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A variational constitutive model for slip-twinning interactions in hcp metals:
application to single- and polycrystalline magnesium

Yingrui Chang, Dennis M. Kochmann∗

Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, U.S.A.

Abstract

We present a constitutive model for hcp metals which is based on variational constitutive updates of plastic slips and
twin volume fractions and accounts for the related lattice reorientation mechanisms. The model is applied to single-
and polycrystalline pure magnesium. We outline the finite-deformation plasticity model combining basal, pyramidal,
and prismatic dislocation activity as well as a convexification-based approach for deformation twinning. A com-
parison with experimental data from single-crystal tension-compression experiments validates the model and serves
for parameter identification. The extension to polycrystals via both Taylor-type modeling and finite element simula-
tions shows a characteristic stress-strain response that agrees well with experimental observations for polycrystalline
magnesium. The presented continuum model does not aim to represent the full details of individual twin-dislocation
interactions; yet, it is sufficiently efficient to allow for finite element simulations while qualitatively capturing the
underlying microstructural deformation mechanisms.

Keywords: plasticity, twinning, magnesium, polycrystal

1. Introduction

Magnesium and magnesium-based alloys have gained great technological importance due to their excellent strength-
to-weight ratios, making them ideal candidates e.g. for the transportation industry or for defense applications. How-
ever, its hexagonal crystal structure furnishes Mg and its alloys with a non-trivial mechanical performance which
involves a substantial tension-compression asymmetry (Ball and Prangnell, 1994; Avedesian and Baker, 1999; Lou
et al., 2007; Kurukuri et al., 2014) and a comparably low ductility at low holonomous temperature (Hauser et al., 1956;
Tegart, 1964), as well as a pronounced deformation anisotropy, see e.g. the recent studies of Agnew and Duygulu
(2005); Lou et al. (2007); Stanford et al. (2011). Therefore, the successful implementation of Mg-based materials in
everyday applications essentially hinges upon suitable models to accurately describe, to thoroughly understand, and
to reliably predict the complex material response over wide ranges of loading and environmental conditions.

The origin of the complex mechanical response lies in the hcp crystallography of Mg with a specific lattice aspect
ratio of c/a = 1.624 (Christian and Mahajan, 1995). While the crystal structure offers several slip systems that operate
in the basal plane, it severely restricts out-of-plane dislocation activity due to relatively high critical resolved shear
stresses of all non-basal systems, see e.g. (Staroselsky and Anand, 2003). Instead, if the sample is deformed parallel to
the c-axis, stress relaxation can be accommodated by deformation twinning which, by itself, is fairly well understood
and leads to a reorientation of the crystal lattice by rotations or reflections about characteristic twin systems (Christian
and Mahajan, 1995). However, the coexistence of slip and twinning in Mg leads to a complex deformation behavior
with rich microstructural phenomena that are responsible for the macroscopic response, cf. (Hauser et al., 1956; Reed-
Hill and Robertson, 1958; Roberts and Partridge, 1966; Wonsiewicz and Backofen, 1967; Ando and Tonda, 2000). The
exact deformation modes are still subject to controversial discussions which have raised a number of open questions,
see e.g. (Lilleodden, 2010) for a more recent discussion.
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A variety of models operating on different length scales has been proposed to bridge the gap between macroscopic
observations and microstructural mechanisms in Mg, from the atomistic level all the way up to continuum-mechanics
descriptions. Here, we limit our scope to the latter and aim at incorporating as much lower-scale information about
specific slip and twinning modes as necessary (but not more) to accurately and efficiently describe the effective re-
sponse of single- and polycrystalline Mg. Since dislocation glide is one of the primary inelastic mechanisms, many
models have borrowed concepts from conventional crystal plasticity (Hill, 1966; Rice, 1971; Asaro and Rice, 1977;
Asaro, 1983; Simo, 1988a,b). Deformation twinning was included by introducing each twin system as an additional
slip system (often referred to as pseudo slip systems) (Houtte, 1978; Kalidindi, 2001; Agnew et al., 2001; Staroselsky
and Anand, 2003; Graff et al., 2007). Experiments on single- and polycrystalline Mg (Kelley and Hosford, 1968b,a)
have confirmed the importance of the lattice reorientation due to twinning, which was not accounted for in those early
models. In addition, the coexistence of untwinned and twinned domains and simultaneous activity of dislocations in
both orientations can significantly affect the stress-strain response. Recently, several approaches have been reported
that aim to overcome these deficiencies by including more microstructural details. Among those, closest to our model
presented here are those of Homayonifar and Mosler (2011, 2012) and Zhang and Joshi (2012).

Homayonifar and Mosler (2011, 2012) presented variational models whose crystal plasticity basis is enriched by
energy relaxation schemes to describe the effects of deformation twinning, cf. (James, 1981; Ball and James, 1987;
Kochmann and Hackl, 2011). In this approach, the non-(quasi)convex energy landscape is replaced by either a rank-
one-convex envelope (which is realized by sequential lamination to identify energy-minimizing fine-scale laminate
patterns) (Ortiz and Repetto, 1999) or by full convexification (in which case lamellar patterns are free of the con-
straint of mechanical compatibility), see also (Glüge et al., 2010). While these approaches have a solid mathematical
foundation and offer beneficial extensions and numerical advantages owing to the variational structure, they are also
numerically costly and simulation examples have been limited to material point calculations due to the computa-
tional complexity. On the other hand, Zhang and Joshi (2012) introduced a crystal plasticity-based formulation with
pseudo-slip systems to accommodate twinning, enriched by a lattice reorientation procedure to account for slip in
both parent and twinned orientations. Their model accounts for many details of the slip-twinning interactions, yet
it uses a conventional crystal plasticity formulation based on direct updates of the inelastic variables and therefore
without a variational structure. Here, we combine both concepts into an efficient variational model for Mg accounting
for slip-twinning interactions without the necessity of energy relaxation algorithms by using variational constitutive
updates (Comi et al., 1991, 1992; Ortiz and Stainier, 1999).

Variational models offer various advantages from both a numerical-mathematical and a physical viewpoint. By us-
ing variational constitutive updates, the internal state variables and the deformation mapping follow from minimization
of the same potential, which circumvents the complexity of having to solve for both types of variables simultaneously.
In addition, the implicit update of the internal variables in the variational approach improves the efficiency by allowing
for considerably larger time steps compared to explicit schemes, which in turn enables the simulation of significantly
more complex physical scenarios. Owing to their underlying minimum principle, variational models also offer a con-
venient foundation for error estimation and mesh adaptation, see e.g. (Radovitzky and Ortiz, 1999; Thoutireddy and
Ortiz, 2004; Mosler and Ortiz, 2006). The existence of solutions and the formation of fine-scale microstructure can be
analyzed by well-established techniques, see e.g. (Ball and James, 1987; Ortiz and Repetto, 1999; Carstensen et al.,
2002). Variational constitutive updates have been applied to a wide range of material models, including viscoelasticity
and viscoplasticity (Ortiz and Stainier, 1999), crystal plasticity (Ortiz and Repetto, 1999; Ortiz et al., 2000; Carstensen
et al., 2002), and strain gradient plasticity (Qiao, 2009); they also admit a variational, thermodynamically-consistent
extension to thermo-mechanical coupling, see e.g. (Yang et al., 2006).

Our approach is similar in spirit and is based on variational constitutive updates to describe the slip-twinning inter-
actions in Mg and Mg alloys (although we focus on pure Mg here, the presented framework can easily be extended to
other hcp metals). Our model uses a finite-strain crystal plasticity formulation which accounts for the lattice reorien-
tation due to twinning on the flow rule level similarly to (Zhang and Joshi, 2012). All prevailing slip and twin systems
and interactions between them are accounted for by appropriate hardening energies and dissipation potentials. We
validate our model and identify the required material parameters by direct comparison with the seminal experiments
of Kelley and Hosford (1968b) on single-crystalline Mg. We then proceed to apply the model to polycrystalline Mg
and predict the texture evolution during channel-die compression (comparable to experimental data of Kelley and
Hosford (1968a)) and during cold rolling. Results include both material-point calculations as well as finite element
studies to capture the effective response of representative polycrystalline samples.
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2. Crystal plasticity framework for the interaction of slip and twinning

We begin by outlining the theoretical framework used in subsequent sections to describe the interactions of dislo-
cation slip and deformation twinning in Mg on the single-crystal level. Here, rather than resolving individual twins
and dislocations, we resort to plastic slips and twin volume fractions as the primary internal variables to describe the
material’s microstructure as done e.g. in (Agnew et al., 2001; Staroselsky and Anand, 2003; Graff et al., 2007; Zhang
and Joshi, 2012; Homayonifar and Mosler, 2011, 2012). Therefore, we employ a crystal plasticity-based formula-
tion in finite strains, cf. (Rice, 1971; Asaro and Rice, 1977; Asaro, 1983). We note that the general framework is
sufficiently general to apply to any crystalline solid in which slip and twinning are the dominant plastic deformation
mechanism. Let us first review the kinematic relations before presenting the variational approach based on concepts
of Ortiz and Stainier (1999); Ortiz et al. (2000).

2.1. Kinematic description of the slip–twinning competition
Suppose the material’s crystallography exhibits ns slip systems denoted by (sα,mα) where sα and mα are unit

vectors pointing into the direction of slip and being normal to the slip plane, respectively. Analogously, there exist
nt twin systems (aβ, nβ) with twin plane normal nβ and twinning shear direction aβ, see e.g. (Christian and Mahajan,
1995) for a review. Here and in the following, we use subscripts α and β to differentiate between slip and twin
systems, respectively. As in conventional crystal plasticity models, dislocation activity is described by plastic slips
γ =

{
γ1, . . . , γns

}
acting across all ns slip system. In addition, the effect of twinning is captured by the twinning

ratios λ =
{
λ1, . . . , λnt

}
which describe the volume fractions of the twinned orientations. Obviously, the twin volume

fractions are constrained by

0 ≤ λβ ≤ 1 for β = 1, . . . , nt, and 0 ≤
nt∑
β=1

λβ ≤ 1. (1)

Thus, the primary internal variables are the slip amounts γ and twinning ratios λ. It is important to note that models
based on this kinematic description do not qualify to describe the intricate details of individual twins that may arise on
much smaller length scales than those of dislocations on the mesoscale of a polycrystal, cf. (Yu et al., 2012). Unlike
e.g. phase field models for deformation twinning (Clayton and Knap, 2011, 2013) or explicit continuum models
resolving individual twins (Kochmann and Le, 2009), the introduction of twin volume fractions allows us to decouple
the length scales and to model the effective material response on the mesoscopic level. We note that the description of
the inelastic phenomena in terms of plastic slips and twin volume fractions is only one possible strategy to represent
the microstructural configuration and thus to model plastic deformation; see e.g. the related approaches based on
dislocation densities (Arsenlis and Parks, 2002; Ma and Roters, 2004; Lee et al., 2010; Hansen et al., 2013; Bertin
et al., 2013).

In finite strains, we may assume a multiplicative decomposition of the deformation gradient tensor F = Gradϕ
(where ϕ(X) denotes the deformation mapping) into elastic and inelastic parts, i.e.

F = Fe Fin, (2)

where Fe and Fin denote the elastic and inelastic deformation gradients, respectively. Both slip and twinning con-
tribute to the plastic deformation and the specific order of these two mechanisms is not obvious. Therefore, we adopt
the approach of Kalidindi (2001) and work with a single inelastic deformation gradient Fin to incorporate both relax-
ation schemes rather than further splitting Fin multiplicatively into plastic slip and twinning components (Homayoni-
far and Mosler, 2011, 2012). This further implies that no kinematic interactions between slip an twinning are built
into this decomposition but will be accounted for by the specific constitutive model presented below.

From (2) the velocity gradient tensor as well as its elastic and inelastic contributions follow as, respectively,

l = ḞF−1 = le + lin = le + Fe l̃in F−1
e with le = ḞeF−1

e , l̃in = ḞinF−1
in . (3)

Since at mesoscopic time scales slip and twinning are assumed to occur simultaneously, we further split the inelastic
velocity gradient into its slip and twinning contributions according to

l̃in = l̃p + l̃tw, (4)

3



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The kinematic interactions of slip and twinning are built into the flow rule as follows. Upon deformation twinning,
all slip systems (sα,mα) in the parent orientation are reflected across the twin interfaces onto the respective twin
orientation. Hence, the re-oriented slip system (s′αβ,m

′
αβ), i.e. the original slip system (sα,mα) now re-oriented in twin

orientation β, is given by

s′αβ = Qβsα, m′αβ = Qβmα, with Qβ = I − 2 nβ ⊗ nβ (5)

(and no summation over repeated indices is implied here). Consequently, the flow rule for slip is modified from
conventional crystal plasticity to account for dislocation activity on both the original slip systems and their twin-
orientation counterparts. Extending concepts of Kalidindi (2001) and Zhang and Joshi (2012), we thus use the fol-
lowing flow rules for slip and twinning:

l̃p =

ns∑
α=1

γ̇α

φ
1 − nt∑

β=1

λβ

 sα ⊗ mα +

nt∑
β=1

φ(λβ) s′αβ ⊗ m′αβ

 , (6a)

l̃tw =

nt∑
β=1

λ̇β γ
tw
β aβ ⊗ nβ. (6b)

Here, γtw
β is the twinning shear strain associated with system β, which we assume to be constant and which is de-

termined from the material’s crystallography. φ(λ) is a monotonically-increasing function that governs the switching
between parent and twin orientations. For compatibility it must satisfy φ(0) = 0 and φ(1) = 1. Our numerical experi-
ments have shown that the specific choice of φ(λ) has little impact on the microstructural evolution due to the specific
mechanisms leading to slip and twinning. If a grain is oriented favorable for twinning, it will in most cases completely
reorient from the untwinned into the twinned state before alternative relaxation mechanisms (usually basal plane slip
systems) are activated. However, the specific choice of φ(λ) is only relevant as long as the twin volume fractions are
evolving (in the purely untwinned or fully twinned states it is irrelevant). From our experience, there is no reason to
define more complicated representations of φ(λ) than the simplest valid choice, which will be used in the following,
viz. φ(λ) = λ, and which reduces to the formulation of Zhang and Joshi (2012).

In order to capture plastic hardening due to slip, we introduce the accumulated plastic strains ε = (ε1, . . . , εns ),
which are updated when slip occurs on any of the ns slip systems (in parent and twin orientations) via

ε̇α = |γ̇α| for α = 1, . . . , ns. (7)

Altogether, these model assumptions imply that we account for slip in both untwinned and twinned orientations, and
that dislocations are fully transferred between these two orientations. Also, both untwinned and twinned orientations
contribute to plastic hardening. This is different than e.g. the recent model of Homayonifar and Mosler (2012) who
assumed all dislocations are consumed by the moving twinning front and no dislocations are transferred from the
untwinned to the twinned orientation.

2.2. Constitutive relations and variational framework

Like in conventional crystal plasticity the Helmholtz free energy density is assumed to decompose additively as

W(F, Fin, ε, λ) = We(Fe) + Wp(ε) + Wtw(λ)
= We(Fe) + Wp,self(ε) + Wp,lat(ε) + Wtw,self(λ) + Wtw,lat(λ),

(8)

where We is the elastic strain energy density depending on Fe = FF−1
in . Wp denotes the stored plastic energy density

due to slip, which further decomposes into self-hardening and latent hardening contributions, Wp,self and Wp,lat, respec-
tively. Analogously, Wtw denotes the stored plastic energy density due to twinning, which contains self-hardening and
latent hardening contributions, Wtw,self and Wtw,lat, respectively. Specific choices of all energy densities for magnesium
will be discussed in Section 3.

We cast the material model into a variational framework (Ortiz and Stainier, 1999), so that the evolution of the
internal variables is governed by the principle of minimum dissipation potential, see e.g. (Carstensen et al., 2002;

4
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Conti and Ortiz, 2008) for discussions and (Hackl and Fischer, 2008) for its relation to the principal of maximum dis-
sipation. We introduce the dual (dissipation) potential Ψ∗(γ̇, λ̇) so that the internal variables follow from the principle
of minimum dissipation potential (i.e. they minimize the total stress power):

0 ∈
∂

∂γ̇α
(Ẇ + Ψ∗), 0 ∈

∂

∂λ̇β
(Ẇ + Ψ∗). (9)

The differential inclusions are necessary when rate-independence is considered; in case of rate-dependent evolution
laws, the differential inclusions may be replaced by equalities, see e.g. (Carstensen et al., 2002; Kochmann and Hackl,
2011). The dual potential is assumed to have contributions from slip and twinning in an additive fashion, generally

Ψ∗p(ε̇) =

ns∑
α=1

Ψ∗p,α(ε̇α), Ψ∗tw(λ̇) =

nt∑
β=1

Ψ∗tw,β(λ̇β). (10)

To arrive at the resulting evolution laws, let us expand the stress power as

Ẇ + Ψ∗ =
∂We

∂Fe
· Ḟe +

∂Wp

∂ε
· ε̇ +

∂Wtw

∂λ
· λ̇ + Ψ∗p(ε̇) + Ψ∗tw(λ̇). (11)

From (3) and (6) it follows that

Ḟe = ḞF−1
in − FeḞinF−1

in = ḞF−1
in − Fe

∑
α

γ̇α pα +
∑
β

λ̇β γ
tw
β aβ ⊗ nβ

 , (12)

where pα is an abbreviation for the average slip direction tensor for each slip system over all twinned orientations:

pα = φ

1 −∑
β

λβ

 sα ⊗ mα +
∑
β

φ(λβ) s′αβ ⊗ m′αβ. (13)

Furthermore, note that
∂We

∂Fe
=
∂We

∂F
·
∂F
∂Fe

= PFT
in, where P =

∂W
∂F

=
∂We

∂F
(14)

denotes the first Piola-Kirchhoff stress tensor. Overall, this leads to

Ẇ + Ψ∗ = P · Ḟ −
ns∑
α=1

γ̇ατ
p
α −

nt∑
β=1

λ̇βτ
tw
β +

∂Wp

∂ε
· ε̇ +

∂Wtw

∂λ
· λ̇ + Ψ∗p(ε̇) + Ψ∗tw(λ̇) (15)

with the resolved shear stresses on the slip and twin systems, respectively,

τ
p
α = σM · pα and τtw

β = γtw
β σM · (aβ ⊗ nβ) (16)

and the Mandel stress tensor
σM = FT

e PFT
in. (17)

Finally, application of principle (9) yields the evolution laws for the internal variables:

0 ∈ −|τp
α| +

∂Wp

∂εα
+
∂Ψ∗p,α

∂ε̇α
, (18a)

0 ∈ −τtw
β +

∂Wtw

∂λβ
+
∂Ψ∗tw,β

∂λ̇β
. (18b)

The missing norm in the evolution law for the twinning volume fractions is only valid as long as λβ = 0, to implement
the polarity of twinning. That is, in contrast to slip which may occur in either positive or negative direction, twinning is
restricted to occur in only one direction per twin system for crystallographic reasons, see e.g. (Christian and Mahajan,

5
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1995). This, of course, changes as soon as λβ > 0, so that a reversal of the loading can lead to detwinning (which
implies λ̇β < 0), see e.g. (Lou et al., 2007). Also, we have neglected the dependence of the average slip direction
tensor pα on the rates of the twinning ratios λ̇β, which is a valid assumption when considering small incremental steps
in our numerical setup.

Experiments have found evidence for higher-order twin patterns, i.e. the activity of a second twin system in
already-twinned domains of the crystal, see e.g. Hong et al. (2010); Kadiri et al. (2013). However, how such competing
twin systems develop (e.g. in which order they are activated and whether or not they evolve simultaneously) is not
entirely clear. Our model assumes that at a given instance of time only one twin system is evolving at any material
point. This does not rule out that the crystal twins on one system and, as soon as the reorientation is complete, another
twin system can be activated to result in the coexistence of multiple twin variants in the final deformed state.

To model twinning within an already twinned domain on a second system, we need to consider the reorientation of
already twinned crystal by the newly-activated twin system. Since there is no limitation to the number of activatable
twin systems, this could lead to a highly recursive mechanism and the resulting cross-interactions between the twin
and slip systems soon become numerically demanding, if not intractable, especially within an implicit, variational
framework. Therefore, we neglect the possibility of multiple twin variants evolving at the same time at any given
material point for the sake of a fully implicit, variational formulation that covers many other phenomena observed
experimentally, as shown later. Of course, this is a simplification of physical reality. In Taylor-type polycrystal
simulations, this implies that only one twin variant is evolving at a time within each grain. In contrast, for mesoscale
finite-element simulations that resolve the grain structure geometrically, the assumption demands that only one twin
system is active at a time at each material point, thus allowing for (spatially-separated) multiple twin variants within a
grain. While the restriction to only one active system is not a stringent necessity of the variational approach, it greatly
reduces the model complexity, thus allowing for more efficient simulations. Many of the previously proposed models,
see e.g. (Homayonifar and Mosler, 2011, 2012; Zhang and Joshi, 2012), use similar flow rules and reorientation
schemes as presented here.

3. Specific choices of energetics and kinematics for pure magnesium

3.1. Elastic energy: polyconvex strain energy density

Here and in the following, we use conventional Miller indices to describe planes and orientations in the hexagonal
lattice structure whose coordinate system be defined by the three basal unit vectors {a1, a2, a3} with a3 = −(a1 + a2)
and the longitudinal axis with unit vector c = {0, 0, 0, 1}. Due to its hcp crystallography, the elastic response of Mg
exhibits transverse isotropy (with isotropy in the basal plane). Almost all previous models for Mg used isotropic
strain energy densities to approximate the elastic response, a common albeit simplifying approximation, see e.g.
the discussion in (Clayton and Knap, 2011). Here, in addition to capturing the anisotropic elastic behavior of hcp
metals, we aim to construct a polyconvex energy density for the following reasons. At finite strains, the loss of
quasiconvexity of the free energy density can lead to the loss of stability of a homogeneous deformation gradient and
to the formation of fine-scale microstructure (so-called minimizing sequences), see e.g. (Ball, 1976; Ball and James,
1987; Ortiz and Repetto, 1999; Mielke, 2004; Conti and Theil, 2005). Quasiconvexity is hard to enforce owing to
its non-local definition. A reasonable alternative is the use of polyconvex energy densities since polyconvexity (of a
finite-valued, continuous function) implies quasiconvexity which, in turn, ensures rank-one convexity thus avoiding
instability due to loss of ellipticity under large deformation. Here, we adopt the polyconvex energy density proposed
by Schröder et al. (2008) and adjust it to describe the transversely-isotropic response of magnesium.

We assume the additive decomposition of the strain energy density into isotropic and anisotropic parts and we
adopt the material frame-indifferent form

We(F) = Wiso(I1, I2, I3) + Waniso(J4, J5) (19)
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C11 C33 C44 C13 C12 C66

experimental: 59.74 62.00 16.59 21.48 25.65 17.05
model: 59.72 57.26 17.27 21.93 25.81 16.95

Table 1: Experimentally-determined transversely-isotropic elastic constants of pure Mg at 280 K (all values in GPa),
from (Slutsky and Garland, 1957) as well as the corresponding elastic constants of the polyconvex energy density.

with invariants of the right Cauchy-Green tensor C = FTF defined by

I1 = tr C,
I2 = tr(Cof C),
I3 = det C,
J4 = tr(CG),
J5 = tr [(Cof C)G]

and the cofactor operator defined via Cof A = (det A)A−T. Metric tensor G depends on the specific material symmetry,
which in case of hcp materials is given by

G = diag(1, 1,C2) ⇒ Cof G = diag(C2,C2,C4). (20)

For magnesium we have C = c/a = 1.624 where a and c denote the length of the basal-plane’s Burgers vector in the
〈1120〉 direction and the hcp unit cell height, respectively. Following Schröder et al. (2008), our specific choices of
the isotropic and anisotropic energy densities are

Wiso(I1, I2, I3) = α1 I1 + α2 I2 + δ1 I3 − δ2 log
√

I3, (21)

Waniso(J4, J5) =
η1

α4 gα4

(
Jα4

4 ,+Jα4
5

)
, (22)

for which the constraints of ellipticity and a stress-free reference configuration impose the restrictions

α1 > 0, α2 > 0, δ1 > 0, η1 > 0, α4 > 1, δ2 = 2α1 + 4α2 + 2δ1 + 2η1. (23)

To fit these unknown elastic material parameters to experimental data, we compute the components of the elastic
modulus tensor

CIJKL(F) = 8
∂We

∂CIJ ∂CKL
(F), (24)

which yields the following elastic moduli in the undeformed ground state:

CIJKL(I) = 4(α2 + δ1 + α4η1)δIJδKL + 2 (α1 + α2) (δIKδJL + δILδJK)

+ 2
η1

g
[GJKδLI + GJLδIK + GILδJK + GIKδLJ − 2α4(δIJGKL + GIJδKL)] + 8(α4 − 1)

η1

g2 GIJ GKL

with g = tr G = 2 + C2. Notice that in the isotropic case (G = I), we recover the isotropic form with Lamé moduli

λ = 4(α2 + δ1 + α4η1), µ = 2(α1 + α2). (25)
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Using the specific form (20) for hcp crystals, the components of the elasticity tensor become (in Voigt notation)

C11 = C1111 = 4
[
α1 + 2α2 + δ1 + α4η1 −

2a2(a2 + c2)(α4 − 1)η1

(2a2 + c2)2

]
, (26)

C33 = C3333 = 4
[
α1 + 2α2 + δ1 + α4η1 −

4a2c2(α4 − 1)η1

(2a2 + c2)2

]
, (27)

C44 = C2323 = 2
[
α1 + α2 + η1 −

a2η1

2a2 + c2

]
, (28)

C13 = C1133 = 4

α2 + δ1 +
a2η1

(
2α4a2 + (3α4 − 2)c2

)
(2a2 + c2)2

 , (29)

C12 = C1122 = 4

α2 + δ1 +
η1

(
2a4(α4 − 1) + α4(2a2 + c2)c2

)
(2a2 + c2)2

 , (30)

C66 = C1212 = 2
[
α1 + α2 +

2a2η1

2a2 + c2

]
. (31)

To confirm transverse isotropy, we note that the chosen form of the energy density satisfies automatically

C66 =
C11 −C12

2
. (32)

The elastic moduli have been fit to those determined experimentally by Slutsky and Garland (1957) shown in Table 1,
which results in the material parameters for the polyconvex strain energy density summarized in Table 2. Table 1
also contains the experimental data for comparison. With the exception of C33, the anisotropic elastic moduli are well
captured by the chosen strain energy density, which is deemed sufficient for subsequent simulations.

α1 α2 δ1 δ2 α4 η1

4.82 3.46 0.06 23.76 10.0 0.45

Table 2: Best-fit results for the parameters used in the polyconvex strain energy density (all values in GPa except
dimensionless α4).

3.2. Inelastic deformation mechanism in pure magnesium
From all possible slip systems, basal slip is the dominant mode in Mg due to the significantly lower critical resolved

shear stresses on basal slip systems with slip directions {1120} and slip plane normal {0001}. In addition, prismatic
and pyramidal 〈a〉 slip systems are frequently observed when the activation of basal slip is suppressed (Burke and
Hibbard, 1952; Reed-Hill and Robertson, 1958). Since the slip directions of these three systems all lie within the
basal plane, they can operate on only four independent shear systems, which is insufficient to accommodate arbitrary
plastic straining (von Mises, 1928; Taylor, 1938). Therefore, pyramidal 〈c+a〉 slip has been identified as a further slip
mode active in Mg, see e.g. (Obara et al., 1973; Ando and Tonda, 2000), in particular to accommodate compression
along the c-axis. The various types of slip systems are illustrated in Figure 1 and summarized in Table 3.

Some of the previous models for Mg have incorporated only a subset of the aforementioned slip systems due
to redundancy and in order to reduce computational complexity and costs. In particular, the inclusion of pyramidal
〈c+a〉 slip was shown to beneficially reproduce experimental results, see e.g. (Agnew et al., 2001). On the other hand,
prismatic and pyramidal 〈a〉 slips show quite similar effects to the prismatic ones (Agnew et al., 2006; Chapuis and
Driver, 2011) but at considerably higher resolved shear stresses. Therefore, we choose to not include the pyramidal
〈a〉 systems. Overall, our set of modeled slip systems is thus given by the basal, prismatic and pyramidal 〈c + a〉
systems, which already provided realistic results for alloy AZ31B (Agnew et al., 2003; Agnew and Duygulu, 2005).

Deformation twinning is the most common mechanism in Mg to allow plastic deformation along the c-axis (re-
quiring considerably lower activation stresses than the aforementioned non-basal slip systems). The most frequently

8
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(a) basal slip 〈a〉
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(b) prismatic slip 〈a〉
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a3

c

(c) pyramidal slip 〈a〉
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(d) pyramidal slip 〈c + a〉
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c

(e) tensile twin
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c

(f) compression twin

Figure 1: Schematic view of the primary slip and twin systems observed in Mg.

observed twinning mode in Mg is the {1021}〈1011〉 tensile twin system, which is activated when the c-axis is in ten-
sion. The critical shear strain associated with this twinning mode for pure Mg is γtw = 0.1295 (Christian and Mahajan,
1995). Furthermore, compression twinning can be observed when the c-axis is in compression (Kelley and Hosford,
1968b; Barnett, 2007). However, as pointed out e.g. by Zhang and Joshi (2012) and as seen in experiments (Brown
et al., 2005), this twinning mode is difficult to activate due to its much higher critical resolved shear stress and large
critical shear strain. Tensile twins are considerably easier to nucleate and their mobility is significantly higher, too,
which can be explained by the differences in the twinning dislocation core structures of tensile and compressive twin-
ning (Christian and Mahajan, 1995). The relevant twin systems to be included in our model are included in Table 3
along with their critical shear strains. As an important difference between slip and twinning, dislocations are free to
glide in either positive or negative direction, whereas twinning is only allowed to occur in the twinning direction. This
fact is automatically accounted for in the model presented here due to the twinning description via volume fractions.
We will discuss the relevance of the tension and compression twin systems later in our numerical examples.

3.3. Stored energy: choice of hardening energies and dissipation potentials

The mechanical resistance differs dramatically between the various slip and twin systems, which leads to the
observed highly-anisotropic plastic response. These differences are captured in the model by the hardening energies
and associated dissipation potentials for all slip and twin system. Plastic work is stored in self-energy of each slip

type slip/twin plane slip/twinning direction number of systems γtw

basal slip: {0001} 〈1120〉 3 -
prismatic slip: {1100} 〈1120〉 3 -
pyramidal slip 〈a〉: {1101} 〈1120〉 6 -
pyramidal slip 〈c + a〉: {1122} 〈1123〉 6 -
tensile twin: {1012} 〈1011〉 6 0.129
compression twin (rare): {1011} 〈1012〉 6 1.066

Table 3: Properties of the various slip and twin systems found in Mg and included in the model.
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system and in interaction energy. For the self-energy, we assume the general representation

Wp,self(ε) =
∑
α

σ∞α

[
εα +

σ∞α
hα

exp
(
−

hα εα
σ∞α

)]
, (33)

whose parameters differ between systems. The exponential law mimics Voce hardening (Agnew et al., 2001; Graff

et al., 2007) and is well suited to describe the high-resistance of non-basal slip systems in hcp metals (Homayonifar
and Mosler, 2011). σ∞α is the ultimate stress on each system, and hα captures the corresponding hardening rate. In
practice, small σ∞α and large hα will result in a low activation. The slip hardening response is completed by assuming
linear latent hardening, which implies

Wp,lat(ε) =
1
2
ε · Hε, (34)

whereH is a symmetric matrix containing the hardening moduli on its off-diagonals (and having a zero diagonal).
The rate dependence of all slip systems is accounted for by a power-law dissipation potential commonly used in

crystal plasticity, see e.g. (Ortiz and Stainier, 1999),

Ψ∗p(γ̇) =
∑
α

τ0γ̇0

m + 1

(
γ̇α
γ̇0

)m+1

. (35)

with material constants τ0, γ̇0 and m (one set of these for each slip system).
The tensile twin system is activated when the c-axis is in tension. Zhang and Joshi (2012) assumed a hard threshold

for its activation. Beyond this yield point, they assumed that the resolved shear stress stress remains constant, which
essentially implies a linear growth of the stored energy without hardening. Here, we take a different standpoint and
assume linear hardening and linear rate dependence, i.e. we choose quadratic forms for both the hardening energy.
For comparison, the similar formulation of Homayonifar and Mosler (2011) used a linear twin hardening energy.
The associated dissipation potential must describe the rate-dependence of twinning. The recent work of Ulacia et al.
(2010) shows a very low sensitivity of twinning in Mg alloys, and even negative strain rate sensitivity has been
reported (Chun and Davies, 2011); see also the discussion in (Li and Ma, 2009) about twinning in Mg as a dissipative
vs. elastic reshuffling process. To account for the low rate sensitivity, we here set the dissipation potential associated
with twinning to zero. In summary, this results in

Wtw(λ) =
∑
β

1
2

hβλ2
β +

1
2
λ · Kλ, (36a)

Ψ∗tw(λ̇) = 0, (36b)

where hβ is the hardening parameter of twin system β, and K denotes the matrix containing all cross-hardening
moduli.

To illustrate the different hardening laws and associated stress-strain responses, we perform a simple-shear test
with only a single active system by aligning the slip or twinning direction with the macroscopic shear direction. The
resulting stress-strain curves are shown in Figure 2. Obviously, basal slip and tensile twinning are easiest to activate,
whereas prismatic and pyramidal slip require higher stress levels. Note that (in the absence of slip) the twinning curve
becomes elastic once the twin volume fraction has reached 1 and the crystal is fully twinned. The material parameters
used for these simulations have been determined by fitting experiments, which will be discussed in Section 4.1.

4. Numerical realization: variational constitutive updates

To make the theory amenable for numerical implementations, we introduce variational constitutive updates for
discrete (constant) time steps ∆t by defining an incremental energy density (Ortiz and Stainier, 1999; Ortiz et al.,
2000)

F (Fn+1,∆γ,∆λ; Fn
in, ε

n, λn) = W(Fn+1, Fn+1
in , εn + |∆γ|, λn + ∆λ) −W(Fn, Fn

in, ε
n, λn)

+ ∆t Ψ∗t

(
|∆γ|

∆t

)
+ ∆t Ψ∗tw

(
|∆λ|

∆t

)
,

(37)
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Figure 2: Hardening response of the different hardening energies

where superscript (·)n denotes a quantity evaluated at time tn, and tn+1 = tn + ∆t. The discretization of the flow rule
follows a forward Euler scheme and approximates Fn+1

in by

Fn+1
in = dev

∑
α

∆γα pn
α +

∑
β

∆λβ γ
tw
β aβ ⊗ nβ + I

 Fn
in, (38)

where we take the deviatoric part of the flow rule increment to insure isochoric inelastic deformation. Thus given
εn, λn, Fn

in at the old time tn, and the new deformation gradient Fn+1, the incremental updates of the internal variables
at time tn+1 are obtained by minimization of (37), i.e.

(∆γ,∆λ) = arg min F (Fn+1,∆γ,∆λ; Fn
in, ε

n, λn), (39)

which is the time-discrete version of the flow rules in (9). The internal variables at time tn+1 follow as

γn+1 = γn + ∆γ, εn+1 = εn + |∆γ|, λn+1 = λn + ∆λ. (40)

This results in the condensed strain energy density

Wcond(Fn+1; Fn
in, ε

n, λn) = inf
∆γ,∆λ

{
F (Fn+1,∆γ,∆λ; Fn

in, ε
n, λn) : 0 ≤ λn + ∆λ ≤ 1

}
, (41)

and the corresponding first Piola-Kirchhoff stress tensor

Pn+1 =
∂Wcond

∂Fn+1 (Fn+1; Fn
in, ε

n, λn). (42)

Therefore, this variational approach is not based on explicit updates of the internal variables but uses the above
(implicit) variational framework.

The above scheme is implemented in a predictor-corrector fashion, and the minimization problem is solved by a
projected line search algorithm, i.e., during iterations for a given time step we repeatedly project the updated internal
variables onto the constraint set. The search direction is determined by a conventional Newton-Raphson scheme. As
discussed before, for physical reasons we only admit the activation of one twin system at a time, which is realized
numerically by projecting the non-zero twinning ratio to the interval [0, 1]. Material point calculations and finite
element simulations were performed using an in-house code with variational structure.
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hardening and dissipation parameters

basal

hα(MPa) 7100
σ∞(MPa) 0.7
hi j(MPa) 0.0
τ0(MPa) 1.75
m 0.05
γ̇0(s−1) 1.0

prismatic

hα(MPa) 9000
σ∞(MPa) 85
hi j(MPa) 20
τ0(MPa) 1.75
m 0.05
γ̇0(s−1) 1.0

pyramidal

hα(MPa) 30000
σ∞(MPa) 150
hi j(MPa) 25.0
τ0(MPa) 1.75
m 0.05
γ̇0(s−1) 1.0

tensile twin
h0(MPa) 1.7
ki j(MPa) 40000

Table 4: Material parameters of the hardening energies and dissipation potentials for the slip and twin systems.

4.1. Parameter identification and model validation
The numerical model summarized in previous sections contains a large number of material parameters that require

identification; in particular the 12 slip and 6 twin systems require individual parameters to be determined before
running complex polycrystalline simulations. Kelley and Hosford (1968b) performed a series of elaborate plane-
strain compression tests on pure single-crystalline Mg at room temperature, whose results will be used to determine
the model parameters for each system. By carefully orienting the loading with respect to the hcp lattice, different
slip and twin systems were activated in each case. Here, we numerically reproduce six loading scenarios from their
experiments to calibrate the parameters of the independent slip and twin systems. All simulations are performed as
material-point calculations under quasistatic conditions. The imposed deformation corresponds to a velocity gradient

l =

 l11 l12 l13
0 0 0
0 0 ε̇

 , (43)

where the loading is in the 3-direction and characterized by loading rate ε̇, while the sample is constrained in the
transverse 2-direction. The unknown deformation in the 1-direction is found by solving for traction-free boundary
conditions. These conditions are closest to experimental reality and do not impose the full deformation gradient as is
frequently done in the literature for convenience.

The calibrated parameters for the 12 slip systems and 6 twin systems are summarized in Table 4. The correspond-
ing numerical results are shown in Figures 3 and 4 along with experimental data from (Kelley and Hosford, 1968b)
for comparison. The relative contributions of the various microstructural modes (defined as the ratio of each internal
variable to the sum of the all internal variables) are also included to demonstrate the activated slip and twin systems.
The labeling of the individual load cases corresponds to the original orientations reported by Kelley and Hosford
(1968b).

• Compression along the 〈0001〉-axis:

In loading cases a and b, the loading direction is along the 〈0001〉-axis. These two loading scenarios are
theoretically prone to activate the compression twin system, which, however, is rarely observed experimentally

12
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Case a: compression along the 〈0001〉-axis.

simulation
experiment

0.0 0.01 0.02 0.03 0.04
0

200

100

300

400

nominal compressive strain

co
m

pr
es

si
ve

C
au

ch
y

st
re

ss
(M

Pa
)

basal

pyramidal〈c + a〉
prismatic

tensile twin

0.0 0.01 0.02 0.03 0.04
0.0

0.4

0.2

0.6

0.8

1.0

nominal compressive strain

fr
ac

tio
n

of
sl

ip
/tw

in
ni

ng
ac

tiv
ity

Case b: compression along the 〈0001〉-axis.
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Case c: compression perpendicular to the constrained 〈0001〉-axis.

Figure 3: Numerical results for plane-strain compression compared to experimental data of (Kelley and Hosford,
1968b).
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Case d: compression perpendicular to the constrained 〈0001〉-axis.
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Case e: compression perpendicular to the unconstrained 〈0001〉-axis.
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Figure 4: Numerical results for plane-strain compression compared to experimental data of (Kelley and Hosford,
1968b), continued.
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in the early stages of deformation. Kelley and Hosford (1968b) explained this behavior by a small albeit
sufficient misalignment of the sample orientation, which immediately leads to the activation of basal slip. In the
ideally oriented scenario studied here, we use this case to identify the parameters of the pyramidal 〈c+a〉 system
in the model. As seen in Figure 3, the stress-strain responses observed in both cases are qualitatively identical
with a slightly higher stress level in case b. This agrees with experimental observations by Kelley and Hosford
(1968b) and with previous simulated results by Zhang and Joshi (2012). For both cases, the pyramidal slip
mode dominates with over 80% of all slip activity, whereas contributions from basal slip and tensile twinning
are negligible. The rather small contributions of prismatic slip in the early stages of deformation are immediate
results of the reorientation of the crystal undergoing pyramidal slip. Yet, since the resolved shear stress on the
pyramidal systems is considerably higher, the prismatic slip activity drops gradually.

• Compression perpendicular to the constrained 〈0001〉-axis:

In loading cases c and d, compression is perpendicular to the 〈0001〉-direction and the sample is constrained
in the 〈0001〉-direction, which is therefore oriented to produce prismatic slip. Kelley and Hosford (1968b) did
not observe traces of prismatic slip, which they theorized to stem from early stages of prismatic slip prelude to
the {1011} banding. Our results in Figures 3 and 4 show that the stress-strain responses for these two cases are
similar and that plastic deformation primarily stems from prismatic slip and small traces of pyramidal 〈c + a〉
slip (less than 10% beyond 4% of compression). Basal slip and tensile twinning are not activated in this case.

• Compression perpendicular to the unconstrained 〈0001〉-axis:

In case e, compression is perpendicular to the now unconstrained 〈0001〉-axis, which is favorable to active the
{1012} tensile twin system. Kelley and Hosford (1968b) reported the completion of twinning at about 6% of
compressive strain, which is followed by a similar behavior as compression along the 〈0001〉-axis (see case a).
This is consistent with our simulated results: tensile twinning is completed at about 6.5% compression. Since
the 〈0001〉-axis has reoriented by only about 4◦ with respect to the loading direction, we indeed see a similar
behavior as in case a once the material is fully twinned. Figure 4 illustrates how twinning dominates the plastic
deformation up to 6.5% compression, from where on we observe a combination of 〈c + a〉 pyramidal and
prismatic slip as observed in experiments.

• Compression resulting in basal slip:

Case g is favorable for basal {0001}〈1210〉 easy glide, and all plastic straining can be accommodated by a single
basal slip system. In fact, Kelley and Hosford (1968b) reported significant basal band formation for this case.
Our simulations predict that the stress remains at a rather low level (below 10 MPa) even at large strains (up
to 30% of compression). Plastic deformation is exclusively accommodated by basal slip since no other system
can operate at such low stress levels.

We note that we have omitted case f from our validation tests for the following reason. This loading scenario is
similar to case e (i.e., loading is perpendicular to the unconstrained 〈0001〉-axis) but the crystal is rotated by 90◦ about
the 〈0001〉-axis. As a consequence, the preferred deformation mode is tensile twinning followed by basal slip (Kelley
and Hosford, 1968b). However, the tensile twin system involved in this case results in deformation in the 2-direction,
which is suppressed by imposing deformation gradient (43) in our material point calculations. In experiments, the
boundary conditions can be accommodated since the deformation is not uniform throughout the sample, which allows
for stress relaxation by tensile twinning inside the specimen. Such behavior can be accounted for by boundary value
calculations, see also (Zhang and Joshi, 2012). The compression twin is of only little relevance in our subsequent
numerical examples; therefore, we assign the same parameters as for the tensile twin systems but with a significantly
higher activation stress (hardening modulus h0 = 170MPa). Similarly, pyramidal 〈a〉 slip could not be calibrated;
where required in the following, we adopt those parameters obtained for pyramidal 〈c + a〉 slip due to a lack of
validation data.

Overall, we observe a good quantitative agreement between the experimentally-determined and the numerically-
computed stress-strain responses for six of the seven loading cases. In addition (and more importantly), we obtain
excellent qualitative agreement between the experimentally-observed slip and twin activity and the simulated evolu-
tion of plastic slips and twin volume fractions.
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loading scenario: a b c d e g

implicit updates: 8.0 · 10−4 1.3 · 10−3 1.0 · 10−3 1.4 · 10−3 6.7 · 10−4 7.5 · 10−5

(50) (30) (100) (70) (150) (4000)

explicit updates: 7.3 · 10−6 7.8 · 10−6 1.0 · 10−5 9.0 · 10−6 NA 1.5 · 10−5

(5500) (5100) (10000) (11000) (NA) (20000)
(The above results are for τ0 = 1.75 MPa, the applied strain rate is 10−5.)

loading scenario: a b c d e g

implicit updates: 4.0 · 10−3 4.0 · 10−3 2.0 · 10−3 2.5 · 10−3 1.0 · 10−3 2.3 · 10−4

(10) (10) (50) (40) (100) (1300)

explicit updates: 1.6 · 10−5 1.5 · 10−5 1.7 · 10−5 2.0 · 10−5 NA 2.0 · 10−5

(2500) (2700) (6000) (5000) (NA) (15000)
(The above results are for τ0 = 3.5 MPa, the applied strain rate is 10−5.)

loading scenario: a b c d e g

implicit updates: 1.3 · 10−3 4 · 10−3 1.7 · 10−3 3.3 · 10−3 7.7 · 10−4 3.8 · 10−4

(30) (10) (60) (30) (130) (800)

explicit updates: 1.0 · 10−5 1.1 · 10−5 1.4 · 10−5 1.3 · 10−5 NA 1.7 · 10−5

(4000) (3800) (7200) (7500) (NA) (18000)
(The above results are for τ0 = 1.75 MPa, the applied strain rate is 10−2.)

Table 5: Summary of the maximum strain increments suitable for the stable convergence of the implicit and explicit
schemes (numbers in parentheses denote the corresponding minimum numbers of load steps) for different values of
the slip dissipation parameter and for different strain rates, as determined by numerical experimenting.

4.2. Model efficiency and stability: comparison to explicit update models

Most available crystal plasticity-based models for slip-twinning interactions in Mg use explicit updates of the in-
ternal variables in contrast to the implicit, variational approach presented here. The latter possesses several advantages
over the existing direct updates-based models which discretize the evolution equations (18) explicitly. As a conse-
quence, such models commonly assume rate-dependent evolution laws for all internal variables, which is questionable
for the evolution of twinning as discussed earlier, see e.g. (Ulacia et al., 2010) for the low rate sensitivity of Mg alloys.
The present model handles both rate-dependent and rate-independent evolution laws (here, for the plastic slips and the
twin volume fractions, respectively) in the same manner. We note that rate-independent plasticity has been modeled
successfully through a variety of alternative approaches, including regularized models that remove yield surface sin-
gularities (Franciosi and Berbenni, 2007; Yoshida et al., 2009) or new time integration schemes (Schmidt-Baldassari,
2003). However, any explicit scheme requires small load increments and lacks convergence properties, whereas im-
plicit schemes bring about numerical challenges such as the identification of the active set of slip and/or twin systems.
For a discussion of rate independence within implicit plasticity modeling and associated challenges see e.g. (Kalidindi
et al., 1992).

Our variational model admits the treatment of the evolution of the internal variables by both implicit and explicit
updates. To demonstrate the advantages of the variational strategy, we have repeated the single-crystal simulations of
Section 4.1 with the same model but using explicit updates comparable to conventional crystal plasticity-based models.
For each simulation, we identify by numerical experimenting the minimum number of load steps required for the
convergence of the variational approach (to less than 0.1% deviation of the stress-strain curve) as well as the minimum
number of steps required for the stability of an explicit scheme (internal variables are updated explicitly upon each
quasistatic equilibration). For each simulation, these along with the maximum applied strain can be translated into a
maximum allowable strain increment. Results are summarized in Table 5 for different values of the slip dissipation
parameters τ0 in (35) and for different strain rates (note that the twinning-dominanted case e is inconclusive since the
rate-independent flow rule chosen here does not admit a direct treatment by explicit updates).

Fig. 5 illustrates the typical oscillatory solution obtained from the explicit scheme before instability. The plot
shows results for case d of Section 4.1 simulated by using 7, 000 and 5, 000 load steps (with the maximum strain of
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10% this correspond to shear strain increments of 1.4 · 10−5 and 2 · 10−5, respectively). Using fewer steps will cause
the solver to show exponential instability within the first few load steps. For comparison, we plot the analogous results
obtained from the implicit updates for 50 load steps in Fig. 6 on the right (which corresponds to strain increments of
0.2%). Similarly, Fig. 6 also illustrates implicit results for case a using only 10 load steps and producing convincing
agreement with the exact solution obtained from very small strain increments. This confirms the stability and accu-
racy of the chosen implicit variational scheme at considerably larger steps, thus resulting in superior efficiency over
comparable explicit schemes. The increased efficiency enables the investigation of larger samples, of more complex
grain distributions, and of the homogenized material response, to name but a few examples.

Of course, the exact findings depend on the details of the chosen numerical algorithms but the general trend is
apparent. The results in Table 5 show that the number of steps required for the variational approach are significantly
(viz., on average a factor of 100) smaller than those of the explicit scheme. Note that we still need a fair amount of
steps in order for several cases to converge, especially for easy-glide case g for basal slip. This, however, is purely a
convergence issue arising from the employed Newton-Raphson solver.
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Figure 5: Results obtained by using explicit updates for case d of Section 4.1, computed via a total of 7000 load steps
(left) and 5000 load steps (right) with τ0 = 3.5 MPa (i.e., simulations are run right at the stability limit).
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Figure 6: Results obtained by using implicit updates for cases a (left) and d (right) of Section 4.1, computed via a total
of 10 load steps (left) and 50 load steps (right) and compared to the (approximately) exact solution obtained from a
very fine load step in the implicit scheme (with a total of 2000 load steps); as before, τ0 = 3.5 MPa.
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5. Simulation of polycrystalline texture evolution

Having validated the single-crystalline response of the variational model for each individual slip system, we pro-
ceed to exploit this model to study the collaborative effects of slip and twinning in polycrystalline Mg. This can be
achieved in various ways with different levels of complexity. Here, we use two different approaches and compare their
results (this will provide guidelines for their suitability). First, we use a Taylor-type model which does not account
for grain interactions and grain boundary mechanisms but allows for the simulation of large numbers of grains, which
will allow us to study polycrystalline texture evolution. The averaging scheme of Taylor (1938) assumes that each
grain undergoes the same total (macroscopically-applied) deformation; it provides an upper bound on the stress-strain
relation and has traditionally been used in texture calculations. For a polycrystal containing ng grains with orientations
defined by rotation tensors Ri ∈ S O(3), the total energy is assumed to be

W(F) =
1
ng

ng∑
i=1

W(RiF) (44)

and the energy of each grain is defined by (41). Stress and incremental modulus tensors follow accordingly. Since the
Taylor assumption is too restrictive for certain microstructures to develop, we alternatively employ finite element sim-
ulations to determine the polycrystalline response. In close analogy to the single-crystal experiments studied above,
Kelley and Hosford (1968a) also performed channel die tests on polycrystalline Mg. Here, a finite element simulation
of a cubic block undergoing constrained compression is much more suitable than using the Taylor assumption since it
admits the operation of slip/twin systems which are otherwise suppressed by the out-of-plane constraints. The spatial
variation of deformation mechanisms within the specimen are modeled by linear tetrahedral elements (each quadra-
ture point is assigned a different grain orientation) and the macroscopic response is obtained by imposing suitable
boundary conditions.

5.1. Lattice reorientation due to slip and twinning
Changes of the lattice orientation during severe plastic deformation can be extracted from the evolution of the

internal variables, as is commonly performed in the context of crystal plasticity, see e.g. (Asaro, 1983; Asaro and
Needleman, 1985; Ahzi et al., 1993). Here, we follow a similar approach but with modifications to incorporate the
reorientation effects due to twinning. Using (3), the plastic contribution to the rate of stretching tensor is given by

ḞF−1 − ḞeF−1
e = Din +Ωin = Fe l̃inF−1

e , (45)

where Din and Ωin are the symmetric and antisymmetric parts of the inelastic velocity gradient, defining the stretch-
ing rate and the spin tensor of the inelastic deformation. The total rates of the stretch and spin tensors decompose
additively into their elastic and inelastic parts, i.e.

D = De + Din, Ω = Ωe +Ωin, (46)

where D and Ω correspond to the stretching rate and spin tensor of the total deformation, respectively. Since the
lattice structure is assumed to remain unaffected by plastic deformation, the reorientation is governed by the elastic
spin tensor Ωe = Ω −Ωin, which we use to obtain the lattice rate of rotation, i.e. the rate of rotation of the c-axis
(represented by unit vector c):

ċ = Ωe c, (47)

In incremental form this results in
c(tn+1) = exp(Ωe∆t) c(tn). (48)

Twinning affects the lattice orientation by a reflection about the twin plane, which can have a significant effect on
the texture evolution in polycrystals (Clausen et al., 2008) and is therefore accounted for. As discussed in Section 3.3,
we only allow one twin system to operate at a time. Consequently, we apply the corresponding lattice reflection as
soon as one of the twin volume fractions λβ exceeds a system-specific threshold, i.e.,

c(tn+1) = Qβ c(tn) if λβ(tn) < λcr,β, and λβ(tn+1) > λcr,β, (49)
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where Qβ is the reflection tensor of twin system β as defined in (5). The values of λcr,β represent the physical thresholds
at which the crystal may be regarded as being in a fully-twinned orientation. In the following numerical examples,
we use λcr,β = 0.8 (the exact numerical value has only a limited influence on the simulated final results since it only
affects the postprocessing of the simulated internal variable evolution).

5.2. Polycrystalline Mg – comparison with experiments

Kelley and Hosford (1968a) performed compression experiments on polycrystalline Mg, whose general setup is
identical to that used for our single-crystalline simulations in Section 4.1. In their experiments, the polycrystalline
Mg samples were obtained from cold rolling, which implies an initial texture with basal poles closely aligned with
the rolling normal direction (ND). Here, we adopt the notation of Kelley and Hosford (1968a): each plane-strain
compression test is characterized by two letters, the first denoting the axis of compression and the second one denoting
the unconstrained axis. Thereby, the orientations in the cold-rolled samples are defined by the normal direction (ND,
denoted by z), the rolling direction (RD, abbreviated as r), and the transverse direction (TD, t). As two selected
examples, we demonstrate the performance of our model by simulating the responses of cases zt and rt and comparing
to the experimental data using both a finite element model and the Taylor model. Both models start with initial grain
distributions whose basal poles are closely aligned with the rolling ND, as shown in Figure 7. Experiments may
be expected to have exhibited a spread of the initial textures as well. Numerical results for both loading cases are
summarized in Figure 8. Because of the constraints in the Taylor model (and because of its efficiency), we simulate
more grains (here, a total of 100) than in FE calculations (where only 24 grains appear sufficient). Results in Figure 8
indicate that both models predict similar stress-strain responses (with a slightly better qualitative agreement of the
finite element results). The relative contributions of the slip/twin systems (also shown in the figure) are almost identical
in the Taylor and FE models, which is why we only show results obtained from the Taylor approach.

• In case zt, the loading direction is aligned with the ND while the TD is unconstrained. The initial texture
is assumed to have a wider spread than in case rt, cf. Figure 7. This is reasonable since the experimentally-
determined stress level of Kelley and Hosford (1968a) for this case is low (around 200 MPa) compared to
the single-crystal compression cases a and b in Section 4.1 (stress levels were near 300 MPa). Hence, a fair
amount of basal activity is required to reduce the stress. The results obtained from FE calculations and from
the Taylor model are quite similar both in the stress-strain response and in the relative contributions of the
different slip/twin systems. Unlike in the single-crystal cases in Section 4.1, not a single slip system dominates
the process but all slip modes are activated, combining basal, prismatic, and pyramidal 〈c + a〉 slips. In contrast,
tensile twinning appears less pronounced.

• In case rt, the loading direction coincides with the RD and the TD remains unconstrained. The results from
FE calculations and from the Taylor model again agree fairly well. The dominant deformation mode in both
cases is prismatic slip like in single-crystal cases c and d in Section 4.1. We also see a small amount of tensile
twinning at low strains, which results from the spreading of basal poles around the ND.

RD

TD

RD

TD

RD

TD

RD

TD

(a) initial textures used in the Taylor model (b) initial textures used in FE simulations

Figure 7: Initial textures used for polycrystalline Mg samples for plane-strain compression tests (total of 100 grains
for the Taylor model and a reduced set of 24 grains for FE simulations); shown are (0001)-poles aligned with the ND.
Left and right pole figures in both (a) and (b) are for cases loading cases zt and rt, respectively.
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Case rt: loading in the rolling direction (RD); transverse direction (TD) unconstrained

Figure 8: Numerical results for plane-strain compression of Mg polycrystals compared to experimental data of (Kelley
and Hosford, 1968a). Shown are the stress-strain responses as well as the relative contributions of all slip/twin modes.

It is important to note that we compare numerical stress-strain predictions (without having fitted the model to
any polycrystalline data) to independent polycrystalline experimental results. Both experiments and simulations con-
tain numerous potential error sources which may lead to the discrepancies between the simulated results and the
experimental data, including the following. The texture evolution depends significantly on the initial texture and on
the loading history. Like in almost all computational approaches, our simulations start with a specific initial texture
which mimics the experimental reality but cannot agree exactly with the physical microstructure, among others due
to limited resolution and computational costs. Furthermore, we assume a textured but virgin state of the material;
i.e., although an initial texture is accounted for, we assume that the internal variables display no hardening history.
This is, of course, not the case in experiments, since the textured sample was produced by large plastic deformation.
Unfortunately, there is no (simple) way to infer the exact amounts of preexisting plastic slips in the initial sample (and
no such data are available). In addition, as explained in section 4.1, the only way to identify the model parameters for
pyramidal 〈c + a〉 slip is through experimental data for c-axis compression, which is consistent with the approaches of
e.g. Homayonifar and Mosler (2011, 2012); Zhang and Joshi (2012). However, this loading scenario is prone to pro-
duce small amounts of basal slip due to sample misalignment. Thus, a further error source arises from the difficulty in
cleanly isolating the individual slip and twin modes in experiments. In summary, various potential error sources exist,
which are hard to account for in simulations. However, considering that the results were produced without fitting the
model to polycrystalline data (and considering that the model is the first variational model of its type), the comparison
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RD

TD

Figure 9: Initial texture distribution showing (0001)-poles are randomly-oriented at the beginning of each cold rolling
simulation (with total of 800 grains)

of the experimental and simulated responses shown in our simulation are convincing.

5.3. Cold rolling example

Cold rolling is a common metal forming process that results in pronounced texture evolution. Experimental
evidence indicates that plastic deformation during cold rolling primarily leads to the alignment of basal planes with
the rolling direction (RD) with increasing deformation (Sandlöbes et al., 2011). As pointed out e.g. by Lee and
Duggan (1991), the deformation during the rolling process is characterized by superimposed shear and compressive
strains. Following Ahzi et al. (1993), we simulate the effect of cold rolling by imposing a total velocity gradient l that
contains both shear (with rate γ̇) and plane-strain tension-compression (with rate ε̇) according to

l =

 ε̇ 0 γ̇
0 0 0
0 0 −ε̇

 . (50)

Here, the three coordinate directions (1, 2, and 3) correspond to the rolling direction (RD), the transverse direction
(TD), and the normal direction (ND), respectively. The shear to normal strain rate ratio

α = γ̇/ε̇, (51)

is a characteristic property of the geometry of the rolling device. Here and in the following, we take α = 3 to account
for the fact that shear deformation dominates the rolling process, cf. (Ahzi et al., 1993) for a discussion. When starting
from the virgin state of the material at time t = 0, the velocity gradient (50) can be integrated analytically, which leads
to the volume-preserving total deformation gradient

F(t) =

 e ε̇t 0 γ̇t
0 1 0
0 0 e−ε̇t

 . (52)

Consequently, for an initial thickness H of a sample being rolled to thickness h, the relative thickness reduction during
the rolling process follows as

∆H/H = (H − h)/H = 1 − e−ε̇t. (53)

As discussed in Section 3.2, the complexity of the lattice structure of Mg is oftentimes described by only a
reduced set of slip and twin systems, whose choice may lead to different material behavior. Here, we demonstrate
the importance of an appropriate choice of the relevant systems by studying texture evolution in polycrystalline Mg,
specifically accounting for

i) basal, prismatic, and pyramidal 〈a〉 slip systems and {1012}〈1011〉 tensile twin systems.

ii) basal, prismatic, and pyramidal 〈c + a〉 slip systems and {1012}〈1011〉 tensile twin systems.

iii) basal, prismatic, and pyramidal 〈a〉 slip systems and {1011}〈1012〉 compression twin systems.
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Figure 10: Case i: texture evolution during the cold rolling process, showing (0001)-poles moving towards the ND.
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Figure 11: Case i: relative contributions of slip and twin systems to the response shown in Figure 10. The left figure
shows all slip/twin system contributions; the right figure shows the contributions without the dominant basal slip.

For each case, Taylor-type simulations contain 800 initially randomly-oriented grains without pre-texture, as
shown in the (0001)-pole figure in Figure 9 (each dot in the figure denotes an individual grain). We apply a con-
stant strain rate of ε̇ = 1 × 10−5. The resulting grain distribution for each of the three cases at thickness reductions
of ∆H/H = 15%, 30%, 45% and 60% is illustrated by (0001)-pole figures as well as the fraction of relative slip-twin
activity during the process. Since basal slip dominates with more than 90% of all plastic activity, we also show the
relative activity of the remaining slip/twin systems excluding basal slip.

• case i: pyramidal 〈a〉 slip systems are included while pyramidal 〈c + a〉 slip systems are not included
Pyramidal 〈c + a〉 slip has been rarely observed during cold rolling, which is why we include the pyramidal 〈a〉
systems rather than pyramidal 〈c + a〉 slip. Figure 10 illustrates the resulting grain distributions with increasing
levels of thickness reduction. Figure 11 shows the relative activities of each slip/twin system. Obviously, the
(0001)-poles gradually move towards the rolling ND, which is mainly due to activity on the basal slip systems
(more than 90% of the total slip is basal). Note that the alignment of the grain orientations in the rolling direction
is considerably faster than in the transverse direction. This can be explained by the direction of the applied
simple shear. In technological applications, typical cold rolling procedures often involve several passes of a
single work piece through the rolling device, and each pass can be performed with a different rolling direction,
which ultimately leads to a faster directional alignment. It is important to note that, although the overall plastic
deformation of the polycrystal is mainly the result of basal slip activity, we do observe a significant number of
grains undergoing tensile twinning at low deformation levels. At small thickness reductions of ∆H/H < 7%
more than 60% of the total plastic deformation comes from twinning, see Figure 11. However, as those grains
approach the twinned states, basal slip activity in the twinned grains catches up and dominates the ensuing
deformation.
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Figure 12: Case ii: texture evolution during the cold rolling process shown by (0001)-pole figures.
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Figure 13: Case ii: relative contributions of slip and twin systems to the response shown in Figure 12. The left figure
shows all slip/twin system contributions; the right figure shows the contributions without the dominant basal slip.

• case ii: pyramidal 〈c + a〉 slip systems are included while pyramidal 〈a〉 slip systems are not included
Most models in the literature have included pyramidal 〈c + a〉 systems (like we did in Section 4.1) to accom-
modate non-basal slip. For this case, the grain distribution and the relative activity of each slip/twin system for
the same cold rolling scenario are summarized in Figures 12 and 13, respectively. Here, we observe a quite
different texture evolution compared to the previous case. Indeed, the final grain distribution resembles that of
plane-strain compression of fcc metals, see e.g. (Wang et al., 2010). The activation of the pyramidal 〈c + a〉 sys-
tems tends to reorient the basal slip systems. Although the overall deformation is dominated by basal activity,
the contributions of the pyramidal slip systems (the dashed line in Figure 13) are significantly higher than in the
previous case.

• case iii: compression twin systems are included while tensile twin systems are not included
Because of the high critical resolved shear stress and large critical shear strain, compression twins are rarely
observed and often omitted in simulated texture predictions, see e.g. (Proust et al., 2009; Homayonifar and
Mosler, 2011). For illustrative purposes, we include compression twinning (and suppress tensile twinning) to
demonstrate its effect on the texture evolution. Grain distribution and relative slip/twin activities for this case are
shown in Figures 14 and 15, respectively. The polycrystal does not develop any preferably-oriented texture in
this case because of the high barrier to activate compression twins. Figure 16 plots the average volume fractions
of tensile twins in case i) and of compression twins in this case across all grains. In case i), the averaged
twin volume fractions reach 50% at about 15% of thickness reduction and remain at this level because almost
50% of all grains exhibit tensile twinning. There, due to the low critical shear strain of tensile twinning, after
around 15% of thickness reduction nearly all grains that undergo twinning are fully in the twinned orientation
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Figure 14: Case iii: texture evolution during the cold rolling process shown by (0001)-pole figures.
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Figure 15: Case iii: relative contributions of slip and twin systems to the response shown in Figure 14. The left figure
shows all slip/twin system contributions; the right figure shows the contributions without the dominant basal slip.

and basal slip proceeds to dominate almost all plastic deformation for grains both in the parent and in the
twinned orientation. Here, in contrast, compression twins are hard to activate and difficult to complete. When
they are the only means to accomodate deformation along the 〈0001〉-axis, we see the average twin volume
fractions remain at a very low level and only increase at large strains. As a consequence, grains will update
their orientation even at large strains because of the lattice reorientation due to twinning, which is why the Mg
polycrystal is unlikely to develop texture preferences, as seen in Figure 14.

In summary, texture development in Mg polycrystals during cold rolling have been simulated by the presented
variational model. Basal pole alignment with the normal direction, as frequently seen in experiments on both pure
and alloyed Mg (Bohlen et al., 2007; Al-Maharbi et al., 2011; Sandlöbes et al., 2011), can only be predicted without
including the pyramidal 〈c + a〉 slip systems in the Taylor-type model, which is an important observation. No texture
development is observed when including the compression twin systems as the only non-basal relaxation scheme
because of the high critical resolved shear stress and critical twin volume fraction of the compression twin systems.

6. Conclusions

We have presented a relatively simple variational model to describe the effective mechanical response of hcp metals
and particularly of pure Mg single- and polycrystals, whose inelastic performance is governed by the interplay of slip
and twinning. Using variational constitutive updates, we employed an extended crystal plasticity model to include
deformation twinning and the associated lattice reorientations. The specifics of basal, pyramidal, and prismatic slip as
well as of the tensile and compressive twin systems are described by the respective representations of stored inelastic
work and of the dissipation potential. The elastic anisotropy of the hcp crystallography is modeled by a polyconvex
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Figure 16: Comparison of the average twin volume fractions across all grains for cases i) and iii).

strain energy density. The model has been validated and material parameters determined by a direct comparison
to experimental data for single- and polycrystalline Mg, showing good quantitative and qualitative agreement and
superior efficiency compared to modeling approaches based on explicit updates of the internal variables. The model
was further exploited to predict the texture evolution of polycrystalline Mg during cold rolling. Owing to its variational
structure, the presented model allows for various extensions including, but not limited to, thermo-mechanical coupling
and high strain rate – research in these directions is underway and will be reported elsewhere. Of course, like every
macroscopic continuum model, the presented approach is based on a number of simplifying assumptions which greatly
affect the balance between accuracy and efficiency and which may be refined in the future.
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Proust, G., Tomé, C. N., Jain, A., Agnew, S. R., 2009. Modeling the effect of twinning and detwinning during strain-path changes of magnesium
alloy {AZ31}. International Journal of Plasticity 25 (5), 861 – 880.
URL http://www.sciencedirect.com/science/article/pii/S074964190800079X

Qiao, L., 2009. Variational constitutive updates for strain gradient isotropic plasticity.
Radovitzky, R., Ortiz, M., 1999. Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Computer Methods in Applied

Mechanics and Engineering 172 (1-4), 203 – 240.
URL http://www.sciencedirect.com/science/article/pii/S0045782598002308

Reed-Hill, R., Robertson, W., 1958. Pyramidal slip in magnesium. Trans. Met. Soc. AIME 212.
Rice, J., 1971. Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity. Journal of the Mechanics

and Physics of Solids 19 (6), 433 – 455.
URL http://www.sciencedirect.com/science/article/pii/002250967190010X

Roberts, E., Partridge, P., 1966. The accommodation around {1012} < 1011 > twins in magnesium. Acta Metallurgica 14 (4), 513 – 527.
URL http://www.sciencedirect.com/science/article/pii/0001616066903191
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