insertion and cyclopropanation 
reactions. According to a previous structural study of P411-CIS and 
P450-CIS variants that also differed solely at the axial-ligand 
residue, the cysteine-to-serine mutation maintains almost identical 
active-site geometries (Figure 3). As also demonstrated in previous 
work on in vivo reactions using P411 variants,16 the endogenous 
reductant NADPH can act as an electron donor to reduce FeIII to 
FeII, which is required for the iron cofactor to activate diazo 
compounds to form iron-carbenoid intermediates. Cysteine-ligated 
heme, on the other hand, has a lower reduction potential of the 
ferric state and thus results in poor reduction efficiency of the iron 
center by NADPH. Consequently, P411-G8S exhibits significantly 
higher cyclopropanation activity compared to P450-G8S, though 
both show similar selectivities. However, for carbene S–H 
insertion, thiol substrates can also serve as a strong reductant and 
enable P450 variants to form iron-carbenoids. But this did not 
explain the significant disparity between P411-G8S and P450-G8S 
in both reactivity and selectivity, causing us to speculate that the 
axial ligand was exerting a heretofore unobserved effect on the 
reaction mechanism.

To explore the effects of axial coordination on the S–H insertion 
reaction in more detail, we used density functional theory (DFT) 

calculations. The generation of iron-carbenoid species is 
reasonably facile, according to previous experimental and 
computational studies.8b, 8e, 22 Our computational investigations 
thus focused on the insertion steps. Simplified iron-porphyrin 
models (cat1 and cat2) were used, where SMe and OMe were 
chosen to mimic deprotonated Cys and Ser ligands.25, 8f

The free energy diagram of the most favorable pathway for S–H 
insertion is shown in Figure 5. The insertion occurs in a stepwise 
fashion, involving one hydrogen-atom-transfer (HAT) step and 
subsequent C–S bond formation with a thiyl radical. Both cat1 and 
cat2 showed similar reactivities for S–H bond insertion, with free 
energy barriers of 19.4 kcal/mol and 18.5 kcal/mol, respectively. 
However, we found that the iron-alkyl intermediates (int3 and 
int10) can undergo a reversible C–Fe bond homolytic cleavage (via 
TS6 and TS12), which erodes the enantioenriched alkyl-substituted 
stereocenter. The two pathways, radical rebound and C–Fe bond 
cleavage, are differentiated by the axial coordination. With SMe 
ligation, C–S bond formation is more favorable than C–Fe bond 
homolytic cleavage (TS4, ΔG≠ = 6.7 kcal/mol vs. TS6, ΔG≠ = 10.4 
kcal/mol), while the opposite is true for the OMe-ligated 
intermediate int10 (TS11, ΔG≠ = 7.3 kcal/mol vs. TS12, ΔG≠ = 6.2 
kcal/mol). These results indicate that Cys-ligated P450 enzymes 
should achieve much higher enantioselectivities than Ser-ligated 
P411 enzymes, which matches the experimental observations.

The axial coordination has a limited effect on C–S rebound, but 
strongly controls the feasibility of C–Fe bond dissociation.26 Since 
oxygen has a much higher electronegativity than sulfur, the anionic 
cat2 is more stable than the sulfur-coordinated cat1. Therefore, C–
Fe homolytic cleavage with OMe ligation, which releases cat2, has 
a lower activation barrier and is more exothermic than that with 
sulfur coordination. The difference in exothermicity drives the 
change in reaction barrier, which eventually leads to the difference 
in enantioselectivities of the two catalysts.

In conclusion, we have developed a powerful biocatalytic 
platform based on engineered cytochrome P411/P450 enzymes that 
enables facile access to a broad array of structurally diverse γ-
lactone derivatives including spiro[2.4]lactones and α-thio-γ-
lactones. This convergent biosynthetic scheme offers a succinct 
method to construct complex lactone-based structures, as an 
alternative to nature’s strategy of de novo assembly of lactone 
moieties. Interestingly, by simply altering the heme ligation (serine 
or cysteine) in the cytochrome P450 variants, we were able to 
rapidly optimize the two carbene-transfer reactions, 
cyclopropanation and S‒H insertion, with unprecedented levels of 
efficiency and stereo-control. To understand how axial ligation 
affects both selectivity and reactivity in carbene S‒H insertion, we 
conducted a DFT study and described two mechanistic pathways 
involving a radical coupling process between a thiyl radical and a 
heme-bound alkyl species or a free alkyl radical. The different 
electronic properties of serine and cysteine ligands lead to opposite 
preferences in the reaction pathways, and distinct product profiles. 
The development of novel reactions combined with thorough 
mechanistic analyses expands the biocatalytic repertoire of 
hemeproteins and also provides insights into how these enzymes 
can be tuned for further exploration of new chemistries.

Page 3 of 6

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



TS4
TS12

0.0

N N

N N
Fe

OMe

O

O

18.5

N N

N N
Fe

OMe

O

O
H

PhS

int8(OSS)

TS9(triplet)

5.4

N N

N N
Fe

OMe

O

O

int10(doublet)

1.7

N N

N N
Fe

OMe

O

OH

PhS

TS11(triplet)

H

47.5

N N

N N
Fe

OMe
cat2(quintet)

PhSH

PhS

N N

N N
Fe

OMe

O

OH

0.6
TS12(sextet)

13.1

O O

H
SPh

int5

O O

H
int7

G in kcal/mol

0.0

N N

N N
Fe

SMe

O

O

19.4

N N

N N
Fe

SMe

O

O
H

PhS

int1(OSS)

TS2(triplet)

6.4

N N

N N
Fe

SMe

O

O

int3(doublet)

0.3

N N

N N
Fe

SMe

O

OH

PhS

TS4(OSS)

H

46.3

N N

N N
Fe

SMe
cat1(quintet)

PhSH

PhS

N N

N N
Fe

SMe

O

OH

4.0
TS6(sextet)

12.2

O O

H
SPh

int5

O O

H
int7

SMe OMe

TS2 TS9

TS11TS6

HAT Radical Rebound (favored)

CFe Bond Homolytic Cleavage (disfavored)

HAT Radical Rebound (disfavored)

CFe Bond Homolytic Cleavage (favored)

O O

H
int7

PhS
O O

H
SPh

int5

+
G = 7.4 kcal/mol

G = 34.1 kcal/mol

Stereoretentive

Loss of Stereogenic Center

Figure 5. Free energy diagram for the most favorable reaction pathways of S–H insertion. Gibbs free energy obtained at the 
B3LYP/def2-TZVP//B3LYP/6-31G(d)-LANL2DZ level. The most stable spin states are shown in parentheses. OSS is open-shell singlet.

ASSOCIATED CONTENT 
Supporting Information
Experimental details, and spectral data for all new compounds. This 
material is available free of charge via the Internet at 
http://pubs.acs.org. 

AUTHOR INFORMATION
Corresponding Author
hxchem@zju.edu.cn (X.H.) and frances@cheme.caltech.edu 
(F.H.A.)

ORCID
Kai Chen: 0000-0002-3325-3536
Shuo-Qing Zhang: 0000-0002-7617-3042
Oliver F. Brandenberg: 0000-0001-5662-1234
Xin Hong: 0000-0003-4717-2814
Frances H. Arnold: 0000-0002-4027-364X

Author Contributions
†K.C. and S.-Q.Z. contributed equally.

Notes
The authors declare no competing financial interests.

ACKNOWLEDGMENT 
Financial support by NSF Division of Molecular and Cellular 
Biosciences grant MCB-1513007, National Natural Science 
Foundation of China (21702182), Zhejiang University, the Chinese 

“Thousand Youth Talents Plan”, and the “Fundamental Research 
Funds for the Central Universities” is gratefully acknowledged. 
O.F.B. acknowledges support from the Swiss National Science 
Foundation (P300PA_171225). Calculations were performed on 
the high-performance computing system at the Department of 
Chemistry, Zhejiang University. We thank X. Huang, D. K. 
Romney, R. K. Zhang, S. B. J. Kan, R. D. Lewis in the Arnold lab 
and M. Garcia-Borràs in the K. Houk Lab, UCLA for helpful 
discussion and comments. We also thank N. Torian and the Caltech 
Mass Spectrometry Laboratory, and L. M. Henling and the Caltech 
X-ray Crystallography Facility for analytical support, and B. M. 
Stoltz for use of a polarimeter.

REFERENCES AND NOTES 

(1) Ortiz de Montellano, P. R. ed., Cytochrome P450: structure, 
mechanism, and biochemistry (Springer International Publishing: Cham, 
2015). 

(2) Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 2014, 
114, 3919‒3962.

(3) Brandenberg, O. F.; Fasan, R.; Arnold, F. H. Exploiting and 
engineering hemoproteins for abiological carbene and nitrene transfer 
reactions. Curr. Opin. Biotechnol. 2017, 47, 102‒111.

(4) Prier, C. K.; Arnold, F. H. Chemomimetic biocatalysis: Exploiting 
the synthetic potential of cofactor-dependent enzymes to create new 
catalysts. J. Am. Chem. Soc. 2015, 137, 13992‒14006.

(5) Zhang, R. K.; Romney, D. K.; Kan, S. B. J.; Arnold, F. H. Chapter 5 
in Dieguez, M.; Bäckvall, J.-E.; Pamies, O. eds, Artificial Metalloenzymes 
and MetalloDNAzymes in Catalysis. From Design to Applications (Wiley-
VCH, Weinheim, 2018). 

(6) Examples of hemeprotein-catalyzed carbene addition to olefins and 
alkynes: a) Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H. Olefin 

Page 4 of 6

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

mailto:hxchem@zju.edu.cn
mailto:frances@cheme.caltech.edu


cyclopropanation via carbene transfer catalyzed by engineered cytochrome 
P450 enzymes. Science 2013, 339, 307‒310. b) Wang, Z. J.; Renata, H.; 
Peck, N. E.; Farwell, C. C.; Coelho, P. S.; Arnold, F. H. Improved 
cyclopropanation activity of histidine-ligated cytochrome P450 enables the 
enantioselective formal synthesis of levomilnacipran. Angew. Chem. Int. Ed. 
2014, 53, 6810‒6813. c) Hernandez, K. E.; Renata, H.; Lewis, R. D.; Kan, 
S. B. J.; Zhang, C.; Forte, J.; Rozzell, D.; McIntosh, J. A.; Arnold, F. H. 
Highly stereoselective biocatalytic synthesis of key cyclopropane 
intermediate to ticagrelor. ACS Catal. 2016, 6, 7810‒7813. d) Knight, A. 
M.; Kan, S. B. J.; Lewis, R. D.; Brandenberg, O. F.; Chen, K.; Arnold, F. 
H. Diverse engineered heme proteins enable stereodivergent 
cyclopropanation of unactivated alkenes. ACS Cent. Sci. 2018, 4, 372‒377. 
e) Chen, K.; Huang, X.; Kan, S. B. J.; Arnold, F. H. Enzymatic construction 
of highly strained carbocycles. Science 2018, 360, 71‒75. f) Bordeaux, M.; 
Tyagi, V.; Fasan, R. Highly diastereoselective and enantioselective olefin 
cyclopropanation using engineered myoglobin-based catalysts. Angew. 
Chem. Int. Ed. 2015, 54, 1744‒1748. 

(7) Examples of hemeprotein-catalyzed carbene insertion into X‒H 
bonds: a) Wang, Z. J.; Peck, N. E.; Renata, H.; Arnold, F. H. Cytochrome 
P450-catalyzed insertion of carbenoids into N–H bonds. Chem. Sci. 2014, 
5, 598‒601. b) Tyagi, V.; Bonn, R.B.; Fasan, R. Intermolecular carbene S–
H insertion catalysed by engineered myoglobin-based catalysts. Chem. Sci. 
2015, 6, 2488‒2494. c) Kan, S. B. J.; Lewis, R. D.; Chen, K.; Arnold, F. H. 
Directed evolution of cytochrome c for carbon–silicon bond formation: 
Bringing silicon to life. Science 2016, 354, 1048‒1051. d) Kan, S. B. J.; 
Huang, X.; Gumulya, Y.; Chen, K.; Arnold, F. H. Genetically programmed 
chiral organoborane synthesis. Nature 2017, 552, 132‒136.

(8) Mechanistic studies on iron-porphyrin-catalyzed carbene-transfer 
chemistries: a) Khade, R. L.; Fan, W.; Ling, Y.; Yang, L.; Oldfield, E.; 
Zhang, Y. Iron porphyrin carbenes as catalytic intermediates: Structures, 
Mössbauer and NMR spectroscopic properties, and bonding. Angew. 
Chem., Int. Ed. 2014, 53, 7574‒7578. b) Khade, R. L.; Zhang, Y. Catalytic 
and biocatalytic iron porphyrin carbene formation: Effects of binding mode, 
carbene substituent, porphyrin substituent, and protein axial ligand. J. Am. 
Chem. Soc. 2015, 137, 7560‒7563. c) Sharon, D. A.; Mallick, D.; Wang, 
B.; Shaik, S. Computation sheds insight into iron porphyrin carbenes’ 
electronic structure, formation, and N–H insertion reactivity. J. Am. Chem. 
Soc. 2016, 138, 9597‒9610. d) Wei, Y.; Tinoco, A.; Steck, V.; Fasan, R.; 
Zhang, Y. Cyclopropanations via heme carbenes: Basic mechanism and 
effects of carbene substituent, protein axial ligand, and porphyrin 
substitution. J. Am. Chem. Soc. 2018, 140, 1649‒1662. e) Li, Y.; Huang, J.-
S.; Zhou, Z.-Y.; Che, C.-M.; You, X.-Z. Remarkably stable iron porphyrins 
bearing nonheteroatom-stabilized carbene or (alkoxycarbonyl)carbenes:  
Isolation, X-ray crystal structures, and carbon atom transfer reactions with 
hydrocarbons. J. Am. Chem. Soc. 2002, 124, 13185‒13193. f) Su, H.; Ma, 
G.; Liu, Y. Theoretical insights into the mechanism and stereoselectivity of 
olefin cyclopropanation catalyzed by two engineered cytochrome P450 
enzymes. Inorg. Chem. 2018, 57, 11738–11745. 

(9) a) Kara, S.; Spickermann, D.; Schrittwieser, J. H.; Weckbecker, A.; 
Leggewie, C.; Arends, I. W. C. E.; Hollmann, F. Access to lactone building 
blocks via horse liver alcohol dehydrogenase-catalyzed oxidative 
lactonization. ACS Catal. 2013, 3, 2436–2439. b) Morrill, C.; Jensen, C.; 
Just-Baringo, X.; Grogan, G.; Turner, N. J.; Procter, D. J. Biocatalytic 
conversion of cyclic ketones bearing α-quaternary stereocenters into 
lactones in an enantioselective radical approach to medium-sized 
carbocycles. Angew. Chem., Int. Ed. 2018, 57, 3692–3696. c) Serra, S.; 
Fuganti, C.; Brenna, E. Biocatalytic preparation of natural flavours and 
fragrances. Trends Biotechnol. 2005, 23, 193–198.

(10) a) Moore, T.; Adhikari, R.; Gunatillake, P. Chemosynthesis of 
bioresorbable poly(γ-butyrolactone) by ring-opening polymerisation: a 
review. Biomaterials, 2005, 26, 3771–3782. b) Delgove, M. A. F.; Elford, 
M. T.; Bernaerts, K. V.; De Wildeman, S. M. A. Toward upscaled 
biocatalytic preparation of lactone building blocks for polymer applications. 
Org. Process Res. Dev. 2018, 22, 803–812.

(11) a) Piotrowski, D. W. Mineralocorticoid receptor antagonists for the 
treatment of hypertension and diabetic nephropathy. J. Med. Chem. 2012, 
55, 7957–7966. b) Pommier, Y.; Schwartz, R. E.; Zwelling, L. A.; Kohn, 
K. W. Effects of DNA intercalating agents on topoisomerase II induced 
DNA strand cleavage in isolated mammalian cell nuclei. Biochemistry 
1985, 24, 6406–6410.

(12) a) DeAngelis, A.; Dmitrenko, O.; Fox, J. M. Rh-catalyzed 
intermolecular reactions of cyclic α-diazocarbonyl compounds with 
selectivity over tertiary C–H bond migration. J. Am. Chem. Soc. 2012, 134, 
11035–11043. b) Sattely, E. S.; Meek, S. J.; Malcolmson, S. J.; Schrock, R. 
R.; Hoveyda, A. H. Design and stereoselective preparation of a new class 

of chiral olefin metathesis catalysts and application to enantioselective 
synthesis of quebrachamine: Catalyst development inspired by natural 
product synthesis. J. Am. Chem. Soc. 2009, 131, 943–953.

(13) DeAngelis, A.; Panish, R.; Fox, J. M. Rh-catalyzed intermolecular 
reactions of α-alkyl-α-diazo carbonyl compounds with selectivity over β-
hydride migration. Acc. Chem. Res. 2016, 49, 115–127.

(14) Quasdorf, K. W.; Overman, L. E. Catalytic enantioselective 
synthesis of quaternary carbon stereocentres. Nature 2014, 516, 181–191.

(15) a) Christoffers, J.; Baro, A. eds. Quaternary Stereocenters: 
Challenges and Solutions for Organic Synthesis (Wiley-VCH, Weinheim, 
2005). b) Liu, Y.; Han, S.-J.; Liu, W.-B.; Stoltz, B. M. Catalytic 
enantioselective construction of quaternary stereocenters: Assembly of key 
building blocks for the synthesis of biologically active molecules. Acc. 
Chem. Res. 2015, 48, 740–751.

(16) Coelho, P. S.; Wang, Z. J.; Ener, M. E.; Baril, S. A.; Kannan, A.; 
Arnold, F. H.; Brustad, E. M. A serine-substituted P450 catalyzes highly 
efficient carbene transfer to olefins in vivo. Nat. Chem. Bio. 2013, 9, 485–
487.

(17) Brandenberg, O. F.; Prier, C. K.; Chen, K.; Knight, A. M.; Wu, Z.; 
Arnold, F. H. Stereoselective enzymatic synthesis of heteroatom-
substituted cyclopropanes. ACS Catal. 2018, 8, 2629–2634.

(18) Here we use the name P411-G8S to refer to this P411 variant instead 
of its initial name P411-VACcis in ref 17.

(19) Crystallographic coordinates and structure factors have been 
deposited with the Cambridge Crystallographic Data Centre 
(www.ccdc.cam.ac.uk) under reference number 1864173, 1864172 and 
1864174 for compound 2b, 2f and 4e.

(20) Zhang,Y.-Z.; Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Zhou, Q.-L. Copper-
catalyzed enantioselective carbenoid insertion into S–H bonds. Chem. 
Commun. 2009, 5362–5364.

(21) Limited examples of asymmetric carbene S‒H insertion, but with < 
30% ee: a) Brunner, H.; Wutz, K.; Doyle, M. P. Enantioselective S–H and 
C–H insertions with optically active Rh(II) and Cu(II) catalysts. 
Asymmetric catalysis, LVIII. Monatsh. Chem. 1990, 121, 755–764. b) 
Galardon, E.; Roué, S.; Maux, P. L.; Simonneaux, G. Asymmetric 
cyclopropanation of alkenes and diazocarbonyl insertion into S–H bonds 
catalyzed by a chiral porphyrin Ru(II) complex. Tetrahedron Lett. 1998, 39, 
2333–2334. c) Zhang, X.-M.; Ma, M.; Wang, J.-B. Catalytic asymmetric S–
H insertion reaction of carbenoids. Arkivoc, 2003, 2003, 84–91. d) Yang, 
H.; Swartz, A. M.; Srivastava, P.; Ellis-Guardiola, K.; Park, H. J.; Upp, D.; 
Belsare, K.; Lee, G.; Zhang, C.; Moellering, R. E.; Lewis, J. C. Evolving 
artificial metalloenzymes via random mutagenesis. Nat. Chem. 2018, 10, 
318–324.

(22) Lewis, R. D.; Garcia-Borràs, M.; Chalkley, M. J.; Buller, A. R.; 
Houk, K. N.; Kan, S. B. J.; Arnold, F. H. Catalytic iron-carbene 
intermediate revealed in a cytochrome c carbene transferase. Proc. Natl. 
Acad. Sci. USA 2018, 115, 7308–7313.

(23) Rhodium-catalyzed carbene S‒H insertion via sulfonium ylide 
formation: Xu, B.; Zhu, S.-F.; Zhang, Z.-C.; Yu, Z.-X.; Ma, Y.; Zhou, Q.-
L. Highly enantioselective S–H bond insertion cooperatively catalyzed by 
dirhodium complexes and chiral spiro phosphoric acids. Chem. Sci. 2014, 
5, 1442–1448.

(24) Examples of tuning catalysis through changing axial ligands: a) ref 
6b. b) ref 16. c) Hayashi T.; Tinzl M.; Mori T.; Krengel U.; Proppe J.; 
Soetbeer J.; Klose D.; Jeschke G.; Reiher M.; Hilvert D. Capture and 
characterization of a reactive haem–carbenoid complex in an artificial 
metalloenzymes. Nat. Catal. 2018, 1, 578–584. d) Key, H. M.; Dydio, P.; 
Clark, D. S.; Hartwig, J. F. Abiological catalysis by artificial haem proteins 
containing noble metals in place of iron. Nature 2016, 534, 534–537. e) 
Moore, E. J.; Steck, V.; Bajaj, P.; Fasan, R. Chemoselective 
cyclopropanation over carbene Y–H insertion catalyzed by an engineered 
carbene transferase. J. Org. Chem. 2018, 83, 7480–7490.

 (25) Neutral ligands were found prone to deprotonation, see SI for 
details.

(26) Metalloporphyrin-catalyzed C–H functionalizations through HAT 
followed by radical rebound or radical coupling after dissociation: a) Cho, 
K.-B.; Hirao, H.; Shaik, S.; Nam, W. To rebound or dissociate? This is the 
mechanistic question in C–H hydroxylation by heme and nonheme metal–
oxo complexes. Chem. Soc. Rev. 2016, 45, 1197–1210. b) Liu, W.; Groves, 
J. T. Manganese Catalyzed C–H Halogenation. Acc. Chem. Res. 2015, 48, 
1727–1735. c) Liu, W.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W. A.; 
Groves, J. T. Probing the C–O bond-formation step in metalloporphyrin-
catalyzed C–H oxygenation reactions. ACS Catal. 2017, 7, 4182–4188.

Page 5 of 6

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

Table of Contents (TOC)

Page 6 of 6

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


