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Polarization Aberrations in Astronomical Telescopes: The Point Spread Function
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ABSTRACT. Detailed knowledge of the image of the point spread function (PSF) is necessary to optimize astro-
nomical coronagraph masks and to understand potential sources of errors in astrometric measurements. The PSF for
astronomical telescopes and instruments depends not only on geometric aberrations and scalar wave diffraction but
also on those wavefront errors introduced by the physical optics and the polarization properties of reflecting and
transmitting surfaces within the optical system. These vector wave aberrations, called polarization aberrations, result
from two sources: (1) the mirror coatings necessary to make the highly reflecting mirror surfaces, and (2) the optical
prescription with its inevitable non-normal incidence of rays on reflecting surfaces. The purpose of this article is to
characterize the importance of polarization aberrations, to describe the analytical tools to calculate the PSF image, and
to provide the background to understand how astronomical image data may be affected. To show the order of magni-
tude of the effects of polarization aberrations on astronomical images, a generic astronomical telescope configuration is
analyzed here by modeling a fast Cassegrain telescope followed by a single 90° deviation fold mirror. All mirrors in
this example use bare aluminum reflective coatings and the illumination wavelength is 800 nm. Our findings for this
example telescope are: (1) The image plane irradiance distribution is the linear superposition of four PSF images: one
for each of the two orthogonal polarizations and one for each of two cross-coupled polarization terms. (2) The PSF
image is brighter by 9% for one polarization component compared to its orthogonal state. (3) The PSF images for two
orthogonal linearly polarization components are shifted with respect to each other, causing the PSF image for un-
polarized point sources to become slightly elongated (elliptical) with a centroid separation of about 0.6 mas. This
is important for both astrometry and coronagraph applications. (4) Part of the aberration is a polarization-dependent
astigmatism, with a magnitude of 22 milliwaves, which enlarges the PSF image. (5) The orthogonally polarized com-
ponents of unpolarized sources contain different wavefront aberrations, which differ by approximately 32 milliwaves.
This implies that a wavefront correction system cannot optimally correct the aberrations for all polarizations simulta-
neously. (6) The polarization aberrations couple small parts of each polarization component of the light (∼10�4) into
the orthogonal polarization where these components cause highly distorted secondary, or “ghost” PSF images. (7) The
radius of the spatial extent of the 90% encircled energy of these two ghost PSF image is twice as large as the radius of
the Airy diffraction pattern. Coronagraphs for terrestrial exoplanet science are expected to image objects 10�10, or 6
orders of magnitude less than the intensity of the instrument-induced “ghost” PSF image, which will interfere with
exoplanet measurements. A polarization aberration expansion which approximates the Jones pupil of the example
telescope in six polarization terms is presented in the appendix. Individual terms can be associated with particular
polarization defects. The dependence of these terms on angles of incidence, numerical aperture, and the Taylor series
representation of the Fresnel equations lead to algebraic relations between these parameters and the scaling of the
polarization aberrations. These “design rules” applicable to the example telescope are collected in § 5. Currently,
exoplanet coronagraph masks are designed and optimized for scalar diffraction in optical systems. Radiation from
the “ghost” PSF image leaks around currently designed image plane masks. Here, we show a vector-wave or polari-
zation optimization is recommended. These effects follow from a natural description of the optical system in terms of
the Jones matrices associated with each ray path of interest. The importance of these effects varies by orders of mag-
nitude between different optical systems, depending on the optical design and coatings selected. Some of these effects
can be calibrated while others are more problematic. Polarization aberration mitigation methods and technologies to
minimize these effects are discussed. These effects have important implications for high-contrast imaging, coronag-
raphy, and astrometry with their stringent PSF image symmetry and scattered light requirements.
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1. INTRODUCTION

In this section, we describe briefly the value of polarization
measurements to stellar and exoplanet astronomical sciences,
summarize polarization aberrations, discuss the physical optics
of image formation in astronomical telescopes, and describe
how modern telescopes introduce polarization aberrations.

1.1. Photopolarimetry

Polarization measurements of astronomical sources contain
substantial astrophysical information. Many stars observed in
the UV, Visible, and IR are thermal emitters and their radiation
at the star is unpolarized except for a minority of stars with high
magnetic fields. Hiltner (1950) and Mavko et al. (1974) showed
that the asymmetry of aligned dipoles in interstellar matter selec-
tively absorbs the thermal emission from background stars. Un-
polarized radiation that scatters from planetary atmospheres and
circumstellar disks can become partially polarized.When one po-
larization is preferentially absorbed over its orthogonal state, the
unpolarized starlight becomes partially polarized. Clarke (2010)
and Perrin (2009a, 2009b) provide a comprehensive review of the
value of precision polarization measurements to general astro-
physics. Keller (2002) provides a review of spectropolarimetric
instrumentation. Hines (2000) reviews the NICMOS polarimeter
on the Hubble space telescope.

Analysis by Stam et al. (2004) and measurements reported by
Tomasko & Doose (1984), West et al. (1983), and Gehrels et al.
(1969) using data from the imaging photopolarimeters on Pio-
neers 10 and 11 and the Voyagers showed that Jupiter-like exo-
planets will exhibit a degree of polarization (DoP) as high as 50%
at a planetary phase angle near 90°. Stam et al. (2004) showed
that polarization measurements of the planet’s radiation in the
presence of light scattered from the star reveal the presence of
exoplanetary objects and provides important information on their
nature. Since the first report by Berdyugina et al. (2011) of the
detection of polarized scattered light from an exoplanet (HD
189733b) atmosphere, several theoretical models have been de-
veloped. de Kok, Stam & Karalidi (2012) showed that the DoP
changes with wavelength across the UV, visible, and near IR
band-passes to reveal the structure of the exoplanet’s atmosphere.
Karalidi et al. (2011) showed that polarization measurements are
of value in exoplanet and climate studies. Madhusudhan &
Burrows (2012) and Fluri & Berdyugina (2010) showed that or-
bital parameters (inclination, position angle of the ascending
node, and eccentricity) could be retrieved from precision polari-
metric measurements. Graham et al. (2007) have shown that a
polarization signature of primordial grain growth within the
AU Microscopii debris disk, provides clues to planetary forma-
tion. Perrin (2009a, 2009b) shows that imaging polarimetry pro-
vides important constraints for the analysis of circumstellar disks.

Polarimetric measurements of astronomical sources provide
critical astrophysical and exoplanet information. All polariza-
tion measurements are made with telescopes and instruments

that contribute their own polarization signature. Many authors
discuss methods to calibrate photopolarimetric measurements
for changes in polarization transmissivity. However, this article
provides the tools to understand the source of this instrument
polarization and to estimate the magnitude of the effect on
the image quality for coronagraphy and astrometry.

1.2. Aberration

The aberration of an optical system is its deviation from ideal
performance. In an imaging system with ideal spherical or plane
wave illumination, the desired output is spherical wavefronts
with constant amplitude and constant polarization state centered
on the correct image point. Deviations from spherical wavefronts
arise from variations of optical path length (OPL) of rays through
the optic due to the geometry of the optical surfaces and the
laws of reflection and refraction. The deviations from spherical
wavefronts are known as the wavefront aberration function. De-
viations from constant amplitude arise from differences in reflec-
tion or refraction efficiency between rays. Amplitude variations
are amplitude aberration or apodization. Polarization change also
occurs at each reflecting and refracting surface due to differences
between the s and p-components of the light’s reflectance and
transmission coefficients. Across a set of rays, the angles of in-
cidence changes and thus the polarization varies, so that a uni-
formly polarized input beam has polarization variations when
exiting the system (Kubota & Inoué 1959; Chipman 1989a).
For many optical systems, the desired polarization output would
be a constant polarization state with no polarization change tran-
siting the system; identity Jones matrices can describe such ray
paths through an optical system. Deviations from this identity
matrix are referred to as polarization aberrations.

In this hierarchy, wavefront aberrations are by far the most
important aberration, as variations of OPL of small fractions of a
wavelength can greatly reduce the image quality. The relative
priority of wavefront aberrations is so great that for the first
40 years of computer-aided optical design, and amplitude
and polarization aberration were not calculated by the leading
commercial optical design software packages. The variations of
amplitude and polarization found in high-performance astro-
nomical systems cause much less change to the image quality
than the wavefront aberrations, but as the community prepares
to image and measure the spectrum and polarization of exopla-
nets and similar demanding tasks, these amplitude and polari-
zation effects can no longer be ignored. For example, Stenflo
(1978) has discussed limitations on the accuracy of solar mag-
netic field measurements due to polarization aberration.

In a system of reflecting and refracting elements, amplitude
and polarization aberration contributions arise from the Fresnel
coefficients for uncoated or reflecting metal surfaces and by the
related amplitude coefficients for thin film-coated interfaces. Po-
larization aberration, also called instrumental polarization, refers
to all polarization changes of the optical system and the varia-
tions with pupil coordinate, object location, and wavelength. The
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term “Fresnel aberrations” refers to polarization aberrations
which arise strictly from the Fresnel equations, i.e., systems
of metal coated mirrors and uncoated lenses (Kubota & Inoué
1959; Chipman 1987; Chipman 1989a; McGuire & Chipman
1994a). Multilayer-coated surfaces produce polarization aberra-
tions with similar functional forms and may have larger or
smaller magnitudes, but all the polarization aberration-related
image quality issues addressed here can be demonstrated with
metal reflectors.

Polarization ray tracing is the technique of calculating the po-
larization matrices for ray paths through optical systems (Bruegge
1989; Chipman 1989a, 1989b; Waluschka 1988; Wolff &
Kurlander 1990; Yun 2011a, 2011b). Diffraction image formation
of polarization-aberrated beams is then handled by vector exten-
sions to diffraction theory (Kuboda & Inouè 1959; Urbanczyk
1984, 1986; McGuire & Chipman 1990, 1991; Mansuriper 1991;
Dorn 2003; Tu 2012). These polarization aberrations frequently
have similar functional forms to the geometrical aberrations,
since they arise from similar geometrical considerations of sur-
face shape and angle of incidence variation (Chipman 1987;
McGuire & Chipman 1987, 1990, 1991, 1994a, 1994b; Hansen
1988; Chipman & Chipman 1989; Shribak et al. 2002; Beckley
et al. 2010). Polarization aberrations can be measured by placing
an optical system in the sample compartment of an imaging
polarimeter and measuring images of the Jones matrices and/
or Mueller matrices for a collection of ray paths through the op-
tical system (Pezzanitti et al. 1995; McEldowney et al. 2008).

1.3. Image Formation

Image quality in astronomical telescopes is traditionally
quantified using four metrics: wavefront aberration, the image
of the point spread function (PSF), the optical transfer function
(OTF), and the behavior of these metrics across the field-of-
view (FOV) and with wavelength.

Conventional astronomical telescope/instrument systems to-
day are mostly ray traced and analyzed using a scalar represen-
tation for the electromagnetic field, usually calculated by
“conventional ray tracing,”without regard for polarization. Very
accurate simulation of high-resolution and high-contrast imag-
ing systems, at the level of polarization artifacts comprising
10�3 of less than the total flux, requires a vector representation
of the field and a matrix representation of the optical system to
account for the typically small, but increasingly important, ef-
fects of polarization aberration.

Image formation is a phenomenon of interference. Consider
the image quality for the image of a star. The light must be
coherent across the wavefront entering the telescope to form
a diffraction-limited image. Since different wavelengths are in-
coherent with respect to each other, the different wavelengths
essentially each form separate diffraction-limited images on
top of each other; i. e., they add in intensity. For starlight, the
wavefront components in two orthogonal polarizations (call
them X and Y ) are also incoherent with respect to each other,

and also form separate diffraction-limited images on top of each
other. If the star’s X-polarized light is rotated to Y , it does not
form fringes with the star’s Y -polarized light; this is the mean-
ing of unpolarized light. A metric of the degree to which there is
good coherence from waves across the pupil is fringe contrast or
the visibility of fringes.

The calculation of polarization aberration effects on image
formation presented below will follow the steps shown in
Figure 1. The Jones pupil is determined as an array of Jones
matrix values by polarization ray tracing. The Fourier trans-
forms of the Jones pupil elements yield an amplitude response
matrix (ARM), which describes the amplitude distribution in
the image of a monochromatic point source specified by a Jones
vector. In what follows, bold acronyms indicate matrix func-
tions. Conversion of the ARM’s Jones matrices into Mueller
matrices (Goldstein 2010; Gil 2007; Chipman 2009) yields
the Point spread matrix (PSM). The image of an incoherent
point source specified by a set of four Stokes parameters is ob-
tained by matrix multiplying the Stokes parameters by the PSM,
yielding the image of the point spread function in the form of
Stokes parameters (McGuire & Chipman 1990).

1.4. Instrument-Induced Polarization

Volume, packaging, and mass constraints levied by space-
craft structural engineers to accommodate launch vehicles
now require large aperture astronomical space telescopes to have
low F/# and a compact instrument optical package, which re-
quires multiple fold mirrors in the optical path. The larger the
deviation angle for each ray at a mirror reflection, the larger
is the magnitude of the instrumental polarization and the impact
on the PSF. Similarly, ground-based telescopes are being built
very compact, with low F/# primary mirrors to minimize the cost
of the telescope and instrument system structure. The current set
of ground-based large telescopes under development, Giant
Magellan Telescope (GMT), Thirty Meter Telescope (TMT),

FIG. 1.—A flowchart of image analysis in optical systems with polarization
aberration.ARM is the Fourier transform of the Jones pupil. TheARM converts
to the PSM as a Jones matrix converts to a Mueller matrix.
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and the European-Extremely Large Telescope (E-ELT), use op-
tical system architectures where radiation strikes mirror surfaces
at high angles of incidence introducing polarization-induced var-
iations to wavefronts. These telescopes function as partial polar-
izers, and the retardance and diattenuation at the focal plane
depend where on the sky the telescope is pointing.

Drude (1900), Drude (1902), Stratton (1941), Azzam et al.
(1987), Born & Wolf (1993), Ward (1988), and many others
show that the polarization of light changes at each non-normal
reflection; this introduces diattenuation and retardance, which
apodize and change the wavefront. This causes a change in
the shape of the PSF and can lead to unexpected performance
for some astronomical applications. The magnitude of the de-
graded performance depends on the particular opto-mechanical
layout selected for the optical system architecture and the mirror
coatings.

Witzel et al. (2011) characterized the polarization trans-
missivity of the VLT; Hines et al. (2000) analyzed the HST
NICMOS instrument, and Ovelar et al. (2012) modeled the
ELT for instrumental polarization. These works were done for
the purpose of correcting photo-polarimetric data and not, as our
work is here, for the purpose of studying the PSF image struc-
ture. Breckinridge & Oppenheimer (2004) and Breckinridge
(2013) established that the shape of the PSF image for the as-
tronomical telescope depends on polarization aberrations.
McGuire & Chipman (1994a, 1994b), Yun et al. (2011), and
Yun et al. (2011) developed analytic tools and models to analyze
polarization aberrations.

Geometrical ray tracing optimizes geometric image quality
by minimizing physical optical path differences (OPD). An
analysis that also takes polarization into consideration is needed
to determine whether or not the wavefront is compromised by
polarization such that it would not meet stringent specifications.
As shown in our example, the geometric ray trace can be per-
fect, scalar diffraction accounted for, and the entire set of OPLs
equal but the polarization aberration can still reduce image
quality.

2. POLARIZATION ANALYSIS OF AN EXAMPLE
CASSEGRAIN TELESCOPE

To explain the effects of polarization aberration on the PSF
and explore the implications for astronomical imaging, a
generic telescope consisting of a primary, secondary, and fold
mirror is analyzed. It is difficult to select a single fully repre-
sentative astronomical high-resolution optical system as a polar-
ization aberration example. Further, if an example system with
many elements is chosen, it is more difficult to relate the indi-
vidual surfaces to the features in the polarization aberration and
polarized PSF, so a relatively simple system is analyzed. Quan-
titative values are calculated for this telescope’s polarization.
What is of particular interest is not these specific values but
the functional form of the image defects and their order of

magnitude. This should help the reader to assess whether these
defects are of concern for various applications.

The example Cassegrain telescope and fold mirror is shown
in Figure 2. It is illuminated on-axis. This system has no on-
axis geometric wavefront aberrations; the OPL is equal for all
on-axis rays. Thus the on-axis image calculated by conven-
tional ray tracing is ideal, so any deviations from ideal imaging
are due to the polarization of the mirrors and is not mixed
with the effects of geometric wavefront aberration. The mirrors
are coated with bare aluminum and analyzed at 800 nm with
a complex refractive index N ¼ 2:80þ 8:45i. The Fresnel
amplitude and phase coefficients for aluminum are plotted in
Figure 3. The remainder of this manuscript will focus on the
effect of these Fresnel coefficients on image formation in the
example telescope, and by extension to other image forming
systems.

2.1. The Fresnel Coefficients and Fresnel Aberrations

When a plane wave is incident on a metal reflector, the ra-
diation’s electric and magnetic fields drive the charges in the
metal, which undergo a small oscillation at optical frequencies.
These accelerating charges give rise to the reflected beam. The
response of the charges, and thus the reflected beam, depends on
the orientation of the electric field. The reflection process is a
linear and can be completely described by the reflection of the s-
component and p-component separately.

Figure 4 provides the notation to express the Fresnel equa-
tions which calculate the polarization content of the reflected
beam. The complex refractive indexN ¼ nþ ik, has imaginary
part k and real part n. The values of n and k are given in optical

FIG. 2.—An example Cassegrain telescope system with a primary mirror at
F/1.2, a Cassegrain focus of F/8, and a 90° fold mirror in the F/8 converging
beam. The 90° fold mirror is folded about the x-axis. The primary mirror
has a clear aperture of 2.4 meters. The operating wavelength is 800 nm. All
three mirrors are coated with aluminum. x and y define the coordinates for inci-
dent polarization states.
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materials handbooks (Palik 1961). Given the angle of incidence
θ0 and the incident medium refractive index N0, the angle of
refraction in medium 1 is found using Snell’s law: N0 sin θ0 ¼
N1 sin θ1, whereN1 and θ1 and θ0 are defined in Figure 4. From
N1 cos θ1 ¼ ðN2

1 �N2
0 sin

2 θ0Þ12, the angle θ1 is

θ1 ¼ cos�1

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

1 �N2
0 sin

2 θ0
q

N1

3
75; (1)

which for metals is a complex angle. The reflectivity for p-
polarized light, polarized parallel to the plane of incidence, is
given by the Fresnel coefficient for p-polarized light (Azzam
et al. 1987),

rp ¼
tanðθ0 � θ1Þ
tanðθ0 þ θ1Þ

¼ jrpjeiϕp : (2)

Similarly the reflectivity rs for the s-polarized light, polar-
ized perpendicular to the plane of incidence is

rs ¼
� sinðθ0 � θ1Þ
sinðθ0 þ θ1Þ

¼ jrsjeiϕs (3)

The amplitude reflection components in Figure 3a describe
the relative amplitude of the reflected light. The fraction of re-
flected flux is the amplitude squared, jrsj2 and jrpj2, which for
normal incidence is 0:9322 ¼ 0:87. The remainder of the light’s
energy is lost to resistance from the charges moving through the
metal, heating the reflector in the process. In Figure 3a, the s-
reflectance is seen to be greater than the p-reflectance, leading to
diattenuation. The variations of jrsj and jrpj with angle cause
amplitude aberrations. For s-polarized light, the wavefront is
brighter at larger angles of incidence while for p-polarized light
the wavefront is dimmer. This apodization has a small effect on

the image quality. The difference between jrsj2 and jrpj2 indi-
cates that the reflectors act as weak polarizers. The polarization-
dependent reflectance is characterized by the diattenuation D,

D ¼ jrsj2 � jrpj2
jrsj2 þ jrpj2

: (4)

Metallic reflection acts as a weak polarizer, called a diatte-
nuator after the two attenuations. Diattenuation varies from zero
when all polarization states have the same reflectance or trans-
mission (as with ideal retarders or nonpolarizing interactions)
to one for ideal polarizers. When unpolarized light, such as

FIG. 4.—An incident ray propagating in medium (0) of indexN0 reflects from
a metal mirror of index N1 at angle θ° at point O. The metal medium N1 is
assumed optically thick and the energy entering the metal is rapidly absorbed.
The Fresnel reflection coefficients rs and rp separately describe the reflectance
for the s and p-polarized components. The electric field vector for the light po-
larized in the s direction is out of the paper, normal to the plane of incidence, and
the direction vector for the light polarized in the p direction is parallel to the
plane of incidence.

FIG. 3.—Reflection coefficients for the amplitude (a) and the phase (b) of a complex wave upon reflection at angle of incidence θ° between 0° and 90° for a bare
aluminum mirror at 800 nm wavelength are shown. In (b), ϕrs and ϕrp are the reflected phase for s and p-polarized light. The green vertical line highlights the reflection
phase at 45°. The red and blue lines show the corresponding slope of ϕrs and ϕrp at the 45° incident angle. See the electronic edition of the PASP for a color version of
this figure.
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starlight, is incident, the diattenuation is equal to the DoP of the
exiting light. Due to the diattenuation, light incident in states
different from s and p have some fraction of the energy coupled
into the orthogonal polarization, and these orthogonally polar-
ized components have an important role in the image formation
that will be highlighted later.

Figure 3b shows the phase change on reflection, which is
different for the s and p-polarizations. This phase change is
a contribution the mirrors to the wavefront aberrations of the
system. The phase shift δ between the s and p-reflected beams
upon reflection is the retardance,

δ ¼ jϕrp � ϕrsj: (5)

Since s and p at interfaces are linearly polarized states, this
retardance is referred to linear retardance. Linear retardances
with their fast axes aligned add; linear retardances with perpen-
dicular fast axes subtract. In general the retardance of a se-
quence of retarders is simulated through the multiplication of
Jones or Mueller matrices. Sequences of linear retardances at
arbitrary orientations have elliptically polarized eigenvectors
(fast and slow axes).

The polarization aberration changes the polarization state of
a small fraction of the light, and as described later, that compo-
nent changes the intensity and polarization distribution of the
image, which can be an important factor in high contrast and
resolution imaging. For small diattenuation (dimensionless)
or small retardance (radians), the maximum fraction F of light
which can be coupled into the orthogonal polarization state oc-
curs for light at 45° to the diattenuation axis or retardance axis
and both have the same quadratic form for F ,

F ðDÞ≈D2

4
; F ðδÞ≈ δ2

4
: (6)

These equations are readily derived using the Mueller calcu-
lus by placing a diattenuator or retarder oriented at 45° between
crossed polarizers and evaluating the Taylor series for the trans-
mitted flux.

To generate scaling rules for polarization aberration, approx-
imate forms for the diattenuation (eq. [4]) and retardance
(eq. [5]) due to the Fresnel coefficients are presented in the ap-
pendix. For the two on-axis mirrors, these Fresnel coefficients

have been expanded as even quadratic equations about normal
incidence (eq. [A7]); for the fold mirror, these coefficients have
been expanded as linear equations about the axial ray (eq. [A8]).

The phases in Figure 3b are important; they are polarization-
dependent contributions to the wavefront aberration. They are
perturbations to the wavefront which change depending on the
metal or coating applied (McGuire & Chipman 1991). Since the
fold mirror is in a converging beam, the nonzero slopes of
the s and p-phases are both important and have been highlighted
in Figure 3b. These slopes cause linear phase shifts, which shift
the locations of the X and Y -polarized components from the
geometrical image location, and since the slopes are different
with opposite slopes, these components move in different direc-
tions by a small fraction of the Airy disk radius. Wavefront cor-
rection (e.g., adaptive optics) can flatten the slope of the phase
through angle. Since the slopes are different for s and p-phases,
wavefront correction can only correct either the s-polarized
wavefront or the p-polarized wavefront, but not both simulta-
neously. This effect is discussed further in § 2.6 and in § 5 (de-
sign rules 8, 9, and 10).

2.2. Polarization Aberration

The polarization aberration of the example telescope of
Figure 2 will first be examined from maps of diattenuation
and retardance and then as a Jones matrix representation at
the exit pupil. The diattenuation contributions from the three
mirror elements are shown in the first three panels of Figure 5.
The fourth panel in Figure 5 shows the cumulative diattenuation
for the entire telescope as viewed looking into the exit pupil
from the image plane. Each line inside the circle shows the dia-
ttenuation magnitude and the orientation of the maximum trans-
mission axis at a point in the pupil. The primary and secondary
mirrors (the first two panels in Fig. 5) produce rotationally sym-
metric, tangentially oriented diattenuation with a magnitude that
increases quadratically from the center of the pupil.5 The fold
mirror introduces a horizontally oriented diattenuation with a
linear and cubic variation along the vertical axis. The cumula-
tive diattenuation map shown on the right is predominantly

FIG. 5.—Diattenuation maps for each mirror element (first three panels) and the cumulative diattenuation for the entire telescope (last panel). The length of each line is
proportional to the value of the diattenuation and the orientation of the line shows the axis of maximum transmission for a point in the pupil. The key in the lower right
corner of each panel shows the scale of the largest diattenuation. For this example telescope, the dominant source of diattenuation is the 90° fold mirror.

5 When linear and quadratic, etc. are used throughout the manuscript, ap-
proximately linear and approximately quadratic are implied as is standard in
aberration theory.
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linear from top to bottom. Polarization aberration functions
which closely fit these diattenuation maps are discussed in
the appendix.

The aluminum’s retardance introduces a polarization-
dependent phase contribution to the OPL differently for the
s and p-components of the light. Retardance aberration thus
represents a difference in the metal coating’s wavefront aber-
ration contribution as experienced by orthogonal polarization
states. Figure 6 shows the individual surface contributions
to the retardance aberration in the first three panels and the
cumulative retardance aberration through the system in the last
panel. Each line shows the retardance magnitude and fast axis
orientation at a grid of locations in the beam. The primary and
secondary mirrors produce a rotationally symmetric tangen-
tially oriented fast axis, which increases quadratically from
the center, while the fold mirror introduces retardance with
a vertically oriented fast axis. The fold mirror has a linearly
varying retardance increasing from the bottom to the top of
the pupil. Since the fold mirror has the largest retardance,
the resultant retardance for the entire telescope shown on the
right is similar to the fold mirror retardance with contributions
from the primary and secondary mirrors. The cumulative linear
retardance map (the fourth panel of Fig. 6) is primarily a con-
stant retardance, with a linear variation from bottom to top, and
a variation of retardance orientation from left to right. The cu-
mulative retardances are shown as linear retardances (lines) but
because the three individual weak retardances in the first three
panels are not strictly parallel or perpendicular, the fast and
slow axes of the retardances in the last panel are slightly el-
liptical; however, the ellipticity, which has a maximum value of
0.0047, is much smaller than would be visible at this scale.
Similarly the diattenuation becomes slightly elliptical when
the axes are not aligned, and in the map of Figure 5 has a
maximum ellipticity of 0.011.

Polarization aberration functions which approximate these
retardance maps are discussed in the appendix. Constant retard-
ance is a constant difference in the wavefront aberration, a “pis-
ton” between polarization states; it changes polarization states
but piston does not degrade image quality. The linear variation
of retardance indicates a difference in the wavefront aberration
tilt, X- and Y -polarizations get different linear phases, and so

their images are shifted from the nominal image location by dif-
ferent amounts (see the end of § 2.2).

The spatial variation of the telescope’s diattenuation (fourth
panel of Fig. 5) and retardance (fourth panel of Fig. 6) is a low
order variation which can be characterized by simple polyno-
mials (see appendix). The retardance from the primary and sec-
ondary mirrors has a quadratic phase variation; this pattern has
been named “retardance defocus” (Chipman 1989a). For X-
polarized light, the relative phase is advanced quadratically mov-
ing along the x-axis from the center to the edge of the field, and is
retarded quadratically moving to the edge of the field along the y-
axis. This causes astigmatism arising from the different quadratic
variations of ϕrs and ϕrp about the origin in Figure 3. So theX-
polarized image, being astigmatic by 0.022 radians (0:012þ
0:010 or 3.4 milliwaves; see the scale of the primary mirror
and secondary mirror retardances at the edge of the pupil in
Fig. 6), becomes slightly elongated in opposite directions on ei-
ther side of the best focus. Similarly for Y -polarized light, the
relative phase is advanced moving along the y-axis from the cen-
ter to the edge of the field, and is retarded moving to the edge of
the field along the x-axis. So the Y -polarized image is astigmatic
with the opposite sign. This concave mirror-induced astigmatism
is real and has been observed with interferometers.

Unlike conventional astigmatism, which on-axis would
likely be caused by a cylindrical deformation in a mirror, this
coating-induced astigmatism arises from the primary and sec-
ondary mirror’s retardance defocus and is tied to the polariza-
tion state of the light. Coating-induced astigmatism rotates with
the polarization state, whereas for a cylindrical deformation, the
astigmatism would rotate with the mirror and not with the po-
larization state. For unpolarized light, the coating-induced astig-
matic image is the average over the PSF of all polarization
components, which is also the sum of the PSF for any two or-
thogonal components. So the astigmatism which is seen in a
single incident polarization state, such as X-polarized, when
added to the astigmatism for Y -polarized light, where the astig-
matism is rotated by 90°, forms a radially symmetric PSF, which
is slightly larger than the unaberrated image. Inserting a polar-
izer will reveal the astigmatism in any particular polarization
component. More information on retardance defocus and the
associated astigmatism in Cassegrain telescopes is found in
Reiley & Chipman (1994).

FIG. 6.—Retardance maps for each mirror element (first three panels) and the cumulative retardance for the entire telescope (last panel). The length of each line is
proportional to the value of the retardance and the orientation of the line shows the fast axis. The key in the lower right corner of each of the four panels shows the scale of
the largest retardance in radians. This figure shows that the dominant source of retardance at the exit pupil for the telescope of Fig. 2 is the 90° fold mirror (third panel).
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2.3. The Jones Pupil

Each ray through the optical system has an associated Jones
matrix, which describes the polarization change, the diattenua-
tion and retardance, for that ray path (Jones 1941). The polari-
zation aberration function is the set of Jones matrices expressed
as a function of pupil coordinates and object coordinates
(McGuire & Chipman 1990). The set of Jones matrices for a
specified object point is called the Jones pupil, and has the form
of a Jones matrix map over the pupil (Ruoff & Totzeck 2009).
The Jones pupil is represented by the 2 × 2 Jones matrix, which
contains complex components with amplitude Aðx; yÞ and
phase ϕðx; yÞ at each point in the pupil ðx; yÞ,

J ¼ JXX JXY

JYX JY Y

� �
¼ AXXe

iϕXX AXY e
iϕXY

AYXe
iϕYX AY Y e

iϕY Y

� �
: (7)

For the X-polarized incident field at the entrance pupil, the
term AXX is the amplitude of JXX at point ðx; yÞ of the X-
polarized field at the exit pupil. Also, for the X-polarized inci-
dent field at the entrance pupil, AYX is the amplitude at point
ðx; yÞ of light coupled from X into the Y -polarized field at
the exit pupil. The term ϕYX, the complex argument of JXX,
is the phase shift from the X-polarized incident field to the
X-polarized exiting field due to the metal reflections. Similarly
ϕYX is the phase shift for theX-polarized field coupled into the
Y -polarized field. The field from a single point in object space
maps into the 2 × 2 Jones matrix shown on the right of equa-
tion (7). Similarly, the right column of J describes the effects for
the Y -polarized incident field.

The Jones pupil is calculated using the algorithms of geomet-
rical optics (ray-tracing) augmented with polarization ray trac-
ing. During the ray trace, the angle of incidence and orientation
of the plane of incidence are evaluated at each ray intercept, and
the Fresnel equations are used to calculate the s and p-reflection
coefficients, as plotted in Figure 3. These coefficients are used
to generate a polarization matrix for the ray intercept, such as a
Jones matrix (Yun, Crabtree, & Chipman 2011). The OPL con-
tributions are summed for each ray segment to determine the
geometrical phase in the exit pupil. This is repeated for a grid
of rays to calculate the geometrical wavefront aberration func-
tion. “Geometrical” here refers to the calculation of OPL, as
determined by conventional ray tracing, without the influence
of instrumental polarization. The polarization matrices are mul-
tiplied for each ray intercept from the entrance pupil through the
exit pupil to determine the amplitudes in each polarization and
the contributions of the metallic reflections to the overall phase.

A coordinate system must be chosen for the description of
Jones matrices. The choice of the orthogonal basis is arbitrary.
Here it is simplest to decompose the incident plane waves into a
component parallel to our fold mirror’s rotation axis, horizontal
or X-polarized, and a vertical or Y -polarized component. The
result of all flux and PSF calculations is independent of the or-
thogonal basis chosen.

A polarization ray trace was performed on the example tele-
scope of Figure 2 and the values of the Jones pupil elements,
given by equation (7), are displayed in Figure 7, which is color
coded to show the amplitude and phase variations across the exit
pupil. This Jones pupil is very close to the identity matrix times
∼0:806; the 0.806 accounts for average reflection losses from
aluminum. Deviations from the identity matrix occur because
the aluminum mirrors are weakly polarizing. Equation (A2)
contains a closed form approximation to this Jones pupil.

The JXX and JY Y diagonal elements contain different
amount of polarization aberrations. The overall JXX amplitude
is about 5% larger than the overall JY Y amplitude because of
the s and p-reflection difference at 45° shown in Figure 3a. This
will cause the x-polarized image to be about 9% brighter than
the y-polarized image. From the amplitude images of the Jones
pupil in Figure 7a is close to the identity matrix, only a small
fraction of the light has its polarization changed. The off-diago-
nal JXY and JYX elements show the polarization coupling be-
tween orthogonal polarizations. This polarization crosstalk has
relatively low amplitude compared to the diagonal elements.
The amplitudes AXX and AYY are nearly constant (<2%),
but the AXY and AYX are highly apodized, showing a Maltese
cross pattern (dark along x and y-axes) shifted downwards.

The phases of the four elements in the Jones pupil, shown in
the Figure 7b, represent contributions to the wavefront aberra-
tion function from the aluminum mirrors. The Fresnel phase
changes are different for the s and p-components leading to dif-
ferent wavefronts for these two components. Since the on-axis
geometrical wavefront aberration of the telescope is zero, the
phase variation across the pupil are wavefront contributions
from the mirror coatings. ϕXX , the wavefront aberration func-
tion of the telescope illuminated with x-polarized light and an-
alyzed with an x-analyzer, has an overall linear variation of
about 0.008 waves with an additional deviation, which is pri-
marily astigmatism. The diagonal elements ϕXX and ϕY Y have
a different wavefront tilt between the ϕXX and ϕY Y wavefronts.
The source of this tilt difference is shown in Figure 3b, where it
is seen that about a 45° angle of incidence, the slopes of the
phase change are different for s- incident polarized light than
for p- polarized light at the fold mirror. If the Fresnel phases
were linear about 45°, only tilt would be introduced. The devia-
tions from linear introduce higher order aberrations including
small amounts of astigmatism (from quadratic deviation), coma
(from cubic deviation), and other aberrations.

2.4. Amplitude Response Matrix

In conventional scalar image formation calculations, the am-
plitude response function is calculated as the Fourier transform
of the exit pupil function. This electric field distribution is then
squared to obtain the point spread function (Goodman 2004). To
evaluate the image formed by systems with polarization aberra-
tion, McGuire & Chipman (1990) introduced a Jones calculus
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version of the amplitude response function named the Amplitude
Response Matrix (ARM),

ARM ¼ I½JXXðx; yÞ� I½JXY ðx; yÞ�
I½JYXðx; yÞ� I½JY Y ðx; yÞ�

� �
: (8)

where I is a spatial Fourier transform over each of the Jones
pupil elements. For a plane wave incident on the telescope with
Jones vector E, the amplitude and phase of the image is given by
the matrix multiplication, ARM · E. The ARM for the 3-mirror
telescope of Figure 2 is shown in Figure 8. Table 1 summarizes
the system and the parameters most relevant to the imaging cal-
culations.

The ARM’s diagonal elements are close to the well-known
Airy disk pattern, but are slightly larger due to the aberrations
in ϕXX and ϕY Y . Each is slightly astigmatic. Their centroids
are slightly shifted due to the differences in their tilt. The off-
diagonal elements have much lower amplitudes and contain in-
teresting structure, mostly due to the fold mirror. We refer to
these off-diagonal PSF images as the ghost PSFs.

For unpolarized illumination, the incidentX- and Y -polariza-
tions are incoherent with respect to each other. So the output com-
ponents ARMXX (X in X out) and ARMYX (X in Y out) are
coherent with each other but incoherent with ARMXY and
ARMY Y . So for unpolarized illumination, the two outputX-com-
ponents in the ARM are incoherent with respect to each other, as
are the two output Y -components. So the point spread function for
an unpolarized source has four additive components I ¼ IXþ
IY ¼ ðjARMXXj2þjARMXY j2Þþ ðjARMYXj2þjARMY Y j2Þ.

The polarization structure of the generic telescope PSF is explored
further in the next section.

2.5. Mueller Matrix Point Spread Matrices

The distribution of flux and polarization in the image of an
incoherent point source, such as a star, can be described with a
4 × 4 Mueller matrix Point Spread Matrix (PSM), the Mueller
matrix generalization of the PSF (McGuire & Chipman 1990).
This PSM is calculated by the transformation of the ARM’s
Jones matrices into Mueller matrix functions (Goldstein
2010; Gil 2007; Chipman 2009). The Mueller matrix represen-
tation of polarization properties is familiar to most astronomers

FIG. 7.—Values of the Jones pupil elements, given by eq. (7), are displayed as color-coded images to show variation across the exit pupil. The four images in (a) show
the amplitude as a function of pupil position and the four images in (b) show the phase. Since AXY and AXY are highly apodized, their diffraction patterns are
significantly larger than images associated with the diagonal terms. A scale appears to the right of each box: units are amplitude for (a) and phase in radians for
(b). The phase of a complex number changes by π when the amplitude passes through zero. This causes the phase discontinuities in ϕXY and ϕYX . See the electronic
edition of the PASP for a color version of this figure.

FIG. 8.—The absolute value of the amplitude of the 2 × 2 ARM at an on-axis
field point is shown for the example telescope of Fig. 2 normalized by the peak
of theXX-component. See the electronic edition of the PASP for a color version
of this figure.
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who make or work with astrophysical measurements of the four
Stokes parameters (Gehrels 1974; Hovenier et al. 2005). The
example telescope’s PSM, calculated from the ARM (Fig. 8),
is shown in Figure 9.

The contribution of each of the 16 elements varies across the
PSM and changes depend on the incident Stokes parameters.
Hence, each element of the matrix is shown with its contribution
and appears as miniature PSF’s with different shapes. An exam-
ple of PSMmeasurements is found in McEldowney et al. (2008).

The PSF for unpolarized illumination is described by the
Stokes parameter image in the first column (m00, m10, m20,
m30) inside the red rectangle. Since m10, m20 and m30 are
not zero, the PSF of an unpolarized star is not unpolarized.
In this example, the Q component’s 4:7 × 10�2 contribution
mostly arises from the diattenuation of the fold mirror, which is

reflecting more 0° (s-polarized) light than 90° (p-polarized) po-
larized light. The U component (at 4:36 × 10�3) is mostly due to
the diattenuation contributions at 45° and 135° from the primary
and secondary seen in the first two panels in Figure 5. The el-
lipticity (from the V component) arises when weakly polarized
light reflected from the primary and secondary interacts with the
retardance from the fold mirror. The spatial variations of Q, U ,
and V introduce polarization fluctuations in the region of the
diffraction rings. Figure 10 maps the DoP in these zones. Such
polarization fluctuations in the PSF of a star are clearly a concern
when measuring the polarization of exoplanets and debris disks.

Figure 9 contains a graphical equation describing the 4 × 4
PSM operating on an X-polarized incident beam (represented
by the 4 × 1 matrix) which yields a 4 × 1 Stokes image, (IX,
QX, UX, V X), as represented by the right-most term in the
equation. For an unpolarized collimated incident beam, the re-
sulting Stokes image is contained in the first column of the
PSM, shown inside the red box. The m10 element describes
the ∼9% DoP for the image of the unpolarized source. The
m20 element describes small variations of linear polarization
orientation within the PSF while m30 characterizes even smaller
ellipticity variations.

The light coupled into orthogonal components has a signifi-
cant impact on the outer portions of the PSF because they arise
from the highly apodized Jones pupil components AXY and
AYX as shown in Figure 7a. To see this, compare the PSF

TABLE 1

PARAMETERS ASSOCIATED WITH THE IMAGING CALCULATION

Wavelength 800 nm
Image space F/# 8
Entrance pupil diameter 2.4 m
Effective focal length 19.236 m
Number of rays across entrance pupil 65
Number of rays across the Jones pupil array 513
Spacing in the ARM and PSM viewing from object space 9.0 mas

FIG. 9.—The 4 × 4 point spread matrix (PSM) (left) operates on an example X-polarized incident beam with Stokes parameters (1, 1, 0, 0) (middle) to calculate the
point spread function. The resultant polarization distribution is a 4 × 1 Stokes image (right) with components (IX , QX , UX , V X). The subscript X represents Stokes
parameters resultant fromX-polarized incident light. The normalized magnitude of each matrix element is shown on each vertical scale. The UX image indicates a small
variation of polarization orientation, while V X indicates small variations of ellipticity. The red box on the left (m00, m10, m20, m30) is the resultant Stokes parameter
image (I, Q, U , V ) for a collimated beam of unpolarized incident light, such as an unpolarized star. See the electronic edition of the PASP for a color version of this
figure.
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arising from JXX and JYX. These PSF terms are calculated us-
ing the resultant Stokes image components on the right side of
Figure 9 as:

IXX ∝ IX þQX

2
and IYX ∝ IX �QX

2
: (9)

The two terms in equation (9), IXX and IYX, are compared
in Figure 11 where it is seen that the peak of IYX is about 10�5

of IXX . This “ghost PSF” should be very important in imaging
applications that require contrast ratios of 10�8 or greater.

Figure 12 shows the irradiance along an x-axis cross-section
through the two PSFs in log10 scale at the plane drawn through
the two images shown in Figure 11. This ghost PSF has its light
spread away from the center. In Figure 12, the Airy disk’s zeros
of IXX are not at the same location as the zeros for the cross-
coupled term IYX. Thus, the zeros of IXX are washed out by the
light leakage from the nonzero IYX. The point spread function
IYX cannot be corrected by wavefront compensation for either
the XX or Y Y -components alone because most of the image
spread is due to IYX’s apodization (Fig. 7). A linear Polaroid
placed at the image plane can pass IXX and remove IYX , but
will still pass the other ghost IXY , and thus will not correct for
this polarization aberration.

The shape of IYX shows that the IX and QX Airy disks are
not exactly on top of each other. The image plane irradiance
distribution for the IYX term sits beneath the Airy diffraction
pattern characteristic of the IXX term. Figure 12a shows a slice
normal to the axis at the RMS best focus through the PSF for
IXX and for IYX in Figure 11. Figure 12b shows a high-
dynamic range image of the irradiance across the focal plane
in the vicinity of the core of the PSF for IYX. The concentric
green circles superposed on Figure 12b shows the first and sec-
ond zeros of the Airy diffraction pattern of IXX. These dark
rings overlay regions with nonzero IYX.

The right column in Figure 9, (IX, QX, UX, V X), is the
Stokes parameter PSF for the X-polarized component of an in-
cident beam. The flux of this component is IX ¼ IXX þ IYX.
Similarly, the PSF IY for a Y -polarized incident beam is calcu-
lated by multiplying the Stokes parameters (1, �1, 0, 0) to the
PSM, and IY ¼ IY Y þ IXY . Finally the PSF for unpolarized
incident light is ðIX þ IY Þ=2 which can also be calculated
by multiplying the unpolarized Stokes parameters (1, 0, 0, 0)
to the PSM.

This demonstrates that for unpolarized starlight passing into
a “generic” optical system like that shown in Figure 2, the PSF
is the sum of two nearly Airy diffraction patterns, IXX and IY Y ,
plus two secondary or “ghost” PSFs, IYX and IYX, which orig-
inates from system’s polarization cross-talk, the off-diagonal el-
ements in the Jones pupil.

The Jones pupil, ARM, and PSM can be calculated in other
basis sets than x and y. Here x and y are aligned parallel and
perpendicular to the fold mirror’s s-state. The resulting Jones
pupil and ARM for other bases are found by Cartesian rotation
of the matrices of Figures 7 and 8. The overall flux distributions,
I ¼ IX þ IY , for an unpolarized source or point source of ar-
bitrary polarization are unchanged by such a change of basis.
Similarly, the PSM is rotated by the same rotation operation
as Mueller matrices, and again the net flux for any source po-
larization is unchanged; the corresponding Stokes images are
just rotated versions of the ones presented above. The advantage
of the x and y basis chosen here is that the off-diagonal elements
IXY and IYX have their smallest values in this basis. As the
basis set rotates or becomes elliptical, the scale of these off-
diagonal image components increases rapidly and quickly ap-
proach Airy disks due to the coupling between bright diagonal
elements and weak off-diagonal elements from the rotation op-
eration. Thus, the fold mirror’s s and p-basis (our x and y) is
best basis for viewing the value and functional form of the ghost
PSF components for the example system of Figure 2.

2.6. Location of the PSF Images

Consider a Stokes imaging polarimeter located before the
telescope of Figure 2’s focal plane measuring the PSF of an

FIG. 10.—The DoP variation throughout the point spread function of an un-
polarized object. Regions with intensity below 0.0008 of the peak have been
removed due to noise and are shown in black. See the electronic edition of
the PASP for a color version of this figure.

FIG. 11.—PSF of IXX and IYX calculated from eq. (9) are shown normalized
to the peak of IXX . See the electronic edition of the PASP for a color version of
this figure.
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unpolarized star as a Stokes image. The PSFs for the X-
polarized, IX ¼ IXX þ IYX, and Y -polarized light, IY ¼
IXY þ IY Y , at the focal plane are very close in form to the clas-
sical Airy diffraction pattern because the polarization-induced
wavefront aberration, ϕXX and ϕY Y in Figure 7, is less than
8 milliwaves, and the amplitude apodization is less than
0.015. But these two PSF images are not exactly superposed,
the peaks of IX and IY are displaced from each other by
0.625 mas. The PSF cross-section through the maxima of
IX, IY , and IX–IY (the star’s Stokes Q image), are shown
in Figure 13. The shift between the IX and IY PSFs arises from
the difference in slopes of the s- and p-phases in the Fresnel
coefficients (Fig. 3b, red and blue tangent lines), which is
the cause of the overall linear variations in ϕXX and ϕY Y . Their
difference Q ¼ IX � IY is sheared from IX and IY by 5.8 mas,
as shown in Figure 13, and is due to the shift between IX and
IY . These PSF’s shifts and PSF’s ellipticities are listed in Table 2
for a single 45° fold mirror before the focal plane. The ellipticity
of the PSF image was calculated by fitting an ellipse to the PSF
at the half power points.

In astronomical applications involving the precise measure-
ment of the location of the centroid of the PSF, distortions of the
shape of the PSF are important. Most systems incorporate mul-
tiple folds, for example in Goullioud et al. (2014) and Witzel
et al. (2011). These relay optics with multiple folds may in-
crease the shear between PSF’s polarization components. The
variation of linear phase across the pupil, as seen in Figure 3,
is approximately linear, thus the shear between polarization
components is linear in the F/#. As Clark & Breckinridge (2011)
showed, across the FOV, variations of PSF ellipticity and ori-
entation are expected from polarization aberration.

The Fresnel polarization aberrations, unless corrected,
may affect our ability to characterize exoplanets using space

telescopes. At least two mitigation approaches have been sug-
gested. These are discussed in § 4.

2.7. Multiple Fold Mirrors

Many astronomical instruments require multiple fold mir-
rors, which often rotate with respect to each other. Consider
the telescope in Figure 14 with five-fold mirrors. In the altitude
axis and azimuth axis configuration shown, these folds are all
coplanar, and the s-polarized light reflecting from the first mir-
ror is s-polarized at all five mirrors; similarly p-polarized light at
the first mirror is p-polarized at all five mirrors. For this con-
figuration, the retardances for the axial ray at all five mirrors
add. For general configurations where rotations have been per-
formed on the axes, Jones matrices for a ray at all five mirrors
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FIG. 12.—(a) Cross sections through the log10 PSF image for IXX and IYX between �1 and þ1 arcsecond along the x-direction. The solid and dashed curves show
IXX and IYX , respectively. Note that at the first three minima of IXX (dark rings in the Airy disk) are close to the angles for the local maxima of the IYX curve. On the
average the polarization coupled IYX flux shifted by about 10�4 below IXX. (b) Image plane for IYX shown in log10 contour with its scale on the right ranging from�2:4
to�4:1, normalized to the peak intensity of IXX . The superposed green circles show the location of the first and second Airy dark ring of IXX . See the electronic edition
of the PASP for a color version of this figure.

FIG. 13.—The cross-section profiles of the IX and IY PSF images, one for
each polarization and the profile of their difference are shown in red and blue in
arcseconds from the center of the PSF. The black line shows StokesQ image, the
difference between the two PSFs. See the electronic edition of the PASP for a
color version of this figure.
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need to be multiplied, and a data reduction step (Lu & Chipman
1994) performed to determine the retardance.

From Figure 3 and equation (5), we see that the retardance is
defined as the absolute value of the difference in the phase be-
tween s and p-polarized light. The retardance adds cumula-
tively. The angles of incidence of the axial ray shown in
Figure 14 are all equal to 45° (deviate the light by 90°) and there-
fore, the retardance for collimated rays at the exit pupil will be 5
times the retardance of a single 90° deviation reflection. By
equation (6), 25 times the light would be coupled into orthogo-
nal polarization states compared to a single-fold mirror. Also,
the diattenuation, given in equation (4), increases approximately
five-fold in the configuration of Figure 14.

Recall the linear variation of retardance induces a small spa-
tial shift between theXX and Y Y PSM components. When the
five coplanar mirrors in Figure 14 are reflecting a 0.06 numerical
aperture (na) converging beam (F/8, as in the system of Fig. 2) in
sequence, the converging ray from the left side of the secondary
has a greater angle of incidence at the first, second, and fifth fold
mirrors than the axial ray, and a smaller angle of incidence at the
third and fourth mirrors. The linear variation of retardance across
the pupil is the sum of the linear variations of the five individual
coplanar mirrors. Each fold mirror has a retardance pattern cor-
responding to Figure 6 (third panel for fold mirror). So the lin-
ear variation of retardance adds for mirrors one, two, and five,
and subtracts for mirrors three and four. The overall linear vari-
ation would be unchanged, and be the same as the linear varia-
tion of the single-fold mirror of Figure 2. The separation
between the XX and Y Y -polarized images (discussed in the

second paragraph of § 2.2), which depends on this linear retard-
ance variation, would be unchanged. But the ghost PSFs would
be 25 times greater than those shown in Figures 11 and 12. This
all changes once the telescope is steered about the azimuth axis
and altitude axis. Such general cases of sequences of fold mir-
rors in noncollimated beams can always be analyzed by polari-
zation ray tracing. Lam & Chipman (2014) contains additional
information on the polarization aberrations for sequences of fold
mirrors.

3. POLARIZATION WAVEFRONT DIVISION

It has been suggested that dividing the wavefront into two
polarized beams and transmitting each of these to their own fo-
cal plane with their own adaptive optical system may alleviate
some polarization aberration problems (Balasubramanian et al.
2011). This polarization wavefront division approach has the
substantial disadvantage of doubling the number of flight hard-
ware optical components and, in theory reduces the signal-to-
noise ratio (S/N) by at least a factor of 0.7, but can improve
overall image quality.

Consider an incoherent unpolarized source such as a star.
The output of the generic telescope of Figure 2 divides at
the polarizing beam splitter (PBS) shown in Figure 15 sending
the linearly polarizedX-component into one coronagraph at fo-
cal plane and the Y -component into another. The light from the
JXX and JXY elements of the Jones pupil, shown in Figure 7,
will exit into one path and JYX and JY Y exit into the other path.
The elements JXX and JXY are incoherent and their wavefronts
do not interfere.

A simple example might help visualize the situation. Con-
sider two nearly collimated beams from two different incoherent
sources superposed and exiting a beam splitter. Both wavefronts

TABLE 2

THE SHAPE OF THE PSF CALCULATED FROM PSM IN FIG. 9 IS

DESCRIBED BY THE FOLLOWING PARAMETERS: THE PSF’S
FLUX, THE RADIUS OF ENCIRCLED ENERGY, THE PSF SHEARS,

AND THE PSF ELLIPTICITY FOR X AND Y -POLARIZED
INCIDENT LIGHT

Characterize the shape of PSF

PSF shear in object space:
Between IX and IY 0.625 mas
Between IX and (Q ¼ IX � IY ) 5.820 mas
Flux in PSF:
fluxofIYX

fluxofIXX

0.0048%
fluxofIY Y

fluxofIXX

90.6%
fluxofIYX

fluxofIXX

0.0046%

PeakofIY
PeakofIX

90.6%
PeakofðIX�IY Þ

PeakofIX

PeakofQ
PeakofIX

= 9.6%

Radius of 90% encircled energy in object space:
rXX ¼ rY Y 0.15″
rYX ¼ rXY 0.36″
Ellipticity of PSF:
Unpolarized incident light 7:502 × 10�6

X-polarized incident light 0.00199
Y -polarized incident light 0.00208

FIG. 14.—A generic telescope layout with five-fold mirrors, showing all re-
flecting in the same plane (coplanar) such that the p-polarized light from the first
fold is p-polarized at the other four mirrors, causing the polarization effects to all
add, which is the worst case for the polarization from multiple fold mirrors.
Rotations, such as about the altitude axis or azimuth axis, can cause a reduction
in this overall polarization.
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have the same polarization state. One is slightly converging with
positive defocus and one is slightly diverging with negative de-
focus. Their wavefronts are superposed but do not add into a
single wavefront. An adaptive optics system could compensate
one wavefront or the other, but not both.

So the adaptive optics in the first path of Figure 15 can per-
form wavefront compensation on JXX but the weak ghost PSF
from JXY will remain aberrated. The adaptive optics in the sec-
ond path can perform wavefront compensation on JY Y but the
weak ghost PSF from JYX will remain. Now the two principal
PSF components are corrected, which is an improvement over
the correction of only one component or their average. The
overall image quality is improved from the single channel, sin-
gle adaptive optic system. The issue of the weak but spatially
larger contributions from the JXY and JYX ghosts remains. The
ARM shown in Figure 8 for the example system provides
the values of the polarization components relative to the XX-
component. Their value shows that the ARMXY cross coupling
“ghost” is 270 times less than ARMXX, and ARMYX is 260
times less than ARMY Y .

4. POLARIZATION ABERRATION MITIGATION

Optical designers have a variety of methods to change
the polarization aberrations of any particular optical system
(Maymon & Chipman 1992). It is beyond the scope of this arti-
cle to elaborate on these methods in detail. Fresnel and coating-
induced polarization aberrations tend to be of small magnitude
with low order functional variation (constant, linear, quadratic,
etc.) (Chipman 1989a, 1989b). The following summarizes sev-
eral mitigation approaches:

1. Reducing angles of incidence: Since the diattenuation and
retardance are quadratic in the angle of incidence for modest
angles, reducing the largest angles of incidence can significantly
reduce polarization aberration. For example, fold mirror angles
can be reduced or the F/# of mirrors and lenses reduced.

2. Reducing coating polarization: The optical-coating prescrip-
tions for antireflection coatings of lenses and reflection-enhancing

coatings of mirrors provide design degrees of freedom (thick-
nesses and materials) to adjust the diattenuation and retardance.
In our experience, these coating prescriptions can be adjusted
to moderately reduce the polarization properties, but cannot
zero out diattenuation or retardance for substantial angle and
wavelength ranges. The surfaces of antireflection coated lens
typically have one third or less the diattenuation of uncoated
lens surfaces, providing great benefit. The reflection-enhancing
coatings for mirror often increase the retardance and diattenua-
tion of metal mirrors in some wavebands.

3. Compensating polarization elements: Polarization aberra-
tions can be introduced in several ways. Simply placing a (spa-
tially uniform) weak polarizer (diattenuator) and a weak retarder
in the system could zero out the polarization aberration at one
point in the pupil, leaving overall polarization aberrations
smaller. A spatially varying diattenuator and retarder with po-
larization magnitude approximately equal to the cumulative di-
attenuation and retardance of Figures 5 and 6 but orthogonally
oriented, would nearly eliminate the polarization aberration.
Such a polarization plate could be considered as the matrix in-
verse of the Jones pupil in Figure 7. Such correction plates
might be fabricated from liquid crystals polymers with spatially
varying magnitude and orientation of diattenuation or retard-
ance, similar to the vortex retarders used in coronagraphy (Clark
& Breckinridge 2011; McEldowney, Shemo, & Chipman 2008;
Mawet et al. 2009). Wedged, spherical, and aspherical crystal-
line elements or element assemblies can provide a wide variety
of compensating polarization aberrations (Chowdhury et al.
2004). Since polarization aberrations of telescopes and fold mir-
rors tend to be small, spatially varying anisotropic thin films,
which can only provide small retardances, could provide an-
other path toward compensation (Hodgkinson 1998).

4. Crossed fold mirrors: Fold mirrors tilted about opposite
axes, such that the p-polarized light exiting one mirror is s-
polarized on the second, have a compensating effect for both
diattenuation and retardance (Maymon & Chipman 1992;
McClain et al. 1992). A linear variation of polarization about
the zero will still remain across the pupil.

5. Compensating optical elements: The diattenuation of
lenses has the opposite sign (greater p-transmission) than the
diattenuation of mirrors. Thus, including lenses would reduce
the diattenuation from the primary and secondary mirrors in
the example system. Similarly, sets of coatings might be se-
lected to have opposite retardance contributions. Despite several
concerted attempts, the author (Chipman) has not been able to
change the sign of the diattenuation or retardance of an anti-
reflection or reflection-enhancing coating over a useful spec-
tral bandwidth. In practice, this approach has never been very
successful.

Considering these mitigation approaches, when novelty, fab-
rication issues, scattering, tolerances, and risk are balanced
against the small magnitude of the polarization aberration, these
cures can easily become worse than the problem.

FIG. 15.—Telescope system image plane showing the field, Ein input to a
PBS, for example a Wollaston prism, which divides the wavefront by polariza-
tion. The image in one polarization passes to a coronagraph with its adaptive
optics (A/O) system in path 1 and the image in the orthogonal polarization
passes to a second coronagraph with its A/O system in path 2.
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To design optical systems, typically a merit function is de-
fined to characterize the wavefront and image quality, and an
optimization program adjusts the system’s constructional
parameters to find acceptable configurations. (1) If polarization
ray tracing parameters are included in the merit function, param-
eters such as diattenuation and retardance, the optimizer can
balance the polarization aberrations against the wavefront aber-
rations and other constraints, pushing the solutions toward re-
duced polarization aberration. (2) Similarly, if the coating and
polarization element constructional parameters are included in
the optimization, the optimizer can explore the coating design
space and polarization element configuration to find compensa-
tion schemes. For example, overcoated layers on aluminum
will modify the polarization shown in Figure 3. These two
steps are complicated, but advanced users can apply these
methods, often through the use of the optical design program’s
macro languages, to evaluate polarization mitigation strategies
listed above.

5. SCALING RELATIONS AND DESIGN RULES FOR
POLARIZATION ABERRATIONS

To assist in the analysis of the polarization aberrations and
polarization image defects of other optical systems, a set of de-
sign rules are presented to show how the polarization aberration
of the example telescope changes for different F/#, fold mirror
angles, and coatings. These design rules provide guidance re-
garding the first two mitigation strategies: (1) reducing angles
of incidence and (2) reducing coating polarization. A closed
form expression for the example telescope’s Jones pupil is de-
veloped in equation (A2) in the appendix based on six retard-
ance and diattenuation aberration terms. These aberration terms
are comparatively simple because they only involve constant,
linear, and quadratic variations of diattenuation and retardance.
These terms can be reevaluated for variations of the optical pre-
scription of the example system with different coatings to show
how the image defects scale based on these changes to the opti-
cal system, such as fold mirror angles and coating substitutions.
Similar equations can be developed for more general optical
systems.

The polarization aberrations of many systems can be de-
scribed with only six polarization aberration terms, J1; J2;…J6,

listed in Table 3. The Pauli matricesσ are defined in equation (A1).
The six polarization aberration terms are plotted in Figure 16.
These terms have functional forms similar to the wavefront
aberrations piston (constant polarization), tilt (linearly varying
from the origin and changing sign at the origin), and defocus
(quadratically varying from the origin). This expansion is also
mathematically similar to describing the diattenuation and re-
tardance each with the first three Zernike polynomials (Ruoff
& Totzeck 2009). Each of these three aberration forms occurs
once for diattenuation with real coefficients. d0, d1, and d2, and
once for retardance with imaginary coefficients Δ0, Δ1, and
Δ2. The equations of Table 3 are first order expansions assum-
ing small coefficients. For example, for retardance piston, the
exact form of a retarder with retardance Δ1 is (σ0 cosΔ1=2þ
iσ1 sinΔ1=2) which becomes (σ0 þ iσ1Δ1=2) for Δ1 ≪ 1.

The coefficient values for the example system of Figure 2
with aluminum coatings are listed in Table 4 in the appendix
on the last row (the entry for Fig. 7). These polarization aberra-
tion coefficients depend on the diattenuation and retardance be-
havior of the mirror coatings, which can be parameterized for
the purposes of the polarization aberration expansion by linear
and quadratic equations (eqs. [A7] and [A8] in the appendix)
with fitting coefficients a0, a1, and a2 for coating diattenuation
and b0, b1, and b2 for coating retardance. The coefficients for the
example optical system’s aluminum coating at 800 nm are tab-
ulated in Table 5.

A list of design rules will be considered based on the behav-
iors of the aberrations of Figure 16 for the following list of the
example telescope’s image defects:

1. Diattenuation at the center of the pupil,
2. Retardance at the center of the pupil,
3. The PSF shear between the XX and Y Y -components,
4. The polarization-dependent astigmatism, and
5. The fraction of light in the ghost PSF in components XY

and YX.

The diattenuation at the center of the pupil corresponds to the
diattenuation piston term J1 with magnitude d0. This arises only
from the fold mirror; the primary and secondary mirrors do
not contribute diattenuation at the center of the pupil. The co-
efficient d1 is close to the value of the average diattenuation,

TABLE 3

FUNCTIONAL FORMS AND COEFFICIENTS FOR THE SIX POLARIZATION ABERRATION TERMS

Term Coefficient Functional form

Diattenuation piston J1 d0 J1 ¼ σ0 þ d0σ1

2

Diattenuation tilt J2 d1 J2 ¼ σ0 þ d1ρ
2 ð�σ1 sinϕþ σ2 cosϕÞ

Diattenuation defocus J3 d2 J3 ¼ σ0 þ d2ρ2
2 ðσ1 cos 2ϕþ σ2 sin 2ϕÞ

Retardance piston J4 Δ0 J4 ¼ σ0 þ iΔ0σ1

2

Retardance tilt J5 Δ1 J5 ¼ σ0 þ iΔ1ρ
2 ð�σ1 sinϕþ σ2 cosϕÞ

Retardance defocus J6 Δ2 J6 ¼ σ0 þ iΔ2ρ2
2 ðσ1 cos 2ϕþ σ2 sin 2ϕÞ
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averaging over the pupil. J1 is primarily responsible for the 9%
difference in the flux transmitted to the focal plane between the
incident X and Y -polarized components. Unpolarized light has
a ∼4% DoP when incident at the focal plane. This is typically
calibrated out when using focal plane Stokes polarimeters. The
magnitude of d0 only depends on the diattenuation at the fold
mirror evaluated at the axial ray’s angle of incidence θ3 (for sur-
face 3, 45° in this case). This leads to two design rules for the
average diattenuation.

Design rule 1: The average diattenuation (diattenuation pis-
ton value) characterized d0 by is quadratic in the fold mirror
angle θ3.

Design rule 2: The diattenuation piston value, d0, is linear in
the coating parameter a0 defined in equations (A7) and (A8) in
the appendix. If a0ðλÞ is calculated for a coating as a function of
wavelength, the spectral variation of the average diattenuation
will be proportional to a0ðλÞ. If the aluminum is overcoated
with silicon monoxide or some other material, the quadratic var-
iation of diattenuation can be calculated at normal incidence to
compare the resulting average diattenuation between coatings.

The retardance at the center of the pupil corresponds to the
retardance piston term J4 with value Δ0. J4 also arises only
from the fold mirror. The coefficient Δ0 is close to the value
of the average retardance, averaging over the pupil. J4 does

FIG. 16.—Representation of the three forms of second-order polarization aberration, (top) piston aberration, J1 and J4, (middle) tilt aberration, J2 and J5, and (bottom)
defocus aberration, J3 and J6. The first column shows a pupil map of the magnitude and orientation of the form. The second column shows the form with an opposite
sign, which rotates all orientations by 90°. The right two columns show the decomposition of the aberration into σ1 and σ2 Pauli matrix components. See the electronic
edition of the PASP for a color version of this figure.

TABLE 4

POLARIZATION ABERRATION COEFFICIENTS FOR TELESCOPE’S
JONES PUPIL IN FIG. 7

Polarization aberration coefficients

Diattenuation d0 ¼ 0:050, d1 ¼ �0:008, d2 ¼ �0:007

Retardance Δ0 ¼ �0:151, Δ1 ¼ �0:023, Δ2 ¼ �0:022
Amplitude a0 ¼ 0:806, a1 ¼ �0:002, a2 ¼ 0:0000

Wavefront w0 ¼ 2:492, w1 ¼ �0:004, w2 ¼ 0:000

TABLE 5

ALUMINUM MIRROR COATING FITTING COEFFICIENTS

a0 ¼ 0:049
a1 ¼ 0:0026

a2 ¼ 0:000024
b0 ¼ 0:150
b1 ¼ 0:0079

b2 ¼ 0:000070
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not change the polarization (Stokes parameters) of unpolarized
light transiting the system, it only modifies polarized light. J4
introduces a constant phase difference between the X and Y -
incident components; thus, J4 does not degrade the PSF. The
value of Δ0 only depends on the retardance at the fold mirror
evaluated at the axial ray’s angle of incidence θ3. This leads to
two more design rules.

Design rule 3: The retardance piston characterized by Δ0 is
quadratic in the fold mirror angle θ3.

Design rule 4: Δ0 is linear in the coating parameter b0.
The diattenuation tilt J2 with magnitude d1 describes a linear

variation of diattenuation across the pupil, corresponding to un-
polarized light exiting with a smaller DoP at the bottom of the
pupil and a largerDoP at the top of the pupil. J2 arises only from
the fold mirror; the primary and secondary mirrors do not con-
tribute. J2 causes the X-polarized input to be brighter at the top
of the pupil becoming linearly dimmer toward the bottom of the
pupil. Y -polarized input has the opposite variation. This apod-
ization has a very small effect on the shape and structure of the
XX and Y Y -PSFs, much smaller than the other polarization
imaging defects treated in this article. J2 does contribute signif-
icantly to the off-diagonal Jones pupil elements JXY and JYX

and thus to the brightness of the ghost PSFs, IXY and IYX. The
value of d1 depends on the slope of the diattenuation a1 at the
fold mirror evaluated at θ3 and on the range of angles at the fold
mirror, characterized by the F/# in image space, F/8, or
na ¼ 0:06. This leads to the design rules for the diattenuation
tilt J2.

Design rule 5: The diattenuation tilt characterized by d1 is
linear in the angle θ3. This follows from the slope of a quadratic
function, equation (A7), being linear.

Design rule 6: d1 is linear in the coating diattenuation slope
parameter a1.

Design rule 7: d1 is also linear in the coating diattenuation
quadratic parameter angle a2, which follows from the slope of a
quadratic function being linear.

The retardance tilt J4 with value Δ1 describes a linear phase
variation for the XX-polarized component and an opposite lin-
ear phase variation of for the Y Y -polarized component. This
arises only from the fold mirror; the primary and secondary mir-
rors do not contribute. J4 is a very important term because it
shifts the images of the XX and Y Y -components in opposite
directions causing the overall PSF to become elliptical. J4 also
contributes to the off-diagonal Jones pupil elements JXY and
JYX and thus, to the brightness of the ghost PSFs, IXY and
IYX. The value of Δ1 depends on the slope of the retardance
at the fold mirror evaluated at θ3 and on the range of angles
at the fold mirror, characterized by the numerical aperture. This
leads to the design rules for the retardance tilt J4.

Design rule 8: The retardance tilt characterized by Δ1 is lin-
ear in the fold mirror angle θ3, which follows from the slope of a
quadratic function being linear.

Design rule 9: The retardance tilt magnitude Δ1 is linear in
the coating retardance slope parameter b1.

Design rule 10: The retardance tilt magnitude Δ1 is also lin-
ear in the coating retardance quadratic parameter b2, which fol-
lows from the slope of a quadratic function, b1, being linear in
the quadratic parameter.

The diattenuation defocus term J3 with magnitude d2 de-
scribes a quadratic diattenuation variation from the center
the pupil which is tangentially oriented. This arises primarily
from the primary and secondary mirrors with a small contri-
bution from the fold mirror. J3 causes the X-polarized input
to exit brighter at the top and bottom of the pupil than the
center and dimmer at the left and right sides. The effect on
Y -polarization is rotated by 90° and the pupil is brighter on
the left and right sides. This apodization has a very small effect
on the shape and structure of the XX and Y Y -PSFs, much
smaller than the other imaging effects treated in this article.
J3 does contribute to the off-diagonal Jones pupil elements
Jxx and Jyy and thus, to the brightness of the ghost PSFs
IXY and IYX. The magnitude of d2 depends on the quadratic
variation of the diattenuation about normal incidence a2, and
on the angle of incidence of the marginal ray at the edge of
the primary θ1 and secondary θ2 mirrors. This leads to the de-
sign rules for the diattenuation defocus J3.

Design rule 11: The diattenuation defocus characterized by
d2 is quadratic in the sum of the marginal ray angles θ1 þ θ2
assuming identical coatings, and thus is quadratic in the na, as-
suming the design F/# is scaled by just changing the entrance
pupil diameter.

Design rule 12: The diattenuation defocus magnitude d2 is
quadratic in the coating diattenuation quadratic parameter a2.

The retardance defocus term J6 with magnitude d2 describes
a quadratic variation of retardance from the center the pupil
which is tangentially oriented. This arises primarily from the
primary and secondary mirrors with a small contribution from
the fold mirror. J6 causes the X-polarized input exiting into X-
polarized output to become astigmatic (Reiley & Chipman
1994). From the center, the phase is advanced quadratically
along the x-axis, and delayed quadratically along the y-axis.
For Y Y , this astigmatism is rotated by 90°. The effect on un-
polarized light is like spinning the astigmatic PSF, the PSF is
rotationally symmetric, but enlarged by the astigmatism. J6 also
contributes to the off-diagonal Jones pupil elements JXX and
JY Y and thus, to the brightness of the ghost PSFs, IXY and
IYX. The magnitude of d2 depends on the quadratic variation
of the retardance about normal incidence b2, and on the angle of
incidence of the marginal ray at the edge of the primary θ1 and
secondary θ2 mirrors. This leads to the design rules for the re-
tardance defocus J6.

Design rule 13: The retardance defocus characterized by Δ2,
and thus the polarization-dependent astigmatism, is quadratic in
the sum of the angles θ1 þ θ2 assuming identical coatings, and
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thus is quadratic in the na if the design F/# is scaled by just
changing the entrance pupil diameter.

Design rule 14: The retardance defocus magnitudeΔ2 is qua-
dratic in the coating retardance quadratic parameter b2.

Design rule 15: The maximum fraction of flux coupled into
the orthogonal state for weak linear polarization elements is
quadratic in the diattenuation and quadratic in the retardance,
and occurs for incident light polarized at 45° to the diattenuation
axis or retardance fast axis. This follows from equation (6).

The fraction FYX of the X-polarized incident light coupled
into the ghost PSF image IYX depends on the tilt coefficients d1
and Δ1 and the defocus coefficients d2 and Δ2, but not the pis-
ton coefficients. This is also equal to the fraction FXY of the Y -
polarized incident light coupled into the ghost PSF image IXY .
This fraction is determined by integrating the magnitude
squared of the complex off-diagonal elements of the Jones pupil
over the pupil, as described in equation (A6), and depends
quadratically on the coefficients d1, Δ1, d2, and Δ2. Analysis
of the tilt aberrations leads to design rules for the fractions FXY

and FYX.
Design rule 16: The fraction of the flux incident in either the

X-polarization or the Y -polarization coupled into the orthogo-
nal ghost images IYX (fraction FYX) or IXY (fraction FXY )
depends quadratically on d1 and Δ1. Since d1 and Δ1 are linear
in the angle θ3, FYX and FXY are quadratic in the fold mirror
angle θ3. See design rules 5 and 8. FYX and FXY are also qua-
dratic in the coating retardance slope parameters a1 and b1. See
design rules 6 and 9. FXY and FYX are also quadratic in the
coating diattenuation quadratic parameter a2. See design rules
7 and 10.

Analysis of the defocus aberrations leads to additional design
rules for the fractions FYX and FXY . The diattenuation defocus,
d2, and the retardance defocus,Δ2, is quadratic in the sum of the
marginal ray angles θ1 þ θ2 assuming identical coatings.

Design rule 17: The fractions FYX and FXY are fourth order
in the sum of the marginal ray angles θ1 þ θ2 assuming identical
coatings, and thus fourth order in the na, assuming the design
F/# is scaled by just changing the entrance pupil diameter. Thus,
small decreases in F/# can yield large increases in ghost PSF
brightness. See design rules 11 and 13.

Design rule 18: The fractions FYX and FXY are fourth order
in the coating diattenuation quadratic parameter a2. See design
rules 12 and 14.

Thus these design rules describe the scaling of the polariza-
tion aberration as the pupil size changes, F/# changes, coating
prescription changes, and fold mirror angle changes. These re-
lations only apply to the on-axis beam of optical configurations
similar to Figure 2. The off-axis equations become considerably
more complicated, but coronagraphs and other astronomical
systems usually have small enough fields that the polarization
aberration variation over the field is not significant, and there-
fore these design rules do not change over this system’s practical
field-of-view. As more fold mirrors or other components are

added to this system, these polarization aberration equations
need to be generalized to relate the polarization aberrations
to the coating prescriptions and optical prescription. Lam &
Chipman (2015) discussed polarization aberration reduction
with two and four mirror combinations. Discussions of higher
order polarization aberration terms can be found in McGuire &
Chipman (1994a, 1994b), Ruoff & Totzeck (2009), and Sasian
(2012, 2014).

6. ASTRONOMICAL EFFECTS OF TELESCOPE
POLARIZATION ABERRATIONS

6.1. Exoplanet Discovery and Characterization

The intensity of the ghost PSF is about one part in 10�4 of the
two primary PSF images IXX and IY Y and with spatial structure
of much larger extent across the focal plane and with more
structural complexity than the classical Fraunhofer scalar dif-
fraction PSF. The exoplanet community needs to control the in-
tensity PSF to a part in 10�10 or 10�6 of the magnitude below
the intensity level for the ghost PSF image which has been cal-
culated for the “typical” telescope system described here. The
intensity and the structural complexity in this ghost PSF have
the potential to disguise terrestrial exoplanets images and be-
come a source of false positive discoveries and measurement
errors. The “ghost” PSF overfills the image plane mask de-
signed using scalar theory and will obscure exoplanet images.
The presence of the ghost PSF and its intensity depend on the
packaging configuration of mirrors and the physical optics
properties of the highly reflective mirror coatings within the
mechanical layout of the entire telescope/instrument optical
system.

For example, Groff & Kasdin (2013), Carlotti et al. (2013),
and Carlotti et al. (2011) design, build, and optimize image and
pupil plane masks using scalar models of reflecting optical sys-
tems. These masks are now being developed for the new AFTA-
WFIRST coronagraph. Our results here show that a modified
system of stops and masks may be needed to optimize the
WFIRST coronagraph mission for exoplanets.

6.2. Astrometry Errors

Astrometry is the measurement of the fundamental position
of objects in the sky. Applications include determining the dy-
namics of the galaxy and calculating the orbital elements of
gravitationally interacting bodies. Astrometric precision de-
pends on the precise measurement of the intensity centroid
of each point source within an ensemble of point sources across
the FOV as mapped by the telescope system onto the focal
plane. Typical measurements are to better than 1% of the size
of the PSF to achieve an error in the ensemble of less than 0.1%.
An inherent assumption is that the intensity centroid remains
constant across the FOV. However, the contents of Table 2
shows that accurate modeling of the effects of instrumental
polarization indicates centroid asymmetries of about 1%. At
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800 nm wavelength, the full width at half max of the PSF image
is about 70 mas. McArthur et al. (2011) report absolute paral-
laxes of select stares in the Hyades to errors near 0.2 mas for
HST data; this is 0.2% of the FWHM for stellar PSF’s at 500 nm
from HST.

Astrometric reference stars are chosen to be at great distan-
ces so they appear fixed over long periods of time in relation
to foreground objects. The light from these distant objects
becomes partially polarized by interstellar matter, particularly,
in the Galactic bulge region. The PSF image for partially po-
larized stars becomes asymmetric due to the polarization
aberration. The magnitude and orientation of this asymmetry
depends on the number of fold mirrors in the telescope and
the bore sight orientation of the telescope. Astrometrists need
to consider polarization aberrations as sources of measure-
ment error.

7. SUMMARY

Astronomical applications require high photometric accu-
racy, high contrast, and diffraction-limited performance. Polari-
zation ray tracing is an important tool for assessing image
quality. Most modern large aperture astronomical telescopes
use low F/# primaries with several reflecting surfaces before
the focal plane; the polarization aberration of these components
can produce changes to the PSF of a magnitude comparable to
the specifications of the current generation of coronagraphs and
high-contrast imagers.

To highlight the issues, a polarization analysis of image qual-
ity was performed for a generic telescope, a 2.4 meter, F/1.2
primary mirror Cassegrain telescope with a single 45° fold mir-
ror in front of the focal plane for an F/8 converging beam. We
make the following summary observations:

1. The polarizing properties of the primary, secondary, and
fold mirrors cause a difference in the wavefront aberrations (tilt,
coma, astigmatism, spherical, etc.) between light polarized par-
allel and perpendicular to the fold mirror rotation axis (Fig. 6). If
the number of high-angle reflections in the design increases, this
difference can increase.

2. The fold mirror in converging light causes a shift between
the PSFs forX- and Y -polarizations which elongates the overall
PSF. The angle between the two PSFs depends on several fac-
tors: the number of fold mirrors, the deviation angle of the
beams upon reflection, the mirror coatings (metal and dielectric
over coating), and wavelength.

3. TheX- and Y -polarizations show a difference in intensity
transmittance, causing unpolarized sources to exit partially po-
larized into the instrument packages.

4. The telescope coatings cause polarization variations
throughout the PSF, particularly into the diffraction rings, which
may complicate polarization measurements of exoplanets and
debris rings in coronagraphs.

5. Adaptive optics systems cannot simultaneously correct the
wavefront aberrations of both polarizations. Coupling (leakage)
of one polarization state into the other will limit the performance
of the adaptive optics system. This coupling is characterized by
the off-diagonal elements in the Jones pupil. Dividing the wave-
front by polarization and using two adaptive optics systems im-
proves the overall wavefront correction, while increasing
system complexity and reducing the S/N.

6. For unpolarized light, the light from one polarization
which is coupled into its orthogonal state is not coherent with
respect to the orthogonal state, and forms a separate faint and
much larger PSF superposed on the Airy diffraction pattern. If
the number of high-angle reflections in the design is increased,
and the mirrors s and p-planes are aligned, the intensity of this
distorted “ghost” PSF can increase quadratically in the number
of reflections to potentially affect measurements made using
coronagraphs.

7. Geometrical ray trace optimizes geometric image quality
by minimizing physical OPD. An analysis that also takes po-
larization into consideration at the image plane is needed to
determine whether or not the wavefronts represented by those
rays create an image of sufficient quality. The geometric (op-
tical path difference) ray trace of an optical system can be ideal
(as in the example telescope) but the polarization content of
each ray may change enough across the wavefront to reduce
image quality.

8. Several methods of mitigating polarization aberration can
possibly reduce polarization aberrations, including configuring
elements to balance polarization aberrations, such as the oppo-
site contributions to diattenuation from lenses and mirrors, or
the aberration reduction from “crossed mirrors”, and polariza-
tion aberration compensators such as spatially variable retard-
ance and diattenuation plates.

9. Design rules to partially mitigate the effects of internal
polarization are discussed here and references to polarization
mitigation device technology are given. These relations bring
a machinery to bear on this optical system example comparable
to the calculation of Seidel aberrations of lenses from the para-
xial ray trace.

The following recommendations are made for future work in
this area. For planned ground-based and space-based systems,
vector-wave (polarization) ray tracing and physical optics anal-
ysis methods should be applied to model realistic telescope/
coronagraph contrast limits with the thin films, adaptive optics,
and opto-mechanical tolerances. All components need to be
considered as potential polarization sources, including metal
and dielectric thin films, optical filters, polarization analyzers,
and dispersing elements. The beam needs to be sampled over the
entire field-of-view, F/#, and beam deviation angles from gra-
tings and rotating mirrors throughout the entire end-to-end op-
tical telescope/instrument system to the focal plane. This work
can be used to assess the need for polarization mitigation devi-
ces and begin their technology development. The importance of
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polarization aberrations to astrometric accuracy should be in-
vestigated with more representative optical system designs.

We acknowledge the prior support of the Science Foundation
Arizona in the development of the polarization ray tracing
program, Polaris-M, used in this analysis. We thank Karlton

Crabtree for many contributions leading to this article. We also
thank Dr. Keith Patterson who as a student at Caltech performed
the initial numerical modeling of polarization in this optical sys-
tem. We acknowledge the valuable comments provided by an
anonymous reviewer.

APPENDIX.

POLARIZATION ABERRATION ANALYSIS

All the numerical results except in this appendix were calcu-
lated using polarization ray tracing, particularly the calculation
of the Jones pupil in Figure 7. Ray tracing methods treat system
performance and aberrations numerically as grids of OPLs,
Jones matrices, and other values. In this appendix, an aberration
theory analysis is used to describe the Jones pupil in Figure 7 in
terms of simple closed form functions. This aberration theory is
applied in § 5 to understand some design rules for polarization
imaging defects which builds the scaling relationships between
the magnitudes of defects and the constructional parameters of
the optical system.

The diattenuation and retardance aberrations of many sys-
tems can be described with only six polarization aberration
terms, J1; J2;…J6, listed in Table 3 of § 5. Detailed descriptions
of these diattenuation and retardance aberrations are found in
many references (Chipman 1987, 1989a, 1989b; Chipman &
Chipman 1989; McGuire & Chipman 1994a, 1994b; Hanson
1988; Ruoff & Totzeck 2009). In general the diattenuation
and retardance aberration of optical systems has lower order
than the wavefront aberrations, and requires less terms in its ab-
erration expansion for equivalent accuracy. The Jones matrix
functions for these six polarization aberrations are defined in
terms of the Pauli matrices, σ1, σ2, and σ3, augmented with
the 2 × 2 identity matrix σ0,

σ0 ¼ 1 0
0 1

� �
; σ1 ¼ 1 0

0 �1

� �
; σ2 ¼ 0 1

1 0

� �
;

σ3 ¼ 0 �i
i 0

� �
:

(A1)

Each aberration terms of the Jones matrix function is defined
over the pupil using polar coordinates ρ, the normalized radial
distance, and ϕ, the azimuth measured from the x-axis. The
magnitude of each term is specified by an aberration coefficient
d0, d1, and d2, for diattenuation terms, and Δ0, Δ1, and Δ2 for
retardance terms. All six aberration coefficients are assumed to
be much less than one. When these six terms are cascaded, and
only the first order terms in σ1 and σ2 are kept, the result is the
sum of the six aberration terms,

J¼ J6J5J4J3J2J1

¼σ0

þσ1

�ðd0þ iΔ0Þ�ðd1þ iΔ1Þρsinϕþðd2þ iΔ2Þρ2 cos2ϕ
2

�

þσ2

ðd1þ iΔ1Þρcosϕþðd2þ iΔ2Þρ2 sin2ϕ
2

: (A2)

J is then combined with scalar terms for the wavefront aber-
rationW ðρ;ϕÞ and amplitude transmission Aðρ;ϕÞ to complete
the description of the Jones pupil,

Aðρ;ϕÞei2πWðρ;ϕÞ=λJ: (A3)

The wavefront aberration Wðρ;ϕÞ acquires small constant,
linear, and quadratic terms from the Fresnel aberrations,

Wðρ;ϕÞ ¼ w0 þ w1ρ sinϕþ w2ρ2: (A4)

These are the wavefront aberrations piston w0, tilt w1, and,
defocus w2. These are included in the approximation to the
Jones pupil to bring the fit within 1%. Higher order wavefront
aberrations, spherical aberration, coma, etc. are not generated in
significant amounts at the three mirrors of the example, but are
present at some level. Similarly, small polarization independent
amplitude variations are generated from the Fresnel aberrations,
and are expressed with coefficients a0, a1, and a2 as

Aðρ;ϕÞ ¼ a0 þ a1ρ sinϕþ a2ρ2: (A5)

Equation (A3) incorporating equation (A2) provides an ac-
curate expression for the example telescope’s Jones pupil. This
equation with different coefficient values describes the Jones
pupils of most camera lenses, microscope objectives, tele-
scopes, and many other optical systems. It is a general purpose
equation.

The fraction of incident flux incident in X or Y -polarization
coupled into the orthogonal polarization state is found by inte-
grating the off-diagonal element’s (the σ2 term) magnitude
squared jJYXj2 or jJXY j2 over the pupil and normalizing by
π, the area of the pupil,
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FXY ¼
R
2π
0

R
1
0 jJXY j2ρdρdϕR
2π
0

R
1
0 ρdρdϕ

¼ d21 þΔ2
1

16
þ d22 þΔ2

2

24
(A6)

FXY is the fraction of the incident Y -polarized flux contained in
the IXY image integrated over the image. FXY is quadratic in
the tilt and defocus coefficients, so an order of magnitude re-
duction in these polarization aberrations reduces the ghost
brightness by 2 orders of magnitude.

Next the aberration coefficients, d0, d1, d2, Δ0, Δ1, and Δ2,
for the telescope of Figure 2 are examined. Each of these co-
efficients is the value of the diattenuation or retardance at the

edge of the pupil for that specific term. These coefficients
are related to the properties of the coating and the optical sys-
tem’s prescription. The description of the effects of each polari-
zation aberration terms is found in § 5.

Table 4 lists the aberration coefficients for the retardance,
diattenuation, amplitude, and wavefront for the Jones pupil
of the telescope end-to-end from Figure 7. These coefficients
were determined by curve fitting the coefficients of equa-
tion (A3) to the Jones pupil polarization ray trace data.

Note all of the polarization aberration coefficients are much
less than one, so that the combination of terms in equation (A2)

FIG. 17.—The Jones pupil calculated using eq. (A2) with the aberration coefficients of Table 4 provides an accurate representation of the Jones pupil. (a) for Jones
pupil amplitude, and (b) for Jones pupil phase in radian. See the electronic edition of the PASP for a color version of this figure.

FIG. 18.—The differences between the Jones pupil obtained by polarization ray tracing in Fig. 7 and the aberration expansion fit in Fig. 7 are small. In all of the plots,
black represents a difference of zero, the fit generated by the aberrations expansion has the same value as the ray tracing data. This residual contains small contributions
from polarization aberration terms of higher order than eq. (A2). See the electronic edition of the PASP for a color version of this figure.
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is an accurate representation for the cascaded polarization of the
three elements. Figure 17 shows the Jones pupil of Figure 7 as
approximated with the system aberration coefficients from
Table 4. Along the y-axis and along a horizontal line below
the x-axis, the amplitudes of the AXY and AYX terms change
sign, so the phases ϕXY and ϕYX change by π along these lines.
Figure 18 shows the small residual difference between the po-
larization ray trace result in Figure 7 and the polarization aber-
ration expansion of Figure 17, which match to within 0.002 in
amplitude, which is better than 0.2% of the average amplitude
∼0:8. Applying equation (A6), approximately 6 × 10�5 of the
incident flux is coupled into the ghost PSFs by the off-diagonal
elements of the Jones pupil.

The phase and retardance values of Table 4 are provided in
radians. They can be divided by 2π to express the aberration in
waves. So for example, the aluminum coatings have contrib-
uted Δ1=2π ∼ 0:004 waves, or 4 milliwaves of polarization-
dependent tilt. It is seen from the last line in Table 4 that the
wavefront aberration contributions w1 and w2 contribute less
than 5 milliwave of aberration in the present example.

Coating polarization can also be well approximated with
simple polynomials for the purpose of developing scaling

relationships and quickly estimating the effects of changing the
system’s coatings. For the on-axis mirrors, the coating diatten-
uation DðθÞ and retardance δðθÞ functions are expanded about
normal incidence in a quadratic function as

DðθÞ≈ a2θ2 þOðθ4Þ; δðθÞ≈ b2θ2 þOðθ4Þ; (A7)

with second-order coefficients a2 for diattenuation and b2 for
retardance. These quadratic fits about normal incidence are
shown in Figures 19a and 20a for aluminum at 800 nm. For
the aluminum fold mirror a first order expansion about the axial
ray angle of incidence θ0 ¼ 45° is used,

DðθÞ≈ a0 þ a1ðθ� θ0Þ þOðθ2Þ;
δðθÞ≈ b0 þ b1ðθ� θ0Þ þOðθ2Þ;

(A8)

and the fits are shown in Figures 19b and 20b. The fit coeffi-
cients are tabulated in Table 5. Such Taylor series coefficients
for aluminum are easily evaluated at other wavelengths to de-
scribe the polarization aberration as a function of wavelength.
Similarly, numerical derivatives of coating design program out-
put can be manipulated to get the Taylor series coefficients for
other metals and for arbitrary multilayer coatings.

FIG. 19.—(a) Aluminum diattenuation vs. angle of incidence with quadratic fit about 0° and (b) linear fit about 45°. Solid black lines are the exact diattenuation.
Dashed black lines are the quadratic and linear fit of diattenuation; see Table 5. The solid green line in the right figure indicates angle of incidence of the axial ray and the
dashed green lines indicate the range associated to na ¼ 0:06 beams at the mirrors. See the electronic edition of the PASP for a color version of this figure.

FIG. 20.—(a) Aluminum retardance in radians vs. angle of incidence with quadratic fit about 0° and (b) linear fit about 45°. Solid black lines are the exact retardance.
Dashed black lines are the quadratic and linear fit of retardance. The solid green line in the right figure indicates angle of incidence of the axial ray and the dashed green
lines indicate the range associated to na ¼ 0:06 beams at the mirrors. See the electronic edition of the PASP for a color version of this figure.
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