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1 Principle of Operation
The cartoon of Fig. 1c illustrates a comparison of search mechanisms of the OPO network and classical
and quantum annealing. Classical simulated annealing employs a downward vertical search, in which the
temperature is repeatedly decreased and increased until the ground state is found. Quantum annealing exerts
a horizontal search in the energy landscape with quantum tunnelling. Therefore, with these methods, the
computational time of finding the ground state increases with the increase in the number of metastable
excited states or local minima. In contrast, the OPO-based Ising machine searches for the ground state in
an upward direction. The total energy, i.e. the ordinate in Fig.1c, is now replaced by the network loss. The
ground state (optimum solution) has a minimum loss as shown in the figure. If we put a parametric gain (G)
into such a network and increase it gradually, the first touch to the network loss happens at the ground state
(Lmin), which results in the single-mode oscillation of the ground state spin configuration. At the pump rate
above this threshold point, the parametric gain is clamped at the same value of G = Lmin due to nonlinear
gain saturation, so that all the other modes including local minima stay under the oscillation threshold. If
we use the terminology of “negative temperature” to represent the parametric gain, the mentioned upward
search corresponds to the heating process from T = −∞ for zero gain toward T = −0 for high gain. In
this sense, the OPO machine is a “heating machine” while the classical simulated annealing is a “cooling
machine.”

2 Theoretical Modelling and Numerical Test of OPO Network
Femtosecond OPOs can be modelled by multimode analysis in the frequency domain as presented in [31].
Here for numerical simplicity, to simulate a network of N degenerate OPOs, we start with the quantum
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mechanical Fokker-Planck equation (Q-FPE) for a single continuous wave OPO using the generalised P-
representation [32]:
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Here as = αs/As and bs = βs/As are the normalised eigenvalues for the off-diagonal coherent-state expan-
sion, |αs〉〈βs|, of the density matrix, γs and γp are the signal and pump photon decay rates, As =(γpγs/2κ2)1/2

is the oscillation field amplitude at a normalised pump rate p = Fp/Fth = 2, t = γs
2 τ is the normalised time,

Fp is the pump field amplitude, Fth = γsγp/4κ is the threshold pump amplitude. The average amplitudes of
in-phase and quadrature-phase components of the signal wave are obtained by

〈As1〉= As〈as +bs〉/2,
〈As2〉= As〈as−bs〉/2i. (S-2)

Equation S-1 can be cast into the c-number Langevin equation (C-LGE) for the in-phase and quadrature-
phase components of the signal field via the Kramers-Moyal expansion [33]:

d
dt

c = (−1+ p− c2− s2)c+ f c

d
dt

s = (−1− p− c2− s2)s+ f s. (S-3)

where c= 1
2 (as+bs) and s= 1

2i (as−bs), and f c and f s correspond to in-phase and quadrature-phase compo-
nents of quantum noise of the OPO, which include both the incident vacuum fluctuations at signal frequency
ωs and pump frequency ωp.

The equivalence of the Q-FPE (S-1) and the C-LGE (S-3) can be confirmed by comparing the squeezing
and anti-squeezing characteristics of the two quadrature components using
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for the Q-FPE and

〈∆A2
s1〉= A2
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for the C-LGE. As shown in Fig. 1 in [7], the degrees of squeezing and anti-squeezing obtained by the two
methods completely agree at pump rates around the threshold (p = 1).

The Q-FPE and C-LGE for an injection-locked laser oscillator [34] can be extended to the mutually
coupled degenerate OPOs using equation S-1 or S-3. The resulting C-LGEs for a network of degenerate
OPOs are given by
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Here c j and s j are the normalised amplitudes of two quadrature components of the j-th OPO which corre-
sponds to c and s in Eq. S-3, ξ jl is the coupling coefficient between the j-th and l-th OPOs.

Performance of the proposed network of degenerate OPOs as an Ising machine is tested against the NP-
hard MAX-CUT problems on cubic graphs for N = 4 to N = 20 and on random graphs for N = 800 to
N = 20000. For a graph with N vertices, the 2N C-LGEs are solved by the Dormand-Prince method as the
differential equation solver [35], in which adaptive integration strength is introduced by evaluating the local
truncation error.

Order 4 6 8 10 12 14 16 18 20

Cubic 
Graphs

1 2 5 19 85 509 4060 41301 510489

Figure S1: Numerical results of the build-up time of the OPO networks. p = 1.1 and ξ = −0.1. The
table indicates the number of cubic graphs for different orders.

Figure S1 shows the normalised build-up time t = γs
2 τ when the OPO network reaches the steady state

oscillation conditions after an above-threshold pump rate (p = 1.1) is turned on versus the graph order N.
We have numerically tested all graphs, for instance a total number of 510489 graphs are studied for N=20.
Most of the build-up time (up to 99% of all graphs) is independent of the graph order N and is on the order of
t '100, as shown in Fig. S1. Only slight increase is observed for the worst case as shown in green triangles.
Therefore, an actual computational time is determined mainly by the success probability for obtaining a
ground state. Since the proposed OPO network is a stochastic machine driven by quantum noise, the success
probability is always smaller than one.

Table S1 summarises the performance of the OPO network in solving MAX-CUT problems on cubic
graphs. Here, qmin denotes the worst-case success probabilities at a fixed pump rate p = 1.1 and coupling
coefficient ξ =−0.1, popt denotes the optimal pump rate for each worst-case instance, at which the optimum
success probability qopt is achieved under the same coupling coefficient ξ =−0.1. The success probability
at the optimum pump rate for the worst instance is independent of the graph order and ranges from 0.7∼ 1.0.

The performance of the OPO network in solving the MAX-CUT problems has also been examined on
71 benchmark instances of the so-called G-set graphs when p = 1.1 and ξ = −0.1. These instances are
randomly constructed by a machine-independent graph generator written by G. Rinaldi, with the number of
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Table S1: Summary of the OPO network in solving the MAX-CUT problems on cubic graphs.
Order

4 6 8 10 12 14 16 20
qmin 0.93 1.00 0.41 0.54 0.52 0.37 0.33 0.11
popt 1.05 1.30 1.30 1.30 1.00 0.85 0.85 0.82
qopt 1.00 1.00 0.70 0.74 1.00 1.00 1.00 0.74

Table S2: Performance of the OPO network in solving the MAX-CUT problems on sample G-set
graphs. V is the number of vertices in the graph, E is the number of edges, USDP is the optimal solution to
the semidefinite relaxation of the MAX-CUT problem, and T is the average computation time of the OPO
network normalised to the cavity photon lifetime. To make comparisons with the Goemans-Williamson
algorithm, every cut value O generated from the network is normalised according to (O+Eneg)/(USDP +
Eneg), where Eneg ≥ 0 is the number of negative edges. Omax and Oavg are the best and the average values in
100 runs, respectively.

Graph V E USDP Omax Oavg T
G1 800 19176 12083 0.9591 0.9516 498.82
G6 800 19176 2656 0.9559 0.9506 471.06
G11 800 1600 629 0.9384 0.9254 406.24
G14 800 4694 3191 0.9367 0.9274 498.26
G18 800 4694 1166 0.9308 0.9223 430.24
G22 2000 19990 14136 0.9349 0.9277 768.34
G27 2000 19990 4141 0.9321 0.9270 780.18
G32 2000 4000 1567 0.9328 0.9260 467.42
G35 2000 11778 8014 0.9264 0.9202 602.34
G39 2000 11778 2877 0.9214 0.9152 539.9
G43 1000 9990 7032 0.9373 0.9309 542.92
G48 3000 6000 6000 0.9463 0.9292 762.34
G51 1000 5909 4006 0.9333 0.9242 491.68
G55 5000 12498 11039 0.9070 0.9009 903.46
G57 5000 10000 3885 0.9305 0.9259 648.72
G59 5000 29570 7312 0.9114 0.9074 583.54
G60 7000 17148 15222 0.9037 0.8995 918.98
G62 7000 14000 5431 0.9295 0.9256 719.74
G64 7000 41459 10466 0.9129 0.9092 666.16
G65 8000 16000 6206 0.9284 0.9252 757.28
G66 9000 18000 7077 0.9285 0.9251 786.9
G67 10000 20000 7744 0.9285 0.9260 732.14
G70 10000 9999 9863 0.9433 0.9379 687.28
G72 10000 20000 7809 0.9284 0.9256 748.3
G77 14000 28000 11046 0.9281 0.9256 842.24
G81 20000 40000 15656 0.9268 0.9250 980.54
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vertices ranging from 800 to 20000, edge density from 0.02% to 6%, and geometry from random, almost
planar to toroidal. The outcomes of running the OPO network 100 times for sample G-set graphs are sum-
marised in Table. S2. Both the best and average outputs of the OPO network are about 2 - 6% better than
the 0.878-performance guarantee of the celebrated Goemans-Williamson algorithm based on semidefinite
programming (SDP) [36]. Since the differences between the best and the average values are within 1% for
most of the instances, reasonable performance is expected for the OPO network even in a single run, which
makes the OPO network favourable for applications when response time is the utmost priority. In addition,
there is further room to improve the performance, for example by applying local improvement to the raw
outcomes of the OPO network and operating the OPO network under optimum pump rate of p and coupling
strength of ξ .
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Figure S2: Average computational time of the OPO network in solving MAX-CUT problems on the
worst-case cubic and G-set graphs. p = 1.1 and ξ =−0.1.

The average computational time of the OPO network in solving the MAX-CUT problem on the worst-
case cubic and G-set graphs is displayed in Fig. S2. The growth of the computation time fits well to a
sub-linear function O(N0.2). Computational complexities of best-known algorithms for solving the SDP
in the Goemans-Williamson algorithm are also plotted. If a graph with N vertices and m nodes is regular,
the SDP can be approximately solved in almost linear time as Õ(m) = O(m log2(N)ε−4) using the matrix
multiplicative weights method [37], where ε represents the accuracy of the obtained solution. This behaviour
is shown by the red solid line in Fig. S2. However, slower algorithms are required for general graphs. If the
edge weights of the graph are all non-negative, the fastest algorithm runs in Õ(Nm) = O(Nm log2(N)ε−3)
time based on a Lagrangian relaxation-based method [38]. This computational time is plotted by the pink
solid line. For graphs with both positive and negative edge weights, the SDP is commonly solved using the
interior-point method which scales as Õ(N3.5) = O(N3.5 log(1/ε)) [39]. This general computational time
for SDP is shown by the blue dashed line. Since the OPO network is applicable to all types of graphs, the
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sub-linear scaling of the computation time gives it a huge advantage over the SDP algorithm in solving large-
scale instances. For instance, the OPO network outputs a solution for the graph G81 with 20000 vertices and
40000 edges in a normalised time of t '980, which corresponds to the actual time of τ = 2γ−1

s t ' 1×10−2

sec, since the photon lifetime in the large-scale fibre-based OPO network , which can handle this size of
problem, is ∼ 6× 10−6 sec (see the last section in this Supplementary Information). This computational
time is compared to the time required to run the SDP (interior-point method) using a 1.7 GHz core i7
machine of about ∼ 1×105 sec, which is seven orders of magnitude larger than ∼ 1×10−2 sec for the OPO
network.

3 Details of Experimental Setup
The OPO design shares similarities with the experiment reported in [40]. The ring resonator of the OPO
illustrated in Fig. 1b, has a round trip time of 16 ns (a perimeter of ∼4.8 m). The setup has two more flat
mirrors than the schematic (corresponding to a folded bow tie configuration). All the flat mirrors, except
M1 are gold coated with enhancement dielectric coatings at 2 µm. One of the flat gold mirrors is placed
on a translation stage with piezoelectric actuator (PZT). The dielectric mirror (M1) has a coating which is
antireflective at the pump wavelength with less than 0.2% reflection, and is highly reflective (∼99%) from
1.8 µm to 2.4 µm. The curved mirrors (M3 and M4) have 50-mm radius of curvature and are unprotected
gold coated mirrors. The angle of incidence on these mirrors is 4◦, which is chosen to compensate the
astigmatism introduced by the Brewster-cut nonlinear crystal, and results in∼1 mm of cavity stability range
for the spacing between the curved mirrors. The signal beam has a waist radius of 8.3 µm (1/e2 intensity) at
the centre of the crystal.

The 1-mm long, Brewster-cut, MgO doped periodically poled lithium niobate (PPLN) crystal has a
poling period of 31.254 µm, which is designed to provide degenerate parametric gain for a pump at 1035
nm with type 0 phase matching (e→e+e) at 373 K temperature. The crystal operates at room temperature in
the OPO, and even though the phase matching condition is not optimal for the pump (centred at 1045 nm),
degenerate operation is achieved by length tuning of the cavity.

Input and output coupling of the signal are achieved with 2-µm thick nitrocellulose pellicles to avoid
dispersion in the cavity and etalon effects. In Fig. 1b, the three pairs of “OC” and “IC” are uncoated pellicles
(with 2−6% power reflection ), the “OC” for the main output is coated (with∼15% power reflection at 2090
nm). The beam splitter in the interferometer (BS) is the same type of coated pellicle. For stabilising the OPO
cavity, another uncoated pellicle is used as an output coupler in the resonator (not shown in the schematic).

The pump is a free-running mode-locked Yb-doped fiber laser (Menlo Systems Orange) producing ∼80
fs pulses centred at 1045 nm with a repetition rate of 250 MHz, and maximum average power of > 1 W. The
filter is a long pass filter at 1850 nm on a Ge substrate to eliminate the pump and transmit the signal.

Gradual pumping is achieved by the chopper, as it causes a rise time (10-90% power) of 180 µs for
introducing the pump. The cavity photon lifetime for the signal is estimated to be 60 ns, and the network is
pumped ∼2.2 times above threshold.

3.1 Servo Loops
Five feedback servo controllers are used to stabilise the length of the cavity, the phase of the delay lines, and
the arm-length difference of the interferometer. All the controllers are based on “dither-and-lock” scheme,
where a slight modulation (less than 10 nm amplitude at a frequency between 5 and 20 kHz) is applied to
a fast PZT, and the error signal is generated electronically by mixing the detector output and the modulated
signal [17]. Identical electronic circuits are used with a controller 3-dB bandwidth of 10 Hz.
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For the delay lines, the interference of the pump at the other port of the input couplers are used as the
input of the controller, and the controller locks the length to achieve destructive interference on the detector,
which results in constructive interference on the other port that enters the cavity. The arm length difference
of the interferometer is also locked similarly. No phase stabilisation is required for the path from the OPO
to the interferometer since all the OPO pulses experience the same path and phase change.

3.2 Free-Running Pump
Here we show that the servo controllers used in the experiment suffice for implementation of the Ising ma-
chine and no stabilisation on the pump is required. Slow changes (within the response time of the controller)
in the carrier-envelop offset frequency ( f p

CEO) and repetition rate ( fR) of the pump do not affect the opera-
tion of the Ising machine. Smooth changes in fR of the pump is intrinsically transferred to the signal since
signal pulses are generated from pump pulses. However, the effects of changes in f p

CEO on the Ising machine
require taking into account the intrinsic phase locking of the degenerate OPO as well as the role of servo
controllers.

The primary task of the servo controller of the OPO is to maximise the output power by matching the
roundtrip phase in the resonator to the pulse to pulse phase slip of the pump (∆φp). The pulse to pulse phase
slip is related to f p

CEO by:

f p
CEO =

∆φp

2π
fR. (S-7)

Assuming the carrier fields for the pump and the signal pulses are defined as: exp( jωpt+φp), and exp( jωst+
φs), respectively, the phase-sensitive gain dictates [17]:

φp = 2φs +π/2. (S-8)

Therefore, if the carrier phase of the pump changes by ∆φp from one pulse to next, for a single OPO (Tcavity =
TR), the pulse to pulse phase slip of the signal follows that by:

∆φs = ∆φp/2. (S-9)

This means that the phase slip of the signal pulses is locked to the phase slip of the pump with a factor of
half, which consequently means the fCEO of the pump and signal are locked [17]; the servo loop provides
feedback to the cavity to follow this phase slip and maximise the output power. A similar behaviour also
happens for a doubly-resonant OPO operating away from degeneracy, with a different ratio between the
fCEOs of the pump and signal [41].

For N OPOs in the cavity (i.e. Tcavity = NTR), when all OPOs are in the same phase state, the pulse to
pulse phase slip in the pump transfers to the OPO to OPO phase slip by a factor of half. Changing phase
state from one OPO to another simply means adding π to the phase slip. When a delay line is locked to the
top of the interference fringe of the pump pulses, the phase change provided by the delay line at the pump
wavelength compensates the pulse to pulse phase slip of pump, i.e. φD(ωp) = ∆φp. At the signal wavelength,
because ωs = ωp/2 this phase change in the delay line is half (φD(ωs) = φD(ωp)/2), which means that the
servo controller compensates the OPO to OPO phase slip resulting from the f p

CEO.
Locking a delay line to top of the fringe of pump pulses corresponds to having either 0 or π phase change

for the signal. This is also true for the interferometer. In the experiments, for all the servo controllers, we
were able to precisely tune the length from one fringe to the next. This gave us the ability to try different
configurations and find the desired coupling phases.
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4 OPO Characterisation
When no out coupler is used in the cavity, the OPO has a threshold of 6 mW of pump average power. With
all the output and input couplers in the cavity, the threshold reaches 135 mW. Oscillation at degeneracy and
away from degeneracy can be achieved depending on the cavity length. The OPO is pumped with 290 mW
and the main output of the OPO has 15 mW of average power at degeneracy centred at 2090 nm with the
spectrum shown in Fig. S3a. The interferometric autocorrelation of the signal pulses is shown in Fig. S3b
suggesting a pulse length of ∼85 fs. The spatial profile of the output beam is very close to Gaussian as
shown in Fig. S3c with a radius of ∼1 mm (at 1/e2 intensity). The average power of the signal in the delay
lines are ∼2 mW, and the intracavity power is estimated to be ∼100 mW.
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Figure S3: Summary of the 4-OPO system operation. a, The output spectrum centred at 2090 nm with a
3-db bandwidth of 91 nm. b, The interferometric autocorrelation trace of the output pulses with a FWHM of
∼120 fs suggesting Gaussian pulses of ∼85 fs. c, The spatial beam profile of the OPO output at 2090 nm.

5 Extended Slow-Detector Results
In Fig. S4 we show the results obtained using a slow detector for different combinations of couplings. Fig.
S4 a-c are obtained by scanning the phase of one delay line while the other delay lines are blocked. Delay
1 and 3 have similar effects, because they couple adjacent OPOs but in different directions (Fig. 2b). As
shown in Fig. S4 a and c, in-phase coupling by these delays results in the same phase state for all OPOs,
and consequently high-intensity interferometer output (Im); and out-of-phase coupling results in alternating
phase states and consequently low-intensity interferometer output (0).

In Fig. S4b we show the interferometer output while the phase of delay 2 is scanned. When the coupling
is in-phase, OPO 1 and 3 have the same phase state, and OPO 2 and 4 oscillate in the same phase state.
However, these two pairs can either be the same or different, and therefore the output would be either Im or
0, as shown in Fig. S4b around phase of zero. On the other hand, out-of-phase coupling of delay 2 results in
constant output Im/2 as shown in the same plot. Regenerative behaviour of the OPO and its insensitivity to
a wide range of phase change in the couplings are observed in these three plots.

When the network is configured to the MAX-CUT problem, we scanned the phase of the delays one by
one, and the results are shown in Fig. S4d-f. Different delay phase configurations and the expected outcomes
are shown in Table S3, where the last row corresponds to the MAX-CUT problem with all anti-ferromagnetic
couplings, and for each of the other rows one of the delay phases is different. For each plot in Fig. S4d-
f, the centre of the plot, where the phase of the scanned delay is π , corresponds to the anti-ferromagnetic
MAX-CUT problem. The outputs follow the expected outcome.
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Delays 1 and 2 are blocked and delay 3 is scanned. d, Phases of delays 2 and 3 are locked to π and delay 1
is scanned; phase configuration of the network corresponds to [0,π,π] at 0◦ and [π,π,π] at 180◦. e, Phases
of delays 1 and 3 are locked to π and delay 2 is scanned; phase configuration of the network corresponds to
[π,0,π] at 0◦ and [π,π,π] at 180◦. f, Phases of delays 2 and 3 are locked to π and delay 1 is scanned; phase
configuration of the network corresponds to [π,π,0] at 0◦ and [π,π,π] at 180◦.
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Table S3: Four configurations for the phases of the delays, the expected phase states of the 4-OPO system,
and the expected outcome of the measurements; The last row is the phase configuration corresponding to the
MAX-CUT problem, and in the rest of phase configurations one of the delays has a different phase.

Phase of Couplings Expected Phase
[D1, D2, D3] States Slow Detector

[π,0,π] |0π0π〉, |π0π0〉 100% in 0
[0,π,π] |00ππ〉, |π00π〉, 100% in Im/2

|0ππ0〉, |ππ00〉
[π,π,0] |00ππ〉, |π00π〉, 100% in Im/2

|0ππ0〉, |ππ00〉
[π,π,π] |00ππ〉, |π00π〉, |0ππ0〉, |ππ00〉, 66.7% in Im/2,

|0π0π〉, |π0π0〉 33.3% in 0

6 Practical Example of a Large-Scale Network
A network of N OPOs can be realised in a single ring resonator with a round-trip time of Tcavity = NTR (TR
is the pulse-to-pulse interval), and constructing N−1 delay lines. Schematic of fibre-based implementation
of such a machine is illustrated in Fig. S5. To avoid effects of nonlinearities and dispersion in optical
fibres, picosecond pump pulses can be used in a long resonator and long delay lines comprising optical fibre
components. As an example, for a pump with 10-GHz repetition frequency (TR = 100 ps), a resonator with
200 m of optical fibre results in 10000 temporally separated OPOs. An expected photon lifetime of such a
fibre-based OPO network is about γ−1

s ' 6× 10−6s, which promises a reasonably fast computational time
for a MAX-CUT problem with N = 10000.

PPLN$

Output$

OPO$1$OPO$N$OPO$2$

…$
OPO$1$

N$OPOs$ Couplings$Measurement$

Spli9er$

EOM$

Delay$1$

EOM$ EOM$

Combiner$

…
$

…
$

Delay$2$ Delay$N>1$

Pump$
Amplifier$

Figure S5: Schematic of a fibre-based large-scale OPO network.

The main challenge is stabilising the phases of all these fibre links. Development of extremely low-noise
phase-stabilised long (∼100-km) optical fibres [42] promises overcoming this challenge using the existing
technologies. Moreover, the regenerative behaviour of the degenerate OPO (as shown in Fig. 3b) suggests
that the OPO-based Ising machine can tolerate relatively large phase noise in the couplings.

Similar to the 4-OPO network, each delay line provides a delay of equal to an integer multiple of the
repetition period (mTR), and is responsible for multiple of the Ising coupling terms in the form of J(i)(i+m).
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In one delay line, each of these couplings happens at one time slot, and one can use electrooptic phase
and amplitude modulators (EOM) to synchronously switch the delay on and off depending on whether the
corresponding coupling term is zero or not. This can be extended to synchronously controlling the phases
and strengths of the couplings through the delay lines, and hence programming any arbitrary Ising problem
on the machine.
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