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Abstract

Photoacoustic tomography (PAT) is one of the fastest growing biomedical imaging modalities in 

the last decade. Building on its high scalability and complementary imaging contrast to other 

mainstream modalities, PAT has gained substantial momentum in both preclinical and clinical 

studies. In 2013, PAT has grown markedly in both its technological capabilities and biomedical 

applications. In particular, breakthroughs have been made in super-resolution imaging, deep blood 

flow measurement, small animal resting state brain mapping, video rate functional human 

imaging, and human breast imaging. These breakthroughs have either successfully solved long-

standing technical issues in PAT or significantly enhanced its imaging capability. This Review 

will summarize state-of-the-art developments in PAT and highlight a few representative 

achievements of the year 2013.
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1. Introduction

Nowadays, there are many different biomedical imaging modalities. They each have their 

own different strengths and weaknesses [1]. Generally, the comparative merits of 

photoacoustic tomography (PAT) over other mainstream modalities can be summarized as 

follows [2]: (1) compared with optical microscopy, PAT breaks through the optical diffusion 

limit (~1 mm depth in the skin), with scalable spatial resolution and maximum imaging 

depth in both the optical and acoustic domains; (2) compared with medical ultrasonography, 

PAT images optical absorption contrast with 100% relative sensitivity, and provides images 

without speckle artifacts; (3) compared with fluorescence imaging, PAT can image more 

molecules, fluorescent or nonfluorescent, at their absorbing wavelengths; (4) compared with 

X-ray computed tomography (CT), PAT is devoid of ionizing radiation and capable of 

functional imaging using endogenous contrast agents; and (5) compared with magnetic 

resonance imaging (MRI) and positron emission tomography (PET), PAT is less expensive 
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and has better resolution. With these merits, PAT is playing an increasingly important role 

in biomedical studies, complementing other modalities.

PAT, a relatively young member of the biomedical imaging family, has experienced fast 

growth in the last two decades, especially since the early 2000s, when its first in vivo small 

animal imaging was demonstrated [3, 4]. In the year 2013, great progress was made in both 

technical innovations and biomedical applications. This Review will present state-of-the-art 

PAT technologies, focusing on several breakthroughs in 2013.

2. Highlights in PAT technical innovations

Developments in laser technology, ultrasonic detection, and nanotechnology have driven the 

advance of PAT. Integrating these developments with novel engineering designs, PAT has 

been pushing all the limits of its imaging performance over the recent years. Taking 

advantage of the wide wavelength range of the optical parametric oscillator (OPO), PAT has 

been used to explore various endogenous imaging contrasts, with primary absorption 

wavelengths ranging from the ultraviolet to the near-infrared region [5]. Both the lateral and 

axial resolutions of PAT have approached the theoretical limits in linear imaging. A lateral 

resolution of 220 nm has been achieved by using a waterimmersion optical objective with a 

numerical aperture of 1.2 [6]. An axial resolution of ~3 µm has been reported by using a 

high-frequency ultrasonic transducer with a bandwidth of 400 MHz, although the imaging 

depth is limited to tens of micrometers [7]. In addition, anatomical features at different 

geometrical scales can be bettered resolved by using a multi-bandwidth detection method 

[8]. The imaging depth of PAT has been pushed to ~5 cm in breast phantom [9] and ~7 cm 

in chicken tissue [2] by using near infrared excitation and low frequency ultrasonic 

detection. The imaging speed of PAT has been substantially improved to capture dynamic 

processes. A B-scan frame rate of 20 Hz has been achieved on a photoacoustic (PA) 

computed tomography system adapted from a commercial ultrasound machine [10]. A B-

scan frame rate of 400 Hz has been reported on a water-immersible MEMS scanning mirror 

based photoacoustic microscope [11]. The detection sensitivity of PAT has been greatly 

enhanced by using highly absorbing contrast agents, in particular, nanoparticles [12, 13]. PA 

molecular imaging in deep tissue has been enabled by using reporter gene products [14–16]. 

In addition to the above achievements, several breakthrough innovations in the year 2013 

are highlighted below.

Super-resolution PA imaging was achieved for the first time. Depending on the imaging 

depth, the spatial resolution of PAT was long limited by acoustic diffraction in the optical 

diffusive regime or by optical diffraction in the optical ballistic regime. In the optical 

diffusive regime, Conley et al. and Lai et al. reported a sub-acoustic-diffraction imaging 

method by using the photoacoustic signal as feedback for the wavefront shaping 

optimization [17, 18]. Conley et al.’s method takes advantage of the non-uniform detection 

sensitivity of a focused ultrasonic transducer. Photoacoustic imaging behind a scattering 

medium was demonstrated with a resolution of ~13 µm, five to six times smaller than the 

acoustic diffraction limit [17]. Based on the Grueneisen memory effect, Lai et al.’s method 

utilizes the nonlinear PA signals as feedback to guide iterative wavefront optimization [18]. 

Here, the Grueneisen memory effect describes the fact that, within the thermal confinement 
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time, the temperature rise due to the absorption of light lingers and changes the local 

Grueneisen parameter accordingly. Experimental results demonstrated an optical diffraction-

limited focus on the scale of 5–7 µm in scattering media, ten times smaller than the acoustic 

diffraction limit, with an enhancement factor of ~6,000 in peak fluence [18]. In optical 

ballistic regime, Yao et al. overcame the optical-diffraction limit by using the excitation-

intensity dependence of the photobleaching effect (Figure 1a) [19]. They have demonstrated 

PA imaging of gold nanoparticles with a resolution of ~80 nm, three times smaller than the 

optical diffraction limit (Figure 1b). Another sub-optical-diffraction PA imaging method 

was reported by Nedosekin et al. with a resolution of ~100 nm for nanoparticles, where 

nonlinear signal amplification by nanobubbles circumvented the optical diffraction limit 

[20]. These works have demonstrated PAT as the only imaging modality that can break both 

the optical diffusion limit and optical diffraction limit.

Deep tissue blood flow measurement by PAT was achieved for the first time. To apply 

existing PA blood flow measurement methods in deep tissue, a long-standing hurdle was 

their requirement of resolvable absorbers in the flowing medium, which was particularly 

challenging when only acoustic-resolution was available. Wang et al. successfully resolved 

this issue by thermally tagging a small portion of the flowing blood and photoacoustically 

monitoring the tagged ‘hot’ blood (Figures 2a–b) [21, 22]. Because the tagged blood serves 

as an acoustically defined ‘virtual absorber’, blood flow can be measured deep in tissue. 

This new method has been implemented in both acousticresolution photoacoustic microcopy 

and photoacoustic computed tomography. A flow measurement sensitivity of 0.25 mm/s has 

been achieved at 5 mm depth in tissue (Figure 2c). In addition to blood flow dynamics, this 

work also opens the window for deep-tissue metabolic studies that require blood flow 

information.

3. Highlights in PAT biomedical applications

Translating cutting-edge PAT technologies to small animal and human imaging is the key to 

realizing the impact. So far, PAT has been explored in numerous preclinical and clinical 

studies. In particular, PAT has made considerable progress in detecting early-stage cancers 

[23], assessing skin lesions [24], imaging brain activities [25], mapping sentinel lymph 

nodes [26], monitoring drug or contrast agent delivery [27, 28], and performing endoscopic 

examinations [29]. The following achievements in the year 2013 particularly deserve to be 

highlighted.

First, noninvasive functional imaging of small-animal brain has been demonstrated with 

high spatial-temporal resolution. Mapping brain structure and function is one of the most 

exciting fields of science. However, functional magnetic resonance imaging (fMRI), the 

most commonly used functional brain imaging tool, lacks the spatial-temporal resolution for 

fast small animal brain imaging. Using the full-ring-array PA computed tomography system, 

Nasiriavanaki et al. successfully achieved functional connectivity imaging of the mouse 

brain at resting state, with an in-plane resolution of 100 µm and a frame rate of 0.6 Hz [25]. 

The results, shown in Figure 3, clearly indicate bilateral correlations in eight main functional 

regions, as well as in several subregions. A unique advantage of PAT is that the functional 

Yao and Wang Page 3

IEEE Photonics J. Author manuscript; available in PMC 2014 November 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



connectivity maps are automatically co-registered with high-resolution cortical vascular 

images, allowing pinpoint location of neural activities.

Second, noninvasive label-free three-dimensional PA imaging of human tissues/organs has 

been demonstrated with substantially improved imaging quality. Human imaging is no doubt 

the most important area in PAT development. However, PAT systems adapted from 

commercial ultrasound machines with linear arrays are usually limited to 2D imaging [10, 

30]. Recently, Dean-ben et al. have improved functional PA human imaging to a volumetric 

frame rate of 10 Hz [31]. In this important work, a spherically arranged 256-element 2D 

ultrasonic array and near-infrared excitations in the region between 700 and 860 nm are 

combined to provide in vivo imaging of human tissue vasculature, blood oxygenation and 

hemodynamic changes, as shown in Figures 4a–d. However, 256 elements are considered 

too sparse for a 2D array, tending to cause imaging artifacts outside the central zone of the 

3D field of view covered by the array. A denser 2500- element 2D planar array was explored 

previously by Wang et al. [32]; however, the data acquisition required multiplexing. Kruger 

et al. have developed a dedicated 3D PA mammography system capable of imaging blood 

vessels in human breasts with submillimeter spatial resolution (Figures 4e–f) [9]. Compared 

with previously reported PA mammography systems, this work shows significantly 

improved field of view, contrast to noise ratio and spatial resolution. All of these advances 

are important maturing steps of PAT towards human imaging. However, the depths of the 

blood vessels from the nearest skin surface are unclear from the images.

4. Conclusions

2013 was a productive year for the entire PA community, and we can cover only a small 

portion of the achievements in this Review. The studies reported here demonstrate the strong 

multiparametric imaging capability of PAT for small animals and humans, and more 

importantly, the momentum of the fast growth of PAT in biomedicine. With a series of long-

standing engineering challenges overcome, we believe that PAT will see even faster growth 

in the coming years. In particular, translational PAT will still be the most exciting area that 

expects breakthroughs, especially in early cancer detection [33], human breast imaging [34] 

and endoscopic imaging [29]. Functional human brain imaging by PAT will gain more 

attentions, and it is just a matter of time before PAT becomes an important tool for 

neuroscience studies, complementing other brain imaging modalities. Another promising 

area is reporter-gene–based molecular PA imaging, where genetically encoded PA contrast 

allows selective labelling of cells and permits studies of specific biological behaviors in vivo 

[16].
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Figure 1. Advance in PA super-resolution imaging
(a) Photo-imprint PA microscopy (PI-PAM) based on the photobleaching rate dependence 

on the local excitation intensity. The first excitation bleaches the center part of the 

illuminated region more than the periphery, leaving an imprint in the sample. The 

differential signal between the before- (left panel) and after-bleaching (middle panel) images 

results in a smaller effective excitation size and thus a resolution enhancement, as shown by 

the dashed circle in the right panel. (b) PI-PAM imaging of gold nanoparticles with 

enhanced lateral resolution of ~80 nm. Adapted with permission from [19].
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Figure 2. Advance in PA deep tissue blood flow measurement
(a) Schematic of ultrasonically encoded photoacoustic flowgraphy, where part of the 

flowing blood is thermally tagged by a heating transducer. The movement of the tagged 

blood is imaged by a circular-array-based PA computed tomography system. (b) Snapshot 

PA images of the thermally tagged blood flowing in a plastic tube covered by 5-mm-thick 

chicken breast tissue. The two images are 9 seconds apart, and the flow is from left to right. 

The curved dashed line shows a parabolic heating peak propagating with blood flow. (c) 

Flow trajectories in the time-space plane, showing an en face spatial-temporal assembling of 

the measured temperature distribution of the flowing medium. Each horizontal line in the 

figure is extracted from one photoacoustic image along the flow direction, as shown by the 

black dashed line in (b). The flow speed and direction can be extracted from the slope of the 

trajectory. Adapted with permission from [22].
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Figure 3. Functional connectivity maps in a live mouse brain acquired noninvasively by PAT
Correlation maps of (a) the eight main functional regions, (b) the four subregions of the 

somatosensory cortex, and (c) the three subregions of the visual cortex. Adapted with 

permission from [25].
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Figure 4. Advances in PA human imaging in the year 2013
(a) Schematic of the clinical hand-held PAT probe for high resolution 3D human imaging at 

video rate. (b) Photograph of a volunteer’s wrist region imaged by the hand-held PAT probe. 

(c) Maximum amplitude projection images acquired at two different wavelengths in the 

near-infrared region. Arteries and veins can be readily identified by their spectral 

information. (d) PAT of the oxygen saturation of hemoglobin (sO2), as calculated from 

images acquired at different wavelengths in (c). (e) Medial-lateral maximum amplitude 

projection of bilateral PAT breast images of a healthy volunteer. (f) Coronal maximum 

amplitude projection of bilateral PAT breast images of the same volunteer. Adapted with 

permission from [9, 31].
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