Provided by Caltech Authors - Main

Metadata, citation and similar papers at core.ac.uk

Evaluation of FAST TCP in Low-Speed
DOCSIS-based Access Networks

Lachlan L. H. Andrew
ARC Special Research Centre for
Ultra-Broadband Information Networks
University of Melbourne
Vic. 3010, Australia
l.andrew @unimelb.edu.au

Abstract—There is strong evidence that the efficiency of the
Internet is limited by its existing TCP congestion control system.
A replacement, FAST, has been shown to improve performance in
high-speed networks. In order to achieve widespread acceptance
and standardisation, it must also be tested in environments
more typical of the existing Internet. This paper experimentally
evaluates the performance of FAST over a typical access link, with
bandwidths of around 0.5-3 Mbps. Links both using the DOCSIS
cable modem medium access control (MAC) protocol and simple
low rate links were investigated. It is shown that the random delay
introduced by MAC protocol of the cable modem does not appear
to interfere significantly with FAST’s ability to set the congestion
window size to its target. However, the cable modem does appear
to introduce consistent additional delays when the link is highly,
but not fully, utilised. These unexplained delays mean that a larger
congestion window is required, and must be taken into account
when setting FAST’s parameters, notably the target queue size,
alpha.

I. INTRODUCTION

The Internet started as a research tool to allow resources to
be shared between universities. It is now indispensable in many
areas of the daily life, and increasingly underpins the economy
and everyday infrastructure. One of the key technologies behind
the Internet is the Transmission Control Protocol, TCP, which
governs the rate at which data is transmitted between hosts on
the network. The current standard version of TCP, NewReno
(RFC 2528), is based closely on TCP Reno (RFC 793), which
was designed two decades ago. It reflects the prevailing network
technology, and best understanding of network dynamics and
congestion control at that time [1], [2]. As the Internet has
evolved to encompass a more diverse range of network data
rates and packet loss/latency characteristics, standard TCP is
increasingly a limiting factor in network performance [3], [4].

FAST (Fast AQM Scalable TCP) [5], [6] is emerging as a
strong candidate for a new IETF TCP standard. It was designed
from the ground up to work efficiently with modern networks,
especially high speed networks, and those with long propagation
delays. Unlike proposals such as BIC [3] and High-Speed TCP
[7], which control flows’ rates in response to packet loss, FAST
TCP follows the approach of TCP Vegas [8] and responds to
queueing delay. This allows the equilibrium queue size to be
orders of magnitude smaller than the buffer size, and avoids the
waste incurred by packet losses. FAST has much better stability
properties than Vegas, especially for very large networks [6].

Irena Atov, David Kennedy
Centre for Advanced Internet Architectures
Swinburne University of Technology
PO Box 218, Vic. 3122, Australia
{iatov,dkennedy } @swin.edu.au

Bartek Wydrowski
Networking Lab
California Institute of Technology
Mail Code 256-80, CA 91125, USA
bartek @caltech.edu

To date, FAST has been tested by Caltech and independent
groups such as SLAC (Stanford Linear Accelerator Center) and
CERN (The European Particle Physics Laboratory) in a wide
range of high speed environments [9]. Given the benefits of
FAST in these environments, it would be desirable for it to be
deployed widely. However, this requires that it be evaluated in
a diverse range of networks, including low rate access networks
typical in the existing Internet. The current and medium term
future of access networks is in the 1-10 Mbps range, using such
technologies as xDSL and cable modems. FAST’s behaviour in
these environments must also be understood.

This paper experimentally evaluates the performance of FAST
in a typical access network involving DOCSIS (Data Over Cable
Service Interface Specification) cable network [10]. We perform
experiments using a CISCO DOCSIS cable system [11].

The cable modem environment is of particular interest as
it has a MAC (medium access control) protocol, and it is
reasonable to expect the delay this introduces interact with the
delay based control of FAST. The way the MAC layer delays
packet transmission in case of congestion is different from the
queueing at a switch; a characteristic dependence of latency on
the offered traffic load has been observed [12].

The particular findings of the present paper are:

« The latency of a cable modem increase when the traffic rate
is high. This results in the need for a congestion window
larger than the bandwidth delay product.

o This increase in latency depends on the capacity of the
link, and is more pronounced when the capacity increases.

o The “alpha” parameter, which FAST uses to control the
number of packets that are queued on the data path, must
be set large enough to allow for the additional packets
stored in the cable modem link.

o Although DOCSIS also introduces unpredictable delays,
these do not appear to interfere with FAST’s ability to
estimate the queueing delay.

Section II will now describe the FAST and DOCSIS protocols
and explain how the DOCSIS protocol affects data throughput.
The experimental setup described in Section III is then used to
study the behaviour of a single FAST flow, and two concurrent
FAST flows. The results are presented and analysed in Sections
IV and V respectively.

https://core.ac.uk/display/216267515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. BACKGROUND AND OBJECTIVES
A. The FAST Algorithm

Most congestion control algorithms since TCP Tahoe, and its
popular successor TCP Reno, adjust a source’s transmission rate
based on the rate at which packets are lost, interpreting packet
loss as an indication of congestion. FAST follows from TCP
Vegas [8] in adjusting flow rates in response to the measured
delay. These algorithms adjust a source’s window size to attempt
to maintain a constant number of its own packets, «, queued
in nodes along its path. The queueing delay is estimated as the
difference between the mean round trip time, denoted D, and
the minimum round trip time observed by any packet, d.

FAST updates the window size according to [5], [6]

5 (w0 o +a) |

The focus of this paper is how to set the o parameter in two
different low-speed environments. A value of a« = 3 has been
recommended for Vegas [8]. In high speed links, this has been
found to cause insufficient queueing for reliable measurement
of the resulting delays [13]. For high speed links, it has been
recommended that « be set to cause a given small queueing
delay, such as 2ms [14]. This paper shows that this rule of
thumb gives insufficient queueing for low speed networks,
especially when DOCSIS is used.

w(t+1) =

B. DOCSIS — Cable Modem Links

DOCSIS coaxial or hybrid-fiber/coax (HFC) cable links are
among the most popular broadband IP access technologies.

A typical DOCSIS cable network, illustrated in Fig. 1, con-
sists of two key components: the Cable Modems (CM) located
at the customer premises, and a Cable Modem Termination
System (CMTS) located in the service provider’s (SP) network.
Transmission over the downstream and upstream channels is
controlled by the CMTS. The upstream channel is a multipoint-
to-point channel shared by all the cable modems (CM) using
a time-slot structure. A centralized MAC protocol based on a
reservation scheme, also known as a Request-and-Grant cycle,
controls the access to the upstream channel.

The CMTS regularly sends control signals in the downstream
channel to all CMs in the network, which contain MAP (MAC
allocation and management) messages to describe the alloca-
tion of upstream bandwidth. The MAP message transmission
interval can be dynamic or fixed (our Cisco CMTS used a
fixed interval defaulting to 2ms). The upstream channel can
be regarded as a stream of time slots (called mini-slots) with
duration, in symbols, determined by the CMTS. These slots
can be of the request or data type. Request slots are individual
mini-slots used to send request messages. Data slots consist of
adjacent mini-slots used to carry the data packets. A CM, upon
receiving a packet to transmit, must request an allocation from
the CMTS specifying the number of slots needed to transmit the
packet, and its service identification (SID). In this process the
CM contends for access during periods specified in the MAP
messages. Once the CMTS receives the request it allocates a
proper portion of the upstream bandwidth for the CM in a future
MAP message. The maximum burst size of data that a CM can

Upstream
CM T

>

@ 7 (HFC Network)
A
Downstream

DOCSIS Network

(

Fig. 1. A typical DOCSIS-based cable network

30

: M Am M

Round Trip Time (ms)
@

‘ ‘ ‘ RTT ——
0 50 100 150 200 250 300
Time (s)

Fig. 2. Round trip time for an idle path containing DOCSIS

send upstream per MAP opportunity is limited as specified in
the max-burst size parameter contained in SID for the CM (we
use the default upstream max-burst size of 1600 bytes, which
accommodates all Ethernet packets).

The way in which the DOCSIS protocol governs communi-
cation between the CM and the CMTS introduces additional
and unpredictable latency into the network’s performance [12],
[15]. Figure 2 shows the round trip time measured by “ping”
for a path containing a DOCSIS link, with no other traffic
present. Selected packets experience additional delays of up to
25 —12 =13 ms.

III. EXPERIMENTAL SETUP

We have experimentally evaluated the performance of FAST
over two different access networks, each with a single bottle-
neck link. One contained a DOCSIS cable modem, and the other
was a simple rate-limited link. We considered static scenarios
where the bottleneck link carried one or two FAST flows, and
no other traffic. (The DOCSIS link also transmitted low-rate
keep-alive messages.)

Our aim was to investigate the impact of downstream (DS)
and upstream (US) bandwidth limits of the bottleneck link on
the overall FAST TCP performance, and investigate how the
FAST and DOCSIS parameters should be set to ensure good
performance.

Figure 3 shows the equipment used for our experiments. The
setup containing a DOCSIS link is shown; the differences with
the simple link experiments are described later. The sender
(TCP server) runs Linux with Caltech’s FAST patches and the
receiver runs standard Linux. In addition to the DOCSIS cable
network (CMTS and CM), a router running dummynet [16]
under FreeBSD and a standard Ethernet switch are used to

DS
100 Mbps 100 Mbps|[E]| |100 Mbps| |1l —
e ([T =}
Ethernet Switch I Cable Modem

CMTS
Cisco ubr7100

DOCSIS system

Cisco 3550 Cisco ubr905

WAN Emulator
Free BSD DummyNet

TGP FAST Server
Linux

Fig. 3. Test setup

emulate a typical ISP network. The sender, the receiver and
the dummynet router are 2.4 GHz Intel Celerons with 256 MB
of RAM and 100 Mbps Ethernet cards. The switch is a Catalyst
3550, the CMTS is a Cisco ubr7100 and the CM is a Cisco
ubr905, which also acts as a router.

All the links in the network except for the bottleneck link
have capacity 100 Mbps. The dummynet was configured to
emulate a high-speed WAN path of 100 ms Round Trip Time
(RTT) without imposing any limitation on the downstream
and upstream channel capacities. Additional constant delays,
notably in the DOCSIS link, make the total RTT approximately
115 ms when no traffic is present. The dummynet used a buffer
size of 2048 kbytes (involving two pipes in series, each of 1024
kbytes). This resulted in no packet losses in the core network.

In all of our experiments the maximum buffer size on the bot-
tleneck link was 512 ms, the default value of the Cisco CMTS
[17] configuration. The experiments consisted of running one
or two iperf flow(s) with 1500-byte packets on the downlink.

For the experiments involving a simple low-speed link, the
DOCSIS system was bypassed. Instead, the same dummynet
that emulated the WAN delay was also configured to emulate
the bottleneck capacity limits, in both the downstream and
upstream, and the limited buffering. The dummynet RTT was
still set to 100 ms.

We tested FAST for configurations involving the following
downstream/upstream capacity pairs: 256 kbps/128 kbps, 512
kbps/256kbps, 1.54 Mbps/512 kbps, 2 Mbps/512 kbps, 2.5
Mbps/512 kbps and 3 Mbps/512 kbps.

IV. SINGLE FLOW RESULTS

Figure 4 shows the throughput obtained by FAST as a
function of the parameter o for a downlink/uplink speed of
3 Mbps/512 kbps. The throughput results are averaged over 100
runs. This demonstrates that o = 4 is sufficient for almost full
utilisation on a simple 3 Mbps link, but that a much larger value
is required on a 3 Mbps DOCSIS link. The slight reduction from
full capacity is mostly accounted for by the 2.5% overhead of
TCP and IP headers (20+20 bytes out of 1500).

At 3Mbps with 1500-byte packets, &« = 4 corresponds to a
delay of 16 ms. This is much larger than is necessary to obtain
accurate timing estimates. The reason that such a large queueing
delay is required on simple and DOCSIS links will now be
discussed in turn.

A. FAST on a simple slow link

There are two major effects at work causing utilisation to
be low for a@ < 3. The first of these, burstiness due to delayed
acknowledgements, also affects Vegas, while the second, integer
arithmetic, is specific to the FAST algorithm (1).

Burstiness refers to the artificially high queueing observed
by the second and later packets transmitted in a burst sent at
a rate larger than the bottleneck rate. This causes the average
queue size observed by the packets to be greater than the true
mean queue size. FAST attempts to minimise burstiness, but
is hindered by TCP delayed acknowledgements [2]. TCP is
only required to acknowledge every second packet; when an
acknowledgement for two packets arrives, it causes two back-
to-back packets to be sent. This will cause the mean queueing
delay to be overestimated by an entire packet time when the
window size is even; if every second packet is acknowledged,
then acknowledgements are all for even-numbered packets,
while each acknowledgement causes the release of an odd-
numbered packet followed immediately by an even-numbered
packet. Thus, even for very low utilisation, delayed ACKs alone
can allow D to be up to d + t,, where t,, denotes the packet
delay. Thus FAST requires

a>1 (2)

to achieve full utilisation.
The second reason for requiring large « is the floor operation
in (1). Without this operation, the update rule

1 d
w(t+1) = 3 (w(t) + Ew(t) + a) 3)
satisfies the equilibrium relationship
D
= 4
W=« D_d @)

for a given base round trip time, d, and average round trip time
D. However, at the equilibrium of (1), we only know

1 d
w§2<w+Dw+a> <w+1,
giving

(a—2) &)

D < D
D-d ~"="D-q
so that an equilibrium window size can be as small as that
predicted by (3) using o/ = « — 2. (In practice, w > 1 is
enforced.)

In the absence of burstiness or random delays, D — d
would be zero if the link were underutilised, resulting in an
infinite equilibrium window; thus the utilisation would be 100%.
However, if D—d is bounded away from zero, then the rounding
in (1) can cause the utilisation to be as low as is predicted by (3)
under the substitution o/ = a — 2. Combined with (2), which
requires ' > 1, we expect that o > 3 for full utilisation.

Note that the impact of integer arithmetic depends on the
amount of rounding at the particular equilibrium point. We will
later see that full utilisation can be achieved with = 1 in
some circumstances.

Figure 4 shows that full utilisation is still not achieved even
for a = 3. This may be due to some additional burstiness in
addition to the unavoidable burstiness due to delayed acknowl-
edgements, or it may be due to the jitter of up to 1 ms introduced
by dummynet.

3000

2500
2000

1500 -

1000 - J

500 | DOCSIS ——
Simple link
))) ‘Nomin‘al Capgcity :
0 2 4 6 8 10 12 14 16 18
Alpha

Throughput (kbps)

Fig. 4. Throughput vs. alpha for DS=3Mbps, US=512Kbps, DOCSIS and
simple link.

B. FAST on a DOCSIS link

Figure 4 shows that the throughput achieved by a single
FAST stream is much less in a DOCSIS access system than an
equal-rate system not running DOCSIS. In particular, at 3 Mbps
FAST requires a = 13 to obtain full utilisation using DOCSIS,
compared with @ = 4 on a simple link. At this speed, o = 13
corresponds to a target queueing delay of 52 ms.

There are several possible reasons for this discrepancy. As
illustrated in Figure 2, the DOCSIS cable system introduces
latency fluctuations. It is possible that these interfere with
FAST’s estimates of the queueing in the network, resulting in
the congestion window being too low. This interference may
be a direct result of the additional delay, or it may be that
these fluctuations induce burstiness in the pattern of packet
transmissions; as discussed in the previous section, this also
causes the mean queue size to be overestimated. A second
possibility is that the actual window size required to achieve full
utilisation in a DOCSIS system is larger than the bandwidth-
delay product. Let us first consider the second possibility.

A bottleneck link carrying a single flow in a purely determin-
istic network will be fully utilised if the flow’s window size is at
least the “bandwidth delay product”, d times the link capacity.
For a 100 ms (or 115 ms) path with a bottleneck link of 3 Mbps,
this is 25 (or 28) packets of 1500 bytes. For smaller windows,
the throughput reduces in proportion to the window size.

Once equilibrium was reached, FAST usually maintained
a constant window size, even though different experiments
yielded different constant values for a given value of «. This
means that it is reasonable to talk of “the” window size for a
given experiment.

Figure 5 plots the observed throughput against the window
size for 140 experiments using « values from 1 to 35. The
expected behaviour is observed for a simple link, and for
DOCSIS systems with small windows. However, for window
sizes between 20 and 37 DOCSIS consistently yields lower
utilisation than predicted. (Close inspection shows that this is
also true for window size between 13 and 20.) Thus, even if
FAST correctly sets the window size to the bandwidth delay
product plus «, full utilisation will not be achieved unless
a > 37— 28 =9 packets. As indicated in the previous section,
the integer arithmetic of (1) can require « to be increased by 2,
yielding a requirement of o > 11 packets for full utilisation.

3000 [
SRRSOt b
2500 |
2 .
£ 2000 - -
5
£
S 1500 |
o
=
1000 -
500 |
DOCSIS
o))) Sirpple link)
0 10 20 30 40 50 60 70
Window Size (packets)
Fig. 5. Utilisation vs. window size, DOCSIS and simple link.
250 :
e
‘*0 H
i
200 - .
o
_ P
@ 4
£ Fiad
= 150 et
= . wrt
= s
[0
g
g 100 -
>
<
50 -
DOCSIS
0))) Simple link
0 10 20 30 40 50 60 70
Window Size (packets)
Fig. 6. Average RTT vs. window size, DOCSIS and simple link.

This is close to what was observed in Figure 4, suggesting
that FAST’s window size is not adversely affected by the
randomness of the delay at this operating point.

After the kink at a window size of around 20 packets, the
utilisation is again approximately proportional to the window
size, but with a constant of proportionality indicating a RTT
of 145 ms. This can be observed in the plot of mean RTT, D
against window size in Figure 6. The mean RTT is equal to the
propagation delay plus the mean queueing delay. The queueing
delay should be zero when the link is underutilised, and be
proportional to the difference between the window size and the
bandwidth delay product when the link is fully utilised. This
is indeed observed for the simple link, but DOCSIS shows a
higher delay for windows between about 13 and 37 packets,
with a value of approximately 145 ms between about 20 and 37
packets, in agreement with Figure 5.

This phantom delay cannot be attributed to burstiness, since
burstiness does not reduce the throughput, denoted x, for a given
window size W, while Figure 5 demonstrates that this phantom
delay does. That is, it is not simply FAST’s estimate of the
RTT that has increased, but rather the actual RTT, W/x. This
is supported by RTT measurements from ping and consistent
with the findings of [12].

Similarly, if the additional delay were purely due to bursti-
ness, it would be expected that at least some packets every round
trip time would observe approximately the true propagation
delay. This is shown not to be the case by Figure 7, which
plots the average of the minimum value of RTT observed in
successive 4 s measurement intervals.

250

200 -
@z srerg R
£ I
£ 10f wt
= o Ntz"i
£
=]
£ 100}
£
=
50
DOCSIS
0))) Simple Iink‘
0 10 20 30 40 50 60 70

Window Size (packets)

Fig. 7. Minimum RTT vs. window size, DOCSIS and simple link.

70

60 - 5.
50 f
40 TR

30 {E

Window Size (packets)

20 + i

. i
I DOCSIS —+—

))) Simple link
0 5 10 15 20 25 30 35
Alpha

Fig. 8. Window size calculated by FAST for a downlink rate of 3 Mbps.

This indicates that DOCSIS is not work conserving; that is,
it may buffer packets even when the link is idle. This may
be due to the Request-and-Grant time slot allocation scheme it
employs. However this is not clear, since DOCSIS obtains the
full 3 Mbps throughput with sufficiently large «, suggesting that
this overhead may not be significant.

For windows greater than 37 packets, this phantom delay
merges with the queueing delay, so that the total observed delay
is the same for DOCSIS and a simple link.

Let us now consider the first reason for requiring large o
suggested at the start of this section: that the delay causes FAST
to set the window size too small for a given «. Figure 8 shows
FAST’s window size (with error bars indicating the maximum
and minimum) as a function of « for a simple link and a
DOCSIS link. For small o, when the link is not fully utilised,
FAST underestimates o using DOCSIS, reflecting the phantom
delay observed in Figure 6. This exacerbates the underutilisation
in this region. However, once the link reaches full utilisation, the
phantom delay is “absorbed” into the queueing delay, and the
window size is no longer too small. In fact, the window size is
approximately 4 packets larger under DOCSIS than the simple
link. This corresponds to the difference of 115 — 100 = 15 ms
in the observed base round trip times, d.

These results are summarised in Figure 9, which shows the
target queueing delay (« divided by the capacity) that FAST
needs in order to obtain full utilisation. For very low rates, full
utilisation is achieved with o = 1 or 2, but the delay becomes
large because the delay from a single packet is large. As the
rate increases, the queueing required on a simple link decreases

100

DOCSIS ——
9 | Simple link
3 80
E
F 701
[
[=]
> 60
£
[}
3 50t \
S af e
S 30t p—
20 t
10 ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000
Rate (kbps)
Fig. 9. Total target queueing delay required by FAST as a function of link
capacity.

monotonically, and will asymptote to a value which gives a
queueing delay just large enough to be reliably detected. In
contrast, the queueing delay required over DOCSIS increases
again as the rate increases.

The default value of oo when FAST operates on a slow link is
20 packets, which is large enough to accommodate the observed
range of effects. However, if the trend continues to higher rate
DOCSIS systems then may need to be increased.

V. Two FLow RESULTS

The previous section investigated and compared the perfor-
mance of FAST when a single TCP connection is established
over either a simple low-speed link or a cable modem access
link. We now extend this study to consider two FAST TCP
connections sharing the system. The two TCP connections
were two concurrent iperf sessions from the TCP server to the
receiver. Note that both flows shared the same cable modem,
and so again there was no contention at the MAC layer.

The o parameter was set equal for the two TCP connections
and varied from 1 to 35. Each experiment was run 10 times,
resulting in a total of 350 tests for each considered type of
access network.

When n flows share a single bottleneck link, the total queue-
ing at the link is ideally na. Thus, if the only reason to need
« > 1 were to ensure that the queueing delay was larger than
the timing uncertainties, as is the case in high speed networks,
we would expect the required « value to scale inversely with
n. Specifically, if there are two flows, we would expect the
a required for full utilisation to halve. From Section IV-B we
know that single flow needs o = 13 or target queueing delay
of 52 ms to achieve full utilisation on a 3 Mbps DOCSIS link.
When two flows are sharing the link one would expect each
individual flow to need oo = 7, which would again give a total
queueing delay of 52 ms. In other words, one wouldn’t expect
the total target queueing delay to change with the increase of
the number of TCP flows.

Figure 10 shows the aggregate throughput obtained by the
two FAST flows as a function of « for both a simple link with
downlink/uplink speed of 3 Mbps/512kbps and a DOCSIS link
of the same speed.

If the reason for needing a@ = 4 in Section IV were simply
to allow for delay jitter, we would expect in this case to

3000
2
g 2500 | 1
<
H
£ 2000 | 1
Ed
<
E 1500 F g
2
©
o
2 1000 1
(=2}
j=3
<

500 DOCSIS —— |

Simple link
Nominal capacity
0 ‘ ‘ ‘ ‘
0 5 10 15 20 25 30
Alpha
Fig. 10. Rate versus « for two FAST flows for DS=3 Mbps, US=512kbps,

for simple and DOCSIS links.

3000 - R q
z LW
o 4 g
& 2500 F o B
= pj%%gi*é%t
2 ",
£ 2000 - i 1
Eg I
2]
£ 1500 F * g
2
5] w
[=2}
© 1000 |+ f
=] +
(=]
< +

500 | .+ 1

DOCSIS +
o))) Simple link -
0 20 40 60 80 100
Aggregate Window Size (packets)
Fig. 11. Rate versus window size for two FAST flows for DS=3Mbps,

US=512Kbps, for simple and DOCSIS links.

achieve full bandwidth utilisation with o = 2 for each flow.
However, Figure 10 shows that o = 3 is needed. This is not
too unexpected, since Section IV-A argues that it is reasonable
to need o > 3 for reasons other than needing queueing delay.

The more surprising results were for the DOCSIS link. Rather
than decreasing by a factor of two to 7, the required « actually
increased to 22. That corresponds to a total target queue size
of 44 packets or a delay of 176 ms.

To investigate this result, the throughput achieved for a given
flow is again plotted against the (aggregate) window size in
Figure 11. As in Section IV-B, this indicates that the total
window size required for full utilisation is significantly greater
than the bandwidth delay product. That is, the need for large
o is not due to an inability of the FAST algorithm to set the
window size to maintain « packets at the sending node of the
bottleneck link.

The trend of superlinear buffer requirements is concerning,
in light of the fact that the cable modems had a default “traffic
shaping” buffer with maximum delay 512 ms, which can be
increased to at most 1028 ms [17]. If the trend continues, then
the default buffer could support fewer than 512/(176/2) ~ 6
flows at full utilisation. Once again, this appears to be intrinsic
to DOCSIS, rather than due to FAST.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have investigated the performance of FAST TCP over low
speed links, and in particular links running DOCSIS. FAST is
able to achieve almost full utilisation over a low speed link
if its target queue size (alpha) is at least three packets. This
corresponds to a decreasing queueing delay as the data rate
increases. In contrast, DOCSIS introduces additional latency,
which requires both alpha and the target queueing delay to
increase as the link capacity increases beyond 1Mbps, up to
a = 13 for 3 Mbps. These values are below FAST’s current de-
fault value of o = 20 for low speed links, but this phenomenon
must be considered if the default values are changed.

This paper has not considered the mechanisms by which
DOCSIS introduces the additional delays. The next stage in this
research will be to derive an analytic model of the interaction
between DOCSIS and FAST.

ACKNOWLEDGEMENTS

We thank Cisco Systems Australia for donating equipment,
and L. Stewart of CAIA for assistance setting up the network.
CUBIN is an affiliated programme of National ICT Australia.
This work was supported by the Australian Research Council.

REFERENCES

[1] J. Postel, Transmission Control Protocol, STD 7, IETF RFC 793, Septem-
ber 1981. Available at http://www.ietf.org/rfc/rfc793.txt.

[2] M. Allman, V., Paxson, and W. Stevens, TCP Congestion Control, IETF
RFC 2581, April 1999. Available at http://www.ietf.org/rfc/rfc2581.txt.

[3] L. Xu, K., Harfoush, and I. Rhee, “Binary Increase Congestion Control
for Fast Long-Distance Networks”, in Proc. of IEEE INFOCOM 2004,
pp. 2514-2524, Hong Kong, March 2004.

[4] T. Kelly, “Scalable TCP: Improving Performance in Highspeed Wide Area
Networks”, ACM SIGCOMM Computer Communication Review, Vol.33,
No. 2, pp. 83-91, 2003.

[5] C.Jin, D. X., Wei, and S. H. Low, “FAST TCP: Motivation, Architecture,
Algorithms, Performance”, in Proc. of IEEE INFOCOM 2004, pp. 2490-
2501, Hong Kong, March 2004.

[6] J. Wang, D. X., Wei, and S. H. Low, “Modeling and stability of FAST
TCP”, in Proc. of IEEE INFOCOM 2005, Miami, FL, March 2005. Avail-
able at http://netlab.caltech.edu/pub/papers/FASTstability-infocom05.pdf.

[71 S. Floyd, HighSpeed TCP for Large Congestion Windows, IETF Internet
Draft, draft-floyd-tcp-highspeed-02.txt, 2002.

[8] L. S. Brakmo and L. L. Peterson, “Vegas: End-to-End Congestion Avoid-
ance on a Global Internet”, Journal on Select Areas in Communications,
Vol.13, No. 8, pp. 1465-1480, 1995.

[9]1 H. Bullot, R. L. Cottrel, and R. Highes-Jones, “Evaluation of Advanced
TCP Stacks on Fast Long-Distance Production Networks”, Journal on
Grid Computing, Vol.1, No. 4, pp. 345-359, Dec 2003.

[10] CableLabs, Data-Over-Cable Service Interface Specifications Radio Fre-
quency Interface Specification SP -RFIv1.1-101-990311,1999.

[11] Broadband Access Research Testbed, Centre for Advanced Internet Archi-
tectures, Swinburne University of Technology, http://caia.swin.edu.au/bart.

[12] T.T.T., Nguyen and G. J. Armitage, “Experimentally derived interactions
between TCP traffic and service quality over DOCSIS cable links”, in
Proc. of IEEE GLOBCOM 2004, Texas, USA, November 2004.

[13] S. Hegde, D. Lapsley, B. Wydrowski, J. Lindheim, D. Wei, C. Jin, S. Low,
H. Newman, “FAST TCP in High-Speed Networs: An Experimental Study,
Proc. of GridNets, San Jose, CA, October 2004.

[14] C.Jin, D. Wei, and S. H. Low, “FAST TCP for High-Speed Long-Distance
Networks,” internet draft draft-jwl-tcp-fast-O1.txt, [Online]. Available
http://netlab.caltech.edu/pub/papers/draft-jwl-tcp-fast-01.txt.

[15] (2004) Understanding Data Throughput in a DOCSIS World. [On-
line]. Available: http://www.cisco.com/en/US/tech/tk86/tk168/ technolo-
gies_tech_note09186a0080094545.shtml

[16] L. Rizzo, “Dummynet”, [Online]. Available: http://info.iet.unipi.it/~luigi/
ip-dummynet/.

[17] Cisco uBR7100 Series Software Configuration Guide. [Online]. Available:
http://www.cisco.com/en/US/products/hw/cable/ps2211/products_configu-
ration_guide_chapter09186a00801b355a.html#wp1021916.

