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[1] We implement a new isoprene oxidation mechanism in a global 3-D chemical transport
model (GEOS-Chem). Model results are evaluated with observations for ozone, isoprene
oxidation products, and related species from the International Consortium for Atmospheric
Research on Transport and Transformation aircraft campaign over the eastern United States
in summer 2004. The model achieves an unbiased simulation of ozone in the boundary layer
and the free troposphere, reflecting canceling effects from recent model updates for isoprene
chemistry, bromine chemistry, and HO2 loss to aerosols. Simulation of the ozone-CO
correlation is improved relative to previous versions of the model, and this is attributed to a
lower and reversible yield of isoprene nitrates, increasing the ozone production efficiency
per unit of nitrogen oxides (NOx≡NO+NO2). The model successfully reproduces the
observed concentrations of organic nitrates (∑ANs) and their correlations with HCHO and
ozone.∑ANs in the model is principally composed of secondary isoprene nitrates, including
a major contribution from nighttime isoprene oxidation. The correlations of ∑ANs with
HCHO and ozone then provide sensitive tests of isoprene chemistry and argue in particular
against a fast isomerization channel for isoprene peroxy radicals. ∑ANs can provide an
important reservoir for exporting NOx from the U.S. boundary layer. We find that the
dependence of surface ozone on isoprene emission is positive throughout the U.S., even if
NOx emissions are reduced by a factor of 4. Previous models showed negative dependences
that we attribute to erroneous titration of OH by isoprene.
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1. Introduction

[2] Isoprene (2-methyl-1,3-butadiene), the most important
nonmethane volatile organic compound (NMVOC) emitted

by vegetation, affects tropospheric ozone, OH (the main
tropospheric oxidant), and aerosols in complex ways. It has a
lifetime of about 1 h against oxidation by OH [Atkinson and
Arey, 2003]. The resulting oxidation products lead to the forma-
tion of ozone, an effective greenhouse gas and air pollutant.
Isoprene also reacts with the nitrate radical (NO3) at night, with
important implications for global budget of nitrogen oxides
(NOx≡NO+NO2) and therefore ozone [Brown et al., 2009].
The successive oxidation steps of isoprene produce a range of
multifunctional organic compounds that can go on to form
secondary organic aerosols (SOA) with implications for cli-
mate and public health. The International Consortium for
Atmospheric Research on Transport and Transformation
(ICARTT) aircraft campaign provided a detailed characteriza-
tion of boundary layer chemistry across the isoprene-rich
eastern U.S. in July–August 2004 [Fehsenfeld et al., 2006;
Singh et al., 2006]. We use here aircraft observations from this
campaign, interpreted with a global 3-D chemical transport
model (GEOS-Chem), to better understand the importance of
isoprene chemistry for tropospheric ozone and its precursors.
[3] Daytime oxidation of isoprene is initialized by its reac-

tion with OH, leading to the production of peroxy radicals
(ISOPO2). In the presence of NOx, ISOPO2 reacts with NO
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leading to the production of organic nitrates by a minor
branch. These nitrates may act as a sink for both HOx

(HOx ≡H+OH+ peroxy radicals) and NOx and therefore
affect global and regional ozone budgets [Fiore et al.,
2005; Horowitz et al., 2007; Ito et al., 2009; Paulot et al.,
2012; Perring et al., 2009b; von Kuhlmann et al., 2004;
Wu et al., 2007;Xie et al., 2013]. Laboratory data indicate a yield
of first-generation organic nitrates from isoprene oxidation rang-
ing from 7% to 12% [Giacopelli et al., 2005; Lockwood et al.,
2010; Patchen et al., 2007; Paulot et al., 2009a; Sprengnether
et al., 2002]. A model interpretation of the ICARTT data by
Horowitz et al. [2007] indicated a smaller yield (4%). Isoprene
nitrates are partly recycled back to NOx upon further oxidation,
leading to further complication in their role as a sink or reservoir
for NOx [Horowitz et al., 2007; Ito et al., 2009; Paulot et al.,
2012; Paulot et al., 2009a; Perring et al., 2009b]. They may
serve as nitrogen reservoir to export boundary layer NOx to rural
and remote atmospheres [Atlas, 1988; Horowitz et al., 1998;
Neff et al., 2002].
[4] In the absence of NOx, ISOPO2 is assumed in standard

mechanisms to be converted to organic hydroxyperoxides
ISOPOOH [Jacob and Wofsy, 1988], leading to titration of
OH. However, observations from a number of field campaigns
show no such OH titration [Carslaw et al., 2001;Hofzumahaus
et al., 2009; Lelieveld et al., 2008; Pugh et al., 2010; Ren et al.,
2008; Stone et al., 2010; Tan et al., 2001; Thornton et al., 2002;
Whalley et al., 2011; Mao et al., 2012]. Several mechanisms
have been proposed to explain this discrepancy, including OH
regeneration via oxidation of epoxydiols formed from the
oxidation of ISOPOOH based on laboratory studies [Paulot
et al., 2009b] and fast isomerization of ISOPO2 based on
theoretical studies [Peeters and Müller, 2010; Peeters et al.,
2009]. We now define this rate constant determined by these
theoretical studies as “fast isomerization rate,” as it is later
found to be faster than the laboratory-determined isomeriza-
tion rate constant [Crounse et al., 2011] by a factor of ~50.
Measurements of OH concentrations by the standard laser
induced fluorescence technique may be biased high due to
internally generated OH from oxidation of biogenic volatile
organic compounds (VOCs) [Mao et al., 2012]. After
correcting for this effect, Mao et al. [2012] find good
agreement between model and observations when OH
regeneration from oxidation of epoxydiols [Paulot et al.,
2009b] and laboratory-based slow isomerization of
ISOPO2 [Crounse et al., 2011] are included in the model.
[5] Besides daytime oxidation, nighttime oxidation of

isoprene by NO3 contributes significantly to the budget of
organic nitrates [Horowitz et al., 2007; von Kuhlmann
et al., 2004; Xie et al., 2013]. This pathway is initialized by
addition of NO3 to one of the double bonds of isoprene,
followed by production of organic nitrates with high yield
(65–85%) [Paulson and Seinfeld, 1992; Perring et al.,
2009a; Rollins et al., 2009]. These organic nitrates can
degrade in a matter of hours to more stable forms of organic
nitrates, leading to the formation of SOA [Rollins et al., 2009].
[6] Isoprene chemistry is of particular importance in af-

fecting summertime ozone over the eastern U.S. [Jacob
et al., 1993], with important implications for air quality man-
agement. Both global and regional chemical transport models
tend to overestimate summertime surface ozone over the
eastern U.S. by 10–20 ppb [Fiore et al., 2009; Lin et al.,
2008; Murazaki and Hess, 2006; Rasmussen et al., 2012;

Yu et al., 2007; Yu et al., 2010]. Fiore et al. [2005] suggested
that this problem might be due to incorrect representation of
isoprene sources and chemistry.
[7] The ICARTT aircraft campaign is a unique resource for

testing models of isoprene chemistry and the impact of iso-
prene on ozone. It provided a detailed characterization of
boundary layer chemistry across the eastern U.S. in July–
August 2004 [Fehsenfeld et al., 2006; Singh et al., 2006].
Two aircraft were deployed with comprehensive chemical
payloads, including measurements of isoprene and several
of its oxidation products [Fried et al., 2008; Perring et al.,
2009b; Warneke et al., 2010]. Previous analyses of isoprene
chemistry using ICARTT data have been presented by
Horowitz et al. [2007], Perring et al. [2009b], and Xie
et al. [2013] with a focus on isoprene nitrates, and by
Stavrakou et al. [2010] with a focus on HOx.
[8] A number of previous studies have applied GEOS-

Chem to simulation of the ICARTT data, including evaluation
with observations of NOx and ozone [Hudman et al., 2009;
Hudman et al., 2007; Liang et al., 2007], CO [Hudman
et al., 2008; Turquety et al., 2007], HCHO [Millet et al.,
2006], and aerosols [Drury et al., 2010; Fu et al., 2009;
Heald et al., 2006]. In particular, Hudman et al. [2007] found
that the lightning NOx source inferred from the ICARTT data
was much larger than expected, and Hudman et al. [2008]
found the need for a 60% reduction in CO emissions relative
to the National Emission Inventory (NEI 99) from the U.S.
Environmental Protection Agency (EPA). Hudman et al.
[2009] indicated no significant bias in their simulation of
ozone over the eastern U.S. after the lightning correction,
and neither did a subsequent GEOS-Chem study by Zhang
et al. [2011]. However, those model versions assumed an
unreasonably high yield of isoprene nitrates (18%) and that
isoprene nitrates behaved like a terminal sink for NOx.
[9] Here we implement in GEOS-Chem a state-of-science

isoprene chemistry mechanism based on Paulot et al. [2009a]
andPaulot et al. [2009b], alongwith other updates, and evaluate
the simulation of ozone, isoprene oxidation products, and related
chemical correlations during ICARTT. From there we gain in-
sights into the organic nitrates produced from isoprene oxidation
and their role in ozone chemistry, and we discuss the sensitivity
of summertime surface ozone to isoprene emissions.

2. GEOS-Chem Model

2.1. General Description

[10] GEOS-Chem is a global 3-D chemical transport model
driven by assimilated meteorological observations from the
Goddard Earth Observing System (GEOS-5) of the NASA
Global Modeling and Assimilation Office [Bey et al.,
2001]. We apply here GEOS-Chem version 9-01-03 (http://
www.geos-chem.org) to simulation of the ICARTT period
(1 July to 15 August 2004). The GEOS-5 meteorological data
have 6 h temporal resolution (3 h for surface variables and
mixing depths) with 0.5° ×0.667° horizontal resolution and 72
vertical layers from the surface to 0.01 hPa. We regrid here
the meteorological data to 2° ×2.5° for input to GEOS-Chem.
The model is initialized with a 1 year simulation from June
2003 to June 2004 with 4° ×5° resolution and from June 2004
with 2° ×2.5° resolution. Boundary layer mixing in GEOS-
Chem uses the nonlocal scheme [Holtslag and Boville, 1993]
implemented by Lin and McElroy [2010]. Stratospheric ozone
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is simulatedwith a linearized ozone (Linoz) algorithm described
by McLinden et al. [2000].
[11] Biogenic emission of isoprene follows the process-

based Model of Emissions of Gases and Aerosols from
Nature (MEGAN) inventory [Barkley et al., 2011; Guenther
et al., 2006; Millet et al., 2008] with monthly mean leaf
area index from the Moderate Resolution Imaging Spec-
troradiometer satellite instrument [Myneni et al., 2007]. The
resulting North American isoprene emission is 10.2 TgC for
June–August 2004 (65°W to 130°W, 20°N to 50°N), in line
with an independent estimate of 7.1–11.6 TgC inferred from
satellite data for formaldehyde [Millet et al., 2008].
[12] Anthropogenic emission inventories in GEOS-Chem

include EPA NEI-05 for the U.S., Criteria Air
Contaminants (CAC) for Canada (http://www.ec.gc.ca/
pdb/cac/cac_home_e.cfm), Big Bend Regional Aerosol and
Visibility Observational (BRAVO) for Mexico [Kuhns
et al., 2005], Monitoring and Evaluation of the Long-range
Transmission of Air Pollutants in Europe (EMEP) for
Europe [Vestreng and Klein, 2002], and Streets et al. [2006]
for East Asia.We reduce CO emissions in the NEI-05 inventory
by 53% following Hudman et al. [2008]. This reduction is
consistent with other estimates of U.S. CO emissions based on
atmospheric observations [LaFranchi et al., 2013; Miller
et al., 2012; Miller et al., 2008; Parrish, 2006]. For the rest of
the world we use the Emissions Database for Global
Atmospheric Research (EDGAR) emission inventory for CO,
NOx, and SO2 [Olivier and Berdowski, 2001] and the
Reanalysis of the Troposhperic chemical composition
(RETRO) emission inventory for volatile organic compounds
(VOCs) [Schultz et al., 2007]. All anthropogenic emissions
are scaled to 2004 based on the changes in total CO2 emissions,
which are obtained from the Carbon Dioxide Information
Analysis Center [van Donkelaar et al., 2008].
[13] Lightning NOx emissions are calculated as a function

of GEOS-5 cloud top height and rescaled to match the
Optical Transient Detector (OTD) and Lightning Imaging
Sensor (LIS) climatological observations [Murray et al.,
2012]. The global lightning source is imposed to be
6 TgN yr�1 [Martin et al., 2007], with higher NOx yields
per flash at midlatitudes than in the tropics [Hudman et al.,
2007]. We use monthly biomass burning emissions from
the Global Fire Emission Database version 3 [van der Werf
et al., 2010]. Forest fire plumes transported from Alaska
and western Canada were important in the free troposphere
during ICARTT [Pfister et al., 2008; Turquety et al., 2007].
Soil NOx emissions are computed using a modified version
of the Yienger and Levy [1995] algorithm with canopy reduc-
tion factors as described in Wang et al. [1998].
[14] Dry deposition in GEOS-Chem is calculated using a

standard resistance-in-series model [Wesely, 1989], in which
the surface resistances for gases are determined by their
Henry’s law constants and surface reactivities. We revised the
reactivity of all oxygenated VOCs including ketones,
aldehydes, organic peroxides and organic nitrates to be the same
as ozone following Karl et al. [2010]. We also include wet and
dry deposition of isoprene hydroperoxide and epoxydiols with
Henry’s law constants of 1.7×106 and 1.3 ×108Matm�1 fol-
lowing Marais et al. [2012]. Wet deposition is described by
Liu et al. [2001] for water-soluble aerosols and by Amos et al.
[2012] for gases. It includes wet scavenging in convective up-
drafts as well as grid-resolved first-order rainout and washout.

[15] The standard GEOS-Chem simulation of ozone-NOx-
HOx-VOC chemistry is described by Mao et al. [2010], with
more recent implementation of bromine chemistry [Parrella
et al., 2012]. The chemical mechanism includes updated rec-
ommendations from the Jet Propulsion Laboratory [Sander
et al., 2011] and the International Union of Pure and
Applied Chemistry (http://www.iupac-kinetic.ch.cam.ac.uk).
In addition, we included an improved HO2 aerosol reactive up-
take with γ(HO2) =1 producing H2O, suggested by Mao et al.
[2013]. We also increased the NO3 aerosol reactive uptake
coefficient γ from 1×10�4 [Jacob, 2000] to 0.1 with HNO3

as product. This reflects recent measurements of high γ(NO3)
on soot [Karagulian and Rossi, 2007], dust [Karagulian and
Rossi, 2005], dry salts [Seisel et al., 1999], organic aerosols
[Brown and Stutz, 2012; Fry et al., 2011; Lee et al., 2013],
and ambient urban aerosols [Tang et al., 2010]. Modeled ozone
and organic nitrates appear to be insensitive to the choice of
γ(NO3) in the range of 1× 10�4 to 0.1. The treatment of
isoprene oxidation is described in the following subsection.

2.2. Chemical Mechanism for Isoprene Oxidation

[16] A focus of this work is to use the ICARTT observations
to test our model mechanism for isoprene chemistry. This new
mechanism differs significantly from the original isoprene oxi-
dation mechanism in GEOS-Chem described in Horowitz
et al. [1998]. The full mechanism is described at http://wiki.
seas.harvard.edu/geos-chem/index.php/New_isoprene_scheme.
Figure 1 illustrates the treatment of first-generation isoprene ox-
idation by OH. Oxidation under the high-NOx regime mainly
follows Paulot et al. [2009a]. It is initialized by OH addition
at 1 and 4 positions, resulting in a pool of β and δ-hydroxyl
peroxy radicals (ISOPO2) with yields of 71% and 29%,
respectively. In the presence of NOx, the degradation of
β-hydroxyl ISOPO2 leads to the production of HCHO (66%),
methylvinylketone (MVK) (40%), and methacrolein
(MACR) (26%) with a small yield of β-hydroxyl isoprene
nitrates (ISOPNB) (6.7%). Reaction of δ-hydroxyl
ISOPO2 with NO leads to the formation of δ-hydroxyl iso-
prene nitrates (ISOPND) (24%). The total first-generation
isoprene nitrate yield (11.7%) from ISOPND (7.0%) and
ISOPNB (4.7%), respectively, is in line with other labora-
tory studies as described above. The fates of ISOPNB and
ISOPND are discussed below.
[17] Under low-NOx conditions, ISOPO2 can follow either

of two pathways. One is to react with HO2 to form isoprene
hydroxyperoxides (ISOPOOH) with a small production of
HCHO, MVK, and MACR (4.7%, 7.3%, and 12%, respec-
tively) [Paulot et al., 2009b], largely consistent with a recent
study by Liu et al. [2013]. Most of ISOPOOH reacts with OH
to produce epoxydiols and quantitatively regenerate OH
[Paulot et al., 2009b]. Another pathway is the unimolecular
isomerization of ISOPO2 (1,6-H shift) [Peeters and Müller,
2010; Peeters et al., 2009], leading to the production
of hydroperoxyaldehydes (HPALDs). The subsequent fate
of HPALDs is dominated by photolysis, with a 100% yield
of OH [Wolfe et al., 2012]. We do not consider the 1,5-H shift
as it is expected to be unimportant [Crounse et al., 2011; Da
Silva et al., 2010]. The rate constant of 1,6-H shift isomeriza-
tion is still under debate [Archibald et al., 2010; Crounse
et al., 2011; Karl et al., 2009; Peeters and Müller, 2010;
Peeters et al., 2009]. We adopt the rate constant from
Crounse et al. [2011], which is lower than the original one
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from Peeters et al. [Peeters and Müller, 2010; Peeters et al.,
2009] by a factor of ~50. As we will see in section 4, the
lower rate constant affords a better simulation of organic ni-
trate measurements in ICARTT.
[18] The subsequent fate of ISOPND and ISOPNB is

mainly via reactions with OH and ozone because of the
remaining C=C bond. The degradation of ISOPND and
ISOPNB is assumed to return NOx with a weighted average
yield of 55% [Paulot et al., 2009a]. Paulot et al. [2009a]
suggested that ISOPND and ISOPNB have photochemical
lifetimes against oxidation by OH of 1 and 7 h, respectively
(OH=3×106molecules cm�3 at 298K). Lockwood et al.
[2010] suggested photochemical lifetimes against oxidation
by ozone of 2 and 4 h, respectively (ozone = 60 ppbv), which
is 5–10 times shorter than the previous value suggested by
Giacopelli et al. [2005]. As a result, these nitrates are
degraded in a matter of hours, leading to the formation of
a series of secondary organic nitrates, including
methylvinylketone nitrates (MVKN), methacrolein nitrates
(MACRN), ethanal nitrate (ETHLN), and propanone nitrate
(PROPNN), as shown in Figure 2. Reactions of ISOPND
and ISOPNB with ozone can also produce these secondary
organic nitrates, and this is mainly from the decomposition
of primary ozonides that are initially formed by the addition
of ozone across the C =C bond [Baker et al., 2002]. These
secondary organic nitrates are more stable than the primary
ones due to the lack of a C =C bond. MVKN, MACRN,
and ETHLN have lifetimes of 17, 2, and 9 h against oxida-
tion by OH (OH= 3 × 106molecules cm�3 at 298K), and
PROPNN is mainly lost through photolysis with a global
mean lifetime of 13 days in GEOS-Chem.

[19] Nighttime isoprene oxidation is updated from Xie et al.
[2013], which is largely based on the chamber study by
Rollins et al. [2009]. This new treatment assumes 70% yield
of first-generation carbonyl nitrates from the isoprene +NO3

reaction. These nitrates can be further oxidized by NO3, lead-
ing to the formation of secondary organic nitrates (Figure 3).
For simplification, we lump here all secondary organic nitrates
from nighttime isoprene oxidation into one lumped alkyl
nitrate (R4N2), which has a global mean lifetime of 5 days
against OH oxidation and photolysis in GEOS-Chem. The
relatively long lifetime of R4N2 is largely based upon the
nighttime oxidation product that is derived from Xie et al.
[2013] and shows a similar structure to PROPNN.
[20] Several additional updates are included in this new

mechanism. First, we implemented the isomerization of
methacrolein peroxy radicals (MACRO2) based on experiments
by Crounse et al. [2012]. Second, we updated the reaction rate
of HO2 with>C2 peroxy radicals to the expression in Saunders
et al. [2003], leading to an increase of factor 2 for
HO2+ ISOPO2 at 298K. Third, we updated OH regeneration
for the reactions of HO2 with acetyl peroxy (CH3C(O)O2) and
acetonyl peroxy (CH3C(O)CH2O2) radicals based on laboratory
measurements [Dillon and Crowley, 2008; Hasson et al., 2004;
Jenkin et al., 2007]. Fourth, the reaction of isoprene with ozone
was modified following the Master Chemical Mechanism v3.2
[Jenkin et al., 1997; Saunders et al., 2003].

3. Simulation of Ozone and Related Species

[21] Herewe use the ICARTTobservations to evaluate our new
isoprene oxidation mechanism implemented in GEOS-Chem.

Figure 1. Schematic of the first stage of the isoprene oxidation mechanism initiated by OH.
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There were two aircraft in the field, the NASA DC-8 and the
NOAA WP-3D [Fehsenfeld et al., 2006; Singh et al., 2006].
We mostly focus on data from the DC-8, which provided
regional coverage over the eastern U.S., whereas the WP-3D
often targeted urban plumes in the Northeast [Warneke et al.,
2007]. However, we use theMVK+MACRobservations from
the WP-3D as these measurements were not made on the
DC-8. We exclude biomass burning and urban plumes
(CH3CN> 225 ppt or HCN> 425 ppt or NO2> 4 ppb or
NOx/NOy> 0.4 mol mol�1), which would not be repre-
sented properly on the scale of the model [Hudman et al.,
2007]. We also exclude stratospheric air as diagnosed by
ozone/CO> 1.25mol mol�1. All comparisons between
model and observations use model output sampled along
the flight tracks and at the flight time with 15min time res-
olution. Ninety-six percent of all data points (DC8) were
collected between 08:00 and 18:00 local time.
[22] Figure 4 (top) compares observed and simulated mean

ozone concentrations in the boundary layer (0–1.5 km). A
regression for the ensemble of the data shows no significant
bias (bottom left). The model largely captures the spatial
pattern of boundary layer ozone but with a relatively low cor-
relation, likely due to the uncertainties in MEGAN biogenic
emissions [Millet et al., 2008]. The model overestimates
boundary layer ozone in the Southeast U.S. by 3–5 ppbv
but has no bias over the Northeast. The small ozone bias over
the Southeast could be due to several factors including

excessive convection in the model over the Gulf of Mexico
[Fiore et al., 2002] and omission of terpene compounds that
may act as additional NOx sinks through formation of organic
nitrates [Browne and Cohen, 2012; Pratt et al., 2012].
[23] In the analysis that follows we mainly focus on the data

collected over land. Figure 5 shows themean 0–4km vertical pro-
files of ozone, isoprene, CO, HCHO, peroxyacetyl nitrate (PAN),
HNO3,NOx, andMVK+MACRconcentrationsmeasured by the
aircraft and simulated by the model. The spatial distributions of
summertime HCHO, CO, and NOy over the eastern U.S. during
ICARTT have been examined in previous GEOS-Chem studies
[Hudman et al., 2008; Hudman et al., 2007; Millet et al., 2006].
As shown in Figure 5, the vertical gradient of ozone between
the boundary layer and the free troposphere is well reproduced
by the model. CO is also well simulated, reflecting the adjustment
of anthropogenic emissions as recommended by Hudman et al.
[2008]. We discuss the other species below.
[24] Isoprene measured by the DC-8 decreases from

500 pptv near the surface to 20 pptv at 3 km, reflecting its
short photochemical lifetime. Values measured by the WP-
3D are lower, reflecting the northeast sampling bias. As
MVK, MACR, and HCHO are major first-generation prod-
ucts from isoprene oxidation under high-NOx conditions
(Figure 1), they all show a rapid decrease from boundary
layer to 3 km, consistent with isoprene. Millet et al. [2006]
previously showed that isoprene was the dominant source
of HCHO variability during ICARTT. The model provides

Figure 2. Schematic of the oxidation of isoprene nitrates by OH following Paulot et al. [2009a].
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overall a good simulation of the observed mean profiles.
The yield of HCHO from isoprene oxidation appears to be
relatively insensitive to the choice of mechanism [Marais
et al., 2012], but the yield of MVK+MACR is sensitive
to the rate constant of ISOPO2 isomerization, as MVK
and MACR are not produced by that pathway (Figure 1).
In a sensitivity simulation using the fast isomerization of

ISOPO2 [Peeters and Müller, 2010; Peeters et al., 2009]
we find mean MVK+MACR concentrations of 100 pptv
in the boundary layer, leading to an even lower underesti-
mate of MVK+MACR.
[25] Mean observed NOx decreases from 700pptv near the

surface to 50pptv at 3 km. The model agrees with
observations within 30%. Oxidation of NOx produces HNO3,
PAN, and other organic nitrates (to be discussed in section 4).
Simulated HNO3 in the free troposphere is too high, which
could reflect insufficient scavenging. PAN is simulated without
bias.We find that isoprene is the main VOC precursor for PAN,
consistent with previous model studies for the eastern U.S.
[Horowitz et al., 1998] as well as observed correlations with
other peroxyacylnitrates [Williams et al., 1997].
[26] The most recent previous evaluation of the GEOS-

Chem ozone simulation over the U.S. was by Zhang et al.
[2011], who also found no significant bias. That simulation
used v8-02-03 of GEOS-Chem. Since then, several objective
improvements have been made to GEOS-Chem that have had
significant consequences for the ozone simulation (http://
www.geos-chem.org): (1) decrease in isoprene nitrate yield
(from 18% to 11.7%) and partial recycling of NOx (section
2.2), (2) inclusion of tropospheric bromine chemistry
[Parrella et al., 2012], (3) heterogeneous loss of HOx radi-
cals [Mao et al., 2013], and (4) correction of the diurnal cycle
of NOx emissions by shifting emissions peaks by 6 h to reflect
the proper timing of local transportation. For the eastern U.S.
boundary layer and free troposphere in summer, (1) causes a

Figure 3. Partial schematic of isoprene oxidation by NO3

following Rollins et al. [2009] and Xie et al. [2013]. For simpli-
fication, we lump here all secondary organic nitrates from night-
time isoprene oxidation into one lumped alkyl nitrate (R4N2).

Figure 4. Ozone concentrations and ozone-CO correlations in the boundary layer (0–1.5 km) during
ICARTT (1 July to 15 August 2004). (top) Observed and simulated values averaged over the 2° × 2.5°
GEOS-Chem grid. (bottom left) A model versus observed scatterplot of these values. (bottom right) The
ozone-CO correlations in the observations (black) and in the model (red). Regression slopes are from a
reduced-major-axis regression with errors determined by nonparametric bootstrap resampling.
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3–5 ppbv increase in ozone in the model. However, the
resulting positive bias is effectively corrected by (2)–(4),
each of which decreases ozone in the above conditions by
1–3 ppbv, as shown in Figure S1 (supporting information).
This highlights the importance of canceling errors in model
simulations of ozone. Further constraints can be obtained
by correlations of ozone with related species, as
discussed below.

4. Organic Nitrates and Relationship With HCHO
and Ozone

[27] Perring et al. [2009b] made measurements of total
organic nitrates other than peroxyacylnitrates (RONO2, herein-
after ∑ANs) aboard the DC-8 during ICARTT. As ∑ANs is
mainly expected to include isoprene nitrates under the
ICARTT conditions [Beaver et al., 2012], this provides an op-
portunity to evaluate the simulation of isoprene nitrates in
GEOS-Chem. Analysis of the ICARTT ∑ANs data has been
presented previously in several studies. Perring et al. [2009b]
found good correlation between observed HCHO and ∑ANs
in the boundary layer.Horowitz et al. [2007] found that the ver-
tical profile of∑ANs and the ozone-∑ANs correlation could be
best reproduced by a 4% yield of isoprene nitrates with 40%
recycling efficiency. Xie et al. [2013] applied the treatment of
isoprene nitrates from Paulot et al. [2009a] to the Community
Multiscale Air Quality (CMAQ) regional air quality model,
but they find an overestimate of ∑ANs by 30% in their model.
We here examine organic nitrates and their relationship with
HCHO and ozone in GEOS-Chem.

[28] Figure 6 shows the mean vertical profile of∑ANs dur-
ing ICARTT. Concentrations decrease from 200 pptv near
the surface layer to 50–100 pptv in the free troposphere, both
in observations and in the model. In contrast to Xie et al.
[2013], we show very little overestimation of ∑ANs in the
model. This is likely due to different treatment of organic
nitrates produced from NMVOCs other than isoprene, as
they find that only 60% of ∑ANs is from isoprene oxidation
in their model, in contrast to more than 90% in our model.
We also find that the vertical profile of ∑ANs is insensitive
to the deposition rates of ISOPND and ISOPNB because of
their short photochemical lifetimes. A sensitivity simulation
using slower reaction rates with ozone [Giacopelli et al.,
2005] shows little difference in the vertical profile of
∑ANs, as ISOPND is mainly oxidized by OH. A sensitivity
simulation using the fast isomerization of ISOPO2 [Peeters
and Müller, 2010; Peeters et al., 2009] produces less than
100 pptv ∑ANs in the boundary layer.
[29] We see from Figure 6 that ∑ANs in the model is

mainly contributed by the second generation of isoprene
nitrates, i.e., PROPNN, MVKN+MACRN, and R4N2

(Figure 2). In particular, R4N2 and PROPNN contribute to
44% and 21% of ∑ANs in the boundary layer. This reflects
the short lifetime of the first-generation isoprene nitrates
against oxidation by OH and ozone. For the same reason,
MVKN+MACRN decline rapidly in the free troposphere
where most of ∑ANs is contributed by the longer-lived
R4N2 and PROPNN species. Oxidation of isoprene by NO3

accounts for 80% of R4N2 in the model, emphasizing the
need for better understanding of this chemistry [Beaver

Figure 5. Mean vertical profiles of species concentrations during ICARTT (1 July to 15 August 2004)
over land (Figure 4). Measurements are from the DC-8 aircraft except for MVK+MACR which was only
measured aboard the WP-3D aircraft (we also show isoprene from the WP-3D aircraft).
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et al., 2012; Brown et al., 2009; Grossenbacher et al., 2001;
Kwan et al., 2012].
[30] Perring et al. [2009b] pointed out that the observed

HCHO-∑ANs correlation provides an additional constraint
on the bulk yield of isoprene nitrates, due to the coproduction
of HCHO and ∑ANs from isoprene oxidation under the
high-NOx regime (Figure 1). As shown in Figure 7, the
model reproduces successfully the observed continental
boundary layer correlation in ICARTT. Fast isomerization
of ISOPO2 [Peeters et al., 2009] underestimates the ∑ANs
yield. Despite the large fraction of R4N2 in ∑ANs, we find
that the variability of ∑ANs in the boundary layer is largely
determined by the daytime products of isoprene oxidation,
partly attributed to the short lifetimes in both ∑ANs
and HCHO.
[31] ∑ANs and ozone are coproduced from RO2 +NO

reactions, so that one would expect a strong correlation
between the two [Flocke et al., 1991; Horowitz et al., 2007;
Ito et al., 2009]. This correlation has been used to constrain

ozone production efficiency and photochemical aging in
urban conditions [Farmer et al., 2011; Perring et al., 2010;
Rosen et al., 2004]. We find that the observed correlation in
ICARTT (Figure 7) is reproduced by GEOS-Chem. Similar
to ∑ANs versus HCHO, this correlation (slope = 82.0 ± 9.0)
cannot be reproduced by the model using the fast isomeriza-
tion of ISOPO2 (slope = 154.0 ± 6.0).
[32] The yield of first-generation nitrates (11.7%) in our

mechanism is considerably higher than the yield derived by
Horowitz et al. [2007]. Using the same observational data
set, they found that ∑ANs versus ozone correlation can best
match their model with 4% yield of isoprene nitrates. With
8% yield, they overestimated boundary layer ∑ANs by
40%. This can be attributed to their assumption that second-
ary organic nitrates are inert and the slow RO2 +HO2 rate
used. In fact, a large fraction of secondary nitrates in our
model, such as ETHLN andMACRN (Figure 3), can degrade
in a matter of hours returning NOx, with little contribution
to ∑ANs.

Figure 7. (left) ∑ANs versus HCHO and (right) ozone versus ∑ANs correlations in the continental
boundary layer (<1.5 km) during ICARTT. Model results (red) are compared to observations from the
DC-8 aircraft (black). Solid lines are the reduced major axis regression lines. Also shown is the model with
a higher rate constant for ISOPO2 isomerization following Peeters et al. [2009] (green dashed lines).

Figure 6. (left) Mean vertical profiles of total organic nitrates excluding peroxyacylnitrates (∑ANs)
during ICARTT (1 July to 15 August 2004) over land (Figure 4). Observations (black) are compared
to GEOS-Chem (red). (right) contributions of individual species to mean ∑ANs in GEOS-Chem includ-
ing β-hydroxyl isoprene nitrates (ISOPNB), δ-hydroxyl isoprene nitrates (ISOPND), methacrolein
nitrates (MACRN), methylvinylketone nitrates (MVKN), propanone nitrate (PROPNN), and a lumped
organic nitrate (R4N2). R4N2 is produced from nighttime isoprene oxidation as well as oxidation of ≥
C3 ketones, and ≥ C4 alkanes.
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[33] Secondary organic nitrates from daytime and night-
time isoprene oxidation provide an important mechanism
for exporting NOx from the U.S. boundary layer. We show
in Table 1 that nitrogen is more efficiently exported as
∑ANs than as PAN, partly due to their longer photochemical
lifetimes. The chemical lifetime of some speciated alkyl
nitrates (such as ETHLN, PROPNN, MVKN, MACRN) are
largely dependent on one chamber study from Paulot et al.
[2009a], while others (such as R4N2) are highly simplified
into one lumped species as very few experimental data are

available on the degradation of nighttime isoprene oxidation
products. Further experimental work is warranted on both
daytime and nighttime organic nitrates.

5. Ozone-CO Correlation

[34] Observations in polluted regions show positive ozone-
CO correlations in summer, and these correlations can be re-
lated to the ozone production efficiency per unit NOx emitted
(OPE) through the NOx/CO emission ratio [Horowitz et al.,

Table 1. NOy Budget in Eastern U.S. Boundary Layer for July 2004a

Species Emission Chemical (P-L) Dry Deposition Wet Deposition Net Export

NOx 386 �337 44 - 5
PANsb 24 13 - 11
∑ANs
ANs c 18 7.4 3.6 7
R4N2

d 10 0.5 - 10
HNO3 277 180 110 �3

aWe define the eastern U. S. boundary layer as 62.5°–97.5°W, 24°–52°N and from the surface to approximately 1.8 km altitude (below 800 hPa). Budget
terms are in Gg N.

bPANs include peroxyacetyl nitrate (PAN), peroxymethacryloyl nitrate (PMN), and peroxypropionylnitrate (PPN).
cANs include δ-hydroxyl isoprene nitrates (ISOPND), β-hydroxyl isoprene nitrates (ISOPNB), methacrolein nitrates (MACRN), methylvinylketone ni-

trates (MVKN), propanone nitrate (PROPNN), and ethanal nitrate (ETHLN).
dNighttime isoprene oxidation contributes to 80% of R4N2 production.

Figure 8. Computed change of mean afternoon (1300–1700 LT) surface ozone concentrations during
July 2004 as a result of increasing isoprene emissions by 25% at different levels of anthropogenic NOx

emissions. The top row uses the isoprene oxidation mechanism in this work, and the bottom row uses
the isoprene chemistry applied in Zhang et al. [2011] that assumed a high yield of isoprene nitrates
(18%) without recycling of NOx. The base simulations for the left column are for the model simulation
at current level of anthropogenic NOx emissions, and the base simulations for the right column are for
the model simulation with 50% reduction of current anthropogenic NOx emissions.
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1998; Hudman et al., 2009]. Chin et al. [1994] reported a
regression slope (dO3/dCO) of 0.28–0.32molmol�1 at three
eastern U.S. sites in 1988–1992. Parrish et al. [1998]
reported dO3/dCO of 0.28–0.40 for 1991–1994 at four sites
in Atlantic Canada. Hudman et al. [2009] found higher
observed dO3/dCO of 0.41–0.46 in the continental boundary
layer during ICARTT, reflecting decadal changes in U.S. CO
and NOx emissions as well as an apparent increase in the
OPE. Their GEOS-Chem simulation indicated a smaller dO3/
dCO (0.34–0.36), likely due to an excessive yield of isoprene
nitrates as discussed above.
[35] Figure 4 (bottom right) shows our simulated ozone-CO

correlations for the boundary layer DC-8 aircraft flight tracks
(0–1.5 km altitude) in the afternoon (1100–1700 LT) com-
pared to observations. The dO3/dCO value is determined by
the slope of the reduced-major-axis regression line, with errors
determined by nonparametric bootstrap resampling. The ob-
servations indicate dO3/dCO=0.43 ± 0.03, as previously
reported by Hudman et al. [2009], but here the relationship
is better reproduced by the model (0.39 ± 0.02), reflecting the
new isoprene mechanism as well as HO2 aerosol uptake (low-
ering OH and thus increasing the lifetime of NOx). The slope
degrades to 0.33 in a sensitivity simulation using the Peeters
et al. [2009] rate constant of ISOPO2 isomerization, mainly
due to a faster oxidation of NOx through higher OH.

6. Sensitivity of Surface Ozone to
Isoprene Emissions

[36] Isoprene emissions may change rapidly on decadal
time scales due to ecosystem evolution and changes in for-
estry practices [Guenther et al., 2006; Heald et al., 2009;
Purves et al., 2004; Wu et al., 2012]. Understanding the
effect of these changes in isoprene emission is critical for
air quality management. Models disagree even in the sign
of the response of summertime surface ozone in the eastern
U.S. to isoprene emissions, varying from a decrease [Fiore
et al., 2005; Wu et al., 2012; Wu et al., 2008] to an increase
[Horowitz et al., 1998; Sanderson et al., 2003]. This has been
attributed to the discrepancies between models in the yield of
isoprene nitrates [Wu et al., 2007], NOx recycling efficiency
from isoprene nitrates [Ito et al., 2009], and the relative mag-
nitude of isoprene and NOx emissions [Fiore et al., 2005].
[37] Figure 8 shows our computed change of mean after-

noon (1300–1700 LT) surface ozone concentrations during
July 2004 as a result of increasing current isoprene emissions
by 25% in the model. At current level of anthropogenic NOx

emissions (for the year of 2004), we find an ozone increase of
2–4 ppbv with the new implemented isoprene mechanism
(top left). When anthropogenic NOx emissions are reduced
to 50% of current level, we find that the sensitivity of ozone
to increasing isoprene emissions is reduced by about a factor
of 2 (top right). Reduction of NOx emission to 25% of current
level shows further decrease of the ozone sensitivity to iso-
prene emission (not shown), although the sensitivity does
not become negative. With the isoprene chemistry applied
in Zhang et al. [2011] that assumed a high yield of isoprene
nitrates (18%) without recycling of NOx, we find similar
negative sensitivity of ozone to isoprene emissions
(Figure 8, bottom), consistent with previous model studies
as described above. This reflects in part the importance of
isoprene ozonolysis as a sink for ozone under low-NOx

conditions because of OH titration [Fiore et al., 2005;
Mickley et al., 2001]. As pointed out above, such OH titration
by isoprene in models appears inconsistent with observations.
Nevertheless, our work indicates that reducing anthropogenic
NOx emissions to improve ozone air quality significantly
reduces the sensitivity of ozone to isoprene emissions.

7. Conclusions

[38] We implemented a state-of-science isoprene chemis-
try mechanism in GEOS-Chem, based on Paulot et al.
[2009a, 2009b], along with other updates. This mechanism
was evaluated with observations from the NASA DC8 and
NOAA WP3D aircraft during the ICARTT campaign over
the eastern U.S. in the summer of 2004.
[39] Models have a general tendency to overestimate sur-

face ozone in the eastern U.S. [Fiore et al., 2009]. The previ-
ous GEOS-Chem simulation of Zhang et al. [2011] was
unbiased relative to observations, but it assumed an exces-
sive yield of isoprene nitrates serving as terminal sinks for
NOx. Our improved representation of isoprene chemistry
increases ozone over the eastern U.S. by 3–5 ppbv, and this
is compensated by other model improvements including
bromine chemistry and HO2 loss to aerosols. Thus, the
GEOS-Chem ozone simulation remains unbiased relative to
observations, in the boundary layer as well as in the free tropo-
sphere. Simulation of the observed ozone-CO correlation is
improved relative to previous versions of GEOS-Chem, and
this is attributed to the reduced yield of isoprene nitrates.
[40] ICARTT observations of total organic nitrates other

than PANs (∑ANs) are well reproduced in the model, includ-
ing vertical profiles and correlations with HCHO and ozone.
This provides a sensitive test of the isoprene oxidation mech-
anism and argues in particular against a fast isomerization
pathway for the ISOPO2 radical.∑ANs in the model is mainly
composed of secondary organic nitrates, including a large
fraction from nighttime oxidation of isoprene. These second-
ary nitrates provide an important pathway for exporting NOx

from the U.S. boundary layer, exceeding the export of
PANs. Better understanding of nighttime oxidation of iso-
prene and of the fate of the resulting organic nitrates is needed.
[41] Our improved representation of isoprene chemistry

yields a positive dependence of ozone on isoprene emissions
throughout the U.S., in contrast to previous model studies that
found a negative dependence particularly in the southeastern
U.S. We attribute this difference to OH titration by isoprene
in previous models, promoting ozone loss by isoprene
ozonolysis. Our new mechanism avoids this OH titration, for
which observations show no evidence. Nevertheless, we find
that the sensitivity of ozone to isoprene emissions decreases
as NOx emissions decrease. This may have important implica-
tions for air quality management as well as for understanding
ozone concentrations in the preindustrial atmosphere.
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