
On the Stress Distribution at the Base 
of a Stationary Crack1 

BY M. L. WILLIAMS,2 PASADENA, CALIF. 

In an earlier paper it was suggested that a knowledge of 
the elastic-stress variation in the neighborhood of an 
angular corner of an infinite plate would perhaps be of 
value in analyzing the stress distribution at the base of a 
V-notch. As a part of a more general study, the specific 
case of a zero-angle notch, or crack, was carried out to 
supplement results obtained by other investigators. This 
paper includes remarks upon the antisymmetric, as well 
as symmetric, stress distribution, and the circumferential 
distribution of distortion strain-energy density. For the 
case of a symmetrical loading about the crack, it is shown 
that the energy density is not a maximum along the direc­
tion of the crack hut is one third higher at an angle ± cos- 1 

(l/3); i.e., approximately ±70 deg. It is shown that at the 
base of the crack in the direction of its prolongation, the 
principal stresses are equal, thus tending toward a state of 
(two-dimensional) hydrostatic tension. As the distance 
from the point of the crack increases, the distortion strain 
energy increases, suggesting the possibility of yielding 
ahead of the crack as well as ±70 deg to the sides. The 
maximum principal tension stress occurs on ±60 deg rays. 
For the antisymmetrical stress distribution the distortion 
strain energy is a relative maximum along the crack and 
60 per cent lower ± 85 deg to the sides. 

MANY previous investigators have studied the elastic­
stress distributions around cracks with some of the earli­
est contributions being from Inglis (1) 3 who studied an 

internal crack using elliptical bounding surfaces, Griffith (2) who 
set up an energy criterion for crack instability, Westergaard who 
initially treated the crack problem in the same way to be ex­
ploited in this paper (3), as well as by the complex variable tech­
nique in a later paper (4). The stress distribution at the base of 
cracks also has been examined photoelastically with the first at­
tempt to measure isochromatic-fringe patterns in this specific 
application apparently being accomplished by Hollister (5). Re­
cently Post (6) has published some interesting results of his photo­
elastic observations for the case of an edge crack. 

It is the purpose of this paper to supplement the results of these 
investigators in certain respects which it is hoped will aid in the 
further understanding of the elastic-stress distribution at the base 
of a stationary crack. 

1 This investigation was sponsored in part by the National Ad­
visory Committee for Aeronautics, under Contract NAw-6431. 

•Associate Professor, California Institute of Technology. 
•Numbers in parentheses re.fer to the Bibliography at the end of the 

paper. 
Contributed by the Applied Mechanics Division and presented at 

the Annual Meeting, New York, N. Y., November 25-30, 1956, of 
THE AM°ERICAN 8oCIETY OF MECHANICAL ENGINEERS. 

Discussion of this paper should be addressed to the Secretary, 
ABME, 29 West 39th Street, New York, N. Y., and will be accepted 
until April 10, 1957, for publication at a later date. Discussion re­
ceived after the closing date will be returned. 

NOTE: Statements and opinions advanced in papers are to be 
understood as individual expressions of their authors and not those of 
the Society. Manuscript received by ASME Applied Mechanics 
Division, March 21, 1956. Paper No. 56-A-16. 

109 

In a previous investigation (7) the plane-stress distribution near 
the vertex of an infinite sector of included angle a was con­
sidered for various combinations of boundary conditions. For 
the particular purpose of this paper it is desired to consider the 
case where the two radial edges of the plate are unloaded and the 
included angle approaches 271". It has been shown that stress 
functions, i.e., solutions of V''x(r, 8) = 0, of the form 

x(r, 8, ;\) - r>..+ 1F(8; A) 

= r}.+ 1[c1 sin (;\ + 1)8 + c2 cos (;\ + 1)8 

+ ca sin (;\ - 1)8 + c, cos (;\ - 1)8]... . . [l] 

will satisfy the conditions of stress-free edges along 8 = 0 and 
8 = a if the X are chosen as the positive roots of 

sin (Xa) = ±X sin a ................. f2] 

For the case where a = 271", corresponding to the case of a crack 
with flank angle w = a - 271" = 0, the eigenequation takes the 
particularly simple form sin (27rA) = 0, thus requiring ;\ = n/2, 
n = 1, 2, 3, ... , and yielding the stress function 

x(r, 8; n/2) = r<nl2>+ 1 

[c1 sin (; + 1) 8 + c2 cos ( % + 1) 8 

+ ca sin (; - 1) 8 + c4 cos (; - 1) 8]. ..... [3] 
From the general definition of the stress function 

02x >..-1 
0'8 = ~ = r [;\(;\ + I)F(8)] .......... [5] 

ur2 

1 0 2x 1 ox 
= - - - + - - = r>..- 1 [-;\F'(8)] [6] r oro8 r 2 08 .... 

one proceeds to require for this case that 0'8 and T rlJ vanish on 
8 = 0 and 8 = a = 27!". By reference to Equations [3-6] this im­
plies that 

F(O, n/2) = F'(O, n/2) = F(27r, n/2) = F'(27r, n/2) = 0 

Ordinarily, that is, if a < 271", the four homogeneous boundary 
conditions permit three of the four c, constants to be determined 
in terms of the fourth. In this case, however, all four boundary 
conditions can be satisfied by 

x(r, 8) = r<n/2)+1 

{ca [sin (; - 1) 8-: +~sin ( % + 1) 8 J 
+ C4 [COS ( ; - 1) 8 - COS ( % + 1) 8 J } ...... (7] 

where the first term is equivalent to that used by Westergaard (3). 
Turning now to a more convenient alternate form of expressing 

Equation [7] in terms of the bisector angle i/t = 8 - 71", the stress 
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FIG. 1 GEOMETRY 

function x(r, i/;) can be split into its even x.(r, t/;) and odd Xo(r, 
tf;) parts withrespect to if; (Fig. 1) 

{ 

n+_!_ 
.x.(r, t/;) = 2:::: (-l)n-1a2,,-1 r 2 

n = 1, 2, 3, ... 

[-cos ( n - f) if; + :: + ~ cos ( n + i) t/I] 
+ (-l)na2nrn+I [-cos ( n -% ) if;+ cos ( n +})if;]}. [8] 

L:: {(-l)n- 1b2n-1r n + ~ 
n = 1,.2, 3, ... 

Xo(r, t/;) 

+ (-l)nb2,,rn+i [-sin ( n - % ) if; 

I 

+ ~: + ~ sin ( n + } ) if; J} ...... [9] 

It should be observed that even though the field equation and 
the boundary conditions along the radial edges are satisfied, the 
constants ai and bi are undetermined. Their values of course de­
pend upon the loading conditions; more specifically, either upon 
the boundary conditions at infinity in the case of an infinite sec­
tor, or upon those at some fixed radius when the plate has finite 
dimensions. For the latter practical case, which includes the 
problem under consideration, all the higher eigenfunctions in 
general will be present in order to determine a solution in the 
large. 

Upon writing out the first few terms 

3 [ ( if; 1 3tf;) x(r, if;) = r h a1 -cos 2 - ·3 cos 2 

+ b1 (-sin ; - sin 
3
:) J 

+ a2r2[l - cos 2tf;J + O(r
6
h) + ......... [10] 

from which the associated stresses may be found from Equations 
(4-6] as 

CT,(r, t/;) = -
1 {a1 [-5cos1_ +cos 

3t/IJ 
4r1f2 2 2 

. b [ 5 . if; . 3t/I]} + 1 - sm 2 + 3sm 2 

+ 4a2 cos2 if; + O(r
1
h) + ......... (11] 
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CT.p(r, t/;) = 
4
r111t { a1 [ -3 cos ; - cos 

3
: J 

+ b1 [ -3 sin ; - 3 sin 
3
: J} 

+ 4a2 sin 2 if; + O(r
1
h) + ......... [12] 

r,y,(r, t/;) = 4r~f2 { a1 [-sin ; - sin 
3
: J 

+ b1 [cos ; + 3 cos 
3
: J} 

-2a2 sin 2tf; + O(r
1l 2

) + ......... [13] 

Before proceeding further, it is convenient to identify the stress 
state which is multiplied by the constant a2, viz. 

In the Cartesian co-ordinates analog of Equations (4-6], the 
stresses are 

CT., = 4a2, CT 11 = O, and r "''II = 0 

For most cases of interest, including the usual tension and bending 
specimens, CT,, along the edge x = -xo (see Fig. 1) is zero; hence 
for these cases CT,, = 4a2 = 0 and thus Equations [11-13] with re­
spect to the radial variation are all of the form r-'/z + O(r'li), 
and the local stress variations in the vicinity of the base of. the 
crack, r--+- 0, are proportional, up to vanishing terms in r, to the 
contribution of the first term. If the boundary x = -x11 were 
loaded, however, say by a uniform pressure, this contribution 
would have to be superimposed. 

It is convenient at this point to compute two quantities useful 
in photoelastic analysis; specifically, the sum of the normal 
stresses, which is proportional to the isopachic lines, and the · 
difference of the principal stresses, which is proportional to the 
isochromatic lines. 

Thus 

4r~ls {a1 [ -8 cos ; ] 

+ b1 [ -8 sin ; J} + ... CT1 + CT2 ...... (14) 

CT1 - CT2 = [(CT, - CT.p) 2 + 4r,y,2J1h 

±1 { ( 3 )}
1

/2 
4

r'ls l6a12 sin2 if; + 64b1
2 I - 4 sin2 if; _ + ... 

...... (15] 

The direction of principal stress is found from the condition that 
the shear stress, r n81 on a plane whose normal is inclined at an 
angle a to the radius vector vanishes 

Tns = r,y, cos 2a - (1/2)(CT, - CT.p) sin 2a = 0 

O = -r-
1
/2 {[sin .t cos2 

; cos 2a 

- cos ; sin 2 
; sin 2a J a1 + [cos ; ( 2 - 3 cos 2 ; ) cos 2a 

+ sin ; ( 2 - 3 sin2 
; ) sin 2a J b1} + ......... (16] 

The angle {j of a stress trajectory with the x-axis, Fig. 1, is then 
{j = i/t + a. Also the total strain-energy density 
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and the strain energy due to distortion alone, i.e., the total strain 
energy less that due to change in volume 

1 
= 

12
G (3Toct) 2 •..... [18] 

where the expression is given in terms of principal stresses (cr3 = 0 
in this case), and the definition of the octahedral sh~aring stress 
has been used, may be written, respectively, as 

32ErW = a12 [ (34 - 30v) cos2 t + 2(1 + v) sin2 t 
+ 2(1 + v) - 4(1 + v) cos 21/; J + b1 2 

[ (34 - 30v) sin 2 t 
+ 2(1 + v) cos2 ~ + 18(1 + v) + 12(1 + v) cos 21/; J 

+ 2a1b1 [ (32 - 22v) sin t cos t 
- 8(1 + v) sin 21/; J + ... . ... [19] 

6GrWd = a 12 (1+3 sin2 t) cos2 t 
+ 2b1 

2 
[ 3 + ( 1 + 3 cos ~ ) ( 1 - 3 cos ~ ) sin 2 t J 

+ 2a1b1 sin 1/; + . . . . ..... [20] 

In the foregoing expressions it is seen that the term multiplied 
by the coefficient a1b1 represents a coupling between the sym­
metric and antisymmetric variations with respect to 1/;. 

Finally, the displacements (see reference 7) are found to be 

I { [( 5 )· 1/; 1 31/;J 2µU,(r, 1/;) = r h a1 - 2 + 4cr cos 2 + 2 cos 2 

+ b1 [ (-3 + 4cr) sin ; +sin 
3t]} + ......... {21] 

,/, '/ { [( 7 ) .. 1/; 1 . 31/;J 2µU y,(r, .,, ) = r 1 
a1 2 - 4cr sm 2 - 2 sm 2 

+ b1 [ - ( f - 4cr) cos t + ~ cos 
3t J} + ......... [22] 

where 

cr=v/(l+v) 

SYMMETRICAL STRESS D1sTRIBUTION 

For the sake of simplicity it is convenient to analyze the two 
types of solutions separately; the symmetric solutions, i.e., b, = 0, 
are perhaps the more common, occurring, for example, in the case 
of an edge crack in a thin plate subjected to bending or tension. 

Specializing the stresses and the other quantities to this case 
gives 

1 [ 1/; 31/;J cr,(r, 1/;) = 
4

r 1h -5 cos 2 + cos 2 a1 + ..... [23] 
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cry,(r, 1/;) = ~I [-3 cos}!__ - cos 
31/1] a, + ..... [24] 

4r 2 2 2 

1 [ . 1/; . 31/;J Tr.p(r, 1/;) = ---;----
1 

-sm - - sm - a1 + ...... [25] 
4r 2 2 2 

2µUr(r, 1/;) = r'h [ (- t + 4cr) cos t 
+ ~ cos 

3t J a, + ......... [261 

2µUy,(r, 1/;) = r'h [ ( f - 4cr) sin ~ 

- f sin 
3t J a1 + ......... [27] 

CT1 + CT2 = ~/ [-8cos1.J n1 + .. . 
4r 2 2 

-4-1 [4a1 sin if;] + ... 
4r 2 

. .. [28] 

. .. [29] 

f3n-i = (31/;/4) ± (7r/4); also isotropic locus at if; ~ 0 .. [30] 

W = ~ cos 2 j;_ [1 - v + (1 + v) sin2 i....J + ..... [311 
Er 2 2 

It is observed that, for this elastic behavior in an isotropic 
homogeneous material, the stress system represented by the first 
term possesses the characteristic square-root singularity found by 
Inglis (1), Westergaard (4), and others; also, the shapes of _the 
isopachics and isochromatic fringes are in agreement with photo­
elastic data obtained by Post (6) and corroborated independently 
at GALCIT. In addition, however, there are certain other in­
teresting features which, because of the relative simplicity of the 
previous expressions, become readily apparent. 

CRACK 

(o) SYMMETRIC CASE 

n-;'
12

sin o/ 

CRACK 

(b) ANTISYMMETRIC CASE 

"I/ r. 3 2 Jl/2 n~r 2 ~-4 sin y 

Frn. 2 IsocHROMATIC-FRINGE PATTERNS 

The first of these relates to the observation that the shear stress 
is zero along the line of propagation of the crack (1/; = 0). The 
er, and cry, stresses must therefore be principal stresses as ex­
pected, but moreover from Equation [29] the stresses are equal 

CT1 (0) - CT2(0) = (-a1)r-
1
h + ... 

In other words, at the base of the crack there exists a strong tend-
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FIG. 3 PRINCIPAL-STRESS VARIATIONS 

ency toward a state of (two-dimensional) hydrostatic tension 
which consequently may permit the elastic analysis to apply 
closer to the point of the crack that was hitherto supposed, not­
withstanding .the square-root stress 8ingularity. 

In order to investigate this point a bit more fully, particularly 
for the hig~er terms in r, i.e., further away from the crack point, 
more terms can be considered in Equations (23] and [24] to ob­
tain, for t/; = 0 

u,(r, 0) I: 
3 

(-l)n(2n - I)a2n-iT n - Z . . (33] 
n=l,2,3 ... 

uy,(r, 0) _ I: {c-l)n(2n - I)a2n-1/ - ·~ 
n - 1, 2. 3 ... 

+ (-1r+1 2a2,J2n - l)rn-1} ...... [34] 

from which it may be concluded that, if the constant loading term 
a2 = O, the principal stresses are equal up to the linear term in r. 
From the previous relation the difference between the stresses can 
then be written 

u, - uy, L: (-1)"2a2,.(2n - l)rn- 1 ••. [35] 
.n = 1, 2, 3 ... 

Therefore the principal stresses will become progressively unequal 
and the tendency toward hydrostatic tension reduced as the dis­
tance from the crack increases. As a matter of interest the stress 
trajectories for the lowest eigensolution, n = 1, are shown in Fig. 
5 and they are observed to be of the interlocking type which ex­
plains the apparent contraction that fJ = ±?r /4 for t/; = 0 from 
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Frn. 4 STRAIN-ENERGY-DENSITY DISTRIBUTIONS 

Equation (30]. The equality of the principal stresses leads to a 
locus of isotropic points. 

Another interesting characteristic of the solution is shown in 
Fig. 4 which shows the variation of distortion strain energy as a 
function of angle for a fixed radius. B.ecause of the afore-men­
tioned hydrostatic tendency, the maximum energy of distortion 
does not occur along the line of crack direction, but rather at 

t/;* = ±cos-1(1/3) "" ±70 deg 

where it is one third higher. 
The previous results also give the principal stress as 

a, t/; [ . t/; J 
<1'1.2 = - ~/. COS - 1 =F Sill -

r ' 2 2 

for which the maximum value of (3v3/4)(-a1)r-'11 occurs at "j, 
= cos-1 (1/2) = 11" /3 at which angle the stress trajectories are 
parallel to the x, y-co-ordinates; i.e., fJ = 0, 7r/2. The maximum 
shear stress Tmax = 1/2 (u1 - u2) oriented at fJ = 7r /8, 5w/8, t/; = 
11" /2 and equals exactly one half the hydrostatic tension value to 
which the normal stresses are subjected along t/; = 0 at the same 
radial distance. Some of the foregoing properties are summarized 
in Fig. 6. 

Finally, the radial and circumferential displacements on the 
free edges from Equations [23] and [24] are found to be zero and 
±4(1 + v)- 1a,r

1
l 2

, thus leading to the expected fact that the two 
faces will have closed together and overlapped under a compres­
sion loading, an impossible situation by itself requiring a1 = 0. 
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FJG. 5 STRESS TRAJECTORIES FOR LOWEST EVEN EIGENFUNCTION 

fJ = (3f /4) ± ('If /4) 

In this case one is led to the contact problem treated by Wester­
gaard (4) wherein there is no stress singularity at the point of the 
crack. 

ANTISYMMETRICAL STRESS DISTRIBUTION 

When the stress distribution is antisymmetric, which is a case 
that does not seem previously to have been treated explicitly, 
such as may exist about a crack parallel to the neutral axis of a 
beam in pure bending, there results 

u (r ·'') = _!_I [-5 sin2 ± + 3 sin~] b1 + ..... [36] 
r ' 'Y 4r1 t 2 2 

<Tf(r, 1/;) = ~I [-3 sin .i_ - 3 sin 
31f] b1 + ..... [37] 

4r 2 2 2 

T,f(r, if;) = 4r~;1 [cos ~ + 3 cos 
3
: J b1 + ..... [38] 

2µU,(r, if>° = r
1
I• [ (-3 + 4u) sin + 

+sin ~f J b1 + ......... [39] 

2µV f(r, 1/;) = r
1
f 1 

[ - ( ~ - 4u )cos ~ 

+ f cos 
3
: J b1 + ......... [40] 

<T1 + u2 =~I [-8 sin±] b1 + ......... [-HJ 
4r 2 2 

<11 - <12 = 4r~/t [ 8 ( 1 - ! sin21/; }
1
'] b1 + ..... [42] 

W = ~ [<1 - v) sin2 ± + (1 + v) 
Er 2 

( 1 - ~ sin2 1/;) J + ......... [43] 

b1 2 [1 + v . if W = - -- sm 2 - + (1 + v) 
d Er 3 2 

( 1 - ~ sin 2 lf') J + ......... [44] 
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FIG. 6 CRITICAL PRINCIPAL STRESSES FOR THE LOWEST EVEN 

EIGENFUNCTION ITO = -a1ro-1
/1 

Again in this case the singular stress system varies as r-1
/ 1 ; 

the distortion-strain-energy-density variation is shown in Fig. 4. 
It is interesting to observe that in this case the energy drops on 
either side from a relative maximum in the direction of the crack 
to a minimum of 40 per cent of its if = 0 value at If* = cos-1 

(1/9). 
It would be interesting to experiment photoelastically with the 

antisymmetric-loading condition, which is not too simple a matter, 
in an analysis similar to that of Post for the symmetrical case. 

CONCLUSION 

While it is not the intent to extend the range of validity of the 
elastic analysis by delving into the complicated phenomenon of 
failure or fracture mechanics, it does seem pertinent to remark 
upon some possible implications of the results obtained from elas­
ticity theory. 

First of all it seems that even in the presence of a partial (two­
dimensional) hydrostatfo-stress field there would be a reduced 
tendency for yieldin11; at the base of the crack. Then, as the mag­
nitude of the individual stresses increases as the inverse half power 
of the radius, the stress should become quite high with a tendency 
toward a cleavage failure. At the same time the elastic analysis 
indicates there should be a large amount of distortion off to the 
sides of the crack and presumably some yielding should take 
place in these areas which would tend toward a ductile failure. 
The character of failure actually occurring in a given specimen 
would depend upon the material. In this connection it is pertinent 
to mention some recent experimental evidence of Forsyth and 
Stubbington (8) called to the author's attention by S. R. Valluri, 
which tends to substantiate the remarks concerning an area of 
yielding off the crack direction, presumably ±70 deg for an ex­
actly symmetrical loading. 

In addition, because the stress becomes nonhydrostatic as the 
distance from the point of the crack increases, by Equation [35]. 
there may be reason therefore to suspect a yielded region ahead 
of the crack also, although not as severe. 

As a second remark, concerning the direction of cracking or 
forking, it is recognized that slow-moving cracks generally 
propagate more or less straight. 4 Because some cracks do fork, 

'In an interesting piece of work Yoffe (9) has discussed the chitnge 
of direction of a running crack due to its velocity and has found that 
if the material is such that a crack propagates in a direction normal 
to the maximum tensile stress (which, incidentally, is not uf as she 
apparently has assumed; indeed aside from the principal stresses, 
ur ;::: 111f), there is a critical velocity of about 0.6 times the velocity of 
shear waves in the material above which the crack tends to become 
curved. It may be of value to supplement her work by testing her 
hypothesis with respect to the maximum principal tensile stress; it is 
suspected, however, that the results will be qualitatively the same be­
cause, as she has remarked and as is shown in Fig. 6, the stress field is 
relatively uniform over a wide area in front of the crack. 
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however, it may be worth noting that any arbitrary crack will be 
subjected simultaneously to both symmetric and antisymmetric 
loading. In this connection it is observed that for the antisym­
metric contributions the relative maximum and minimum ener­
gies, for example, tend to negate the effects which occur for a 
symmetrical loading. One might therefore conclude that for 
randomly oriented cracks there would be no preferred direction 
that the crack might take upon moving, with macroscopic struc­
ture and rate-of-energy release being controlling factors. On the 
other hand, it may be possible to relate the maximum principal 
tensile stresses occurring at ±60 deg, in the neighborhood of the 
maximum distortion, to the angle crack-forking phenomenon 
shown, for example, by Post (6) or in Fig. l(b), although again 
for metals as opposed to plastics the effect of crystal orientation 
and slip planes probably would be quite strong. 
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