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ABSTRACT 

 

For years, ultrasound-modulated optical tomography (UOT) has been proposed to image optical contrasts deep inside 

turbid media (such as biological tissue) at an ultrasonic spatial resolution. The reported imaging depth so far, however, 

has been limited, preventing this technique from finding broader applications. In this work, we present our latest 

experimental explorations that push UOT to clinically useful imaging depths, achieved through optimizing from different 

aspects. One improvement is the use of a large aperture fiber bundle, which more effectively collects the diffused light, 

including both ultrasound-modulated and unmodulated portions, from the turbid sample and then sends it to the 

photorefractive material. Another endeavor is employment of a large aperture photorefractive polymer film for 

demodulating the ultrasound-induced phase modulation. Compared with most UOT detection schemes, the polymer film 

based setup provides a much higher etendue as well as photorefractive two-beam-coupling gain. Experimentally, we have 

demonstrated enhanced sensitivity and have imaged through tissue-mimicking samples up to 9.4 cm thick at the 

ultrasonically-determined spatial resolutions. 

 

Keywords: optical imaging, ultrasound modulation, ultrasound-modulated optical tomography, acousto-optic imaging, 

photorefractive crystal, photorefractive polymer, tissue-mimicking phantom, biological tissue, optical fiber bundle 
１

 

1. INTRODUCTION 

 

As a non-invasive, non-ionizing, and relatively cost-effective technique that is able to provide functional information and 

to distinguish different tissue types, optical imaging plays a more and more important role in biomedical diagnosis [1]. 

Its wide applications, however, are fundamentally hindered by the fact that light is highly diffused in biological tissue, 

causing a trade-off between the imaging depth and the resultant spatial resolution. To overcome this limitation of reduced 

spatial resolution due to strong light diffusivity when using optical imaging alone, researchers have proposed different 

ways to combine optical sensing with another imaging modality, e.g., ultrasound, taking advantage of the contrast 

provided by the pure optics and the spatial resolution of the ultrasound [2]. Ultrasound-modulated optical tomography 

(UOT), also called acousto-optic imaging, is such an example [3, 4]. 
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In this technique, a focused ultrasound field is applied to modulate the propagation of light inside a turbid medium. 

Photons are multiply diffused, which leads to the formation of random speckles outside the sample. Photons traversing 

the ultrasound focal region, however, experience an additional frequency shift that is equal to the ultrasound frequency, 

through the displacements of scatterers and the variation in the medium’s index of refraction [5, 6]. Since such 

modulation only occurs within the acousto-optic interaction volume, and the depth of the modulation is intrinsically 

related to local optical properties, detecting ultrasound-modulated photons yields optically relevant information at the 

ultrasonic resolution. Thus far, UOT has seen many applications, such as conventional optical contrast imaging [7], 

multi-wavelength functional imaging [8], mechanical contrast imaging [9, 10], fluorescence imaging [11], quantitative 

measurement of optical properties [12], real-time monitoring of thermal necrosis [13], etc. Most of these studies, 

however, were performed in tissue-mimicking phantoms or ex-vivo tissue samples with a limited depth less than the 

clinically useful thickness (usually 5-10 cm [14]). The depth insufficiency is partially caused by the fact that the number 

of modulated photons is much less compared with the number of un-modulated photons, posing a strict requirement to 

extract a very small amount (typically 0.1-1% of the total power) of MHz-ordered frequency-shifted modulated photons 

from a much stronger untagged background that is on the order of THz [15]. Moreover, since photons travel along 

different optical paths inside the turbid medium, speckles forming on the sample surface have random phase differences. 

Therefore, looking at one or only a few speckles results in a low flux of tagged-light. While directly detecting multiple 

speckles onto a single-element detector does not coherently sum up the amount of tagged photons, it apparently increases 

useless untagged background levels. Different methods have been proposed to overcome this dilemma and enhance the 

signal detection sensitivity. These efforts include, but are not limited to, CCD-based parallel detection [16, 17], 

photorefractive crystal (PRC)-based interferometry [18, 19], Fabry-Perot interferometry [20, 21], as well as spectral hole 

burning-based filtering methods [22, 23]. In this work, we present our latest explorations [24, 25] to push UOT to 

clinically useful thicknesses by improving the etendue of diffused light collection and the efficiency of de-modulation of 

a photorefractive interferometric UOT system.  

 

2. METHODOLOGY AND MATERIALS 

 

Fig. 1 shows the experimental setup used in the study. The detailed descriptions of this setup can be found in literatures 

[24, 25], and thus are not iterated in this report. Several things, however, need to be specially described. 

 

 

Fig. 1. System experimental setup. Y is the optical illumination direction, and Z is the ultrasound propagation direction. 
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First, the diffused light from the experimental sample, including both ultrasound-modulated and unmodulated portions, 

was collected using an optical fiber bundle from Edmund Optics (NT38-659). As illustrated in Fig. 2, multiple optical 

fibers were tightly packed into the round bundle, which had a net clear aperture of 12.7 mm, a length of 305 mm, a high 

NA of 0.55, and a full acceptance angle of 68
o
. This fiber bundle offered improved light throughput (or etendue) 

compared with standard single fiber assemblies, and greater flexibility/convenience compared with regular lenses used in 

free space.  

 

 

Fig. 2 Illustration of the optical fiber bundle used in this study 

 

Second, two types of photorefractive materials, as shown in Fig. 3, were used in this study to efficiently convert the 

ultrasound-induced frequency and phase modulation into an intensity modulation that could be detected by a photodiode 

[18, 19, 26]. The first type was a Bi12SiO20 (BSO) photorefractive crystal from Elan, Russia that had a dimension of 

10×10×5 mm
3
 along the X, Z, Y directions. Under our experimental conditions (described later), the crystal yielded a 

response speed of ~100 ms, and two-wave-mixing (TWM) gain coefficients of 0.81 and 0.26 cm
-1

, respectively, with and 

without a 2.1 kHz, 8 kV/cm high voltage AC electronic field applied across the crystal (along the X direction). The 

second type is a photorefractive polymer (PRP) film from Nitto Denko Technical, CA, USA. The PRP, 50.8×50.8×0.1 

mm
3
 along X, Z, and Y, respectively, had much larger dimensions along the X and Z directions than the BSO, as shown in 

Fig. 3. In our study, a 400-1000 kV/cm high voltage DC electronic field was applied along the PRP (along the Y direction) 

to enhance the TWM gain coefficient up to 9.2 cm
-1

. However, it must be noted that this polymer film was relatively slow, 

with a response time up to several seconds under our experimental conditions, which is not desirable for future in-vivo 

applications to compensate the speckle decorrelation caused by the physiological motions. However, to demonstrate deep 

imaging in a non in-vivo scenario, this slow response speed was practically adequate, as will be shown later in this 

report. 

 

  

Fig. 3 Dimension comparison of the BSO photorefractive crystal and the photorefractive polymer (PRP) film  

 

At this point, it is necessary to highlight the advantage of using this large aperture PRP in terms of diffused light 

collection etendue. Etendue is an important parameter used to specify the geometric capability of an optical system to 
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transmit, and/or receive radiation (in our case, light), its throughput. Numerically, it is defined as 2sin ( / 2) G A , 

where A is the active surface area of the optical component, and Ω represents the emission/acceptance angle. In UOT, the 

experimental samples usually have apertures or diameters of several centimeters, and accordingly large output etendues 

of 5,000-30,000 mm
2
sr, considering an Ω of 180

o
 as light gets multiply scattered within the experimental sample. As 

shown in Fig. 4, previous detections schemes that allowed coherent signal summation over multiple speckles, including 

confocal Fabry-Perot interferometers (CFPI), PRC-based interferometers, and spectral hole-burning crystals, had much 

smaller etendues due to their limited dimensions and/or acceptance angles. It meant only a small portion of tagged 

photons were effectively used and contributed to the final UOT signal levels. This, accompanied with the factors 

discussed earlier in the Introduction, makes it challenging to image through thick turbid media within the illumination 

safety limits for sound [27] and light [28]. Comparably, the PRP film used in this study provided an etendue up to 

400-500 mm
2
sr, imperfect yet much larger than previous schemes, promising a manifold increase in the UOT 

signal-to-noise ratio due to the increase of useful tagged photons. 

 

 

Fig. 4 Comparison of etendue for experiment sample and different detection schemes. Each column represents one case reported in 

literatures: confocal Fabry-Perot interferometers (CFPI) [20, 21], BSO crystals [9, 18, 24], GaAs crystals [12, 19, 29], SnPS crystals 

[30], spectral hole-burning crystals [22, 23], and the PRP film used in this work. The error bar of the experimental sample comes from 

the variance of sample surface dimensions (ranging from 4 ×4 to 10×10 cm2), while the error bars for the PRCs are from the 

approximation of Ω (20-40o according to Ref. [23]).  

 

In this study, two phantoms that mimicked optical properties of tissue were used as the experimental samples. These 

phantoms were 6 cm and 9.4 cm thick, respectively. Both were composed of 10% (by weight) porcine gelatin 

(Sigma-Aldrich, MO, USA), 89% water, and 1% Intralipid (diluted from 20% Intralipid from Fresenius Kabi, Germany). 

The resultant ' 110s cm   , measured by oblique-incidence reflectometry [31], and the absorption coefficient µa was 

0.12 cm
-1

, measured by a spectrophotometer (Cary 50, Varian, CA, USA). To provide optical contrasts inside these two 

phantoms, absorbing objects were embedded at the central plane of the samples. The absorbers were made from the same 
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material with the background but dyed with India ink to have a higher absorption coefficient at 2 cm
-1

. More details 

about these samples and how the absorbers were deployed will be given later. 

 

Fig. 5 shows two examples of normalized UOT signal waveform when the ultrasound burst from a 3.5 MHz transducer 

(Panametrics A318S, Olympus NDT, MA, USA) propagated outside and across an optical absorber that was embedded 

inside the 6-cm thick phantom. As seen, when the ultrasound burst travelled away from the absorber (the green curve), 

the modulated-light power increased with the in situ pressure amplitude, forming a summit around 38-39 µs when the 

burst arrived at the ultrasound focal position (38.1 mm away from the transducer surface). With the presence of the 

absorber, however, the modulated-light power began to reduce when the ultrasound burst encountered the absorbing 

region, due to the decreased amount of modulated photons and the efficiency of ultrasound modulation [6, 12, 32]. 

Therefore, the valley of the UOT signal is seen as the signature of the optical absorber. 

 

 

Fig. 5 Examples of UOT signal waveform with ultrasound pulses propagating outside (green curve) and across (red curve) an optical 

absorber embedded inside the 6-cm thick phantom. 

 

3. RESULTS AND DISCUSSION  

 

Fig. 6(a) shows the cross-section photograph of the 6-cm thick tissue-mimicking phantom mentioned earlier. There were 

three absorbing objects that had a higher optical absorption coefficient (2 cm
-1

) than the background. This cross-section 

was embedded at Y = 3 cm in the 6-cm thick sample. Before the experiment, the ultrasound focus was aligned to intersect 

with the needle on the left in both Y and Z directions. During the experiment, the BSO photorefractive crystal was used 

in the detection scheme [24]. And a signal beam of 35 mm diameter, 208 mW/cm
2
, a reference beam of 10 mm diameter, 

30 mW/cm
2
, and a 10-cycle burst with a 2.6 MPa (peak-to-peak) focal pressure, and a repetition rate of 100 Hz, were 

employed. Two groups of measurements were performed. First, the light and sound components remained stationary, but 

the sample scanned along the X direction at a step size of 0.3175 mm. In the second group of measurements, the light and 

the sample kept still, but the ultrasound focus was scanned along the Y direction with the sample fixed at the position of 

X = 6.35 mm. At each position, one UOT scan line (“A line”) as shown in Fig. 5 was obtained, averaging over 64 

ultrasound bursts. Fig. 6(b) and (c) show the resulting 2-D UOT images, with each scan line normalized to its peak 

power for better visualization contrast. Note the distance along the Z direction was converted from the product of 

temporal position with the sound speed in the phantom (~1.5 mm/µs). In Fig. 6(b), the three embedded absorbers can be 

clearly seen in the XZ plane, even though Obj3 was only partially imaged due to the limited scanning range of our 

translation stages. In Fig. 6(c), Obj1 was also clearly revealed in the YZ plane. Moreover, the profiles (Fig. 6 d-f) along 

the dashed lines in Fig. 6(b) and (c) provided more information, like the dimensions of the objects, the interspacing 
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between the objects, and the resolutions along the X and Z directions. For example, in Fig. 6(d), Obj1 was centered at X ≈ 

6.0 mm, ~2.4 mm wide (all imaged sizes in this study were determined from the full-width at half maximum of the 

contrasts), and Obj2 at X ≈ 16.9 mm, ~4.3 mm wide. These were quite consistent with what can be seen from the 

cross-section photograph (Fig. 6a) that Ob1 was ~2.1 mm, Obj2 was ~4.0 mm, and their center-to-center distance was 

~10 mm. The resolution of UOT along the X direction, estimated from the 1/4-3/4 of the imaging contrasts, was ~1.05 

mm, which was only slightly wider than the ultrasound focal width (0.875 mm). In Fig. 6(e), Obj1 was about 5.1 mm 

long, and was, again, reasonably consistent with its actual length of 4.5 mm shown in the photograph. The imaging 

resolution along the Z direction was ~2.4 mm, which is 0.5-0.6 of the ultrasound burst length (10 cycles of 3.5 MHz is 

about 4.3 mm long spatially). Lastly, Obj1 was ~3.8 mm wide from the profile shown in Fig. 6(f), a value very close to 

its actual dimension (3.5 mm). The estimated imaging resolution in the Y direction was ~1.17 mm, and was close to the 

focal width of the ultrasound field. 

 

 

Fig. 6 (a) The cross-section photograph of the 6-cm thick phantom. (b) The resultant 2-D UOT image of the phantom in the XZ plane 

with Y = 3 cm. (c) The 2-D UOT image in a YZ plane across Obj1 (X = 6.35 mm in Fig. 6b). (d-f) Modulated light power distributions 

along dashed lines labeled in Figs. (b) and (c), respectively. In (d) and (f), the blue squares are the measured data, and the red curves 

the FFT smoothed results. Reproduced from Ref. [24]. 

 

To image through the 9.4-cm thick phantom sample (its cross-section shown in Fig. 7a), the photorefractive polymer film 

discussed earlier was used to enhance the detection sensitivity without the need of employing much more intense light 

and sound illuminations [25]. Except for the replacement of the photorefractive material, other experiment parameters 
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remained very similar or unchanged from the last measurements performed for Fig. 6. For example, the used signal beam 

had a diameter of 24 mm, an intensity of 192 mW/cm
2
, and the reference beam a diameter of 30 mm, an intensity of 9.9 

mW/cm
2
. The ultrasound field, the averaging times of UOT signal, the way of scanning the experimental sample, and the 

signal processing methods were kept identical to those used for Fig. 6. The resulting “B-Mode” 2-D UOT image of the 

cross-section was shown in Fig. 7(b), from which one can tell the existence, dimensions, inter-spacing of the two 

embedded absorbers, and the resolutions in the XZ plane. Note that this UOT image was obtained with a relatively 

straightforward and inexpensive apparatus in a tissue-mimicking phantom sample with a thickness of 9.4 cm, which is 

equivalent to 94 transport mean free paths, or 9.4 cm thickness of normal human breast tissue, a clinically useful depth 

that had never been achieved, not to mention explored, until most recently [23-25].  

 

Fig. 7 (a) Cross-section of the 9.4 cm-thick phantom sample, embedded with two absorbing objects at its central Y plane (Y = 4.7 cm). 

(b) The resulting 2-D UOT image of the central cross-section. Reproduced from Ref. [25]. 

 

4. SUMMARY AND FUTURE WORK 

 

In summary, we reported our latest improvements to a relatively simple and cost-effective photorefractive-based UOT 

system. Our efforts included the use of a large aperture optical fiber bundle to improve the diffused light collection 

convenience and efficiency, and a photorefractive polymer to improve the etendue and two-wave-mixing gain coefficient 

for coherent de-modulation of ultrasound-induced frequency/phase modulation. Experimentally, we demonstrated UOT 

imaging at clinically useful thicknesses up to 9.4 cm in tissue-mimicking phantom samples, within the light [28] and 

sound [27] safety limits. That being said, some more work needs to done to make our apparatus towards clinical 

applications. For example, the system needs to be modified to work at a more tissue-friendly optical wavelength such as 

700-800 nm or 1064 nm for deeper penetration depth in tissue, benefitting from less optical tissue attenuation and higher 

ANSI safety limits [28]. Moreover, faster responding photorefractive materials (e.g. GaAs crystal [33], SnPS crystal [30], 

and fast polymers [34]) are desired to better compensate the in vivo speckle decorrelation (1-10 kHz) from physiological 

motions.  
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