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Design of Feedback Controls Supporting TCP Based
on the State–Space Approach

Ki Baek Kim

Abstract—This paper investigates how to design feedback con-
trols supporting transmission control protocol (TCP) based on the
state-space approach for the linearized system of the well-known
additive increase multiplicative decrease (AIMD) dynamic model.
We formulate the feedback control design problem as state-space
models without assuming its structure in advance. Thereby, we get
three results that have not been observed by previous studies on
the congestion control problem.

1) In order to fully support TCP, we need a proportional-deriva-
tive (PD)-type state-feedback control structure in terms of
queue length (or RTT: round trip time). This backs up the
conjecture in the networking literature that the AQM RED
is not enough to control TCP dynamic behavior, where RED
can be classified as a P-type AQM (or as an output feedback
control for the linearized AIMD model).

2) In order to fully support TCP in the presence of delays, we
derive delay-dependent feedback control structures to com-
pensate for delays explicitly under the assumption that RTT,
capacity and number of sources are known, where all existing
AQMs including RED, REM/PI and AVQ are delay-indepen-
dent controls.

3) In an attempt to interpret different AQM structures in a uni-
fied manner rather than to compare them via simulations, we
propose a PID-type mathematical framework using integral
control action.

As a performance index to measure the deviation of the closed-
loop system from an equilibrium point, we use a linear quadratic
(LQ) cost of the transients of state and control variables such as
queue length, aggregate rate, jitter in the aggregate rate, and con-
gestion measure. Stabilizing gains of the feedback control struc-
tures are obtained minimizing the LQ cost. Then, we discuss the
impact of the control structure on performance using the PID-type
mathematical framework. All results are extended to the case of
multiple links and heterogeneous delays.

Index Terms—Active queue management, additive increase
multiplicative decrease (AIMD), explicit delay compensation, op-
timal control, state-space approach, transmission control protocol
(TCP).

I. INTRODUCTION

ON THE Internet, congestion control enables end-users
to fully utilize the allocated capacity with the help of

queueing at routers. Since end-users do not know the allocated
capacity, a dynamic window-based mechanism transmission
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control protocol (TCP) acting at a packet level has been devel-
oped, so that each flow from an end-user obeys a “conservation
of packets” principle for a connection “in equilibrium.” Since
congestion information occurs at routers, interaction between
TCP and the congestion information cannot avoid delays which
make the closed-loop dynamics difficult to deal with. Signaling
the congestion information by dropping or marking packets at
routers is called active queue management (AQM). Since TCP
Reno/AQM Droptail has been proposed in [6], the current in-
ternet is still using this protocol and its variants as a congestion
control strategy.

Droptail can cause a large variation of queueing delay since it
drops packets when the queue is full. More importantly, Droptail
can often cause the global synchronization [7]–[9] and thus have
low throughput. In order to overcome these problems, random
early detection (RED) has been suggested in [10], [11] whose
drops probability is proportional to the average queue length.
Since then, there have been a lot of investigations about how to
tune the design parameters in RED [12]–[14]. The experimental
results show that RED is not enough to control TCP and thus not
easy to fully utilize the given network resources. As a result, new
AQM algorithms such as adaptive virtual queue (AVQ) [15] and
random exponential marking (REM) [16] have been suggested.
However, none of these papers appropriately address how to
tune the gains of their AQM structures for closed-loop stability
since they lack of a TCP dynamic model. So, their AQM algo-
rithms are only compared through simulations in the literature.

In order to address this problem, paper [17] has developed
a dynamic model to reflect AIMD (Additive Increase Multi-
plicative Decrease) mode of TCP for a single link and homoge-
neous sources and paper [18] has applied the transfer function
approach to the problem of stabilizing RED design based on
the AIMD model. As a follow up, papers [19] and [20] have in-
vestigated how to scale gains of proportional-integral (PI)-type
REM in terms of queue length and P-type AVQ in terms of
aggregate, respectively. Papers [21] and [22] have suggested
PI-type AQM in terms of aggregate in an inner loop and P-type
AQM with a low-pass filter in terms of aggregate, respectively.
Although all these papers suggest stabilizing conditions from
the linearized systems, they have not focused on what kind of
control structures are necessary to fully control the closed-loop
system TCP/AQM fair.

In addition, none of those papers consider how to compen-
sate for delays explicitly even if they know the previous dy-
namic information and delays. This kind of control strategy is
called delay-independent (or memoryless) control in the litera-
ture. Along this line, the initial works in the Internet literature
are [23] and [24] based on the optimization framework [25]. It
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is well-known that the delay-independent control has a limit on
performance in the presence of a large delay [26] compared with
the delay-dependent (or memory) control since the delay-inde-
pendent controls cannot regulate the delayed closed-loop dy-
namics arbitrarily. In the literature, previous studies on feed-
back control design in the presence of delays have focused on
deriving stabilizing conditions, while our work studies an ex-
plicit feedback control design.

This paper tries to address these issues as follows: In order
to get basic results for more realistic cases, we study a simpli-
fied version of this problem as in [18], [19], and [21]–[24]. First,
we consider the linearized system of the AIMD and queue dy-
namics around the equilibrium. So, stability means local sta-
bility near equilibrium and the variables denote transients from
their equilibrium points. The study on the linearized system can
be justified by the fact that congestion occurs near the equilib-
rium point since the main role of feedback control is to keep the
closed-loop system around the equilibrium. Second, we assume
that information of the networks is known when we try to com-
pensate for delays and to get stabilizing optimal gains for the
derived feedback control structure. In addition, we do not study
the case of input/state constrained uncertain systems which are
intrinsically included in real networks and network simulators.
Instead, we study the case of multiple links and heterogeneous
delays which to our knowledge, has never been investigated in
the TCP Reno literature before our work [2].

The main new feature of the present paper is to formulate
the feedback control design problem as state–space models.1 It
allows us to investigate what is a natural state-feedback control,
how to compensate for delays explicitly and what is the impact
of different feedback control structures on performance.

In Section II, we introduce the well-known TCP AIMD model
in [17], [18] and its extension to multiple links and heteroge-
neous sources.

In Section III, we derive the state-space model of the lin-
earized AIMD and queue dynamics for the feedback control
design. Thereby, we obtain the PD-type state-feedback control
structure in terms of queue length (or RTT: round trip time)
which implies the structural deficiency of P-type RED. We show
that this procedure can easily be extended to the case of addi-
tional dynamics like the low-pass filter of RED. By applying
integral control action, we propose a mathematical framework
to include PI-type REM and PI as well as P-type REM, from
which we study the impact of each structure on performance in
Section V.

In Section IV, we suggest a delay-dependent feedback control
to compensate for the delay in the congestion measure explic-
itly under the assumption that the forward delay from source to
router is zero. This assumption is relaxed by adding a modified
virtual queue so that we can still compensate for delays explic-
itly in the presence of both forward and backward delays. As a
subsidiary result of this study, we verify that a simplified AVQ,
which is P-type AQM in terms of aggregate, is a state-feed-
back control for the AIMD model based on the virtual queue
dynamics.

1Since the state-space approach was developed in 1950s, it has been widely
investigated in the literature due to many advantages over the transfer function
approach (refer to any control literature for more details [27]).

In Section V, we obtain stabilizing gains of the control struc-
tures by minimizing a linear quadratic (LQ) cost of the tran-
sients of state and control variables. Thus, the optimal control
framework enables us to measure deviation of transients from
the equilibrium point in the form of quadratic cost which can
be considered as a control Lyapunov function. For example, a
slower transient will incur a higher cost. Inverse optimal con-
trol and the design of stabilizing gains by eigenvalues are also
studied. Then, we discuss the impact of each structure on perfor-
mance using the results of this study rather than to compare their
performances via simulations. As a by-product of this study,
we show that it is possible to obtain stabilizing gains with one
design parameter by setting all eigenvalues of the closed-loop
system to be the same.

In Section VI, all results are extended to the case of multiple
links and heterogeneous sources. This study shows that the de-
sign procedures and resulting control structures for single link
and homogeneous sources hold for general networks.

II. PRELIMINARY: THE WELL-KNOWN AIMD MODEL AND

SCOPE OF OUR STUDIES

In this section, we introduce the well-known AIMD model of
TCP in [17], [18] and its extension to multiple links and hetero-
geneous sources, and discuss our scope of this study.

A. Notation

For describing the well-known AIMD model, we will use the
following notations.

• is the number of TCP sources, which we assume to be
constant with time.

• is the capacity of link in packets/s.
• is the round trip propagation delay of source .
• is the real queue length of link at time (the average

queue and virtual queue lengths are denoted as and
, respectively).

• is the forward delay from source to link at time .
• is the backward delay from link to source at time

.
• is a {0, 1}-valued variable with value 1 if source uses

link , 0 otherwise.
• is the RTT of source at time

.
• is the window size of source at time .
• is the feedback control at time for TCP (it is mainly

assumed to be the loss probability in this paper, but it can
have other quantity depending on what kind of congestion
information is used for the feedback control).

• is the aggregate of link at time .
Equilibrium of each variable will be denoted as , , ,
, and .
Whenever RTT, or forward and backward delay, appear in

the argument of a variable, we will replace it by its equilibrium
value , , and . However, when round-trip time appears
in the dependent variable, we will consider it time-varying. This
avoids recursive time-arguments, but is admittedly an approxi-
mation, done exclusively for model tractability. Using this rule,

is approximated by
(the rationale for the approximation is that the source rate,
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which is defined by , and the window size are linked by a
Little like law: ).

In order to represent the linearized variables at the equilib-
rium, we will add the notation to each variable, so

, , , , , ,

, , , , ,
, , and

.

B. Extended AIMD Model for Multiple Links and
Heterogeneous Sources

The AIMD model for a single link and homogeneous sources
in [17], [18] can be extended to the case of multiple links and
heterogeneous delays as follows:

(1)

For the purposes of linearization, we note that nonbottleneck
links (with empty equilibrium queues) can be ignored. For bot-
tleneck links whose dimension is in this paper, we make the
assumption that rate increase of a source affects all bottlenecks
in its path, and write

Note that , , and cannot have negative values.
But, the present paper does not consider the effect of input/state
constraints.2

C. AIMD Model for Single Link and Homogeneous Sources

From (1) and (2), homogeneous TCP Reno sources with the
same window size ( , , ,

) sharing a common bottleneck router ( , ,
) can be modeled by

(2)

with the queue dynamics

(3)

In [17] and [18], they assume that
with the dropping probability which is close to

zero, so that their AIMD model is

(4)

2Refer to [28]–[30] for the design of stabilizing controls in the presence of
input/state constraints.

D. Scope of Our Studies Based on the AIMD Model

Here, we do not consider the nonlinear dynamic behavior
and the effect of input/state constraints (refer to [31] for the
chaotic phenomenon of the nonlinear TCP in the presence of
constraints). We also do not cover the slow start mode and the
fast recovery/fast retransmission mode of TCP (refer to [32] for
an initial model and [33] for the performance analysis with the
slow start and congestion avoidance modes).

In fact, it seems that applicable theoretical tools are not
enough in the sense that implementation of stabilizing controls
requires the closed form of explicit solutions instead of suffi-
cient conditions. In this point of view, it will be useful to have
a theory telling that which stabilizing control for linearized
systems will provide quantitatively better performance for the
original nonlinear systems. Note that only the stability relation-
ship between the linearized and original nonlinear systems is
known [34].

Nevertheless, we can justify the feedback control design on
the linearized system by the objective of feedback control that
keeps the closed-loop system around the equilibrium. Note that
if all TCP users are far away below equilibrium, they approach
the equilibrium point by its increasing mechanism, while AQMs
starts to take an action near or above the equilibrium, i.e., in the
presence of congestion.

Concluding this subsection, we would like to remark three
important issues that we should consider together for the feed-
back control design: Randomness (refer to some interesting pa-
pers based on stochastic models over wired networks [7], [35]
and wireless networks [8], [9], [36]; Fairness, where the optimal
resource allocation problem has been thoroughly studied in [25]
(some associated papers are [37]–[39]); Efficiency, where an ini-
tial work is done in [40]. The other issues like quality of service
(QoS), cross layering of TCP/IP, and multicast (or overlay) can
be considered based on the aforementioned issues.

III. FEEDBACK CONTROL STRUCTURE BASED ON A

STATE-SPACE MODEL

The mathematical derivations of this section focus on the case
of single link and homogeneous sources with the assumption

, so that (We will study how to relax this
assumption in Section IV-B).

In Section III-A, we derive a state-space model which leads to
PD-type state-feedback control in terms of queue length or RTT.
In Section III-B, we will extend this procedure in the presence
of an additional dynamics like a low-pass filter of RED. A math-
ematical framework is proposed in Section III-C as an attempt
to interpret existing AQM algorithms in a unified manner which
will be discussed in detail in Section V.

A. State-Feedback Control

The first key step to deriving a state-feedback control struc-
ture is to convert two coupled dynamics (2) and (3) to the equiv-
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alent single dynamical system by differentiating (3) and rear-
ranging the differentiated equation with (2) and (3)

(5)

In general, it is difficult to systematically find a nonlinear
function which guarantees the global asymptotic stability
for nonlinear dynamical systems with delays (see the equiva-
lent nonlinear system (33) for multiple links and heterogeneous
sources). As a starting point to address these problems and as
a method to avoid the nonnegative constraint, the present paper
considers an equilibrium point with positive values and studies
the linearized system of (5) on , , , and
near the equilibrium point.

From (5), we can derive the following model of the linearized
TCP and queue dynamics:

(6)

where , and are given,
,

, and
. Refer to Appendix I for derivation of (6).

For presentation of the linearized variables, refer to the end of
Section II-A.

The differential equation (6) can be represented as the fol-
lowing state-space model:

(7)

where

(8)

The previous state-space model is a minimal representa-
tion with state variables ( , ) of (6). Note that the
open-loop system of (7) (i.e., ) is asymptotically
stable since its system matrix has negative eigenvalues

and , which
means that the feedback control (i.e, )
makes the system stable under the assumption of .3

From the above state-space model, we can naturally get a
PD-type state-feedback control

(9)

3In this paper, “stable” means “asymptotically stable,” not “marginally stable”
which corresponds to “oscillating.”

if we ignore the time delay (i.e., ) in the control
. How to deal with the delay and how to obtain a pair

of a stabilizing gain ( , ) will be discussed in Section IV
and Section V, respectively.

The derived PD-type control structure, which we also did not
expect, is interesting in the following sense: It supports the con-
jecture of the networking literature in terms of the feedback con-
trol structure for the first time to our knowledge that AQM RED
is not enough to regulate the given TCP [12], [14], where RED
can be classified as a P-type AQM (i.e., ) or as an output
feedback control. When we ignore the time delay , the differ-
ence between the state- and output-feedback controls is as fol-
lows. With P-type RED with , the closed-loop system
(7) is

while the closed-loop system with (9) is

From these equations, it is easy to see that we cannot adjust
eigenvalues of the closed-loop system arbitrarily with the output
feedback control, while we can do that with the state-feedback
control. Thus, the advantage of the state-feedback control comes
from having the same degree of freedom as that of the system,
while the output-feedback control has a less one. The case of
REM/PI, which adds an integral control action to RED, will be
discussed in Section III-C.

Remark 1: In order to relate the derived structure with
the previous ones based on the transfer function approach,
we consider the transfer function from to for
the linearized system of (2)
with control (9). Then, the resulting transfer function is
equal to the lead-lag compensator [41] with the form

. As mentioned
in [3, Rem. 1], the feedback control structures in Vegas [42]
and a new static TCP [43] can be considered as P-type controls
in terms of RTT or queue length (i.e., ). Note that [44]
and [45] add D-type control to [42] and [43], respectively, after
our papers [1], [2] have shown that the PD-type control is a
natural state-feedback structure to stabilize the given AIMD
model.

Remark 2: The PD-type structure obtained in this paper can
also be implemented at sources as follows. Similarly to (5),
using , (2) and (3) can be converted to the
equivalent single dynamical system:

. From this equivalent form, the
state-space model of the linearized TCP and queue dynamics is
given by (7) and (8) with and replaced by
and , respectively. From
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this state-space model, we can naturally get another PD-type
state-feedback control in terms of RTT

(10)

if we ignore the time delay (i.e., ) in the control
. Thus, our design procedures and control structures

based on the state and hold.
Stabilized Vegas in [44], which was called FAST (Fast AQM

and Scalable TCP) protocol, assumes the fixed RTT when they
linearize the original nonlinear model to get the stabilizing gains
of the PD-type feedback control structure. It is natural that the
fixed RTT gives a conservative stability condition in the pres-
ence of queue dynamics, where our works consider the time-
varying RTT.

For implementation, (9) can be rewritten as the equivalent
form . Thus, our
PD-type structure can be considered as combination of queue
and rate controls. Since the AIMD model (2) is developed under
the assumption that the congestion measure is small, the
equilibrium probability should be small if dropping is used
as the congestion measure. A high can cause frequent retrans-
missions and timeouts which lead to the mismatch between the
AIMD model and the congestion mode of TCP. However, it can
be large if marking like explicit congestion notification (ECN) is
used as the congestion measure [46] which will not be studied
in this paper. should also not be so close to zero in order
not to make saturated, where saturation can be a cause of
instability or chaos as shown in [31]. For the same reason,
should not be so close to zero. Selection of should consider
two more things. First, a very large queueing delay can make the
nominal-stable system oscillate if the delay is not compensated
appropriately. Second, small packets (mice) or user datagram
protocol (UDP) flows do not interact with the congestion in-
formation which can be considered as noise or disturbance for
the dynamical model (2).4 Thus, should be selected so that
non-reacting packets to the congestion information go through
networks without causing congestion. If is very small or
closed to the maximum queue size, it is not easy to stabilize
system (2) with (9) because of the input/state constraints.

In this subsection, we derived the state-space model and its
state-feedback control structure, where the derived PD-type
feedback control implies the structural deficiency of P-type
RED. However, this subsection did not consider average
queueing dynamics of RED which is used to make the dynamic
behavior of TCP smooth for the burst traffic [10]. This case is
studied in the following subsection.

B. With Additional Dynamics: Low-Pass Filter of RED

Consider the dynamics of average queueing in RED
which is called the low-pass filter in the control literature

(11)

4For one way to model and deal with the disturbance based on the state-space
approach, see [47].

Here, is a design parameter which decides the cut-off fre-
quency [41]. From (6) and (11), we can get

(12)

where , , . The
differential equation (12) can be represented as the following
state-space model:

(13)

with and , where

From the previous state-space model, we can naturally get the
PD-type state-feedback control in the presence of a low-pass
filter

(14)

if we ignore the time delay . Note that RED with a low-pass
filter can be represented as , where the derived
structure (14) also shows that RED is not enough to fully control
TCP dynamics of the AIMD model.

For implementation, (14) can be rewritten using (3) and
(11) as the equivalent form

, which does not require the estimation of
and .

In this subsection, we showed how to design a state-feedback
control in the presence of a low-pass filter. In fact, the results
in Section III-A can also be applied to other cases of additional
dynamics. In the following subsection, we derive a state-feed-
back control in the presence of integral control action.

C. A Unified Mathematical Framework Using Integral Control
Action

This subsection applies integral control action technique in
[48] to the system (7) as a trial to interpret other AQM algo-
rithms such as REM and PI in a unified mathematical frame-
work rather than to compare them via simulation, where impact
of each structure on performance will be discussed in Section V.
Similarly to REM and PI, this subsection does not consider the
low-pass filter of RED for ease of discussion.

The key step to applying the technique is to have another
derivative of system (2) as follows:

(15)
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From (15), we can derive the following third-order linearized
AIMD model:

(16)

where and are given,

, , with , and in (8),

, and . Refer to Appendix I for deriva-
tion of (16). It is easy to check that the pair is stabiliz-
able if .

From the previous state-space model, we can naturally get a
PID-type5 state-feedback control

(17)

if we ignore the time delay . As discussed in Section III-A,
setting or has a limitation on adjusting closed-
loop eigenvalues, i.e., on controlling the closed-loop dynamic
behavior. The implication of is that the augmented
system (16) can be reduced to the original second-order system
(7).

For implementation, (17) can be rewritten as the equivalent
form

. Note that the PID-type feedback
control does not require the equilibrium point even for the
case that , while the PD-type feedback control needs .

Now, we discuss the implication of integral action on the
closed-loop dynamics.

First, we consider its effect at the steady state. Without
integral action, the stabilizing feedback control makes

approach zero which in turn makes approach
zero since . As a result, the small
makes approach zero slowly, although this effect
may be marginal for the global performance. With integral
action, the resulting feedback control
at the time reflects the accumulation of
additionally, i.e.,

which makes
the steady-state tracking error of approach zero faster.

In the same way, at the transient state, this action makes the
system approach the equilibrium faster when the queue and
rate are below the equilibrium point since is non-nega-
tive and is positive for stability as shown in Section V. How-
ever, since the integral structure accumulates the previous state
information, it can make the system go over the equilibrium
point easily, i.e., cause an overshoot. Then, the system goes back
slowly to the equilibrium due to the damping property of the in-
tegral action. If the overshoot exceeds the maximum queue size,
it causes a windup phenomenon due to the saturation which can
severely degrade the performance (For antiwindup techniques,
refer to [50] and [51]). Derivative structure of the state-feed-
back controls reduces this damping phenomenon and makes the
system go and back to the equilibrium fast. This is another main
reason why we need the PID-type state-feedback control instead

5We have noticed that inner and outer loop PI-type AQM to the aggregate rate
in [21] corresponds to the PID-type delay-independent AQM to the real queue
length. Another delay-independent PID-type AQM is proposed in [49].

of PI-type REM/PI, where REM/PI can be classified as output
feedback controls like P-type RED.

Until now, we ignored the time delay in the control (conges-
tion measure), i.e., we did not compensate for delays. Let’s as-
sume that we use in (9) for the delayed system
(7) [or (17) for (16)]. This kind of controls including RED,
REM, PI, AVQ, and AQMs in [21] and [22] are called delay-in-
dependent (or memoryless) controls in the literature. Then, the
closed-loop system is given by
(or and thus has infinite
number of eigenvalues. As the delay value increases over
some finite value (depending on , and ), the number of
positive eigenvalues increases, i.e., the closed-loop system os-
cillates. The way to solve this problem is to have a small con-
trol gain as done in [21] and [22] or setting so that
the system (7) with dominates, where the system (7)
with is asymptotically stable under the assumption

. With the small control gain, however, the closed-loop
system cannot approach the equilibrium much faster than the
system (7) with , i.e., delay-independent controls
cannot regulate the delayed dynamics arbitrarily in the presence
of large delays. This phenomenon is much more severe with the
output-feedback control. This is the main reason why we need
to develop a delay-dependent control which compensates for de-
lays explicitly. The following section investigates how to design
a delay-dependent control that uses not only the current dynamic
information at time but also the accumulated control informa-
tion from to . Note that the integral control in REM/PI,
which use the accumulated state information, is not constructed
for the delay compensation.

IV. DERIVATION OF THE DELAY-DEPENDENT

STATE-FEEDBACK CONTROL

First, we propose how to compensate for the delay in
the congestion measure explicitly under the same assump-
tion of Section III that the forward delay from source
to router is zero. This assumption is relaxed by ap-
plying a modified virtual queue dynamics in the second
subsection. For simplicity of notation, throughout the
rest of this paper, we define ,

, ,

,
, ,

, .

A. Compensation for the Delay in Feedback Control

The key to deriving an explicit memory control for the de-
layed system (7) is to transform the delayed system (7) to the
equivalent nominal system

(18)

where , with ,
,

,

.
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Refer to Appendix II for derivation of (18). It is easy to see
that if , then and . Note that the
pair is stabilizable, and the closed-loop system of (18)
is asymptotically stable if and only if the transformed system
(7) is asymptotically stable. Since for system
matrices of (7), we have , and
for , while the linearized model of [17, eq. (4)], [18] has

when even for .
Thus, by adding the memory control structure and

, we can handle the delay in congestion measure explic-
itly. From the previous state-space model, we can get a PD-type
delay-dependent state-feedback control

(19)

Equivalently, it can be rewritten as
.

Similarly, (16) can be transformed to the equivalent nominal
system

(20)

where ,

Refer to Appendix II for derivation of (20). The pair
is stabilizable (or controllable) if the pair is stabilizable
(or controllable).

From the previous model, we can get a PID-type delay-de-
pendent state-feedback control

(21)

The equivalent form is
,

where

.

The procedures in this subsection can directly be applied to
the case of a low-pass filter which has one more dimension as
shown in Section III-B. For more details, refer to [4].

Next, we propose how to relax the assumption made in the
derivation of (5) that the forward delay from source to router is
zero, still compensating for delays explicitly.

B. Arbitrary Delay Compensation Based on a Modified Virtual
Queue

The forward delay from source to router produces a
state-delay for the linearized system of the coupled dynamics
(2) and (3) that makes it impossible to compensate for delays in
a closed-form since the state-delayed system is infinite-dimen-
sional (infinite number of eigenvalues).

In order to overcome this problem, we add the following mod-
ified virtual queue dynamics at the router6 to the AIMD
model (2)

where is the virtual queue length, and and are
free design parameters.

If , and . Hence, we have
, , and

.
Since the virtual queue dynamics is dominant near the equi-

librium point, we approximate that the real queue is zero
near the operating point in this subsection thus, the round trip
time is approximated as the propagation delay .

Then, (2) based on the aforementioned virtual queue
dynamics is converted to the equivalent form

.
Similarly to the previous sections, its linearized state-space

model is given by

(22)

where and are given,
, and

.
Note that the previous linearized model does not include the

term . This interesting and nonintuitive property allows
us to use the same delay compensation technique as that in the
previous subsection.

The state-space model (22) leads to the following -type
state-feedback control in terms of aggregate

(23)

where [or
].

6If 
 = 
 = 1, the virtual queue dynamics is equal to the real queue
dynamics, and the AVQ in [20] assumes 
 < 0 while we assumes 
 > 0 in
this paper.
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It is interesting to see that the delay-independent AVQ in [15],
[20] seems to be a -type control in terms of aggregate since
linearizing the AVQ gives ,
which is the same as (23) in the absence of the delay . Thus, our
result verifies that the simplified AVQ is the delay-independent
state-feedback control for the AIMD model when the virtual
queue dynamics is dominant.

Similarly to Section III-C, if one wants to make the steady-
state tracking error approach zero fast, we can derive the ex-
tended state-space model with integral control action

(24)

where and are given, ,

, .

The equivalent nominal system of the delayed system (24) is
given by

(25)

where , ,

,

,

,

, which

leads to .
Up to now, we studied what is a state-feedback control struc-

ture for the given dynamics and how to compensate for delays
explicitly for continuous-time systems. We would like to note
that any kinds of delays are easy to deal with for discrete-time
systems. The natural next question is how to obtain a stabilizing
gain of the feedback control structure. As a trial to compare im-
pact of different AQM structures on performance, the present
paper applies optimal control framework that allows us to mea-
sure deviation of the transients of state and control variables
from the equilibrium.

V. STABILIZING GAIN DESIGN AND ITS

IMPACT ON PERFORMANCE

In this section, we show how to get stabilizing optimal gains
of the feedback control structures for the linearized systems (18)
and (20) which can easily be applied to the cases of additional
dynamics such as a low-pass filter and a modified virtual queue
dynamics (see our companion papers [4] and [5] for the cases
of additional dynamics). Then, the impact of each structure on
performance is discussed from the results of the optimal control
framework.

A. A Stabilizing Optimal Gain for PD-Type Feedback Control

As a performance measure for (18), we consider the following
optimization problem:

(26)

with
, where the state weighting matrix is non-

negative, the control weighting matrix is positive and the
pair is observable. By solving the above optimization
problem, we can get stabilizing optimal and inverse optimal
gains of the PD-type control.

Even if is negative, we can get a stabilizing control if the
system is stabilizable. However, we do not consider the de-
tailed case. Without loss of generosity, the current paper sets
the weighting matrices as , where and

.
For ease of explanation of the previous performance index,

assume that (i.e., and ). Then, we
define the stabilizing optimal gain design problem as choosing
a feedback control that minimizes the cost of transient
around an equilibrium

with
.

Each term in the integrand penalizes transients on the queue
length, queue length rate and the fluctuation of the loss prob-
ability, respectively. Hence, the cost is a weighted sum of the
transients weighted by , and 1, respectively. For the given
weighting, a slower transient incurs a higher cost.

Throughout the rest of this subsection, for simplicity of nota-
tion, we define

Proposition 1: The stabilizing optimal gain of the PD-type
delay-dependent control (19), which minimizes the transient
cost (26) for system (18), is given by

and
and the

resulting optimal cost is given by , where
satisfies (Refer to [1] and
[3] for the solution of this algebraic Riccati equation).

When in (7), the stabilizing optimal gain of (9) is
given by ,

.
If the state and input constraints are not violated, then

( when ) is given by

(27)

(28)
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Proof: The optimal control that minimizes (26) and the
resulting optimal cost are given by

(29)

Note that is a symmetric positive–definite matrix and the
resulting closed-loop system is asymptotically stable since the
pairs and are controllable and observable, re-
spectively [47]. By solving (29), we get the optimal gain. From
the closed-loop system, we get (27) and (28).

Proposition 1 implies that the solution of problem (26) is
a stabilizing feedback control, specified by . Con-
versely, given any AQM of this structure, it solves problem (26)
with appropriate weights as the next result says. It can be
easily proved from Proposition 1.

Proposition 2: Given a stabilizing control
that satisfies and ,

it solves problem (26) with weights:
, . The

corresponding closed-loop eigenvalues and are given by

Proposition 3: Given eigenvalues and of the closed-
loop system (18), where real parts of and are negative,
it solves problem (26) with weights: ,

.
From Proposition 3, an easy way to design and is to

make equal to , i.e., . It can be done by setting

, .
Then, we have only to design one parameter for the second-
order system. As a loss probability, can be constrained
as . Thus, it is necessary to check the
extremum of . Refer to [1] for more details of this issue.

Similarly, we show how to get a stabilizing optimal gain of
the PID-type control for the linearized system (20) in the next
section.

B. A Stabilizing Optimal Gain for PID-Type Feedback Control

As a performance measure for (20), we consider

(30)

with , where
and the pair is observable.

Without loss of generosity, we define and
, where is the th low and th column element and

s are nonnegative. For simplicity, we also define

Proposition 4: The stabilizing optimal gain of the PID-type
delay-dependent control (21), which minimizes transient cost
(30) for system (20), is given by

, ,

and the resulting
optimal cost is given by

(31)

where is a symmetric positive–definite matrix satisfying
. Refer to [1] and [3] for the

detailed values of for , and ( when
).

The proof of the previous proposition follows that of
Proposition 1.

Proposition 4 implies that the solution of problem (30) is a
feedback control algorithm, specified by . Con-
versely, given any AQM of this structure, it solves problem (30)
with appropriate weights , as the next result states.

Proposition 5: Given a stabilizing control
, it solves problem (30) with weights:

, ,
. Then, , , ,

, , and are given by ,
,

, , ,
, and , , are given by

(32)

Proposition 6: Given eigenvalues , , and of the
closed-loop system (20), where real parts of , , and

are negative, solves problem (30) with weights
, ,

. Then, , , , , ,
and are given by , ,

, ,
, .

Similarly to the previous section, an easy way to design ,
, and is to make , , and equal, i.e., .

It can be done by setting ,
, . Then, we have only

to design one parameter for the third-order system.
We now interpret the impact of each structure on performance

from the results of the PID-type optimal control framework. The
current paper mainly focus on AQM algorithms such as RED,
REM, and PI based on the real queue dynamics. For a brief
discussion about AVQ based on the virtual queue dynamics, see
Section IV-B.

C. Impact of Different AQM Structures on Performance

For ease of comparison, we assume that (i.e.,
, ) for the linearized model and we do not consider

the low-pass filter of RED (For more details, see [4]).
Then, the linear models of RED and REM/PI are

simplified

for some nonnegative constants , , . The linear
models of RED and REM/PI roughly capture the models in
[10], [16], and [19].
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By Proposition 4, the stabilizing optimal AQM has a strictly
positive gain . Since this condition is satisfied by none
of RED, REM and PI, none of them can be made optimal in the
sense of minimizing (30). We can also interpret their structural
deficiency of D-type control as follows.

From (32) in Proposition 5, the sum of eigenvalues of the
closed-loop system with REM and PI is given by ,
while our PID-type AQM has . Thus, we
cannot adjust the sum of eigenvalues without D-type control
structure, i.e., cannot control the dynamic behavior of the
closed-loop system arbitrary while we can do that with the
state-feedback control structures. For example, is less
negative when than when . This suggests that
the decaying rate is smaller with . We can similarly
interpret the structural deficiency of P-type RED, compared
with the PD-type state-feedback AQM from Propositions 1
and 2.

As shown in (31), transient costs of a simplified RED and
REM/PI can be obtained from (31) by setting some elements of

to zero, with (i.e.,
) and with (i.e., ), respectively. Note

that the costs of RED and REM/PI are always greater than that
of the stabilizing optimal AQM since (31) is the optimal cost for
the given system and weighting matrices.

Until now, we considered single link and homogeneous
sources. In the next section, we come back to the general
networks with multiple links and heterogeneous delays of
Section II-B.

VI. EXTENSION TO MULTIPLE LINKS AND

HETEROGENEOUS SOURCES

In this section, we extend the results in the previous sections
to the case of multiple links and heterogeneous sources. First,
we derive an equivalent nonlinear system and a linearized state-
space model to this general case. Then, delay compensation and
stabilizing optimal gain design are studied.

A. State-Space Model for General Networks

To derive a state-space model for the general case, we define

...
...

...

where is a vector satisfying ,
and have

identity matrices and
only at th and th block, respectively, and zero matrices
at the other blocks. As an exceptional definition, when

is used inside the feedback control variable
like and , we mean that

and

.
Differentiating (2) and rearranging the differentiated equation

with (1) and (2), we have

(33)

From (33), we can get the following linearized TCP model of
the general case:

(34)

where and
are given, and .

If we want integral control action, we have another differen-
tiation given by

(35)
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From (35), we can get the extended linearized AIMD model
of the general case

(36)

where and
are given, and

For detailed derivation of (34) and (36), refer to Appendix III.
As shown in the previous equations, the state-feedback controls
of (34) and (36) also have PD-type and PID-type state-feedback
control structures as in (9) and (17) if we ignore all delays.

B. Delay Compensation for General Networks

In the same way as Section IV, we first consider how to com-
pensate for delays in the feedback control. If for all
and , (36) can be converted to the equivalent system

(37)

where and are given

,

...

Define

, where is a -column vector that has 1 in
th row and 0 in other rows. Then, the delayed system (37) can

be converted to the equivalent nominal system

(38)

To get a more simplified equivalent system, we have one more

transformation. Let and , where

,
, and .

Then, (38) can be rewritten as

(39)

where

, ,
,

.
If for all and , then and

.
From this state-space model, we can get a PID-type delay-

dependent state-feedback control as in (21) (in the same way,
we can get a PD-type delay-dependent state-feedback control).
It is also easy to see that we can relax the assumption
using the virtual queue dynamics as in Section IV-B.

C. A Stabilizing Optimal Gain Design for General Networks

In the same way as those of Propositions 4 and 5, we can
get the stabilizing optimal gain solving (30) and consider the
inverse optimal control under the assumption that the system is
controllable and observable (refer to [2] for the details).

From the study in this section, we can see that the design
procedures and structural properties for the case of single link
and homogeneous sources hold for the general network case.

VII. CONCLUSION

This paper studied how to design a stabilizing feedback con-
trol based on the state-space approach for the given TCP and
its variants with additional dynamics, where the feedback con-
trol can be implemented either at sources or at routers with a
different type of congestion signal. We derived state-feedback
control and explicit delay compensation structures which are
necessary to regulate the given dynamical system arbitrarily. As
a subsequent result, we proposed a mathematical framework al-
lowing us to interpret RED and REM/PI as different approxi-
mations of the unified framework, and discussed the impact of
each structure on performance from the results of the stabilizing
optimal control design.

One can extend this work to more realistic congestion con-
trol problems. We also expect that our feedback control design
procedures can be applied to the future TCP protocol like the
high-speed TCP [52]–[54] or other dynamical systems.
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APPENDIX I
DERIVATION OF (16)

Let be the equilibrium point. Then, the linearized
model of (5) is

where ,
, ,

,
. Then the linearized model of (5) can be converted to (6).

Similarly, the linearized model of (15) is

Then, the linearized model of (15) can be converted to (16).

APPENDIX II
DERIVATION OF (18) AND (20)

We have only to derive (20) since we can handle (18) as a
special case of (20).

Note that (16) can be rewritten as

(40)

where

with ,
,

and .
Define the insider part of the previous second equation as

(41)

Using (40) and (41), system (16) can be rewritten as the fol-
lowing nominal system:

(42)

where

with
, and

.
To get the explicit stabilizing optimal gain as shown in Propo-

sitions 1 and 4, we have another transformation as follows.
Let , where the equation shown at the bottom

of the page holds. can be rewritten as
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using the following equations:

Since for system matrices of (16), we have
, , and for . Since

, there exists . Thus, using the transformation
, we can rewrite system (42) as

.
Similarly, we get (18).

APPENDIX III

DERIVATION OF (34) AND (36)

We have only to show how to derive (36) since we can
handle (34) as a special case of (36). Linearizing (35) and
using and , we
have ,

,
, where the other

terms are zero.
Linearizing (33), we have

which leads to

From the last equation, the linearized system of (35) can be
rewritten as

(43)

From (43), we can convert the linearized model of the AIMD
model for general networks to

that can be rewritten as the state-space model (36).
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