
Nutrient Sensor in the Brain Directs the Action of the Brain-Gut 
Axis in Drosophila

Monica Dus1,3, Jason Sih-Yu Lai1, Keith M. Gunapala1, Soohong Min1, Timothy D. Tayler2, 
Anne C. Hergarden2, Eliot Geraud1, Christina M. Joseph1, and Greg S. B. Suh1,*

1Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University 
School of Medicine, 540 First Avenue, New York, NY 10016, USA

2Division of Biology 156-29, California Institute of Technology, 1200 E. California Boulevard, 
Pasadena, CA 91125, USA

Summary

Animals can detect and consume nutritive sugars without the influence of taste. However, the 

identity of the taste-independent nutrient sensor and the mechanism by which animals respond to 

the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the 

Drosophila brain that produce Diuretic hormone 44 (Dh44), a homologue of the mammalian 

corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in 

which the activity of these neurons or the expression of Dh44 was disrupted failed to select 

nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, 

artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions, and frequent 

episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, 

these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 

system directs the detection and consumption of nutritive sugars through a positive feedback loop.

Introduction

Sugars in the natural environment can be detected through taste-dependent and taste-

independent modalities. Taste-dependent modalities consist mainly of peripheral taste 

receptor cells such as sweet-sensing cells, which primarily detect the palatability of sugar 

(see review, Yarmolinsky et al., 2009) Evidence of a taste-independent modality was shown 
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more than 20 years ago when investigators showed that rodents could learn to select a 

flavored solution when it was paired with an intragastric infusion of nutritive sugars, but not 

with water or nonnutritive saccharin (see review, Sclafani and Ackroff, 2012). This finding 

was further demonstrated by experiments using taste-insensitive Trpm5 (−/−) mice, which 

learn to associate nutritive sugars paired with a conditioned stimulus independent of taste 

input (de Araujo et al., 2008). Similarly, fruit flies - Drosophila melanogaster - are capable 

of associating the caloric value of sugars with an odorant to establish a long-term memory 

(Burke and Waddell, 2011; Fujita and Tanimura, 2011; Musso et al., 2015).

While animals and humans can learn to recognize the nutritional value of sugar during 

sugar-preference conditioning (Birch et al., 1990; Brunstrom and Mitchell, 2007; Yeomans 

et al., 2008), Drosophila do not need to be trained to distinguish between nutritive sugars 

and nonnutritive sugars. Studies have shown that naive flies that had not previously been 

exposed to nutritive sugars or nonnutritive sugars were still able to select nutritive sugars 

over nonnutritive ones after periods of food deprivation in a two-choice preference assay 

(Dus et al., 2011; Miyamoto et al., 2012; Stafford et al., 2012). The post-ingestive 

preference for a nutritive sugar appears to be mediated by a hardwired neuronal pathway 

that is activated by the detection of nutritive sugars. However, the molecular and cellular 

identity of the nutrient sensor and the neural circuitry that allows flies (as well as mammals) 

to respond to the nutritional value of exogenous sugar is largely unknown.

The postprandial increase in the intestinal and circulating glucose levels plays an important 

role in the ability of animals to choose conditioned stimuli paired with nutritive sugars. 

Several studies in rodents showed that intravenous glucose administration is sufficient for 

preference conditioning, while direct stimulation of the intestinal mucosa was also shown to 

be important (Mather et al., 1978; Oliveira-Maia et al., 2011; Tordoff and Friedman, 1986; 

Zukerman et al., 2013). This relationship was further supported by the observation in flies 

that administrating phlorizin, which lowers hemolymph glycemia by inhibiting sugar 

transport, blocked the flies’ ability to select nutritive sugars (Dus et al., 2013). Notably, 

taste-independent sugar conditioning was shown to correlate with the rate of glucose 

utilization instead of circulating glucose levels in mice (Ren et al., 2010). In humans, the 

physiological parameter that appears to correlate with preference conditioning is also 

metabolic responses to glucose (de Araujo et al., 2013). While these studies illustrate that 

utilizing intracellular glucose is crucial for activating behavioral responses, circulating 

plasma glucose level is key in determining intracellular glucose concentration.

Indeed, Jean Mayer proposed over five decades ago that feeding is regulated by neurons in 

the brain that sense circulating blood glucose levels (Mayer, 1953). This “glucostatic 

hypothesis” was substantiated by the discovery of glucose-sensing neurons in the 

hypothalamus (Anand et al., 1964; Oomura et al., 1964). These specialized neurons use the 

products of glucose metabolism to regulate neuronal excitability and neurotransmitter 

release. Metabolic enzymes such as glucokinase, the AMP-activated protein kinase 

(AMPK), and the ATP-sensitive K+ (KATP) channel were implicated in mediating this 

process (Kang et al., 2004; Minokoshi et al., 2004). However, the disruption of KATP 

channel or AMPK function in glucose-excited pro-opiomelanocortin (POMC) neurons, 

which impaired their ability to sense glucose, did not result in a discernable feeding 
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phenotype in mice (Claret et al., 2007; Parton et al., 2007). While several populations of 

glucose-sensing neurons have been identified in the hindbrain and hypothalamus, their 

biological role in feeding-related behavior is still elusive (Levin, 2007).

In this work, we identified a population of neurons in the fly brain producing the Diuretic 

hormone 44 neuropeptide (Dh44 - the insect homologue of the mammalian CRH) (Lovejoy 

and Jahan, 2006) that is essential for mediating taste-independent behavioral responses to 

the nutritional value of sugar. Calcium imaging revealed that Dh44 neurons are activated by 

solutions containing nutritive sugars and require a functional glucokinase enzyme to detect 

these sugars. The Dh44 neuropeptide conveys the information from Dh44 neurons to Dh44 

receptor R1 neurons in the brain and R2 cells in the gut, both of which are also required for 

nutrient selection. Furthermore, artificial activation of Dh44 R1 neurons stimulated rapid 

proboscis extension reflex (PER) responses, promoting food intake. Flies with activated 

Dh44 R1 neurons also excreted more frequently, a behavior likely increased by gut motility. 

Conversely, reduced Dh44 signaling resulted in a lower frequency of excretion. We propose 

that this putative post-ingestive nutrient sensor activates two pathways: one to promote PER 

to enhance the ingestion of nutritive foods and another to enhance the gut motility, which 

would facilitate digestion of greater volumes of the nutritive foods.

Results

The activity of Dh44 neurons is essential for post-ingestive nutrient selection

To identify the neural circuitry that underlies the post-ingestive effects of nutritive sugars, 

we searched for neurons that are required for selection of a nutritive sugar over a 

nonnutritive sugar after periods of food deprivation. We screened a collection of 

neuropeptide GAL4 lines crossed to UAS-Tetanus toxin (TNT), which eliminates synaptic 

transmission, in the two-choice assay. Nearly all of these tested fly lines chose a more 

concentrated, yet nonnutritive L-glucose (200mM) when they were sated, but developed a 

preference for nutritive D-glucose (50mM) when they were starved for 18 hours. We found 

that inactivation of Dh44 neurons by expressing Kir2.1, an inwardly rectifying K+ channel 

(Nitabach et al., 2002), abolished the preference for D-glucose in starved flies (Figure 1A). 

We investigated the possibility that Dh44 neurons are also required for flies to select two 

other sugars that are normally present in the hemolymph: D-trehalose, which like D-glucose 

is found in abundance and D-fructose, which is found in minute amounts (Miyamoto et al., 

2012). We gave flies carrying PDh44-GAL4 and UAS-Kir2.1 a choice between these 

nutritive sugars and nonnutritive sweeteners. These flies failed to select D-trehalose or D-

fructose over higher concentrations of the nonnutritive sweeteners (Figures 1B and 1C). 

They also failed to respond to the tasteless, yet nutritive sorbitol (Figure 1D). These 

observations indicate that Dh44 neurons play an important role in mediating the selection of 

nutritive sugars independent of taste input.

We then examined whether artificial activation of Dh44 neurons is sufficient to 

communicate the reward of nutrient, even when nonnutritive sugars are fed. For this 

experiment, we generated flies expressing NachBac (Nitabach et al., 2005), a bacterial 

sodium channel that increases the electrical excitability of neurons under the control of 

PDh44-GAL4, and tested them in the two-choice assay (D- vs. L-glucose). These flies did not 
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demonstrate a preference for the nutritive sugar even though they had not been fed for 18 

hours (Figure 1E). Instead, they consumed both D- and L-glucose indiscriminately, likely 

because the both glucose enantiomers are perceived as nutritious to these flies when Dh44 

neurons are artificially activated. Thus, Dh44 neurons are necessary and sufficient for post-

ingestive nutrient sensing behavior. Inactivation or activation of Dh44 neurons, however, 

did not affect the amount of food intake (Figure S1), suggesting that these neurons 

selectively control food choice behavior instead of food consumption.

Six Dh44 neurons localized to the pars intercerebralis mediate the behavior

To determine the expression pattern of the PDh44-GAL4 line, we crossed it to UAS-

mCD8GFP and found labeled six cells located in the pars intercerebralis (PI) (Figure 2), a 

region of the fly brain populated with neurosecretory cells. It has been suggested that the 

pars intercerebralis serves as the functional correlate of the mammalian hypothalamus (de 

Velasco et al., 2007). The six labeled cells were indeed immunopositive for anti-Dh44 

antibody (Zitnan et al., 1993) (Figure 2A). Given that the targeted expression of Dh44 in 

these cells rescued the behavioral defects caused by the Dh44 mutation (Figure 4B), these 

neurons are important for mediating selection of nutritive sugars. Dh44 neurons project their 

neurites to the dorsal region of the subesophageal zone (SEZ) and also extend their lengthy 

processes along the esophagus to innervate the crop and midgut in the abdomen (Figure 2B 

and 2D). Using a fluorescent postsynaptic marker, Down Syndrome Cell Adhesion Molecule 

(Dscam)-GFP (Wang et al., 2004), we traced the dendrites of Dh44 neurons as they arborize 

in the SEZ (Figure 2C). Conversely, a presynaptic marker, synaptotagmin (Syt)-GFP (Zhang 

et al., 2002), expressed by the PDh44-GAL4 driver illustrated that these neurons extend their 

axonal projections along the esophagus to innervate the gut (Figure 2E). In addition to these 

Dh44 cells located in the brain, three-to-four Dh44 neurons are found in the posterior ventral 

nerve cord (VNC) (Data not shown).

Dh44 neurons are activated by nutritive sugars, and not by nonnutritive sugars

We next asked whether Dh44 neurons respond to nutritive sugars. By performing calcium 

imaging on ex vivo brain preparations of flies carrying the fluorescent calcium indicator, 

UAS-GCaMP3.0, and PDh44-GAL4, we found that Dh44 neurons were activated by nutritive 

D-glucose, D-trehalose, and D-fructose with substantial calcium oscillations (Figures 3A–D 

and Movie S1). In vivo calcium imaging also showed that Dh44 neurons respond to 

solutions containing nutritive sugar (Figure S2) (Ai et al., 2010). Sucrose, which was used in 

the control saline, did not stimulate these neurons (Figure S3), suggesting that only 

hemolymph sugars are effective. Calcium oscillations are a characteristic of neurosecretory 

cells and occur when these cells are secreting neuropeptides (Thorner et al., 1988). As the 

concentration of perfused nutritive sugars was increased, the frequency of these oscillations 

decreased, yet they were longer in duration. The oscillations were still clearly observed in 

response to D-glucose concentrations as low as 5mM, and approximately 4 minutes after the 

brain tissue was exposed to this sugar solution. By contrast, exposures to nonnutritive 

sugars, L-glucose and 2-deoxy-glucose, resulted in a very limited increase in calcium transit 

and completely lacked calcium oscillations (Figures 3C and 3D).
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To determine whether sugar-induced activation of Dh44 neurons results in the release of 

Dh44 neuropeptide from these neuronal cells, we incubated Drosophila brains in saline 

solutions containing different sugars and then probed each brain by using anti-Dh44 

antibody to measure the amount of Dh44 left inside the cells. We found significantly less 

Dh44 immunoreactivity in Dh44 cells of the brains exposed to nutritive sugars compared to 

those exposed to the control saline (Figure 3E). Among the nutritive sugars, D-glucose and 

D-trehalose had stronger effects than D-fructose. In contrast, exposures to the nonnutritive 

sugars, L-glucose and 2-deoxy-glucose, had no effect on Dh44 immunoreactivity (Figure 

3F). These findings suggest that sugar-induced activation promotes the release of Dh44 

neuropeptide from these neurons.

Consistent with these findings, inactivating Dh44 neurons by UAS-Kir2.1 expression, which 

resulted in impaired post-ingestive nutrient selection, suppressed the secretion of Dh44 

peptide even when the Dh44 cells were stimulated by D-glucose (Figure S4). By contrast, 

artificial activation of Dh44 neurons by expressing of UAS-NachBac, which was sufficient 

to communicate the reward of nutrient, released the Dh44 peptide without sugar stimulation 

(Figure S4). Therefore, manipulating Dh44 neuronal function has distinct effects on the 

neuronal activity and peptide release, supporting the view that Dh44 neuropeptide is the 

signal that communicates the information about the rising levels of nutritive sugar in the 

internal milieu.

Dh44 neuronal responses require sugar entry and a hexokinase

The observation that Dh44 neurons respond specifically to nutritive sugars led us to consider 

the possibility that intracellular metabolism of nutritive sugars in these cells stimulated the 

release of Dh44 peptide. The first steps critical for glucose metabolism are the entry of 

glucose into the Dh44 cells and the conversion of glucose to glucose-6-phosphate by 

hexokinase. The sugar entry is required for the activation of Dh44 neurons, as an addition of 

phlorizin, an inhibitor of sugar transporters, in saline significantly reduced glucose-induced 

calcium oscillations and secretion of the Dh44 peptide (Figure 3C–D and 3F). To determine 

whether a hexokinase is important for the activation of Dh44 neurons, we used alloxan, a 

well-known inhibitor of hexokinase (Lenzen et al., 1988), to block glucose metabolism. 

When Dh44 neurons were stimulated with a mixture of D-glucose and alloxan, calcium 

oscillations essentially disappeared (Figures 3C and 3D). Consistent with this, glucose-

induced secretion of Dh44 from these cells was reduced in fly brains incubated with the 

mixture of glucose and alloxan compared to glucose alone (Figure 3E and 3F). Furthermore, 

hexokinase C (Hex-C), one of five hexokinases present in the Drosophila genome, is 

required for Dh44 neuronal activation, since RNAi-induced knockdown of Hex-C 

expression in these neurons led to a failure in responding to nutritive sugars in the two-

choice assay (Figure 3G); Hex-C RNAi knockdown did not appear to cause anomaly, as the 

morphology of these neurons was indistinguishable from that of wild-type Dh44 neurons 

(Figure S5). Intriguingly, unlike other hexokinases, Hex-C is selectively expressed in the 

brain, fat body and gut of the fly (Gelbart and Emmert, 2013). Pyruvate, the end product of 

the glycolysis pathway, also activated Dh44 neurons, further supporting a role of this 

metabolic pathway in the neuronal activation (Figure S6).
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The fact that this pathway is autonomously required in Dh44 neurons supports the 

hypothesis that the function of activated Dh44 neurons is to facilitate the detection of 

nutritive sugars through direct activation. This hypothesis is further supported by our 

observation that an addition of tetrodotoxin (TTX, which blocks voltage-gated Na+ 

channels, and eliminates synaptic transmissions and indirect presynaptic responses) had 

virtually no effect on the release of Dh44 from Dh44 neurons (Figure 3E) and only an 

insignificant effect on their neuronal activity in response to D-glucose (Figure 3B).

Dh44, Dh44 receptors, and Dh44 receptor cells mediate post-ingestive nutrient selection

Having shown that Dh44 neurons mediate the secretion of Dh44 upon stimulation by 

nutritive sugars, we next determined whether the Dh44 gene, the fly homologue of the 

human CRH (Figure 4A), is required for starved flies to select nutritive sugars during the 

two-choice assay. We found that Dh44 mutants showed defects in their ability to select D-

glucose over L-glucose upon starvation, which do not appear to be caused by aberrant 

hemolymph glycemia or glycogen levels (Figure 4B and Figure S7). These defects were 

rescued by the expression of a UAS-Dh44 transgene by the PDh44-GAL4 driver. Additional 

support for this was provided by the observation that flies with targeted knockdown of the 

Dh44 transcript in these neurons by Dh44 RNAi were impaired in their ability to develop a 

preference for D-glucose upon starvation (Data not shown).

Flies, like mammals, have two receptors for this Dh44/CRH neuropeptide: Dh44 R1 and 

Dh44 R2. In Drosophila, these receptors are both activated by Dh44 peptide (Hector et al., 

2009; Johnson et al., 2003) To determine whether these receptors are necessary for flies to 

be able to select nutritive sugars, we used Dh44 R1 and R2 mutants. These mutants failed to 

develop a preference for D-glucose over L-glucose in the two-choice assay when starved 

(Figure 4C and 4E). Moreover, we generated GAL4 lines using the putative promoters for 

Dh44 R1 and Dh44 R2. Inactivation of Dh44 R1 neurons by expression of UAS-Kir2.1 or 

ablation of Dh44 R2 cells by expression of UAS-reaper, hid under the control of these 

GAL4 lines blocked starvation-induced selection of nutritive D-glucose (Figure 4D and 4F). 

These results indicate that Dh44 R1 and Dh44 R2 receptors and their cells are required for 

the selection of nutritive sugar.

To further our understanding of how Dh44 R1 and Dh44 R2 contribute to food choice 

behavior, we examined the expression patterns of the PDh44R1-GAL4 and PDh44R2-GAL4 

lines. We found that the PDh44R1-GAL4 line drives the expression of UAS-CD8GFP in 

approximately ten cells in the fly brain and three-to-four pairs of cells in the VNC (Figure 

4G and inset) These cells arborize extensively within the pars intercerebralis and extend 

processes along the midline, which overlap with the neurites of Dh44 neurons (see Figure 

2B), to innervate the dorsal region of the SEZ. The three-to-four pairs of Dh44 R1 cells 

arborize their neurites throughout the VNC (see Figure 4G inset). In contrast, GFP 

expression was not observed in the brains of flies carrying PDh44R2-GAL4 and UAS-

CD8GFP. Instead, it was seen in a large number of cells in the gut that have the 

characteristic shape of enteroendocrine cells (Figure 4H and inset).
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Artificial activation of Dh44 R1 neurons stimulates rapid PER

We examined flies in which Dh44 R1 neurons are artificially stimulated by expression of 

NaChBac. In the two-choice assay, these flies chose sweeter L-glucose even when they were 

starved for extended periods (Figure 5A). This result is similar to the observation obtained in 

flies carrying PDh44-GAL4 and UAS-NaChBac (Figure 1E) that equally preferred both 

sugars. Yet, activation of these receptor neurons appeared to be more effective in relieving 

the preference for nutritive sugar and caused the flies to select more palatable L-glucose, 

which is detected by intact, external sugar receptors. These illustrate that Dh44 R1 neurons, 

like Dh44 neurons, are sufficient for mediating post-ingestive nutrient selection.

Furthermore, we serendipitously observed dramatic increased PER responses, which 

promote food intake, when Dh44 R1 neurons were artificially activated. We expressed the 

inducible heat-activated Transient receptor potential A1 cation channel, UAS-TrpA1 

(Parisky et al., 2008), in Dh44 R1 neurons and tested the flies at a temperature, 30°C, which 

triggers inward currents through the channel. The natural feeding pattern is characterized by 

the repeated extension and retraction of the proboscis, and opening and closing of labella at 

the tip of the proboscis, which is evoked by contact with food. By contrast, flies with 

activated Dh44 R1 neurons lifted the rostrum out of the head and opened the labella at a 

high frequency even in the absence of food. (Figure 5B and Movie S2). These Dh44 R1 

neurons do not appear to be motor neurons since axonal projections to labella muscles were 

not observed. Instead, their processes innervate the dorsal region of the SEZ, where motor 

neurons reside, send axonal projections to the muscles, and mediate PER responses (Gordon 

et al., 2008; Manzo et al., 2012).

The Dh44 system is necessary and sufficient for gut motility and excretion

We also observed that artificial activation of Dh44 R1 neurons resulted in a remarkably 

increased rate of excretion. Individual flies carrying PDh44R1-GAL4 and UAS-TrpA1 

excreted significantly higher numbers of waste deposit within 10 minutes and approximately 

five-fold higher numbers of waste deposit within 60 minutes than the control flies after they 

were incubated at 30°C (Figure 6A). The number of excreta from a population of 30 flies 

was three-fold higher than the control flies (Figure 6B). This finding is in accordance with 

previous reports in which the rapid release of Dh44 into the circulation after meals resulted 

in increased rates of excretion in other insects (Audsley et al., 1997; Iaboni et al., 1998). 

Conversely, mutants for Dh44 and Dh44 receptors yielded significantly fewer excreta than 

the control flies (Figure 6C). This result further supports that the rate of excretion is 

stimulated by the Dh44 neuropeptide, which is released by the consumption of food 

containing nutritive sugars.

CRH in mammals was shown to promote gut motility through CRH receptors in the gut 

(Tache and Perdue, 2004). We therefore asked whether Dh44 peptide increases the gut 

motility. The spontaneous contractions of the dissected fly gut were measured after Dh44 

peptide was perfused onto the gut preparation. We found that Dh44 at a concentration 

previously shown to activate Dh44 receptors (Hector et al., 2009; Johnson et al., 2003) 

stimulated the gut motility approximately three fold compared to the control saline (Figure 

6D, Movie S3a and S3b). Conversely, Dh44-induced enhancement of the gut motility was 
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eliminated in mutants for Dh44 R2 (Figure 6E, Movie S4a and S4b) and was unaffected in 

mutants for Dh44 R1 (Data not shown). These results indicate that coordinated activity of 

the Dh44 microcircuit regulates appropriate gut motility and excretion.

Flies rapidly detect the nutritional value of sugar

Next, we sought to understand how roaming flies in the two-choice arena readily distinguish 

a nutritive sugar from a nonnutritive sugar. We investigated the possibility that flies might 

be capable of detecting the nutritional value of sugars within few minutes of ingesting food. 

To this end, we carried out a time course study; the preference of flies was scored every few 

minutes after they began to ingest either D-glucose or L-glucose in the two-choice assay. 

Intriguingly, we observed that starved wild type flies initially selected sweeter L-glucose, 

but within 5 minutes, they started to choose nutritive D-glucose (Figure 7A). By contrast, 

starved Dh44 mutants chose sweeter L-glucose and failed to develop a preference for D-

glucose. The finding suggests that the nutritional value of D-glucose is detected in a 

relatively fast time scale. Consistent with this, a significant increase in hemolymph glycemia 

was observed within few minutes of ingesting food (Figure 7B and 7C). The rapid detection 

enables immediate stimulation of innate behavioral programs that lead to the continuation of 

D-glucose ingestion through increased PER responses and the activation of food processing 

in the gut (Figure 7D).

Discussion

The Dh44 system directs the detection and consumption of nutritive sugars

We have identified the molecular and cellular nature of a sensor in the brain that detects the 

nutritional value of sugar through direct activation by nutritive sugars. Dh44 neurons are 

activated specifically by nutritive D-glucose, D-trehalose and D-fructose, which are 

normally found in the hemolymph, and are not activated by nonnutritive sugars or sugars 

that are not found in the hemolymph. Sugar-induced activation of these six central neurons 

resulted in secretion of the Dh44 neuropeptide, which transmits a signal to Dh44 R1 and R2 

cells. Flies in which the expression of Dh44 or Dh44 receptors is disrupted or the function of 

Dh44 receptor cells is inactivated failed to develop a preference for nutritive sugar.

Insight into the contribution of the Dh44 downstream effectors to the selection of nutritive 

sugars was gained by the TrpA1-mediated activation experiment. We made the surprising 

observation that artificial activation of Dh44 R1 neurons rapidly induced PER responses 

even in the absence of food. Stimulation of Dh44 R1 neurons also caused the flies to excrete 

large amounts of waste deposits; conversely, inactivation of the Dh44 circuit resulted in 

deceleration of gut motility and excretion. Together, we propose that the Dh44 system not 

only mediates detection of the nutritional content of sugar, but also coordinates the ingestion 

and digestion of sugar by promoting proboscis extension, and the gut motility and excretion 

through a positive feedback loop (see Figure 7D).

Dh44 neurons- the post-ingestive nutrient sensor

Two possible mechanisms could explain how flies can make appropriate food choices in the 

two-choice assay. One mechanism is regulated by a post-ingestive nutrient sensor that 
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detects the nutritional value of D-glucose through direct activation during the postprandial 

rise in hemolymph glycemia. Another mechanism is mediated by a prescriptive “hunger” 

sensor that monitors the status of the internal energy reservoir and promotes consumption of 

nutritive D-glucose after periods of starvation.

Several lines of evidence suggest that Dh44 neurons function as a postingestive nutrient 

sensor. First, Dh44 neurons are activated specifically by nutritive sugars and not by 

nonnutritive sugars. Second, Dh44 neurons are capable of directly sensing the nutritional 

value of sugar, as sugar-induced calcium responses were not eliminated in fly brains treated 

with TTX, a sodium channel blocker that abolishes synaptic transmission. Third, flies with 

Hex-C knocked down in these Dh44 neurons had impaired responses to nutritive sugar. 

Fourth, artificial activation of Dh44 neurons or Dh44 R1 neurons significantly reduced the 

preference for nutritive sugars even when the flies were starved, because activation of the 

putative nutrient-sensing pathway was sufficient to communicate the reward of nutrient. 

Therefore, starved flies carrying PDh44-GAL4 and UAS-NachBac equally preferred D- and 

L-glucose. This is in contrast to another population of central neurons identified from a 

screen that functions as a prescriptive hunger sensor. When these neurons were artificially 

activated, the flies chose a nutritive sugar over a nonnutritive sugar even when they were 

sated (unpublished data). Finally, either activation or inactivation of Dh44 neurons did not 

alter the amount of food consumption. This is distinct from manipulating the prescriptive 

hunger sensor that had substantial effects on the amount of food intake (unpublished data). 

These support the assertion that the glucose-sensing Dh44 neurons guide flies to recognize 

the nutritional value of sugar by directly monitoring circulating sugar levels and utilizing 

sugar molecules.

Flies detect the nutritive value of sugar in a fast time scale

The means by which flies distinguish D-glucose from L-glucose are not understood. It was 

proposed that flies roaming in the two-choice arena find D-glucose by associating a spatial 

cue for the location of the D-glucose-containing agar with the nutritional content of D-

glucose. The observation that these flies are capable of selecting D-glucose even in the dark 

(Dus et al., 2013), however, suggests that spatial conditioning is unlikely to be involved in 

post-ingestive food choice behavior. Rather, the detection of nutritive D-glucose appears to 

be mediated by a defined population of interoceptive chemosensory neurons that elicits 

innate behavioral responses, similar to the sweet-evoked chemosensory responses mediated 

by external sweet receptors. Upon activation by a nutritive sugar, the interoceptive 

chemosensory neurons stimulate a constellation of behavioral sub-programs that result in a 

positive feedback for the selection and consumption of nutritive sugar.

Consistent with this hypothesis, the post-ingestive nutrient sensor functions on a fast time 

scale. Calcium imaging of dissected ex vivo brain preparations, which may not reflect the in 

vivo context in which ingested foods pass through the digestive tract, showed that the 

activity of Dh44 neurons is rapidly stimulated when exposed to nutritive sugar. Furthermore, 

hemolymph glycemia significantly increases as soon as flies start to ingest sugars (Figure 

7B). The rise of hemolymph glycemia would readily stimulate the activity of Dh44 neurons, 

which are located adjacent to Insulin-Producing Cells (IPCs) in the pars intercerebralis that 
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also respond to sugar. Finally, the time-course experiment demonstrated that flies that begin 

to feed in the two-choice assay are capable of responding correctly to nutritive D-glucose 

within 5 minutes. These results support the view that flies recognize the nutritional content 

of D-glucose rapidly after ingestion.

Glucose-sensitive neurons in the brain

It has been five decades since the glucostatic hypothesis was proposed, yet it is still 

uncertain whether glucose-sensing neurons in the brain have a role in food intake or nutrient 

selection. Mice that lack a critical signal transducer, AMPK or KATP channel, in their 

glucose-sensing neurons and thus, lack the ability to sense extracellular glucose, display 

essentially normal feeding behavior (Claret et al., 2007; Parton et al., 2007). A study in rats 

also showed a lack of any causal relationship between blood and hypothalamic glucose 

levels, and daily meal initiations (Dunn-Meynell et al., 2009). Recently, hypothalamic 

glucose-sensing MCH neurons were shown to respond to and communicate the nutritional 

value and reward of sugar, but it was not clear whether the glucose-excitability of these 

MCH neurons mediated the behavioral response (Domingos et al., 2013; Kong et al., 2010). 

However, central administration of 2-deoxyglucose or insulin-induced hypoglycemia does 

elicit food intake (Dunn-Meynell et al., 2009; Miselis and Epstein, 1975). It was speculated 

that extremely low brain glucose levels trigger food intake through the action of unidentified 

hypothalamic glucose-sensing neurons, which may protect against the dangers of 

hypoglycemia in mammals (Routh, 2010).

Our study in Drosophila showed that the glucose-excitability of Dh44 neurons mediates 

starvation-induced selection of nutritive sugars, which depends on the sugar entry and the 

function of Hex-C to convert the glucose into its metabolic product, glucose-6-phosphate. 

This step in the glucose metabolic pathway appears to be critical for stimulating the 

neuronal activity in Dh44 neurons and responding to the nutritional value of sugar. It is 

noteworthy that Hex-C mRNA is expressed in few regions including the brain, whereas 

another fly hexokinase, hexokinase A (Hex-A), is expressed in nearly all tissues in the fly. 

The intracellular glucose metabolism initiated by Hex-C, possibly through the generation of 

sugar metabolites, is important for detecting the nutritional value of D-glucose that elicits 

innate preference behavior.

Dh44- a Drosophila homologue of corticotropin-releasing hormone

Since it was discovered 25 years ago, CRH has been characterized as a hypothalamic 

hormone that communicates stress responses. CRH also plays a significant role in the 

regulation of energy balance, but the exact nature of its role is controversial. CRH appears to 

have an anorectic effect in rodents (Richard et al., 2002), but has an opposite effect in 

humans when calorie intake is stimulated by an infusion of CRH (George et al., 2010). The 

homology between Drosophila Dh44 and mammalian CRH is approximately 30% and 

between Drosophila and mammalian receptors is approximately 40%; this suggests that the 

function of these two systems is conserved. Indeed, mammalian CRH, which is similar in 

function to Drosophila Dh44, is required for the regulation of gastric and colonic 

movements; notably, CRH administration was shown to stimulate defecation in rodents 

(Tache and Perdue, 2004). Furthermore, CRH mediates glucose homeostasis by regulating 
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hypoglycemia-induced counterregulation (CRR) (McCrimmon et al., 2006). CRR triggers a 

number of responses that limit glucose utilization, promote endogenous glucose production, 

and lead the animal to seek food. It has been suggested that the function of glucose-sensing 

neurons is to generate neuroendocrine stress responses to the hypoglycemic challenge, but 

the identity of these neurons is unknown. It would be interesting to investigate the 

possibility that CRH neurons, which are expressed in the hypothalamus, are glucose-sensing 

neurons, and capable of mediating starvation-induced behavioral responses to the nutritional 

value of sugar in mammals. A stress-responsive CRH system might be co-opted to allow 

animals to respond to the stress of starvation.

Experimental Procedures

Fly strains

Flies were grown in standard cornmeal-molasses medium at low density at 25°C. w1118 

flies backcrossed to Canton-S (CS) 10 generations (referred as w1118CS) kindly provided to 

us by Dr. Anne Simon were used as control. Dh44 (CG8348, #24345, w1118; 

Mi{ET1}Dh44[MB07006]), Dh44R1 (CG8422, #23517, w1118; Mi{ET1}Dh44-R1[MB03192]), 

Dh44R2 (CG12370, w1118; Mi{ET1}Dh44-R2[MB10503], #29129) mutants, deficiencies 

(#26552, #7731, # 27929, #26388), Dh44 and hexokinases RNAi lines (#35338-Hex-C, 

#47331-Hex-T2, #46574-Hex-T1, #35155-Hex-A) were obtained from Bloomington Stock 

Center. UAS-Kir2.1 and tubulin-GAL80ts, and UAS-TNT were from Dr. David Anderson 

(Caltech, CA); UAS-NaChBac from Dr. Justin Blau (NYU, NY); UAS-Trp1 from Dr. Paul 

Garrity (Brandeis university, MA); UAS-GCaMP3.0 and UAS-GCaMP6.0 from Dr. Loren 

Looger and Dr. Jayaraman (Janelia, VA); UAS-mCD8GFP, UAS-Dscam-GFP, UAS-mko 

and UAS-Synaptotagmin-GFP from Dr. Ann-Shyn Chiang (NTHU, Taiwan); UAS-Reaper, 

UAS-Hid from Dr. Don Ryoo (NYU, NY).

Transgenic lines

The PDh44-GAL4 line was generated by cloning an 800bp region upstream of the Dh44 

promoter into pCasper4-AUG-GAL4X. The PDh44R1-GAL4 and PDh44R2-GAL4 lines were 

generated in the same way by cloning the ~1kb fragment upstream of the Dh44R1 and 

Dh44R2 ORF into pCasper4-AUG-GAL4X. The UAS-Dh44, UAS-Dh44R1 and UAS-

Dh44R2 rescue constructs were cloned by RT-PCR using total fly RNA and were 

subsequently subcloned into a pUAST:attb vector. Transgenic flies were generated by 

Bestgene, Inc.

Two-choice assay

The two-choice preference assay was as previously described (Dus et al., 2011). Briefly, 

approximately 40 4–8 days old male flies were food deprived in an empty vial with a Kim 

wipe wetted with 2ml of MilliQ water for 5h or 18h, and then given a choice between two 

sugars, each color-coded with a tasteless food dye, for two hours. Food preference was 

scored as percent preference index (% PI) shown in below:
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All sugars, except for L-glucose (Carbosynth), were from Sigma.

Immunofluorescence

Immunohistochemistry of the brains was conducted according to the protocol of (Chiang et 

al., 2011). Gut immunostaining was performed as in (Dus et al., 2013) with an extra step in 

which flies were fed agar-based food for two days to decrease background. Antibodies used 

were as follows: mouse anti-nc82 (1:50; Developmental Studies Hybridoma Bank), rabbit 

anti-GFP IgG (1:500; Invitrogen), goat anti-mouse-biotin (1:200), rabbit anti-Dh44 (1:500) 

(Zitnan et al., 1993). Secondary antibodies were Alexa Fluor 647-Strepavidin (1:500, 

Invitrogen), Alexa Fluor 555 goat anti-rabbit IgG (1:500, Invitrogen); TO-PRO3 (1:500; 

Invitrogen) was used for DNA labeling; Alexa 555-Phalloidin (1:200, Invitrogen) was used 

for gut immunostaining. Images were acquired by a Zeiss LSM 510 or Zeiss LSM 700 with 

1–2µm optical sections at a 1024×1024 or 512×512 resolution.

Calcium Imaging

Adult fly brains were dissected with sugar-free AHL solution and immobilized with fine 

tungsten pins on a SYLGARD-based perfusion chamber. During perfusion, appropriate 

concentrations of sucrose were added to sugar-free AHL before and after the stimulus to 

balance the difference in osmolarity. Each brain was recorded for 500 frames in total (512 × 

512 pixel; 1 frame per 5 second); the first 100 frames were recorded before each stimulus 

was presented and the next 200 frames were recorded during the exposure to sugar/drug, and 

the following 200 frames were recorded during washout. Solutions in the perfusion chamber 

were operated by pinch valves, which were controlled by a ValveBank® controller 

(AutoMate Scientific). Changes in the fluorescence intensity were recorded with a Prairie 

two-photon microscope with 40× water immersion lens (Olympus). Pseudo-color images 

and image analyses were performed using ImageJ. Note that a single outliner was removed 

from quantifying the glucose + phlorizin dataset (1/9).

Measurement of intracellular Dh44

The brains of 18h-starved flies were rapidly dissected in sugar-free AHL, incubated in either 

AHL saline (108 mM NaCl, 8.2 mM MgCl2, 4 mM NaHCO3, 1 mM NaH2PO4, 2 mM 

CaCl2, 5 mM KCl, 5 mM HEPES + 80mM sucrose to balance the osmolarity) or AHL+ 

80mM sugars for 30 minutes, then fixed and stained with anti-Dh44 antibody as per 

immunofluorescence protocol described above. Image acquisition was conducted using a 

Zeiss LSM 510 confocal microscope with a fixed gain setting between samples. ImageJ 

software was used to quantify the fluorescence intensity per cell.

Measurement of gut motility

The guts from 18h-starved flies were dissected in AHL without disrupting attached tissues 

and without removing the head, muscles or fat (Talsma et al., 2012). The exposed gut was 
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pinned onto a Sylgard plate with fine tungsten pins through the proboscis and a small piece 

of cuticle attached to the end of the gut, and bathed in 13µl of AHL. Each gut was imaged 

with a Zeiss High-speed camera (2 frames/sec) connected to a stereomicroscope with 0.6× 

magnification. After 5 minutes in AHL, the solution was removed by capillary action and 

replaced with 13µl AHL containing 10−6 µM Dh44 peptide or AHL alone. Video acquisition 

rapidly restarted for 10 minutes. Each video was processed with the Zeiss AxioPlan 4.8 

software and converted into a MP4 file with 7 frames/second. Quantification of gut 

contraction was conducted by visually counting for one minute after an addition of the 

solution to avoid diffusion artifacts: In Figure 6, AHL 1–5’ and Dh44 1–5’ refer to 4-minute 

long incubation (1–5 minutes). AHL 6–10’ and Dh44 6–10’ refer to 4-minute long 

incubation (6–10 minutes). The real-time video was accelerated 4 times (1 minute in the 

real-time equates 15 seconds in the video). Contractions of each gut were normalized to the 

number of contractions in the initial AHL solution.

PER

A 18h-starved fly was gently trapped into a chopped p200 tip to expose the head and 

forelegs to stimuli. Each tip was placed perpendicularly onto a slide covered with clay and 

positioned at the bottom of a stereomicroscope in a room heated to 30°C. After 5 minutes, 

each fly was observed throug h the objective of the microscope and their PER responses 

were counted. To obtain a video, flies were gently trapped into a glass Pasteur pipette with a 

small cotton plug and transferred to a 30°C heated room for 5 minutes whe re the footage 

was captured using a Zeiss high-speed camera and stereomicroscope at 2 frames/second.

Excretion assay

Single-fly assay: a starved single male fly was gently introduced into a glass Pasteur pipette 

sealed with a small cotton plug and ~5µl water to prevent desiccation and immediately 

transferred to a 30°C h eated room. The number of excretion (visible on the glass wall) was 

counted after 10’, 20’, and 60’.

Population assays: 30 males flies previously fed food + 0.1% blue dye (erioglaucine) for 3 

days were introduced into a 5cm plastic Petri dish containing filter paper. These flies were 

either kept in room temperature or immediately transferred to a 30°C heated room for 60 

minutes. T he numbers of excretion on the filter paper were quantified visually by using a 

stereomicroscope.

Measurement of hemolymph glycemia

Hemolymph glycemia was measured as previously described (Dus et al., 2011).

Statistics

GraphPad Prism software was used for all graphs and statistical analyses. Student’s t-test or 

one-way ANOVA were used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manipulating the activity of Dh44 neurons perturbs post-ingestive nutrient selection
The food preference of flies that were given a choice between a sweeter, yet nonnutritive 

sugar (L-glucose or D-arabinose) and a nutritive sugar (D-glucose, D-trehalose, D-fructose, 

or sorbitol) after 5h (sated) or 18h (starved) food deprivation. A–D) Inactivation of Dh44 

neurons by expression of UAS-Kir2.1 transgene using the PDh44-GAL4 driver (blue bars) 

abolishes preference for nutritive sugars in starved flies. Flies carrying each transgene alone 

were used as controls (gray bars). Flies were given a choice between A) 200mM L-glucose 

v. 50mM D-glucose; B) 200mM L-glucose v. 100mM D-trehalose; C) 80mM Darabinose v. 

25mM D-fructose; D) 20mM D-arabinose v. 20mM D-arabinose+ 80mM sorbitol. E) 
Artificial activation of Dh44 neurons by expression of UAS-NaChBac using PDh44-GAL4 

abolishes the preference for D-glucose over L-glucose in starved flies, but does not affect 
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sated flies. Flies bearing each transgene alone were used as controls. n=4–10 with each trial 

comprising approximately 40 flies for this and all subsequent behavior figures. ***P<0.001 

(one-way ANOVA with Tukey post-hoc test). Error bars, s.e.m.
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Figure 2. The expression pattern of the PDh44-GAL4 line
A) The reporter PDh44-GAL4>mCD8GFP (green) labels Dh44 cells in the PI, visualized by 

anti-Dh44 antibody (pink) in a z-stack confocal image with 1µm optical sections. Merge is 

in yellow. Scale bar, 10µm. B) A z-stack image of the brain of a fly carrying PDh44-GAL4 

and UAS-mCD8GFP (green) counterstained with the neuropil marker nc82 (magenta). Scale 

bar, 50µm. C) The dendritic arborization of Dh44 neurons, visualized by PDh44-

GAL4>DscamGFP (green), in the dorsal region of the SEZ. Dh44 cell bodies and processes 

are labeled by a fluorescent marker, Monomeric Kusabira Orange (mko) (pink). Dotted 
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circle depicts the esophagus. Scale bar, 10µm. D) The neurites of PDh44-GAL4>mCD8GFP 

cells innervate the gut and crop (yellow arrowheads). OE, esophagus; VNC, ventral nerve 

cord; PV, proventriculus. Scale bar, 100µm. E) The axons of Dh44 neurons, visualized by 

PDh44-GAL4>SytGFP (green), descend along the esophagus to innervate the gut (yellow 

arrowheads) revealed in a zstack image. Scale bar, 20µm.
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Figure 3. Activation of Dh44 neurons by nutritive sugars promotes the secretion of Dh44 
neuropeptide
A–D) The ex vivo brain preparations of flies carrying PDh44-GAL4 and UAS-GCaMP3.0 

were exposed to AHL (Adult Hemolymph Like) saline containing different sugars. A) The 

response (ΔF) of Dh44 neurons to AHL containing 20mM D-glucose (right). Pre-stimulation 

images show the position of six Dh44 cells (left) and the response to the control AHL 

containing 20mM sucrose (middle). Scale bar, 20µm. B) Quantification of Dh44 neuronal 

responses to nutritive sugars: D-glucose (blue bars), D-trehalose (green), and D-fructose 
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(magenta), and D-glucose mixed with tetrodotoxin (TTX, 0.5µM) (bright blue). Peak 

amplitude (ΔF/F) was obtained by subtracting the pre-stimulation baseline (average of 10–

15 frames) from the sugar-evoked peak value; Oscillation number refers to the total number 

of calcium transients during stimulation; Duration is the length of Dh44 neuronal response 

to stimulation; Oscillation frequency is calculated as a ratio of oscillation number/duration. 

n=9–27 cells. C) Quantification of Dh44 neuronal responses to nonnutritive sugars: 2-

deoxy-D-glucose (2DG, lavender bars) and L-glucose (light purple), and D-glucose mixed 

with Alloxan (4 µM), a hexokinase inhibitor (light blue), and D-glucose mixed with 

phlorizin (1 µM), a glucose transporter inhibitor (purple bar). n=5–19 cells. *P<0.05, 

**P<0.01, ***P<0.001. D) Representative traces of Dh44 neuronal responses to different 

sugars. E–F) The immunofluorescence measurement of intracellular Dh44 neuropeptide, 

probed with anti-Dh44 antibody upon E) stimulation of Dh44 cells with 80mM D-glucose, 

D-trehalose, D-fructose, D-glucose mixed with TTX (0.5µM), and the control AHL 

containing 80mM sucrose. n=24–42 cells; F) stimulation of Dh44 cells with 80mM 2-

deoxy-glucose, L-glucose and D-glucose mixed with alloxan (Allx) or with phlorizin (Phl). 

Representative images of Dh44 neurons stimulated by different sugars are shown below. 

n=22–43 cells. ** p<0.01. *** P<0.001. G) The food preference of flies carrying PDh44-

GAL4 and UAS-RNAi for each hexokinase in the two-choice assay (50mM D-glucose v. 

200mM L-glucose) after 18h starvation. Flies bearing PDh44-GAL4 alone were used as a 

control. n=4–6. ***P<0.001 (one-way ANOVA with Tukey post-hoc test). Error bars, 

s.e.m.
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Figure 4. Dh44, Dh44 receptors and their neurons are required for post-ingestive nutrient 
selection
A) Alignment of the mature peptide sequence of the human CRH and fly Dh44 

neuropeptides using Jalview (Waterhouse et al., 2009). Top, Blue color indicates identical 

residues. Bottom, the degree of amino acid conservation demonstrated by the shade of color 

(bright yellow to dark brown indicates decreasing similarity), the height of histogram bar, 

and a numerical score (n>5 high identity, n<5 low identity, n=+ Isoleucine/leucine). B–F) 
The food preferences in the two-choice assay (50mM D-glucose v. 200mM L-glucose) after 

18h starvation were measured in: B) Dh44 mutants (MiDh44 or MiDh44/Def). w1118CS and 

MiDh44 mutant carrying UAS-Dh44 under the control of PDh44-GAL4 were used as controls. 

n=3–8; C) Dh44R1 mutants (MiDh44R1 and MiDh44R1/Def). w1118CS, MiDh44R1/+ and 

MiDh44R1; PDh44R1>UAS-Dh44R1 flies were used as controls. n=3–9; D) Flies harboring 

PDh44R1-GAL4 and UAS-Kir2.1. Flies carrying each transgene alone were used as controls. 

n=4–7; E) Dh44R2 mutants (MiDh44R2, MiDh44R2/Def1, and MiDh44R2/Def2). w1118CS, 

MiDh44R2/+ and MiDh44R2; PDh44R2>UAS-Dh44R2 flies were used as controls. n=3–9; F) 
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flies carrying PDh44R2-GAL4 and UAS-Reaper, Hid, and flies carrying PDh44R2-GAL4, 

UAS-Hid, and Ptubulin-GAL80ts tested after GAL80ts was inactivated. Flies carrying either 

PDh44R2-GAL4 or UAS-Reaper, UAS-Hid transgene alone were used as controls. n=3–10. 

*** P<0.001 (one-way ANOVA with Tukey post-hoc tests). Error bars, s.e.m. G) A z-stack 

image of the brain of a fly carrying PDh44R1-GAL4 and UAS-mCD8GFP (green) 

counterstained with the neuropil marker, nc82 (magenta). Scale bar, 50µm. Inset, the 

expression of PDh44R1-GAL4>mCD8GFP in the VNC. A, Anterior; P, Posterior. H) A z-

stack image of the midgut of a fly carrying PDh44R2-GAL4 and UAS-mCD8GFP, 

counterstained with Phalloidin (pink) and TOPRO (DNA, cyan). Scale bar, 200µm. Inset, 

Magnified image of PDh44R2-GAL4>mCD8GFP in a subset of enteroendocrine cells (green) 

in the midgut.
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Figure 5. Artificial activation of Dh44 R1 neurons results in rapid proboscis extension even in 
absence of food
A) The food preferences of flies carrying PDh44R1-GAL4 and UAS-NaChBac in the two-

choice assay (50mM D-glucose v. 200mM L-glucose) after 5h (sated) and 18h (starved) 

food deprivation. Flies harboring each transgene alone were used as controls. n=4–10. B) 
Acute temperature-induced activation of Dh44R1 neurons in flies bearing PDh44R1-GAL4 

and UAS-TrpA1 at 30°C promotes robust PER responses in the absence of food. Flies 

carrying each transgene alone were used as controls, n=12–15. *** P<0.001 (one-way 

ANOVA with Tukey post-hoc test). Error bars, s.e.m.

Dus et al. Page 25

Neuron. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. The Dh44 system is necessary and sufficient for gut motility and excretion
A) Number of excreta in individual PDh44R1-GAL4>TrpA1 flies starved for 18 hours were 

measured at different time points at 30°C. Flies carrying each transgene alone were used as 

controls. n=13–15. ***P<0.001. B–C) Number of excreta in a population of 30 flies: B) 
flies carrying PDh44R1-GAL4 and UAS-TrpA1, and flies carrying each transgene alone 

tested at 30°C. n=3. ***P<0.001. Filter papers with the resultant excreta are shown in SI9; 

C) Dh44, Dh44R1 and Dh44R2 mutants, and w1118CS control flies. n=5–17. **P<0.01, 

***P<0.001. D–E) Gut propulsivity of w1118CS (D) or MiDh44R2 mutant (E) in response to 

the control AHL saline (D–E, gray bars) and AHL containing Dh44 peptide (10−6 µM) (D–
E, blue bars). AHL 1–5’ and Dh44 1–5’ refer to minutes 1–5’ incubated in AHL and AHL 

containing Dh44 peptide; AHL 6–10’ and Dh44 6–10’ refers to minutes 6–10’ incubated in 

AHL and AHL containing Dh44 peptide, respectively. Δcontractions (y-axis) were 

calculated by normalizing the number of contractions in AHL containing Dh44 peptide over 

those in the control AHL. n=9–17 guts. *** P<0.001. (one-way ANOVA with Tukey post-

hoc test). Error bars, s.e.m.
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Figure 7. Flies promptly detect the nutritional value of sugar
A) The food preference in the two-choice assay (50mM D-glucose v. 200mM L-glucose), 

measured at different time points (x-axis) in w1118CS and MiDh44 mutant flies. Time point 

0’ is the time at which the majority of flies started to feed. n=4–10, ***P<0.001 (one-way 

ANOVA with Dunnet post-hoc test). Error bars, s.e.m. B) Measurement of circulating 

glucose and trehalose levels in 18h-starved male w1118CS flies that were fed with 100mM 

D-glucose. Their hemolymph was collected at different time points (x-axis) for each 

measurement. The data is normalized to hemolymph glycemia in 18h-starved flies. 0’ refers 

to the time at which the majority of flies began to eat. n=6–11. ***P<0.001. C) 
Measurement of circulating glucose and trehalose levels in 18h-starved male flies that were 

fed with different sugars at 100mM concentration for 15 minutes. The data is normalized to 

hemolymph glycemia in 18h-starved flies. n=7–14. **P<0.01, ***P<0.001 with respect to 

the starved flies. D) The dynamics of Dh44-mediated sugar sensing. Ingestion of nutritive 

sugar leads to the activation of Dh44 neurons, which results in the release of Dh44 

neuropeptide. Dh44 (CRF) subsequently acts on different sites to activate PER responses 

and to stimulate the gut motility and excretion through a positive feedback loop.
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