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Abstract

Serine phosphorylation is a key post-translational modification that regulates diverse biological 

processes. Powerful analytical methods have identified thousands of phosphorylation sites, but 

many of their functions remain to be deciphered. A key to understanding the function of protein 

phosphorylation is access to phosphorylated proteins, but this is often challenging or impossible. 

Here we evolve an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair that directs the efficient 

incorporation of phosphoserine into recombinant proteins in E. coli. Moreover, combining the 

orthogonal pair with a metabolically engineered E. coli enables the site-specific incorporation of a 

non-hydrolyzable analog of phosphoserine. Our approach enables quantitative decoding of the 

amber stop codon as phosphoserine and we purify several milligrams-per-liter of proteins bearing 

biologically relevant phosphorylations that were previously challenging or impossible to access: 

including phosphorylated ubiquitin and a kinase (Nek7) that is synthetically activated by a 

genetically encoded phosphorylation in its activation loop.

The phosphorylation of proteins in eukaryotic cells is a key post-translational modification 

that regulates essential and diverse biological phenomena. Phosphorylation is installed by 

protein kinases on serine, threonine, tyrosine and histidine residues, and removed by 

phosphatases, and serine phosphorylation is the most abundant phosphorylation observed in 
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proteins1-3. Accessing the homogeneously, site-specifically and quantitatively 

phosphorylated form of many proteins remains challenging. This is often because the 

relevant kinases are unknown - as is increasingly the case for the large numbers of 

phosphorylation sites of unknown function identified by mass spectrometry2 - or because the 

relevant kinase does not modify the desired protein site-specifically and/or completely in 
vitro. The installation of protein phosphorylation by semi-synthetic methods, using native 

chemical ligation, has provided a powerful approach to address the functional consequences 

of phosphorylation4, 5, but is most commonly limited to sites proximal to the termini of 

proteins. The efficient biosynthesis of proteins bearing site-specific phosphorylation would 

enable the biochemical, mechanistic and structural characterization of diverse 

phosphorylated proteins, and provide molecular insight into how phosphorylation 

dynamically reshapes proteome function2; while the efficient biosynthesis of proteins 

bearing non-hydrolyzable analogs of phosphorylation at known phosphorylation sites would 

enable a range of additional applications, including the capture of phospho-protein binders 

in complex mixtures containing phosphatases, and the creation of constitutively active 

versions of kinases and other proteins. Here we address the challenge of creating a general 

and efficient method for site-specifically installing phosphoserine, and a non-hydrolyzable 

analog of phosphoserine into recombinant proteins via genetic code expansion.

Intriguingly, phosphoserine is a metabolic precursor to serine, and in certain methanogenic 

archea phosphoserine is used in a two-step pathway to direct the incorporation of cysteine 

into proteins6. In the first step of this pathway an unusual aminoacyl-tRNA synthetase 

(SepRS) aminoacylates phosphoserine on to tRNACys
GCA, to create pSer tRNACys

GCA. A 

second enzyme (Sep tRNA:Cys tRNA synthase) then converts pSer tRNACys
GCA to Cys 

tRNACys
GCA, and this aminoacylated tRNA is taken to the ribosome by archeal elongation 

factor EF1α (a homolog of EF-Tu), where it directs the incorporation of cysteine in response 

to cognate codons.

Two orthogonal aminoacyl-tRNA synthetase/tRNACUA pairs have previously been 

developed for the efficient, site-specific incorporation of diverse unnatural amino acids into 

recombinant proteins in response to an amber stop codon introduced into a gene of interest 

(the PylRS/tRNA pair from methanosarcina and the Methanococcus janaschii TyrRS/tRNA 

pair)7, 8 ; the aminoacylation of tRNAGCA with phosphoserine in the first step of the cysteine 

incorporation pathway in methanogenic archea raised the possibility of altering the SepRS/

tRNAGCA pair to create a SepRS/tRNA(Tran)CUA pair (in which the CUA anticodon is 

transplanted in place of the native GCA anticodon) for the site-specific incorporation of 

phosphoserine into proteins9.

Despite substantial effort,10, 11 two challenges have limited the adaptation of the SepRS/

tRNAGCA pair for the site-specific incorporation of phosphoserine into proteins. The first 

challenge in incorporating phosphoserine results from the prediction that tRNACys
GCA, 

aminoacylated with phosphoserine, will be a poor substrate for EF-Tu 12. This prediction 

was borne out by the observation that mutating the amino acid binding pocket of EF-Tu to 

create "EF-Sep" enabled the measureable incorporation of phosphoserine into model 

proteins in E. coli using a SepRS/tRNA(Tran)CUA/ EF-Sep system10. However, this system 

is substantially less efficient than other systems for incorporating unnatural amino acids into 
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proteins, and produced only micrograms per L of a protein kinase that was not purified to 

homogeneity10, and has not found utility for the synthesis of phosphoproteins. Reducing 

competition for decoding the amber stop codon by deleting release factor-1 (RF1) was 

reported to increases protein yields for a model protein13, but the cells grew very slowly and 

more than half of the protein that is synthesized mis-incorporated natural amino acids in 

place of phosphoserine in response to the amber stop codon14.

A second challenge in adapting the SepRS/tRNAGCA pair results from the consequences of 

converting the anticodon of the tRNA from GCA to CUA. In vitro aminoacylation assays9 

and a SepRS/tRNAGCA structure9 demonstrated that SepRS recognizes the anticodon (G34, 

C35, and A36) of tRNAGCA and mutation of the GCA anticodon to CUA to create an amber 

suppressor led to a tRNA that is a very poor substrate for SepRS9, and may be poorly 

decoded on the ribosome. Further work reported an additional mutation in EF-Sep, creating 

EF-Sep21, and mutations in the anticodon binding region of SepRS, creating SepRS9, and 

reported a five-fold increase in chloramphenicol resistance from a chloramphenicol acetyl-

transferase gene bearing an amber stop codon at position 112 using this system11. These 

authors also reported the synthesis of histone H3 phosphorylated at serine 10 with a yield of 

3 mg/L.

We, and others, have demonstrated that the efficiency of unnatural amino acid incorporation 

with orthogonal synthetase/tRNA pairs, in which the anticodon of the tRNA has been altered 

to be complementary to a stop codon or a quadruplet codon, can be enhanced by optimizing 

the sequence surrounding the new anticodon15, 16. Selecting optimized sequences 

surrounding the anticodon of the tRNA may facilitate the presentation and decoding of the 

tRNA in the ribosome and, in cases where the natural anticodon is an identity element for its 

synthetase (as for SepRS), it may also facilitate the recognition of the optimized tRNA by 

the synthetase.

Here we demonstrate that the systematic evolution of the sequence surrounding the 

anticodon of tRNA(Tran)CUA and subsequent evolution of anticodon recognition region of 

SepRS enables the creation of evolved SepRS(XX)/tRNA(XX)CUA pairs, where XX defines 

the selected mutations. These pairs direct the incorporation of phosphoserine eighteen times 

more efficiently than previously reported pairs10, 11, with a comparable efficiency to the 

established orthogonal PylRS/tRNACUA pair, that is widely used to make modified 

recombinant proteins for structural and functional studies 7. Moreover, we demonstrate that, 

in contrast to previous assumptions10, EF-Tu engineering is not required for genetically 

encoded phosphoserine incorporation. We demonstrate the synthesis (with yields of several 

milligrams per liter of culture), and activity of phosphorylated recombinant proteins, 

including ubiquitin (Ub) phosphorylated at position 65 (Ub(pSer65))17-19 and NEK7 

kinase22, 23 phosphorylated in the activation loop. Finally, we manipulate serine biosynthetic 

enzymes20 to enable the first route to genetically encoding the site-specific incorporation of 

a non-hydrolyzable analog of phosphoserine in a recombinant protein.
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Results

Evolving pSer tRNA enhances phosphoserine incorporation

We began by testing the efficiency of previously reported systems for phosphoserine 

incorporation using a chloramphenicol resistance assay. Read through of the amber stop 

codon in a chloramphenicol acetyl-transferase gene at position 112 (cat(112TAG)) by EF-

Sep/SepRS/ pSer tRNA(Tran)CUA, leads to growth on 60 μg/mL chloramphenicol, while in 

the absence of SepRS cells grow weakly on 20 μg/mL chloramphenicol (Figure 1). Mutating 

SepRS to SepRS911 and EF-Sep10 to EF-Sep2111 did not provide an increase in 

chloramphenicol resistance in our hands (Figure 1 and Supplementary Results, 

Supplementary Figure 1). We therefore used SepRS and EF-Sep as a starting point for 

further experiments.

To investigate whether altering the sequence flanking the anticodon of pSer tRNACUA 

enables efficient phosphoserine incorporation we first created pSer tRNA(N10)CUA, a 

5.1×107 member library that samples all possible combinations of the ten nucleotides G29-

U33 and G37-C41 that flank the anticodon. The library was transformed into cells bearing 

SepRS and EF-Sep and cat(112TAG), and pSer tRNA(N10)CUA library members that enable 

efficient read-through of the amber stop codon selected on chloramphenicol. This screen 

identified 96 colonies, and sequencing revealed that these colonies contained 15 distinct 

tRNA(XX)CUA sequences, indicating a large degree of library convergence (Figure 1).

To quantify the efficiency and specificity of phosphoserine incorporation with the selected 

pSer tRNA(XX)CUA variants we examined the chloramphenicol resistance of cells 

containing cat(112TAG) with either EF-Sep/SepRS/ pSer tRNA(XX)CUA variants or EF-

Sep/pSer tRNA(XX)CUA variants (in which SepRS is omitted). Thirteen out of the fifteen 

selected EF-Sep/SepRS/pSer tRNA(XX)CUA combinations led to growth on substantially 

higher concentrations of chloramphenicol (200 μg/mL to 700 μg/mL) than the starting 

system while combinations using two selected tRNAs (pSer tRNA(A8)CUA and pSer 

tRNA(C9)CUA) were not active. The most active combinations led to approximately ten 

times the level of chloramphenicol resistance provided by pSer tRNA(Tran)CUA(Figure 1b). 

All 13 functional tRNAs have G37 mutated to A, and conserve C32, A38 and U33. G37A in 

isolation is known to decrease the efficiency of tRNAGCA aminoacylation by SepRS21, but 

the net result of the mutations transplanted into the anticodon and co-selected with G37A 

from pSer tRNA(N10)CUA on aminoacylation is unknown. We note that A37 is selected16 in 

many efficient amber suppressor tRNA and may facilitate the efficient decoding of amber 

stop codons. Interestingly, tRNAs C2 and C4 are predicted to have an expanded anticodon 

loop due to mis-pairings between positions 31 and 39. However these tRNAs, like evolved 

quadruplet decoding PyltRNAs that also lack base pairing at this position15, are functional.

In the absence of SepRS we observe a range of chloramphenicol resistance levels resulting 

from mis-aminoacylation of the selected pSer tRNA(XX)CUA variants by natural synthetases 

that are constitutively present in the cell. In the absence of SepRS, pSer tRNA(Tran)CUA can 

be aminoacylated with glutamine by GlnRS10, and the tRNA mutations selected from pSer 

tRNA(N10)CUA may alter the levels of mis-aminoacylation by GlnRS or other endogenous 

aminoacyl-tRNAsynthetases. All of the selected active tRNAs show SepRS dependent 
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chloramphenicol resistance, and two tRNAs (pSer tRNA(B2)CUA, pSer tRNA(C2)CUA) are 

approximately ten times more active than pSer tRNA(Tran)CUA in the presence of EF-Sep/

SepRS, but have a low activity in the absence of SepRS, that is comparable to that of pSer 

tRNA(Tran)CUA in the absence of SepRS. This data suggests that these tRNA mutants 

enable much more efficient incorporation of phosphoserine with EF-Sep/SepRS, but do not 

increase mis-incorporation of natural amino acids in the absence of SepRS.

Next we aimed i) to directly demonstrate the improvement in phosphoserine incorporation 

efficiency provided by the evolved pSer tRNA(XX)CUA variants in a recombinant protein 

and ii) to characterise the fidelity of phosphoserine incorporation by mass spectrometry. We 

expressed the gene for sperm whale myoglobin bearing a C-terminal His6 tag and an amber 

codon at position 127 (myo(127TAG)-His6) in cells that also contain EF-Sep/SepRS and 

either pSer tRNA(Tran)CUA or one of the fifteen selected pSer tRNA(XX)CUA variants. 

Expression using each of the thirteen active, selected pSer tRNA(XX)CUA variants led to 

substantially more myoglobin expression than expression using pSer tRNA(Tran)CUA 

(Figure 1c and Supplementary Figure 2), consistent with the chloramphenicol resistance 

assay. Purified myoglobin from each expression was subject to mass spectrometry to 

demonstrate the incorporation of phosphoserine (Supplementary Figure 3). Despite the 

variable levels of chloramphenicol resistance observed in the absence of SepRS (Figure 1b), 

in the presence of SepRS a single protein is produced, for all the pSer tRNA(XX)CUA 

variants, in which phosphoserine is the only amino acid that is detectably incorporated in 

response to the amber codon. This is consistent with previous reports that background 

misacylation of amber suppressor tRNAs may be effectively out-competed in the presence of 

an efficient cognate synthetase and its substrate22, 23.

SepRS evolution enhances phosphoserine incorporation

We next created a SepRS anticodon binding domain library (SepRS(AC6)) and selected 

SepRS variants that function more efficiently with the thirteen selected, active pSer 

tRNA(XX)CUA variants. From the X-ray crystal structure of the Archaeoglobus fulgidus 
SepRS/tRNACys

GCA complex9, we identified six amino acid residues that interact with G34 

and C35 of the cognate tRNA’s anticodon (Glu412, Glu414, Thr417, Pro495, Ile496 and 

Phe526) to target for combinatorial mutagenesis to all twenty amino acids (Figure 2a). The 

resulting library contains two critical residues (Phe526, Thr417) that pack around and 

between G34 and C35 of the anticodon (Figure 2a), in addition to the anticodon binding 

domain residues mutated in previous work11. To generate the SepRS(AC6) library we first 

created plasmids recoding Phe526 to every amino acid and then used these plasmids as a 

template for two rounds of Enzymatic Inverse-PCR mediated randomisation with a “small-

intelligent” primer set24 to encode all 20 amino acids at each of the other five targeted 

positions. The library was generated with a diversity of 3.1×109 c.f.u., surpassing the 

required diversity of 2.9×108.

The SepRS(AC6) library was co-transformed into cells with each of the thirteen selected, 

active pSer tRNA(XX)CUA variants, EF-Sep, and cat(112TAG) in thirteen parallel 

transformations, and subjected to a positive selection on chloramphenicol. Fourteen new 

SepRS(XX)/pSer tRNA(XX)CUA pairs, in which the SepRS(XX) variants discovered were 
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convergent at several positions (Supplementary Table 1), were identified from this selection, 

and their activity determined by chloramphenicol resistance assays (Figure 2b).

The eight most active, selected SepRS(XX)/ pSer tRNA(XX)CUA pairs survived on 1100 

μg/mL of chloramphenicol, indicating that these pairs are greater than eighteen times more 

efficient than previously reported systems for phosphoserine incorporation10, 11 (Figure 1 & 

Supplementary Figure 1). Seven of the eight most active pairs utilize pSer tRNA(XX)CUA 

variants that exhibit the greatest activity with SepRS (Figure 2b).

Protein expression experiments with the selected SepRS (XX)/ pSer tRNA(XX)CUA pairs, 

EF-Sep, and myo(127TAG)-His6 confirmed the increase in efficiency provided by the 

selected pairs, and demonstrate that the pairs we describe are much more efficient than the 

SepRS/ pSer tRNA(Tran)CUA pair10, or mutants of SepRS previously reported to function 

with pSer tRNA(Tran)CUA 11(Figure 2c and Supplementary Figure 2). Moreover, mass 

spectrometry confirms the quantitative incorporation of phosphoserine in recombinant 

myoglobin produced from cells containing these systems (Supplementary Figure 4).

Ef-Tu mutation is not required to encode phosphoserine

Next we investigated whether EF-Sep is required for the site-specific incorporation of 

phosphoserine using the evolved pSer tRNA(XX)CUA variants. Control experiments confirm 

that the SepRS/pSer tRNA(Tran)CUA pair does not support chloramphenicol resistance in 

cells bearing cat(112TAG) when EF-Sep is omitted. In contrast, cells bearing cat(112TAG), 

and the SepRS, pSer tRNA(XX)CUA pairs, but lacking EF-Sep, survive on concentrations of 

chloramphenicol up to 100μg/mL (eg: pSer tRNA(A4)CUA ) (Figure 3a), demonstrating that 

the selected SepRS/pSer tRNA(XX)CUA pairs are sufficient to direct the incorporation of 

phosphoserine in the absence of EF-Sep. The level of chloramphenicol resistance provided 

by selected SepRS/pSer tRNA(XX)CUA pairs exceeds that of the EF-Sep/SepRS/ pSer 

tRNA(Tran)CUA system (60μg/mL), providing evidence that the selected tRNA(XX)CUAs 

provide a contribution to the efficiency of phosphoserine incorporation that exceeds the 

contribution provided by EF-Tu engineering to create EF-Sep. Protein expression 

experiments with the SepRS/ pSer tRNA(XX)CUA pairs and myo(127TAG)His6 confirmed 

the increase in efficiency provided by pSer tRNA(XX)CUA in the absence of EF-Sep (Figure 

3b and Supplementary Figure 2). Moreover, mass spectrometry confirms the quantitative 

incorporation of phosphoserine in recombinant myoglobin produced from cells containing 

the SepRS/ pSer tRNA(XX)CUA pairs, but lacking EF-Sep (Supplementary Figure 5).

Next, we asked whether evolving the anticodon binding region of SepRS enables efficient 

incorporation of phosphoserine in the absence of EF-Sep. To discover SepRS (XX)/ pSer 

tRNA(XX)CUA pairs that function in the absence of EF-Sep we co-transformed the 

SepRS(AC6) library with each of the thirteen active pSer tRNA(XX)CUAs (Figure 1) and 

cat(112TAG) and selected cells that survive on increasing concentrations of 

chloramphenicol. We discovered three SepRS (XX)/ pSer tRNA(XX)CUA pairs that direct 

the incorporation of phosphoserine more efficiently that the progenitor SepRS / pSer 

tRNA(B2)CUA, and SepRS / pSer tRNA(B4)CUA pairs (Figure 3c, Supplementary Table 1). 

The most efficient of these pairs, SepRS (17)/ pSer tRNA(B2)CUA, confers chloramphenicol 

resistance to approximately 500μg/mL, approximately ten times the resistance conferred by 
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the SepRS/ pSer tRNA(Tran)CUA/EF-Sep system or the SepRS9/ pSer tRNA(Tran)CUA/EF-

Sep21 system11 (Figure 3c, Figure 1, and Supplementary Figure 1).

Protein expression experiments with the selected SepRS (XX)/ pSer tRNA(XX)CUA pairs, 

and myo(127TAG)His6 confirmed the substantial increase in efficiency provided by the 

selected SepRS (XX)/ pSer tRNA(XX)CUA pairs, and further demonstrated that the selected 

pairs are much more efficient than the SepRS/ pSer tRNA(Tran)CUA/EF-Sep, system 

previously reported10 (Figure 3d and Supplementary Figure 2). Moreover, mass 

spectrometry confirmed the quantitative incorporation of phosphoserine in recombinant 

myoglobin produced from cells containing these systems (Supplementary Figure 5). Taken 

together the chloramphenicol resistance data, protein expression data and mass spectrometry 

data demonstrate that pSer tRNACUA evolution and SepRS evolution lead to much more 

efficient phosphoserine incorporation than EF-Tu evolution, and demonstrate that, in 

contrast to previous assumptions10, alteration of EF-Tu is not required for the incorporation 

of phosphoserine. Nonetheless, the best EF-Sep/SepRS(XX)/pSer tRNA(XX)CUA 

combinations we have discovered outperform the best EF-Sep independent SepRS(XX)/pSer 

tRNA(XX)CUA pairs (Supplementary Figure 1), consistent with the sequential roles of 

aminoacylation, delivery of the aminoacylated tRNA to the ribosome, and ribosomal 

decoding in the process of translation.

Optimized site-specific phosphoserine incorporation

Having established the optimal SepRS and pSer tRNA sequences we cloned the SepRS(2)/

pSer tRNA(B4)CUA/EF-Sep combination into a single high copy plasmid for convenient use 

in protein expression experiments when co-transformed with a plasmid encoding the gene of 

interest. We used a Glutathione-S-transferase-TAG-calmodulin (gst(TAG)cam) reporter with 

an amber stop codon at position 1 of calmodulin to characterize the efficiency of 

phosphoserine incorporation (Supplementary Figure 6) via the ratio of GST (synthesized as 

a result of termination in response to the amber stop codon) to GST-calmodulin (synthesized 

as a result of unnatural amino acid incorporation in response to the amber stop codon)15. 

The optimized system led to the synthesis of full-length GST-calmodulin (Supplementary 

Figure 6), and only a trace amount of GST. To benchmark the efficiency of the 

phosphoserine incorporation system against the efficiency of a widely used genetic code 

expansion platform we expressed (gst(TAG)cam) using the PylRS/tRNACUA pair in the 

presence of (Nε-[(tert-butoxy)carbonyl]-L-lysine), an established and efficient substrate for 

PylRS25. This led to a greater fraction of protein synthesis resulting in truncation, 

demonstrating that the new system we have developed here has an efficiency in this assay 

that is comparable to or greater than that of a system that has been widely adopted for 

genetic code expansion.

While the efficiency of the system for phosphoserine incorporation was already very good, 

we tested whether the efficiency could be improved with an orthogonal translation system 

that does not recognize RF1, or using an RF1 deletion15, 23, 26-28 (Supplementary Figure 6). 

In both cases we see little or no truncated GST indicating near quantitative read through of 

the amber stop codon. While the use of these systems is unlikely to be necessary for 
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expressing many proteins, these experiments demonstrate their compatibility with the 

evolved system for phosphoserine incorporation.

Expression and characterization of Ub(pSer65)

To further demonstrate the generality of our approach we produced ubiquitin bearing 

phosphoserine at position 65, a phosphorylation that has been identified in cells 17-19 and is 

installed by PINK1, a kinase that also phosphorylates the E3 ubiquitin ligase Parkin29. 

Mutations in PINK1 or Parkin are the most common cause of autosomal recessive 

Parkinson’s disease30. Upon stress, the phosphorylation of both Parkin and ubiquitin at Ser 

65 by PINK1 appear to be required for the activation of Parkin and the ubiquitylation and 

clearance of damaged mitochondria from cells 17-19. Pure ubiquitin phosphorylated at serine 

65 is challenging to generate enzymatically in vitro, and is typically obtained in sub-

milligram quantities, though very recently a more efficient route to enzymatic 

phosphorylation of serine 65 has been reported and used for detailed biochemical 

characterization of this phosphorylation31.

We expressed ubiquitin specifically phosphorylated at position 65 (Ub (pSer65)) in cells 

containing Ub (65TAG)-His6 and the optimized phosphoserine incorporation system. Ub 

(pSer65) was purified with a yield of 3 mg per L of culture (Figure 4a,b,c). We investigated 

whether the Ub(pSer65) we have generated can directly activate Parkin E3 ligase activity to 

accelerate discharge of ubiquitin from a loaded E2 and ubiquitylation of substrates, as 

previously demonstrated for enzymatically derived ubiquitin that is phosphorylated at serine 

65 17-19, which we refer to as Ub(pSer65*) for clarity. Addition of Ub(pSer65) led to near 

maximal ubiquitin discharge from a ubiquitin loaded E2 (UbcH7) by Parkin (Figure 4d and 

Supplementary Figure 7) and had a similar effect to Ub(pSer65*) (Fig 4d). Consistent with 

previous results we did not observe any discharge upon addition of un-phosphorylated 

ubiquitin (Fig 4d). Parkin activation by Ub(pSer65) led to the formation of polyubiquitin 

chains, increased auto-ubiquitylation of Parkin and ubiquitylation of a Parkin substrate, Miro 

1 (Figure 4e and Supplementary Figure 2). The activity conferred by Ub(pSer65) was 

comparable to that observed with Ub(pSer65*) (Figure 4e). In control experiments un-

phosphorylated ubiquitin did not activate full-length Parkin (Figure 4e), as expected.

Expression of synthetically-activated Nek7 kinase

To demonstrate that our system enables the efficient incorporation of phosphoserine at 

biologically relevant sites in a protein kinase we expressed Nek7, an essential kinase that is 

activated by phosphorylation at Serine 195 in mammalian cells32, 33. Nek7 plays an 

important role in mitotic progression, and is required for robust mitotic spindle formation 

and cytokinesis32, 33.

We expressed and purified Nek7 (Ser195TAG)-His6, leading to the production of Nek7 

(pSer195)-His6 with a purified yield of 2 mg per L of culture (Figure 5a). ESI-MS and ESI 

MS/MS demonstrates the synthesis of Nek7 phosphorylated at position 195 (Figure 5b,c and 

Supplementary Figure 8). A small fraction of the purified protein has a mass consistent with 

the autophosphorylation of the synthetically activated kinase at an additional site (or sites) 

(Figure 5b). Indeed, we observe autophosphorylation of Nek7 (Supplementary Figure 9), as 
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previously observed for the closely related kinase Nek632. To further confirm that the minor 

species results from autophosphorylation we purified a catalytically inactive variant, Nek7 

(D179N) (Supplementary Figure 10). Expression of Nek7 (D179N, Ser195TAG)-His6 led to 

production of Nek7 (D179N, pSer195)-His6 with a purified yield of 2 mg per L of culture. 

ESI-MS and MS/MS confirmed the site-specific incorporation of phosphoserine with no 

other phosphorylations.

We compared the activity of wild-type (wt) Nek7, Nek7(pSer195) and Nek7(D179N, 

pSer195) in phosphorylation of a model substrate (myelin basic protein, MBP)32 (Figure 5d 

and Supplementary Figure 11). While Nek7 (pSer195) robustly phosphorylates the substrate, 

neither wtNek7 nor Nek7(D179N, pSer195) efficiently phosphorylates the substrate. The 

addition of the C-terminal domain of Nek9 (Nek9-CTD) activates Nek7, as expected34, but 

does not further activate Nek7 (pSer195), indicating that Nek7 (pSer195) bypasses the 

requirement for activation by Nek9 in vitro.

These experiments provide a first route to expressing and purifying Nek7 with a quantitative 

and site-specific phosphorylation in the activation loop, and demonstrate that milligram 

quantities of phosphorylated kinases can be obtained to enable structural and functional 

studies. Moreover, they demonstrate that synthetic phosphorylation of Nek7 is sufficient to 

activate the kinase and bypass trans-activation by the Nek9-CTD in vitro.

Encoding a non-hydrolyzable analog of phosphoserine

The genetically directed incorporation of the non-hydrolyzable analog of phosphoserine, 2-

amino-4-phosphonobutyric acid (2)35, 36, into recombinant proteins may facilitate the 

isolation of phospho-protein binders in complex mixtures that contain phosphatases, the 

creation of constitutively active kinases, as well as the characterization of complexes formed 

between phosphatase and their substrates.

No unnatural substrates have been incorporated with the SepRS/tRNA system, and a key 

challenge associated with the incorporation of unnatural substrates with this system results 

from the abundance of phosphoserine in the cell that will outcompete unnatural substrates at 

the active site of SepRS (Figure 6a). We asked whether we could manipulate the cell’s 

phosphoserine biosynthesis and destruction pathways20 to facilitate the incorporation of 2 
using the evolved SepRS(XX)/tRNA(XX)CUA pairs (Figure 6b). Since phosphoserine is 

synthesized from 3-phosphohydroxypyruvate by phosphoserine aminotransferase (encoded 

by serC), and converted to serine by phosphoserine phosphatase (encoded by serB) 20we 

reasoned that the intracellular levels of phosphoserine may be decreased by either 

overexpressing serB, deleting serC from the genome or by overexpressing serB in a serC 
deletion strain.

We found that the addition of 2mM 2 to wild-type E. coli provided with the SepRS(2)/

tRNA(B4)CUA /EF-Sep system did not increase the levels of myoglobin synthesized from 

myo (127TAG)-His6 (Figure 6c), and mass spectrometry confirmed the incorporation of 

phosphoserine rather than 2 (data not shown). Overexpression of serB led to an increase in 

myoglobin level, but the level of expression was not dependent upon the addition of 2. These 

observations are consistent with serB overexpression being insufficient to deplete 
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phosphoserine to enable the specific incorporation of 2. Deletion of serC led to a decrease in 

myoglobin levels, consistent with a depletion of intra-cellular phosphoserine, but myoglobin 

levels were not rescued by addition of 2, suggesting that a serC deletion is not sufficient to 

enable the incorporation of 2. Overexpression of serB in the serC deletion led to an increase 

in myoglobin levels, as observed for wild-type E.coli. However, the addition of 2 to the serC 
deletion overexpressing serB led to a clear increase in myoglobin levels, consistent with the 

specific incorporation of 2 in this strain.

We note that it is currently unclear why serB overexpression leads to an increase in 

myoglobin levels, or why the levels of myoglobin increase upon addition of 2 to ΔserC 
+serB, but not upon addition of 2 to ΔserC. Nonetheless, these experiments prompted us to 

investigate whether 2 can be site-specifically incorporated into proteins produced in E.coli 
deleted for serC and overexpressing serB. In ΔserC + serB cells containing myo(127TAG)-
His6/EF-Sep and the SepRS(2)/tRNA(B4)CUA pair we observe expression of full-length 

myoglobin that is dependent on the addition of the phosphoserine analog 2 (Figure 6d). As 

expected, there is still some full-length protein produced in the absence of the added 

unnatural amino acid 2. The yield of full-length myoglobin incorporating 2 from ΔserC + 

serB cells was comparable to the yield for myoglobin incorporating phosphoserine in a serB 
deletion strain (Figure 6c), suggesting that when phosphoserine levels are reduced, the non-

hydrolyzable amino acid (2) is an efficient substrate for the SepRS(2)/tRNA(B4)CUA pair.

Mass spectrometry and MS/MS of myoglobin expressed in the presence of 2 demonstrates 

the site-specific incorporation of the analog (Figure 6e,f). This demonstrates that the analog 

effectively competes with any amino acids that may be incorporated in response to the 

amber codon in its absence, a common observation in many unnatural amino acid 

incorporation experiments23.

Discussion

In summary, by evolving the nucleic acid sequence surrounding the anticodon of 

tRNA(Tran)CUA and the complementary amino acid sequence in the SepRS anticodon 

binding region we have discovered new orthogonal aminoacyl-tRNA synthetase/tRNACUA 

pairs, including pairs that do not require mutations in EF-Tu, that direct the efficient 

incorporation of phosphoserine into recombinant proteins expressed in E. coli. These pairs 

enable the genetically encoded synthesis of several phospho-proteins with yields of several 

milligrams per liter, as exemplified by our syntheses of phosphorylated ubiquitin and a 

synthetically activated kinase, Nek7. Finally, defining a re-wired serine biosynthesis 

machinery enables the first incorporation of an unnatural substrate, a non-hydrolyzable 

analog of phosphoserine, into a recombinant protein with this synthetase/tRNA pair.

The approach we have developed provides a step-change in the ability of scientists to study 

the effects of serine phosphorylation, and we are currently investigating the structural and 

functional consequences of previously in-accessible phosphorylations. We are also exploring 

the evolution of the orthogonal pairs we have discovered for the incorporation of diverse 

unnatural amino acids. Moreover, we are investigating the mutual orthogonality16, 37 of the 
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new pairs with respect to established orthogonal synthetase/tRNA pairs7, as a route to 

further expand the number of unnatural monomers that may be genetically encoded in cells.

Online methods

Plasmids generation

The Methanocaldococcus jannaschii (Mj) tRNACUA, containing a C20U mutation shown to 

improve acylation by SepRS38, was cloned into (p15A vector) between NotI and PstI to give 

pSertRNACUA. A DNA fragment encoding the Methanococcus maripaludis SepRS was 

cloned into NdeI/StuI digested pBK-Amp by Gibson cloning to give pBK-SepRS. For 

testing synthetase dependent incorporation, SepRS was removed from the pBK-SepRS 

plasmid using NEB Q5 SDM kit (New England Biolabs) and primers DTR634 and DTR635 

to give pBK-NoRS. The E.coli EF-Tu gene (tufA) was amplified from DH10B genomic 

DNA and cloned into pCDFDuet-1 (Novagen) under control of the tac promoter. The 

phosphoserine permissive EF-Tu mutations (H67R, E216N, D217G, F219Y, T229S and 
N274W) were introduced by Overlap Extension PCR to give pCDF-EF-Sep. The gene for 

Chloramphenicol Acetyl-Transferase containing an amber stop codon at position 112 was 

amplified cloned into pCDF-EF-Sep to give pCDF-EF-Sep-CAT. pCDF-CAT was generated 

by deletion of EF-Sep gene using the NEB Q5 SDM kit (New England Biolabs) and primers 

DTR623 and DTR624. The gene for myoglobin (D127TAG)His6 under the control of the 

arabinose promoter was amplified by PCR using DTR674 and DTR675. This fragment was 

inserted by Gibson cloning into pCDF-EF-Sep which had been amplified with DTR676 and 

DTR678 to give pCDF-EF-Sep-Myo(D127TAG)His6. pCDF-Myo(D127TAG)His6 was 

generated by deletion of EF-Sep from pCDF-EF-Sep-Myo(D127TAG)His6 using the NEB 

Q5 SDM kit and primers DTR623 and DTR 624. SepRS mutant 2 and 17, along with the 

WT, were amplified from pBK-SepRS(2), pBK-SepRS(17) and pBK-SepRS using primers 

DTR733/734. pKW (CmR) was digested using PstI and NdeI, and the amplified SepRS 

fragment were inserted by Gibson cloning to yield pKWRS2, pKWRS17 and pKWRSWT. 

Gene blocks encoding tRNA(B4), tRNA(B2) and tRNA(WT) were ordered and Gibson 

cloned into BglII/SepI digested pKWRS2, pKWRS17 and pKWRSWT respectively, to yield 

pKW2, pKW17 and pKWWT. EF-Sep was amplified from pCDF-EF-Sep including its 

promoter and terminator using DTR823/824 and this fragment was Gibson cloned with the 

backbone of pKW2, which was amplified with DTR837 andDTR838 to yield pKW2-EF-

Sep. The pRSF_ribo-Q1_O-gst-cam1TAG and pRSF_ribo-wt_gst-cam1TAG plasmids contain 

the following components, (i) a gene encoding ribosomal RNA (rRNA), former containing 

ribo-Q1 and latter with wildtype rRNA, (ii) a gene encoding glutathione-S-transferase and 

calmodulin (gst-cam) which is downstream of either an orthogonal ribosomal binding site 

(O-gst-cam) or a wildtype ribosomal binding site, and (iii) both the plasmids contain 

kanamycin resistance marker 15. pCDF-EF-Sep-serB was generated by PCR amplifying the 

serB gene from the genome of MegaX DH10B (Invitrogen) using DTR793 and DTR794, 

and Gibson cloning the fragment into pCDF-EF-Sep-CAT in place of CAT gene by 

amplification of the backbone with DTR795 and DTR796. All primer sequences can be 

found in Supplementary Table 2.
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Strain generation—The serB gene of MegaX DH10B cells (Invitrogen) was disrupted 

using the genebridges E. coli quick KO kit and confirmed by sequencing to generate DH10B 

ΔserB. C321(DE3) was generated using the initial strain C321.ΔA.exp (Addgene strain 

49018) and a λDE3 Lysogenization Kit (EMD Millipore), and confirmed by sequencing. 

C321(DE3) ΔserB was generated using the genebridges E. coli quick KO kit and confirmed 

by sequencing. The Keio WT (BW25113), Keio ΔserB and Keio ΔserC strains were 

obtained from GE-Dharmacon and the BL21 ΔserB(DE3) strain from Addgene (34929).

pSertRNA(10)CUA library generation

To create the pSertRNA(10)CUA library, the 5 bases either side of the anticodon of pSer 

tRNACUA in pSertRNACUA were randomised by Enzymatic Inverse PCR (EI-PCR)39 using 

KOD polymerase (Novagen) and primers DTR195/DTR198. The 3.6kb PCR product was 

gel extracted, digested with SapI, re-circularised using T4 ligase and electroporated into 

MegaX DH10B (Invitrogen) cells to afford a library with a diversity of ≈5.1×107 colony 

forming units (c.f.u), surpassing the required theoretical diversity of 4.8×106 c.f.u. The pool 

of DNA clones was subsequently extracted by DNA maxiprep and frozen.

SepRS(AC6) library generation

Guided by the structure of the Archaeoglobus fulgidus SepRS–tRNACys–O-phosphoserine 

ternary complex, residues E412, E414, T417, P495, I496 and F526 were chosen for 

mutation due to their proximity to G34 and C35 in the tRNA anticodon. Initially pBK-

SepRS was mutated using the NEB Q5 site directed mutagenesis kit (New England Biolabs), 

wherein F526 was mutated to every amino acid using the primers in Supplementary Table 3. 

Each plasmid, including the WT F526 plasmid, was used as a template for individual EI-

PCR mediated mutagenesis reactions using Q5 polymerase. To maximise sequence coverage 

and minimize degeneracy bias, “small-intelligent” oligos were used 24. The first round of 

mutation randomised P495, I496 (primers in Supplementary Table 4); the resulting PCR 

reactions were normalised for concentration, pooled, digested with BsaI, re-circularised by 

ligation and transformed. A miniprep of this transformation was then used to randomise 

E412, E414 and T417 (primers in Supplementary Table 4) which was digested with BsaI, 

ligated and transformed into MegaX DH10B (Invitrogen) to give the SepRS(AC6) library 

with a diversity of ≈3.1×109 c.f.u, with a theoretical requirement of 2.9×108 c.f.u.

pSertRNA(XX)CUA selection

The pSertRNA(10)CUA anticodon library was co-transformed into DH10B ΔserB with pBK-

SepRS and pCDF-EF-Sep-CAT to a diversity of 8×109 c.f.u. The pool of transformed cells 

was grown in LB + 2mM phosphoserine to a density of OD600=1.0. 10mL of this culture 

(approximately 8×109 cells) was transferred to 500mL fresh LB + 2mM phosphoserine 

+ 1mM IPTG and to grown to OD600=0.6. 2mL of this culture, equivalent to approximately 

1×109 cells, was plated on LB + 2mM phosphoserine + 1mM IPTG and either 100, 250 or 

500μg/ml chloramphenicol. From these plates 960 colonies were picked and phenotyped 

directly on increasing concentrations of chloramphenicol. 96 clones showing improved 

chloramphenicol resistance over pSertRNA(Tran)CUA were selected and the tRNA plasmids 

were isolated by digestion of the pBK-SepRS and pCDF-EF-Sep-CAT. The tRNA plasmids 
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were retransformed individually into chemically competent DH10B and plated to single 

colony density, then cultured and miniprepped to yield isolated tRNA plasmids. Sequencing 

of these clones revealed 15 unique tRNA sequences. These 15 tRNA plasmids and the 

pSertRNA(Tran)CUA plasmid were transformed into DH10B ΔserB with pCDF-EF_Sep-

CAT along with pBk-SepRS or pBK-NoRS, for observing synthetase dependent and 

independent incorporation respectively, and re-phenotyped on increasing concentrations of 

chloramphenicol. To test incorporation in the absence of EF-Sep, the 15 mutant tRNAs and 

pSertRNA(Tran)CUA were co transformed and re-phenotyped as in the presence of EF-Sep 

but with the pCDF-CAT plasmid in place of pCDF-EF-Sep-CAT.

SepRS(XX) selection

In separate transformations, electrocompetent DH10B ΔserB cells containing each of the 13 

functional mutant tRNAs (excluding the non-functional mutants A8 and C9) and either 

pCDF-CAT or pCDF-EF-Sep-CAT were transformed with the SepRS(AC6) anticodon 

library to a diversity of at least 1×109c.f.u, giving full library coverage for every tRNA, and 

grown overnight. 1mL overnight culture of each pCDF-CAT transformant was used to 

inoculate 500ml LB + 2mM phosphoserine + 1mM IPTG. 1mL of each overnight culture 

was used to inoculate 500ml of the LB + 2mM phosphoserine + 1mM IPTG and grown to 

OD600=0.6. Of these cultures 8×109 cells, covering the mutant diversity requirement of 3.7× 

×109 c.f.u, was plated separately on LB + 2mM phosphoserine + 1mM IPTG and either 50, 

100, 200, 300 and 400 μg/ml chloramphenicol and 600, 700, 800, 900 and 1000 μg/ml 

chloramphenicol for pCDF-CAT and pCDF-EF-Sep-CAT cultures respectively. 288 colonies 

were picked for each set and phenotyped directly on increasing chloramphenicol 

concentration plates. From this phenotyping, 14 EF-Sep dependent and 3 EF-Sep 

independent tRNA-synthetase pairs were found. These clones were picked, the plasmid 

DNA isolated, and the tRNA/synthetase for each was sequenced. The tRNA and CAT 

reporter plasmids were digested away and the synthetase plasmids were isolated by 

retransformation of each to single colony density, then miniprepping DNA from these 

colonies and plasmid isolation. The isolated synthetase plasmids were then co-transformed 

with their respective reporters, in the presence and absence of the corresponding tRNAs, for 

re-phenotyping on increasing chloramphenicol concentration plates.

Myoglobin expressions

The 15 selected tRNA(XXX)CUA variants were transformed with pBK-SepRS and either 

pCDF-EF-Sep-MyoD127TAGHis6 or pCDF-MyoD127TAGHis6 for EF-Sep dependent and 

independent incorporation. Similarly, the 17 SepRS(XX) variants identified from the 

SepRS(AC6) library were transformed with their corresponding tRNA and either pCDF-EF-
Sep-MyoD127TAGHis6 or pCDF-EF-Sep-MyoD127TAGHis6. 250ul of each overnight 

culture was inoculated into 50ml LB, grown to OD600=0.6 and induced with 1mM IPTG, 

0.2% arabinose and 2mM phosphoserine. The culture were grown for 4 hours and pelleted. 

Samples were boiled in 4× LDS, subject to SDS-PAGE, transferred to nitrocellulose and 

full-length protein detected using an anti-his HRP conjugate antibody (Novagen, 1:1000 

dilution). To purify the protein for mass spectrometry, the pellet was lysed in 1× lysis buffer 

(1× BugBuster (Novagen), 50mM Tris, 300mM NaCl, 20mM Imidazole, 0.5mg/mL 

lysozyme, 50μg/mL DNase, 0.2mM PMSF and 1 protease inhibitor cocktail tablet (Roche) 

Rogerson et al. Page 13

Nat Chem Biol. Author manuscript; available in PMC 2016 April 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



per 50ml lysis buffer) and the clarified lysate incubated overnight at 4°C with magnetic Ni-

NTA beads (Qiagen). Bound protein was eluted in 50mM Tris, 300mM NaCl and 300mM 

Imidazole and analysed by Electrospray ionization mass spectrometry.

Expression and purification of recombinant GST-CaM incorporating phosphoserine

For overexpression of GST-CaM incorporating phosphoserine, DH10B ΔserB or C321(DE3) 

ΔserB E. coli cells were transformed by electroporation with pRSF and pKW vectors, and 

recovered in 1 ml SOB medium for one hour at 37°C prior to aliquoting to 100 ml LB-KC 

(LB media with 25 μg/ml kanamycin, and 17.5 μg/ml chloramphenicol) and incubated 

overnight (37°C, 250 r.p.m., 16 h). The overnight culture was diluted to OD600=0.1 in LB-

KC. At OD600=0.5, IPTG (1 mM final concentration) and phosphoserine (2 mM) were 

added to the culture. The culture was incubated (37°C, 250 r.p.m.) for 5 h, pelleted (3,000g, 

10 min, 4°C) and washed twice with 1 ml PBS. The overexpressed proteins were purified 

using the glutathione affinity chromatography. Cell pellets were resuspended in 1 ml of 

BugBuster Protein Extraction Reagent (Novagen) (supplemented with 1× protease inhibitor 

cocktail tablet (Roche), 1 mg ml−1 lysozyme (Sigma), 1 mg ml−1 DNase I (Sigma)) and 

lysed (25°C, 250 r.p.m., 1 h). The lysate was clarified by centrifugation (25,000g, 30 min, 

4°C). GST containing proteins from the lysate were bound in batch (1 h, 4°C) to 70 μl of 

glutathione sepharose beads (GE Healthcare). Beads were washed 4 times with 1 ml PBS 

prior to elution by heating in 1× NuPAGE LDS sample buffer (Invitrogen, 95°C, 5 min) 

supplemented with 100 mM DTT. All samples were analysed on 4-12% Bis-Tris gels 

(Invitrogen) with BIO-RAD Low Range Molecular Weight Standard as marker. The gels 

were subsequently stained with Coomassie Blue (InstantBlue, Expedeon).

Expression and purification of Ubiquitin phosphorylated at serine 65

BL21 ΔserB(DE3) cells containing pKW2-EF-Sep (a chloramphenicol resistant plasmid 

containing SepRS 2, pSer tRNAB4CUA and EF-Sep) and pNH-Ub(S65TAG)-His6 (a 

tetracycline resistant plasmid containing LacI and Ub(S65TAG)-His6) were grown overnight 

(37°C, 220 r.p.m., in TB+CT: TB media containing 25μg/mL chloramphenicol and 25μg/mL 

tetracycline). The culture was diluted 1:50 into 4L of fresh TB+CT and incubated at 37°C, 

220 r.p.m. At OD600=0.6 phosphoserine and IPTG were added to a final concentration of 

2mM and 1mM respectively. After incubation (37°C, 220 r.p.m., 4hr), cells were harvested 

by centrifugation and re-suspended in ice-cold lysis buffer (PBS pH 7.4, 20mM imidazole, 

0.5mg/mL lysozyme, 50μg/mL DNase, 0.2mM PMSF), then lysed by sonication. The lysate 

was clarified by centrifugation (39000 × g, 30 min) and purified using a 5mL HisTrap HP 

(AKTA explorer), with elution in PBS pH 7.4 + 400mM imidazole. Fractions were 

determined by SDS-PAGE and were pooled and concentrated to <9mL with a Amicon 

Ultra-15 3kDa MWCO centrifugal filter device (Millipore). The sample was then dialyzed 

against 10mM Tris pH 7.6 overnight at 4°C. 1mM DTT was added to the Ub(pSer65)-His6 

sample, followed by UCH-L3 to a final concentration of 15μg/mL. The sample was 

incubated at (37°C, 1 hr) to remove the C-terminal His6 tag. Ub (pSer65) was then dialyzed 

against 50mM Ammonium acetate pH 4.5 overnight at 4°C and purified by cation exchange 

chromatography using a HiTrap SP HP column (ATKA explorer), with elution in 50mM 

Ammonium acetate pH 4.5 + 400mM NaCl. Pure fractions were confirmed by SDS-PAGE 

and were pooled and concentrated as before. The sample was then dialyzed against 10mM 
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Tris 7.6, 150 mM NaCl at 4°C. Protein yield was quantified by SDS-PAGE gel relative to a 

commercial ubiquitin standard and then aliquoted and flash frozen at −80°C. Correct masses 

and site specific phosphoserine incorporation was confirmed by whole protein ESI-MS and 

LC-MS/MS.

Expression and purification of Nek7 phosphorylated at serine 195

BL21 Δser(DE3) cells containing pKW2-EF-Sep and pNH-Nek7(D179N/S195TAG)-His6 (a 

tetracycline resistant plasmid containing LacI and Nek7(D179N/S195TAG)-His6) were 

grown overnight (37°C, 220 r.p.m., in TB+CT: TB media containing 25μg/mL 

chloramphenicol and 25μg/mL tetracycline). The culture was diluted 1:50 into 4L of fresh 

TB+CT and incubated at 37°C, 220 r.p.m. At OD600=0.6 phosphoserine and IPTG were 

added to a final concentration of 2mM and 1mM respectively. After incubation (18°C, 220 

r.p.m., 16hr), cells were harvested by centrifugation and re-suspended in ice-cold lysis buffer 

(50mM HEPES pH 7.5, 300mM NaCl, 5% Glycerol, 20mM Imidazole, 1mM MgCl2, 

0.2mM MnCl2 and 50μg/mL DNase), then lysed by sonication. The lysate was clarified by 

centrifugation (39000 × g, 30 min) and purified using a 5mL HisTrap HP (AKTA explorer), 

with elution in 50mM HEPES pH 7.5, 300mM NaCl, 5% Glycerol, 250mM Imidazole. 

D179N-pSer195containing fractions were determined by SDS-PAGE and were pooled and 

concentrated to <5mL with a Vivaspin 20 (GE Healthcare) with a molecular weight cut off 

(MWCO) of 10kDa. The protein was then further purified by size exclusion chromatography 

using a HiLoad Superdex S200 16/60 (GE Healthcare) gel filtration column and eluted in 

50mM HEPES pH 7.5, 300mM NaCl, 5% Glycerol, 5mM DTT, the protein was then 

aliquoted and flash frozen at −80°C until required. Correct masses and site specific 

phosphoserine incorporation was confirmed by whole protein ESI-MS and LC-MSMS. 

Nek7(S195TAG)-His6 was expressed and characterized as described above.

Phosphoserine analog incorporation

Phosphoserine analog incorporation was performed and analysed as for myoglobin 

(D127TAG)His6 expression with phosphoserine, with the exception of using Keio WT strain 

(BW25113), Keio ΔserB or Keio ΔserC with plasmids pKW2, pCDF-EF-Sep-serB and 

p15A-Myo(D127TAG)His6 for the reporter, as described in the text. DL-AP4 sodium salt 

(CH2 substituted phosphoserine analogue, 2) was obtained from Abcam and used in place of 

phosphoserine where indicated at a final concentration of 2mM.

Ub(pSer65) in vitro E2-discharge assay

Wild-type Parkin (His6–SUMO cleaved) and enzymatic derived Ub(pSer65), hereby referred 

to as Ub(pSer65*), was expressed and purified as previously described 19. The E2-charging 

reaction was performed in a 5μl volume containing 0.5 μg Ube1, 2 μg UbcH7, 50 mM Hepes 

pH 7.5 and 10 μM FLAG-ubiquitin, in the presence of 2 mM magnesium acetate and 0.2 

mM ATP. After an initial incubation of 60 min at 30°C, full-length wild-type Parkin was 

added in the presence of Ub(pSer65), Ub(pSer65*) and non-phospho-ubiquitin. The reaction 

was allowed to continue for a further 10 min at 30°C. Reactions were terminated by the 

addition of 5μl of LDS sample loading buffer and were subjected to SDS/PAGE (4–12 % 

gel) analysis in the absence of any reducing agent. Gels were stained using InstantBlue.
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Ub(pSer65) in vitro ubiquitylation assay

Wild-type Parkin (2μg) was added to ubiquitylation assay component mastermix (50mM 

Tris pH 7.5, 5mM MgCl2, 0.12μM ubiquitin E1, 1μM UbcH7, 2μg of His6–SUMO-Miro1 

and 2mM ATP) to a final volume of 50μl. Each reaction contained 0.05mM ubiquitin 

comprising 25μg of FLAG-ubiquitin (Boston Biochem) mixed with 5μg of Ub(pSer65), 

Ub(pSer65*) or non-phospho-ubiquitin. Ubiquitylation reactions were carried out at 30°C 

for 1hr and terminated by the addition of LDS sample buffer. For all assays, reaction 

mixtures were resolved by SDS/PAGE (4–12% gel). Ubiquitylation reactions were subjected 

to analysis by immunoblotting as follows: ubiquitin (anti-FLAG antibody; Sigma, 1:10000), 

Parkin (anti-Parkin antibody; Santa Cruz, 1:5000) and Miro-1 (anti-SUMO1 antibody; 

1:2000).

Nek7-His6 Kinase assay

Nek7-His6 or the indicated variant and GST-Nek9-CTD were incubated in 50mM HEPES 

pH7.4, 5mM NaF, 5mM MnCl2, 5mM β-glycerolphosphate, 1mM DTT and Myelin Basic 

Protein (MBP) (Room temperature, 1h). After incubation, 1mCi radiolabelled 32P-ATP and 

4μM unlabelled ATP were added and incubated (30°C, 30min, 200r.p.m). LDS sample 

loading buffer was added to the reactions and they were subjected to SDS/PAGE (4–12% 

gel). The gel was stained with Coomassie and then analysed by autoradiography. Efficiency 

of 32P incorporation into both Nek7(D179N-pSer195)-His6 by autophosphorylation and 

MBP substrate was determined by scintillation counting.

Electrospray ionization mass spectrometry

Mass spectra for protein samples were acquired on an Agilent 1200 LC-MS system that 

employs a 6130 Quadrupole spectrometer. The solvent system used for liquid 

chromatography (LC) was 0.2 % formic acid in H2O as buffer A, and 0.2 % formic acid in 

acetonitrile (MeCN) as buffer B. Samples were injected into Phenomenex Jupiter C4 column 

(150 × 2 mm, 5 μm) and subsequently into the mass spectrometer using a fully automated 

system. Spectra were acquired in the positive mode and analyzed using the MS Chemstation 

software (Agilent Technologies). The deconvolution program provided in the software was 

used to obtain the mass spectra. Theoretical average molecular weight of proteins with 

unnatural amino acids was calculated by first computing the theoretical molecular weight of 

wild-type protein using an online tool (http://www.peptidesynthetics.co.uk/tools/), and then 

manually correcting for the theoretical molecular weight of unnatural amino acids.

Electrospray ionization tandem mass spectrometry

Polyacrylamide gel slices (1-2 mm) containing the purified proteins or proteins in solution 

were prepared for mass spectrometric analysis by manual in situ enzymatic digestion. 

Briefly, the excised protein gel pieces were placed in a well of a 96-well microtitre plate and 

destained with 50% v/v acetonitrile and 50 mM ammonium bicarbonate, reduced with 10 

mM DTT, and alkylated with 55 mM iodoacetamide. After alkylation, proteins were 

digested with 6 ng/μL Trypsin (Promega, UK) overnight at 37 °C. The resulting peptides 

were extracted in 2% v/v formic acid, 2% v/v acetonitrile. The digest was analysed by nano-

scale capillary LC-MS/MS using a Ultimate U3000 HPLC (ThermoScientific Dionex, San 
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Jose, USA) to deliver a flow of approximately 300 nL/min. A C18 Acclaim PepMap100 5 

μm, 100 μm × 20 mm nanoViper (ThermoScientific Dionex, San Jose, USA), trapped the 

peptides prior to separation on a C18 Acclaim PepMap100 3 μm, 75 μm × 150 mm 

nanoViper (ThermoScientific Dionex, San Jose, USA). Peptides were eluted with a gradient 

of acetonitrile. The analytical column outlet was directly interfaced via a modified nano-

flow electrospray ionisation source, with a hybrid dual pressure linear ion trap mass 

spectrometer (Orbitrap Velos, ThermoScientific, San Jose, USA). Data dependent analysis 

was carried out, using a resolution of 30,000 for the full MS spectrum, followed by ten 

MS/MS spectra in the linear ion trap. MS spectra were collected over a m/z range of 300–

2000. MS/MS scans were collected using an threshold energy of 35 for collision induced 

dissociation. LC-MS/MS data were then searched against an in house protein sequence 

database, containing Swiss-Prot and the protein constructs specific to the experiment, using 

the Mascot search engine programme (Matrix Science, UK). Database search parameters 

were set with a precursor tolerance of 5 ppm and a fragment ion mass tolerance of 0.8 Da. 

Two missed enzyme cleavages were allowed and variable modifications for oxidized 

methionine, carbamidomethyl cysteine, pyroglutamic acid and phosphorylated serine, 

threonine, tyrosine, were included. MS/MS data were validated using the Scaffold 

programme (Proteome Software Inc., USA). All data were additionally interrogated 

manually.

Statistical methods

Bar graphs show the mean of the indicated number of trials. All error bars represent the s.d.
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Figure 1. 
Phosphoseryl-tRNA anticodon stem and loop evolution enables dramatically improved 

phosphoserine incorporation in response to the amber stop codon. A. pSer tRNA (N10)CUA 

variants selected for efficient incorporation in response to the amber stop codon. The 

anticodon sequence transplanted into pSer tRNA is shown in grey. pSer tRNA(Tran)CUA has 

the CUA anticodon in place of GCA, but is otherwise wildtype. Bases included in the N10 

library that were mutated in the selected sequence are shown in red. Bases that were targeted 

in the N10 library but remained the same after selection are shown in yellow. B. 

Phenotyping evolved pSer tRNA (XX)CUA directed phosphoserine incorporation reveals the 

dramatic improvement in phosphoserine incorporation resulting from tRNA evolution. Cells 
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contained the relevant pSer tRNA(XX)CUA variant, EF-Sep and cat(112TAG) (expressed 

from pCDF EF-Sep cat112TAG), and either SepRS (encoded by pBKSepRS) or pBKNoRS. 

C. The site-specific incorporation of phosphoserine in recombinant myoglobin is 

dramatically enhanced using the evolved pSer tRNA(XX)CUAs. The western blot detects 

full-length myoglobin-His6 in cell lysate with an anti-His 6 antibody. Cells contained pCDF 

EF-Sep myo(127TAG), pBKSepRS and the indicated pSer tRNA (XX)CUA variant. Full blot 

shown in Supplementary Figure 2.
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Figure 2. 
Evolution of SepRS anticodon binding further improves phosphoserine incorporation with 

selected pSer tRNA (XX)CUA variants. A. The structure of the A. fulgidus SepRS/pSer 

tRNAGCA pair. The tRNA is shown in green, and the anticodon bases indicated. Amino acid 

residues in SepRS that interact with G34 and C35 in the tRNA, and are targeted for 

mutagenesis in the SepRS (AC6) library are shown in pink. A. fulgidus Sep RS numbering is 

used in the figure, the M. maripaludis numbering and amino acid differences are shown in 

parenthesis. The figure was created using pymol (www.pymol.org). B. Phenotyping evolved 

SepRS (XX) /pSer tRNA (XX)CUA pair directed phosphoserine incorporation reveals the 

substantial increase in incorporation efficiency resulting from synthetase evolution. Cells 

contained the relevant pSer tRNA(XX)CUA variant, EF-Sep and cat(112TAG) (expressed 

from pCDF EF-Sep cat112TAG), and SepRS (encoded by pBKSepRS) or the indicated 

SepRS(XX) variant. RS indicates SepRS, tRNA(XX) indicates the pSertRNA(N10)CUA 

library member. C. The site-specific incorporation of phosphoserine in recombinant 

myoglobin is dramatically enhanced by evolved SepRS (XX)/pSer tRNA(XX)CUA pairs. The 

western blot detects full-length myoglobin-His6 in cell lysate with an anti-His 6 antibody. 

Cells contained pCDF EF-Sep myo(127TAG), and the indicated variant of pBKSepRS(XX) 
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and pSer tRNA (XX)CUA. 9* indicates a variant of SepRS previously reported to enhance 

phosphoserine incorporation11. Full blot shown in Supplementary Figure 2.
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Figure 3. 
EF-Sep is not required for site-specific incorporation of phosphoserine using SepRS(XX)/

tRNA(XX)CUA pairs. A. SepRS/Sep tRNA (XX)CUA variants incorporate phosphoserine 

using endogenous EF-Tu. tRNA(XX) indicates a selected pSertRNA(N10)CUA library 

member. Cm is chloramphenicol. Cells contained the relevant pSer tRNA(XX)CUA variant, 

+/− EF-Sep and cat112TAG (expressed from pCDF EF-Sep cat112TAG or pCDF EF-Sep 

cat112TAG ), and SepRS (encoded by pBKSepRS) B. The western blot detects full-length 

myoglobin-His6 in cell lysate with an anti-His6 antibody. Cells contained pCDF 

myo(127TAG)His6, pBKSepRS, and the indicated pSer tRNA (XX)CUA variant. “Trans” 

indicates the tRNA in which the CUA anticodon is simply transplanted in place of the native 
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GCA anticodon. Full blot shown in Supplementary Figure 2. C. SepRS(XX) variants 

selected from SepRS(AC6) in the absence of EF-Sep have substantially enhanced activity 

with their cognate pSertRNA(XX). D. The selected SepRS(XX)/tRNA(XX)CUA pairs are 

more active with wild-type EF-Tu than the SepRS/pSertRNACUA pair with EF-Sep. Full blot 

shown in Supplementary Figure 2.
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Figure 4. 
Expression purification and characterization of Ubiquitin phosphorylated at Serine 65. A. 

Purified ubiquitin bearing site-specific phosphorylation at serine 65. Protein was expressed 

from BL21ΔSerB transformed with pT7 Ub(65TAG)-His6 and pKW2-EF-Sep. The protein 

was purified by Ni-NTA chromatography, the His6 tagged cleaved with UCHL3 and purified 

by size exclusion chromatography. The purified yield was 2 mg per L of culture. Full gel 

shown in Supplementary Figure 2. B. Electrospray ionization mass spectrometry 

demonstrates the quantitative incorporation of phosphoserine into ubiquitin (Found 8639.4 
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Da, expected 8639.6 Da). C. ESI-MS/MS demonstrates the incorporation of phosphoserine 

at the genetically encoded site (S* = Ser + 80 Da). D. Ub (PSer65) stimulates Parkin 

mediated ubiquitin discharge from loaded E2. An E2-discharge assay was performed by 

incubating full-length (WT), Parkin in the presence or absence of Ub(PSer65), 

enzymatically derived Ub(PSer65*) or Ub with the E2 ligase UbcH7 that had been pre-

loaded with Ub. The data show the mean of two trials, the error bars represent the s.d. A 

representative assay gel is shown in Supplementary Figure 7. E. Ub(PSer65) activates Parkin 

E3 ligase mediated ubiquitylation. Full-length Parkin was incubated with the ubiquitylation 

assay components (E1 and UbcH7) in the presence of His6-SUMO-Miro1 and ubiquitin 

(comprising 5 μg of Ub(PSer65), Ub(PSer65*), or Ub mixed with 25 μg of FLAG–

ubiquitin). Ubiquitin, Parkin, and Miro1 were detected using anti-FLAG, anti-Parkin and 

anti-SUMO antibodies respectively. Full blots are shown in Supplementary Figure 2.
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Figure 5. 
Synthetic activation of Nek7 bypasses Nek9-CTD mediated activation. A. Coomassie 

stained SDS-PAGE of purified Nek7(pSer195)-His6. Full gel in Supplementary Figure 2. B. 

Electrospray ionization mass spectrometry of purified Nek7(pSer195)-His6 demonstrates 

specific phosphorylation of Nek7, found 35,696 Da, expected 35,696 Da. A minor peak, 

35,774 Da , corresponds to autophosphorylation. Raw spectra in Supplementary Figure 8 C. 

ESI MS/MS identifies the site of encoded phosphorylation as position 195 S*= (Ser+80) 

Da). D. Kinase assay demonstrating constitutive activity of Nek7(pSer195)-His6 compared to 
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wild type Nek7 with Myelin Basic Protein (MBP) as substrate. Addition of the activating 

GST-Nek9-CTD protein fragment results in no additional Nek7 activity, indicating that 

Nek7-S195 phosphorylation alone is sufficient to fully activate the kinase in vitro. The data 

show the mean of three independent trials and the error bar represents the s.d. Representative 

gels for this experiment are shown in Supplementary Figure 11.
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Figure 6. 
Genetically encoding a non-hydrolyzable analog of phosphoserine (2). A. The last two steps 

in serine biosynthesis. Phosphoserine (1) may be site specifically incorporated into proteins. 

B. serC deletion and overexpression of serB enables the site-specific incorporation of 2 into 

proteins. C. Amino acid dependent expression of myo(127TAG)His6 expression with 

SepRS(2)/pSertRNA(B4), EF-Sep requires both serC deletion and serB overexpression. E. 
coli of the indicated genotype were transformed with myo(127TAG)His6, EF-Sep, 

SepRS(2)/pSertRNA(B4), with or without serB overexpression. The full blot is shown in 
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Supplementary Figure 2. D. Expression and purification of myo(127TAG)His6 in E.coli 
DH10B ΔserC, that express serB, EF-Sep, SepRS(2)/pSertRNA(B4) in the presence and 

absence of added 2 (2mM). The full gel and blot is shown in Supplementary Figure 2. E. 

Electrospray ionization mass spectrometry demonstrates the quantitative incorporation of 2 
into myoglobin His6 (Found 18405 Da, expected 18405 Da). F. ESI-MS/MS demonstrates 

the incorporation of 2 (Ser + 78 Da) at the genetically encoded site.
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