
14. Diffraction of Water Waves by Breakwaters 

By John H. Carr' and Marshall E. Stelzriede 1 

Diffraction is an important factor in the determination of the distribution of wave 
energy within a harbor, and therefore is of importance in harbor design. Previous 
investigations in this field have made use of Sommerfeld's solution of the diffraction of 
waves by a semiinfinite screen to obtain results for semiinfinite breakwaters, and by 
superposition, approximate results for continuous breakwaters with openings large 
compared to the wave length. The investigation of this subject by the Hydrodynam­
ics Laboratories of the California Institute of Technology has been guided by the 
theoretical solutions of Morse and Rubenstein for the diffraction of waves by ribbons 
and by slits with the two boundary conditions of zero wave function and zero normal 
gradient. Morse and Rubenstein separate the wave equation in elliptic cylinder co­
ordinates and obtain the total transmission and the angular distribution of the scattered 
or diffracted waves in terms of Mathieu functions. This method bridges the gap be­
tween the method of Rayleigh for very small slits and the approximation based on 
Sommerfeld's solution, which is applicable for slit widths greater than three or four 
wave lengths, and is useful for any angle of wave approach. 

The difficulties of computation of the required Mathieu functions have been over­
come in recent years by the use of modern methods of machine computation. The 
Institute for Numerical Analysis of the National Bureau of Standards has recently 
completed the computation of the transmission and distribution of wave energy for 
openings of one-half, one, two, and three wave lengths, with wave approach angles 
from 0° to 90° in 15° increments. These data, in the form of polar plots of a dimension­
less intensity factor, are compared with experimental measurements conducted to 
verify the theory, and the two results are found to be in good agreement. The experi­
mental procedure has also been used to investigate a number of breakwater configura­
tions for which theoretical solutions are not obtainable. 

1. Introduction 

Considered in the most general way, the disturbance level at a point in 
a harbor is a function of the amount of wave energy entering the harbor 
and the distribution of the energy within the harbor. Because the aim 
of the harbor designer is to provide specific regions within the harbor 
where the wave disturbances will always be less than some maximum, 
and thus guarantee an optimum level of usability for these regions, 
the design technique consists of the determination of .disturbance 
levels in particular places for certain assumed harbor configurations and 
ocean conditions. The significance of diffraction in connection with the 
problems of hai-bor layout and design is that both the amount of energy 
entering the harbor and especially the distribution of wave energy within 
t he harbor are conditioned by this phenomenon. 

The amount of energy entering the harbor is determined largely by the 
size of the opening and the intensity and direction of the incident wave, 
but for small openings- less than one wave length in width-diffraction 
becomes an increasingly important modifying factor. 

' California Institute of Technology, Pasadena, Calif. 
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The distribution of wave' energy within a harbor is governed by three 
factors, diffraction, refraction, and reHection. Of these, diffraction and 
refraction account for the distribution of what may be called the primary 
wave disturbances- waves that have not yet reached a boundary and 
reHected. Secondary, or reflected, wave disturbances are determined by 
the character and alinement of the harbor boundaries, the distribution of 
the primary disturbances, and subsequent diffraction and refraction. 
Because the refraction of water waves is clue to wave-velocity changes 
corresponding to depth changes, refraction is an important factor in the 
distribution of wave energy within a harbor only if the topography of the 
harbor bottom is irregular. Typical harbors on open coasts are char­
acterized by fairly uniform water depths, especially as improved by peri-· 
pheral bulkheading and dredging, hence in many cases the primary 
energy distribution, and as a consequence, the secondary distribution for 
a given set of boundary conditions, may be predicted with sufficient 
accuracy for engineering application by the consideration of diffraction 
effects alone. 

The Hydraulic Structures Division of the Ilydrodynamics Laboratories, 
California Institute of Technology, is engaged in a study of the applica­
tion of the principles of wave behavior to harbor design. This study is 
sponsored by the Bureau of Yards and Docks of the Department of the 
Navy. The investigation of water-wave diffraction described herein is 
one result of this study. 

2. Theory 

2.1 General 

There are two theoretical methods by which the general problem of 
water-wave diffraction through a breakwater gap may be most directly 
approached. The first mode of attack, which may be attributed to Pen­
ney and Price (1],2 involves a solution by Sommerfeld (2] for diffraction of 
light waves by a semiinfinite screen , or a half plane. The procedure is 
extended by superposition to a breakwater with a gap. The resulting 
solution is reasonably accurate, however, only for gap widths of over two 
wave lengths. 

The second method of approach may be credited largely to Morse and 
his associates at Massachusetts Institute of Technology [6 to 9]. This 
analysis, based on elliptic-cylinder coordinates and the associated Mathieu 
functions, was originally developed for the diffraction of sound and 
electromagnetic waves. At the Hydraulic Structures Laboratory it has 
been used with a high degree of success in water-wave diffraction studies, 
especially because the solution converges most rapidly for gap widths of 
the order of zero to three wave lengths. 

2.2 Penney-Price Method 

The principal features of the solution by Penney and Price have been 
verified experimentally by Putnam and Arthur [3], and by Blue and 
Johnson (4]. Although this theory did not serve as the primary basis of 
work done at this laboratory, there is sufficient agreement between it and 
the Morse-Rubenstein theory within certain areas, so that a brief dis­
cussion of it is warranted. 

' Fi~~:urea in brackets indicate the literature references on p. 125, 
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The solution is based on the following assumptions: (a) The water is an 
ideal, incompressible ft uid. (b) Motion of the water is irrotational, 
and the velocity potential cf> satisfies the Laplace equation, 

a2cf> a24> a2¢ 
-+- + - =0 
ax2 ay2 az2 

' 
(1) 

where .1·- and y-axcs arc in the plane of the undisturlwcl water surface, 
and z is the vertieal eoordinate. (c) The wave height is very small. 
(d ) Tlw pressure at the surface, z=rJ(t), is eonstant. (e)Thc com­
ponent of the fluid vclocit~' normal to the surface equals the velocity of the 
surface normal to itself. (f) The velocity of the fluid normal to a fixed 
boundary surface is zero. (g) The depth of the water is constant. 

Using these assumptions, the Laplace equatiou is solved for cf> and an 
expression set up for the free water surface, by the method of Lamb [5]. 
These equations arc, respectively, 

ct>=Ae-ikct cosh lc(z+h)·Ji'(3.·,y), 

ike .k 
ry=-Ae' ct cosh kh·F(x,y), where 

a 
cJ2F a2Ji' 
-+-+k2F=O 
ax2 ay2 

' 

(2) 

(3) 

(4) 

and where k=27r/ X· c=wavc celerity or velocity· X=wave length; 
h =water depth: m{d Akc/ g cosh lch:: amplitude.· 'Progressive waves 
\\·ith straight crest alincment and travelinp; in the positive y-clirection lllay 
be represented by the following solution of cq 4 

Ji'(x,y) =e-iky_ (5) 

Consistent with assumption (f), for a rigid barrier extending along the 
positive x-axis from the origin, 

a¢ aF 
-=-=0, when y=O,x>O. 
ay ay 

(6) 

To study the diffraction of waves incident normally on a semiinfinitc 
rigid breakwater, the 3.·y-planc may be divided into the three regions 
(shmvn in fig. 1 for a general angle of approach). It can be shown [3] 
that the modulus and ar!l;ument of F determine, respectively, the ampli­
t.ude and phase of the difTracted wave, hence the problem reduces to that 
of finding a solution of cq 4, whic·h satisfies the boundary condition of 
eq 6, and whieh rcduees to eq 5 when x is large and negative. 

Penney and Price show that eq 4, 5, and 6 are identical with those 
:-;atisfied by Sonmwrfeld':-; solution for the diffract.ion of light waves 
polarized in a plane parallel to the edge of the scmiinfinite screen. In 
Cartesian coordinates this equation may be written 

l+i{ . j" -"-iu' . j"' -"-iu2 
} F(.r,y)=--e-'kY e 2 du+e'kY e 2 du• 

2 -00 -00 

(7) 

(8) 
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The signs of u and u' for a given point are determined by which of the 
three regions, Q, R, or S (fig. 1), contains the point. The form of this 
Sommerfeld equation is convenient, in that it lends itself to evaluation 
by means of tabulated values of Fresnel's integrals, 

(9) 

or by Cornu's spiral. The behavior of the modulus and argument of F 
over the plane, determined from eq 7, presents a complete picture of the 
surface configuration in the three regions. 
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FIGURE 1. Regions about semiinfinite breakwater. 

Replacing Cartesian by polar coordinates, the Sommerfeld solution 
may be generalized to the case of waves incident obliquely on a semi­
infinite barrier. So far the solution is exact; the specified boundary 
conditions are satisfied exactly within the limits of certain approxima­
tions which were made for convenience. The procedure may be extended 
to a breakwater with a gap by superposing the solutions for one semi­
infinite barrier to the right and one to the left, separated by a gap of width 
d, and with the origin at the center of the gap. 

The resulting compound solution is discussed by Penney and Price for 
waves of normal incidence. The solution is no longer exact, for the 
boundary conditions at each barrier are not automatically satisfied by 
diffraction waves arising from incident waves on the other barrier. For 
openings of over two wave lengths, aF / ay differs from zero by a relatively 
small amount at the boundaries, with the accuracy improving with 
increasing width of opening. For large gaps, therefore, the diffraction 
picture presented by the behavior of the modulus and argument of F is 
assumed to be reasonably accurate. 

For angles of wave incidence other than normal, the determination of 
wave heights becomes somewhat more involved. That factor, together 
with the total unsuitability of the solution for small gaps, prompted the 
adoption of another theory to serve as the basis for evaluation of experi­
mental data. 
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2.3 Morse-Rubenstein Solution 

The unsatisfactory features of the Penney-Price method are largely 
avoided by the approach outlined by Morse and Rubenstein [6] for 
diffraction of sound and electromagnetic waves by a slit in an infinite 
plane. It is an exact solution for small gaps, and possesses the added 
feature of leading to direct expressions for angular distribution of energy 
transmitted through the opening, and for the total of such transmitted 
energy. 

Application of the exact boundary conditions of zero potential gradient 
to the breakwater with a gap is expedited by the use of ellipt-ic-cylinder 
coordinates, 

( I 0) 

Z=Z. 

Fwurn; 2. Elliptic cylinder coordinates. 

For constant z, lines of constant ~ and </> become, respectively, confocal 
ellipses and hyperbolas of focal length d (fig. 2). The suitability of these 
coordinates for the expression of the desired boundary conditions lies in 
the fact that, for tJ> = 0, the hyperbolas degenerate into a straight line 
with a gap of width d. On the other hand, diffraction around both ends 
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oi a barrier of finite length, the reciprocal case to the breakwater with a 
gap, could be investigated by using the degenerate ellipse, corresponding 
to ~=0. 

The three-dimensional wave equation is, in Cartesian coordinates, 

a2o/ azo/ a2o/ 1 azo/ -+-+- =--, ax2 ay2 az2 c2 at~ 
( U ) 

where cis <Lgain the velority of wave propagation. Substituting the new 
coordinates into CCJ 11 puts the wave efjuation in the ellypt ir-rylinder 
forn1 

( 12) 

It is desirable to find solutions of the wave equation, which, in addition to 
possessing zero gradient at the two slit walls, di sappear at infinity and 
remain finite in the gap. 

The variables in eq 12 may now be separated in the standard manner, 
by assuming a product solution of the form 

o/ =G(~)Il(¢)Z(z) e- 2,-ivt, (13) 

v being the wave frequency. Neglecting time and the z-coordinate, since 
the propagation vector is taken in the xy-plane, the following differential 
efjuations result 

d2If -+ (b- s eo:-:;~ A-)lf = 0 
d¢2 ~ ' 

d2G 
-+(s cosh2 1:-b)G=O 
d~2 <; ' 

( 14 ) 

(15) 

where s= (1rdjA.) 2, and b is a separation constant. Equations 14 and 15 
are commonly known, respectively, as Mathieu's equation and Mathieu's 
modified equation, the second being derivable from the first by substi­
tuting ¢=i~. 

Solutions of these equations, and linear combinations of such solutions 
are, of course, solutions of the wave equation from which eq 14 and 15 
arise. Using a countably infinite number of values of the charac-teristic 
constant b results in an infinite number of solutions of the differential 
equations, not all of which arc periodic. In particular, it is the solutions, 
or Mathieu functions, of periods 1r and 21r, which arc of present interest. 

Each equation possesses even and odd solutions, which , in the case of 
the. angular functions, or solutions of eq 14, assume the form of Fourier 
senes 

"" Ser(s,¢) = L_'Dek cos kcp, ( 16a) 
k=O 

"' Sor(s,cjJ)=L._'Do"sin kcp. (l6b ) 
k=ll 

That these functions form an orthogonal set can be easily shown. Even 
and odd solutions of the first kind of the modified equation are designated 
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Jer(s,~) and Jor(s,~;, ar:d these of the second kind are Ner(s,~) and 
Nor(s,O. As their de~ignations indicate, these radial Mathieu functions 
are normally expressed in terms of Bessel'~ functions of the first and 
second kinds. Computable factor~ of proportionality or joining factors, 
however, relate the radial function s Lo each other and to the angular 
functions. 

The ;; ubscripts r in cq 16a and 16b arc index numbers 0, 1, 2, 3, ... 
corresponding to increasing characteristic values of the parameter b that 
yield the desired periodic functions and identify the order of the solution. 
In practice, for a gate width of three wave lengths or less, convergence of 
the final equations is such thaL it is necessary to consider values of r up 
to a maximum of about five or six. The primed summation signs indicate 
that for even values of r, only even values of k are included in the summa­
tion, and for odd r only odd values of k are summed. 

The l\fathieu coefficients, Dek and Dok, may be determined by sub­
:,; tituting eq 16a or 16b into the l\IaLhicu eq 14, using the series representa­
tion for trigonometric functions, a1:cl equating coefficients of like powers 
of cp to zero. The cocfficienLs are then seen to satisfy certain recursion 
relationships that may be represented b.v continued fractions. The value 
of such fractions may be computed, provided the first coefficient is known. 
This first coeffici-ent, where k = 0 or 1, as the case might be, is effectively 
established by choosing 

Sem(s,O) = 1, (17a) 

d 
dq, [Se,. (s,cp) ]q,=o = 0, (17b) 

and 
So,.(s,O) =0, (18~L) 

d 
dcp [Som(s,cp) ]q,=O = 1. (18b) 

Normalizing in Lhis nmnncr also insures the vanishing of the wave-funcLion 
gradient at the boundaries. RLratton, et al. [9] published a very limited 
Lable of even and ode! coefficients with their associated characteristic 
values. The Institute for K umerical Analysis of the National Bureau of 
SLandards is publishing an extensive table of coefficients, characteristic 
\'alues and joining factors. This publicaLion [101 may well serve as a 
handbook on l\1athieu funcLions, as, in addition to the tables and an ex­
tensive hibliograph~', the introduction cont:1ins a summary of all 
important relations involYing Lhe functions. 

Mor::;e [81 dcmonsLrates that Lhc addition formula expressing LlH' 
<'xpansion of a plane, or in Lhc ca~e of water straight-cre~ted, wave in 
tern:~ of l\fathicu fUI:ctions is, exclusiYe of tht time factor, 

where N,, and N,n' arc normalization factors, and u is the angle of inri­
dcnee of the wa\'0" with the breakwater. The diffracted wavf' beyond the 
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rip:id breakwater with a gap is expressed by the equation 

·m-1 

if;= V 81r"£~N sin l'mi'""Sem (s,u) S em(s,</>)- [Jem(s,~) +iNem(s,m. (20) 
m m 

Here I'm is the phase angle of the partial wave, and ctn I'm= (Nem(s,O)) 
/(J .m(s,O)) is identical in value to the joining factors fe,r tabulated by t.he 
Institute for Numerical Analysis. The quantity in brackets bears the 
same relationship to the radial functions of the first and second kinds as 
Hankel functions bear to the Bessel functions, and represent diverging 
cylindrical waves which disappear at infinity but remain finite in the region 
of the gap. It may be shown that the gradient of the wave function of 
eq 20 is zero at the slit boundary, and t.hat if; and its gradient are con­
tinuous in the slit opening. 

The modulus of eq 20 represents t he amplitude of the diffracted wave. 
It may be shown 3 that at sufficient distance R from the center of the 
opening, the normal expression for the energy flux carried by a straight­
crested wave may be applied with ample accuracy to a diverging circular 
wave. As a matter of fact, at points where the radius of curvature of the 
wave crest is as little as about three wave lengths, the error introduced 
by using this relationship is negligible. It is apparent, therefore, that 
the ratio of energy intensity at a point in the harbor to that in the open 
sea is h~.<1>/h~, where hp,</> is the wave height at the point, and h; is the inci­
dent wave height. Or, if the incident intensity is taken as unity, t he 
intensity at a point is just h't,<!> · 

If the asymptotic forms of the radial functions 

Jem(s,~)-+ /I_cos a, p-+oo\J Cp 

(21) 

where a=[cp-(
2
m

4
+1)7r], and p=cosh ~'be introduced into cq 20, 

and the modulus squared, this expression results 

Ip,</>= h!,</>= -s;_ L NlN sin I' m sin 'YnSem(s,u)Sen(s,u) 
V Sp m.n m n 

(22) 

Wl~ en R is sufficiently large, 

d 2R 
x= 2p cos <t>=R cos</>, or p=a· (23) 

Tten the intensity of the diffracted wave at (R,</> ) resulting when a plane 

s Proof that the plane·wave expression is valid for diverging waves of sufficiently large radius of curva­
ture was communicated to the Hydraulic Structures J. .. aboratory by L. I. R-chiff, and is based on the 
rapidity of convergence of the Beseel'e functions of the first and second kinds for a given radius of curva­
ture of the wave crest. 
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wave of unit intensity is incident on the other side of the slit at an angle u 
to the plane of the slit, is 

A 
1R."'= n·I, 

I= I:~· _4~- sin 'Ym sin 'YnSem(s,u)Sen(s,u) 
m,n A V S 

(24) 

(25) 

Equation 25 is used to define an intensity factor corresponding to a point 
(R = IA, tj> = t:/>1), which i:; so close to the gap that the preceding analysis, of 
course, is not valid. Tnc factor is tabulated in this form, however, only 
to serve as a number which may be divided by R1/ A to yield the intensity 
at a point (R1, t:/>1), as cq 2-l indicates. 

Proeeecling further, the total energy transmitted through the opening is 
obtained by integrating over tj>, as follows: 

(26) 

where 

fn(t:/>) = LNl sin 'YnSen(s,u)Sen(s,tj>). 
" n 

(27) 

The integral and summation signs in eq 26 may be interchanged, because 
the series is uniformly convergent throughout the interval of integration. 
In addition, it may be noted that, because of the orthogonality of the 
Mathieu functions, all terms of eq 26 disappear except the ones in which 
m = n, and the cosine factor becomes unity. 

Equation 26 becomes, therefore, 

, 2d11'" 1 . s c ) 12 .. s c ) T = Td=- ~.i..--2 Sll12'Ym[ em s,u F [ e,. s,tj> ]2dtj>. 
·vs,N,. o 

(28) 

Moreover, since the integrand in this equation is by definition identical 
in value to the normalizing factor, N m, the final form of the equation for 
the total transmission factor is taken as 

(29) 

T rr.ay be interpreted physically ss the ratio of the energy actually trans­
mitted through the slit to the energy which geometrical optics predicts 
would be tram:mitted at normal incidence. Equation 29, being relatively 
simple in form, could be computed manually without too much difficulty. 
Equation 25, however, which is by far the more important of the two 
relationships from a design standpoint, lends itself best to mechanical 
means of computation. Plots of the two factors as computed by the 
Institute for Numerical Analysis, appear in figures 3 and 4. 
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2.4 Comparison 

While the Mor::>e-Rubenstein solution appears to be of most direct 
value in harbor design , it shou ld be pointed out that the Penney-Price 
solution, too, pos;esses certain valuable qualities. The wave crest aline­
ment and phase relationships, for example, are more readily ascertained 
by the latter method, except for the small opening::>. For very large gap 
·widths, say of the order of seven or eight wave length s, the boundary 
cor.clition of the Penney-Price solution approaches the desired value 
rather well, whereas the Mathieu functions converge much more slowly 
for large openings. For that reason, i.t may be more convenient for such 
1:1!'ge widths to determine the energy intensities by means of the Penney­
Price approach. 

It is interesti:-~g to note that there is a great deal of agreement between 
results of the two methods in their common domain. It has been found, 
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for example, that an intensity plot based on wave heights tabulated by 
Penney and Price for an opening of 2.5 f.. shows a form strikingly similar 
in relative proportions to one for a 2/.. opening based on the .Morse-Ruben­
stein solution. 

An important quantitative result developed by Penney and Price for 
the slit problem appears to apply reasonably well when compared with the 
Marse-Rubenstein curves of figure 3. For distances behind the gap 
greater than some minimum 

(d)2 
lmax= ~ ' (30) 

or, the maximum intensity factor is approximately equal to the square of 
the orening in wave lcng"t.h:- . 
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FIGURE 4. Theorelicallnm~mission foetor~ . 

3. Experiments 

3.1 Techniques 

The primary purpose of the experimental program was to check the 
theoretical results of the "AI 01'se and Rubenstein solution for vertical face, 
straight breakwaters. This was especially important for small openings 
and for wave-approach angles less than 9(/, since no experimental work 
covering this range of variables had come to the attention of the Labora­
tory. The development of equipment and techniques for this purpose 
made it possible to extend the experimental investigation to include 
some breakwater configurations of practical interest, which, because of 
tteir alinement, are not susceptible to theoretical analyfolis. 



'The experiments were conducted in an L-shaped basin (fig. 5), 20 feet 
wide by 60 feet long, with an offset portion 12 by 24 feet at the shallow 
end. The water depth at one end of the basin was made 12 inches to 
accommodate one of the standard laboratory pneumatic wave generators, 
with the bottom rising from this depth at a slope of 1 in 40 to a line where 
the depth is 3 inches. The remainder of the basin bas a uniform depth 
of 3 inches. The breakwaters and "harbor" were located in the region of 
uniform water depth , thus clin1inaLing refraction phenomena f10m the 
investigation. Pe:1 gravel beaches around the periphery of the harbor 
effectively prevented reflection from the basin walls. Different angles of 

FIGURE 5. Basin for experimental measurements. 

wave approach were obtained by rotating the breakwater, the wave 
machine remaining fixed. Tl~e offset portion of the basin provided space 
for a clamping beach to prevent the reentry of waves reflected from the 
breakwater into the region near the breakwater opening, thus simulating 
a basin of infinite extent. For the cases where ihe breakwater was alined 
at 60° and 90° to the direction of wave approach, waves reflected from the 
breakwater were not intercepted by this side beach, but t.raveled the 
length of the basin, reflected from the wave machine and so could inter­
fere with the incident wave train. Difficulties of this kind were pre­
vented by providing sufficient distance from wave generator to breakwater 
so that measurements could be obtained before waves reflected from the 
breakwater reached the wave generator. 

Incident wave height was measured in deep water, near the wave 
machine, to insure freedom from obscuring reflections . The data obtained 
was corrected to represent wave heights incident at the breakwater 
opening. Calculations based on the effect of shoaling indicated that the 
deep-water values should be reduced by 8 percent, but direct measurement 
of the change in incident wave height gave a value of 25 percent. The 
additional height reduction is assumed to be a fluid friction phenomenon. 

The distribution of transmitted wave energy was obtained by wave­
height measurements at 4° intervals on a semicirc!c of radius 5.76 wave 
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lengths centered ou the opening. The intensity factor, I R,</> m each 
direction cf> can then be expressed as: 

where 

[ = (hR,</>) 2 • !!:_= (hR,</>) 2, 
R,</> (h;)2 A 5.76 (h;)2 

hR,<t> =wave height measured at c/>,R, inside the breakwater, 

h; =wave height incident at the breakwater, 

H, =radius of measuring circle, 
A =wave length. 

The total transmission factor, T, is computed by a summation process 

1 <hR,</>) 2Rdcf> 
T= ' 

h?d 

where dis the gap width in the same units as R. 
'Vave heights were measmed by means of sixteen channels of electrical­

conductivity cells. Each cell consists of a pair of wire electrodes sup­
ported and spaced one-half inch apart by an insulating block at one end. 
The electrodes are immersed to a mean submergence of 1 inch, and a 
constant voltage is applied across the cell. The amount of current con­
ducted by the cell is a linear function of the submergence, hence of wave 
height. The current signal from each cell corresponding to t he wave 
motion past each cell is recorded on a galvanometer osci llograph. 

3.2 Results 

A comparison of theoretical with experimentally determined energy 
transmission for vertical face straight breakwaters is shown in figure 6. 
The theoretical solutious indicate that for projected widths of openings 
in the direction of wave approach greater than one-half wave length, the 
effc(·t of diffraction on energy t ransmission is minor, but for smaller open­
ings, the energy transfer is larger t han would be expected from geometrical 
considerations. The experimental data are in fai rly good agreement 
with the theoretical values with respect to these general conclusions, 
although the measured values are about 20 percent lower than theoretical. 
Because wave energy is proportional to the square of t he wave height , the 
difference between theory and experiment on a wave-height basis­
which is the measured quantity- is but lO percent in most cases. These 
results are considered sufficient evidence of the validity of the theoretical 
approach, at least for engineering applications. 

The most important application of diffraction considerations is in the 
analysis of wave-energy (or height) distribution in the lee of the break­
water gap. Figures 7, 8, and 9 present some results of experimental 
distribution measurements for three breakwater configurations: (1) 
straight arms in line with each other, (2) st raight arms inclined sym­
metrically "ith respect to all axis consisting of the perpendicular bisector 
of the line of the opening, (3) straight arms at right angles to each other, 
the seaward arm parallel, and the leeward arm perpendicular to the in­
cident wave crests. Three degrees of sheltering of the gap by the sea-
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ward arm \\'ere studied, eorrospm:cling to projeeted openings in tho direc­
t ion of wave advance of l / V2 ancl zero gap widths, and a seaward arm 
overlap of l / V2 gap widths. 
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FIGURE (j_ Theoretical and experimental transmission .facto1·s. 
(Vertical face straip:ht breakwaters.) 

The experimental data for straight breakwater alinements, some of 
which are shown in figure 7, may be compared with the theoretical data 
of figure 3. The agreement between experiment a nd theory, while not 
exact, is reasonably close, ancl supporls the important general conclusions 
of the theory. In particular, the experimental data verify that the maxi­
mum value of the intensity factor i:-; proportional to the square of the gap 
width , and that the effect of reducing the gap width is to distribute the 
wave energy more uniformly in the region behind the breakwater. 

Figures 8 and 9 present experimental data for the wave-energy distri­
bution in the Icc of some breakwater configurations that cannot be 
analyzed by the theoretical approach. 

The data of figure 8 show the energy distribution resulting from normal 
wave approach for an imporLant class of breakwater a linements- sym­
metrical arms converging seawatd, or so-called "wave traps." The data 
show that, as the included angle between the breakwater arms is reduced 
from 180° (straight breakwater) to 9v0

, there is virtually no change in the 
energy distribution. This result is in agreement with the observations of 
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FIGURE 7. Polar plots of energy distribution. 
(Vertical face straight breakwaters.) 
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FIGURE 8. Polar plots of energy distribution; 

(Vertical face symmetrically inclined breakwaters.) 
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Blue and Johnson [4]. For still smaller included angles, marked changes 
appear due to the partial frustration of the diffraction process, or pre­
vention of free expansion of the wave crests. Thus, the 60° and 30° 
alinements are marked by a decrease in intensity along the axis of sym­
metry, and a build up of inten sit~r along the breakwater arms. It should 
be noted that for such extreme cases as the 30° alinement the intensity 

1 
Scale : 1.0 I , 

Scale: 0.1 I 

t t t 
Two wove length openings 

li'1GUHE 9. Polar plots of energy distribution. 
(Vertical face right angle breakwaters.) 

factor concept is not valid, and the data cannot be used to comput.e wave 
heights at other than the original measuring distance of 5.76 wave lengths 
from the opening. In the limiting case of parallel breakwater arms, 
there would be no diffraction at all , the wave heights remaining constant 
for the entire length of the channel; in the 30° case illustrated, the 
heights must decrease at some rate intermediate between the "zew rate" 
for a channel and the inverse square root of distance relation for complete 
diffraction. The data clearly indicate the transition in behavior between 
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60° and 30° enclosed angles, and so points out an important factor to be 
considered in the design of harbors with converging breakwaters. 

The data of figure 9 are included as a purely experimental evaluation of 
types of energy distribution that may occur for typical asymmetrical 
breakwater alinements. The origin of the polar plots for these cases is 
not the center of the breakwater opening as in the other figures, but is the 
terminus of the breakwater arm oriented parallel to the incident wave 
crests. 

The case in which the seaward arm does not shelter the opening may be 
regarded as a half-model of a straight breakwater with a gap width of 
2V2>-. The resulting intensity diagram, with allowance for the skewness 
resulting from the unsymmetrical locus of the plot, compares in general 
shape (although somewhat deficient in magnitude) with the corresponding 
data of figure 3 for a 3>. opening. 

The intensity diagram for the case in which the seaward leg just shelters 
the gap is similar in shape and of the same order of magnitude as those for 
the straight breakwater with 0° wave approach. This observation is in 
agreement with the behavior observed for some of the symmetrically 
inclined breakwater alinements, that the diffraction process is more sensi­
tive to the angle of wave approach with respect to the alinement of the 
opening than to the alinement of the breakwater arms which define the 
opening. 

The diagram for the case in which the seaward arm overlaps the lee­
ward arm not only shows the remarkable increase in sheltering obtained 
with such alinements, but also indicates a shift in direction of ihe maxi­
mum disturbance. The latter effect is easily explained: The wave crests 
after diffraction around the terminus of the seaward arm of the break­
water approach the leeward leg at nearly 90°, and the resulting intensity 
distribution is as would be expected after diffraction around the leeward 
tenninus. 
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