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Abstract 
We give efficient constructions for error correct­

ing unordered {ECU) codes, i.e., codes such that any 
pair of codewords are at a certain minimal distance 
apart and at the same time they are unordered. These 
codes are used for detecting a predetermined number 
of (symmetric) errors and for detecting all unidirec­
tional errors. We also give an application in parallel 
asynchronous communications. 

1 Introduction 
Given a binary vector of length n, we say that the 

support of a vector is the set of non-zero coordinates. 
We say that two vectors are unordered if their sup­
ports are unordered as sets, i.e., none ofthem contains 
the other. For instance, let!!= 11001, 1!. = 01100 and 
1Q = 11000. The surports of 1!, 1!. and 1Q are respec­
tively {1, 2, 5}, {2, 3 and {1, 2}. We easily see that 1! 
and 1!. and 1!. and 1Q are unordered, while 1! and 1Q are 
not unordered. In fact, since the support of 1Q is con­
tained in the support of 1!_, we say that 1Q is contained 
in 1!_. 

We say that a code C is unordered if every pair 
of codewords inC is unordered. Unordered codes are 
important in several applications. Among them, let 
us point out protecting a WOM (write only memory) 
against hostile overwrites [9], parallel asynchronous 
communications [14, 2] (see also Section 4) and detec­
tion of asymmetric and unidirectional errors in com­
puter memories [1]. 

A natural question is what is the maximal size of 
an unordered code of length n? This question was 
answered by Sperner [12] in 1928: the maximal size 
is (r nf 2l) and the code is obtained by taking all the 

binary vectors of length n and weight (i.e., number 
of 1's) fn/21 (by f.xl we denote the smallest integer 
larger or equal than .x and by l.x J the largest integer 
smaller or equal than .x). 

Sperner codes, though, are difficult to implement 
when n is large. Except for look-up tables, there are 
no efficient encoders. Most encoders used in practice 
are systematic, i.e., given any k information bits, the 
encoder adds a tail of r redundant bits. In our case, 
we want to add a tail such that the resulting code is 
unordered. An optimal solution to this problem was 
found by Berger [1] in 1962. Berger's encoder works as 
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follows: given an information vector of length k and 
weight w, add a tail to this information vector that 
consists of the binary representation of k - w. For 
instance, if k = 5 and we want to encode the infor­
mation vector 10110, since k- w = 2 whose binary 
representation is 010, we have to append this tail to 
10110. It is not difficult to show that the resulting 
code is unordered. Moreover, the code is optimal in 
the sense that r is the length of the shortest tail that 
needs to be appended to the information part in order 
to obtain an unordered code [7]. 

In this paper, we study unordered codes having error 
correcting capability. Namely, any two codewords are 
unordered and are at distance at least t + 1 apart, 
where t is a prescribed number. Among the applica­
tions of error correcting unordered (ECU) codes are 
codes that can detect up to t symmetricaf errors and 
detect all unidirectional errors [10, 17]. Such codes are 
useful in semiconductor computer memories, in which 
faults affecting a large number of bits tend to be of 
unidirectional type. 

Another interesting application is in parallel 
asynchronous communications. In effect, consider 
a communication channel that consists of several 
sub-channels transmitting simultaneously and asyn­
chronously [14]. As an example of this scheme, we can 
consider a board with several chips. The sub-channels 
represent wires connecting between the chips where 
differences in the lengths of the wires might result in 
asynchronous reception. In current technology, the 
receiver acknowledges reception of the message before 
the transmitter sends the following message. Namely, 
pipelined utilization of the channel is not possible. 

We developed a scheme that enables to transmit 
without an acknowledgement of the message allowing 
for pipelined communication and providing a higher 
bandwidth [2]. Moreover, our scheme allows for a cer­
tain number of transitions from a second message to 
arrive before reception of the current message has been 
completed, a condition that we call skew. We have 
derived necessary and sufficient conditions for codes 
that can detect skew as well as they can correct the 
skew and allow continuous operation. It turns out that 
ECU codes satisfy the necessary and sufficient condi­
tions. 

Our main contribution in this paper is the construe-



tion of efficient ECU codes. We present 3 possible con­
structions of error-correcting unordered (ECU) codes 
and compare between them. Our first construction, 
(also the most general one), is as follows: we first 
encode the information bits into an error-correcting 
code, and then we add a tail in such a way that the 
resulting code is unordered. Although such a con­
struction is not globally optimal, it has the advan­
tage that the resulting code is systematic when the 
error-correcting code is systematic. Our construction 
generalizes the Berger construction. In fact, Berger 
codes are a particular case of our construction when 
the underlying error-correcting codes have minimum 
distance 1. We also prove that our codes are op­
timal when the error-correcting code is an extended 
Hamming code, and also for certain BCH codes. Our 
second construction works for the case in which the 
minimum distance is either 3 or 4 and has the ad­
vantage that it is systematic and easy to implement. 
Our third construction is based on Sperner's result. 
We first encode the information into a balanced vec­
tor and then encode the balanced vector into an error 
correcting code. While this construction is more effi­
cient for large n it has the disadvantages that it is not 
systematic and that encoding is difficult. 

The paper is organized as follows: in the next sec­
tion we present our three constructions together with 
tables that compare their efficiencies. In Section 3 
we prove that our first construction adds the optimal 
tail for certain important families of codes. Finally, in 
Section 4 we review the important application of ECU 
codes to parallel asynchronous communications. 

2 Construction of ECU codes 
We start this Section giving a generalization of the 

Berger construction. 

Construction 2.1 Assume that we want to con­
struct an ECU code C with minimum distance d and 
dimension k. Choose an [n', k, d] error correcting (EC) 
code C'. Let .!! be an information vector of length k. 
Then proceed as follows: 

1. Encode .!! into a vector Q E C'. 

2. Let j be the (Hamming) weight of Q. Then ap­
pend to Q the complement of the binary represen­
tation of li I d J . 

The code obtained with this encoding procedure is 
ECU with minimum distance d. 

Before proving that the code is ECU, we observe 
the following: 

1. The code c has length n' + flog2 r ( n' + 1) I dll 
2. The Berger construction corresponds to the spe­

cial case in which C' is the [k, k, 1] code. 
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3. The code C is systematic if the code C' is system­
atic. 

4. We may sometimes make the construction more 
efficient when the all-1 vector is in C' by taking a 
coset of this code. The construction is analogous 
but we have less than n' + 1 different weights in 
the coset [5]. 

5. For a table with the best error-correcting codes, 
see [15, 16]. 

Lemma 2.1 The code C obtained in Construction 2.1 
is ECU with minimum distance d. 

Proof: It is clear that the minimum distance is d. 
Assume that we have two codewords u and v in C' 
with weights i and j respectively, wher;-i :::; j. -Notice 
that N(Q, _g) > 0. Let tu and tv be the tails when 
we encode using Construction 2.C We will prove that 

N ((Y.,t_g),(lL,tQ)) > 0. 

We have two possibilities: either lildJ = lildJ or 
lildJ # lJidJ. 

If lildJ = lildJ, then j- i :::; d- 1. If.!! ~ Q, 
then aH(Y.,Q) = j- i:::; d -1, a contradiction. So, in 
particular, (.!!, t_g) and (Q, tQ) are unordered. 

If lildJ -:f lildJ, then, in particular, lildJ < lildJ. 
According to Construction 2.1, tu as a binary number 
is larger than tv as a binary number. This means, 
N(twtv) > 0. -Since we had that N(Q,.!!) > 0, it 
follmvs that (.!!, t:g) and (Q, tQ) are unordered. D 

Example 2.1 Assume that we want to construct an 
ECU code with minimum distance 4 and dimension 
57 using Construction 2.1. We first encode the 57 
information bits into a [64, 57, 4] extended Hamming 
code. Then we add a tail of length flog2 f65l4ll = 5 
bits. This gives a total of 12 redundant bits. If we 
take a coset of the [64, 57, 4] code, then the weight 
distribution goes from 1 to 63, so we have 63 different 
weights. Now, Jlog2 f63l4ll = 4 bits, so we save one 
bit in the total redundancy. 

The next construction gives a very simple method 
to obtain ECU codes with minimum distance d = 3. 

Construction 2.2 Let ( uo, u1 , ... , Uk-1) be an infor­
mation vector. Then proceed as follows: 

1. Add a parity bit Uk = El)~,:-01 Ui. 

2. Let {i1 ,i2, ... ,ij} be the set where 
(uo, u1, ... , uk) is zero (i.e., the complement of 
the support). Let r be the binary representation 
of E{=l. i1. App~nding r. to (uo, u1, ... , uk) com­
pletes the encodmg. 



The code obtained with this encoding procedure is 
ECU with minimum distance 3. 

Before proving that Construction 2.2 gives an ECU 
code with minimum distance 3, let us illustrate it with 
an example. 

Example 2.2 Assume that we want to construct an 
ECU code with minimum distance 3 and dimension 
5 using Constructions 2.1 and 2.2. Let us start with 
Construction 2.1. Assume that we want to encode 
(1 0 0 11). By using the parity check matrix 

H 
( 

1 1 1 0 0 
1 0 0 1 1 
0 1 0 1 0 
0 0 1 0 1 

1 0 0 
0 1 0 
0 0 1 
0 0 0 

the vector is encoded into 

(1 0 0 11 1111). 

We finally have to add a tail that is the complement 
of the binary representation of f7 /31 = 3. Since this 
is the possible maximum number, it is enough with 
two bits to represent this tail, i.e., we have to add 0 0. 
The final encoded vector is 

(1 0 0 1 1 1 1 1 1 0 0), 

so we need 6 redundant bits with Construction 2.1. 

Let us encode the same vector using Construc­
tion 2.2. We first add a parity bit, so we obtain 

(100111). 

The set of zeros is {1, 2}. Since the possible max­
imum is 15, we need 4 extra redundant bits. Now, 
1+2=3, which represented in binary with 4 bits is 
0 0 1 1. The final encoded vector is 

(1 0 0 11 1 0 0 11). 

As we can see, we need now 5 redundant bits, so 
we have saved a bit with respect to Construction 2.1. 
However, this is not always the case. The choice of one 
construction over the other depends on the parameter 
k being considered. Moreover, by looking at Table 1, 
this appears to be the only case in which Construc­
tion 2.2 performs better than Construction 2.1. 

Observe that, given k information bits, Construc­
tion 2.2 adds pog2 k + log2 (k + 1)1 redundant bits. 

Decodin& ECU codes when used for detection of t 
(symmetric) errors and detection of all unidirectional 
errors is very simple: we reencode the information 
bits, and we check if the obtained redundancy coin­
cides with the received redundancy. If they coincide, 
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then no errors are detected, otherwise we conclude 
that errors have occurred. 

Let us prove now that Construction 2.2 gives in fact 
an ECU code with minimum distance 3. 

Lemma 2.2 The code C obtained in Construction 2.2 
is ECU with minimum distance 3. 

Proof: Consider two codewords Q1 = (.Y1, 1:1) and 
Q2 = (.!!2., 1:2), where .Y1 and .Y2 are the intormation 
vectors plus the extra parity check bits. In particular, 
dH(.Y1, .!!2) ~ 2. 

Assume first that .Y1 and .Y2 are unordered. If 
dH(.Y1,.Y2 ) > 2, we are done, so let dH(.Y1,.Y2 ) = 2. 
Since, in particular, Q1 and Q2 are also unordered, 
we have to show that 1:1 ::fi 1:2 , which will make 
dH(Ql,Q2) ~ 3. 

Since dH(.Y1,.Y2 ) = 2 and .Y1 and .Y2 are unordered, 
let j be the location where .Y1 is 0 and .Y2 is 1 and I 
the location where .Y1 is 1 and .Y2 is 0. Without loss 
of generality, assume that j > I. Therefore, 1:1 will be 
larger than 1:2 as a binary number. In particular, they 
are different, so d(Q1, Q2 ) ~ 3. 

Assume next that !f~ and .Y2 are not unordered. 
Without loss of generality, assume that .Y1 :::; !f2• In 
particular, the set of zeros of .Y2 is contained into the 
set of zeros of .Y1, thus, 1:1 is larger than 1:2 as a binary 
number. Therefore 1:1 is not contained in 1:2 , prov­
ing that Q1 and Q2 are unordered. We can also easily 
see that dH(Q1,Q2 ) ~ 3. In effect, since .Y1 :S !f~, 
dH(.Y1,.Y2 ) ~ 2, and since, in particular, 1:1 ::fi 1:2 , th1s 
completes the proof. D 

We give a third construction, that is quite natural 
but it is not systematic. The encoding is giving by a 
look-up table, so this construction is not very practi­
cal when k is large. Essentially, we reverse the order 
of Construction 2.1: we first encode the k information 
symbols into m symbols such that 2k :::; ( r mf21) and 

m is as small as possible. We then add r redundant 
bits is such a way that we obtain an error-correcting 
code with minimum distance d. It is clear that the 
resulting construction gives an ECU code with mini­
mum distanced and length m + r. Formally: 

Construction 2.3 Let !f = ( uo, u~, ... , Uk-1) be an 
information vector. Let f be a 1-1 assignment from the 
2k information vectors to balanced vectors of length m 
and weight r m/21, where m is the minimum such that 
2k :S ( f mf21). Let C' be an [n, m, d] error-correcting 

code. Then proceed as follows: 

1. Obtain :!L = /(!f). 

2. Encode :!L into a vector 3Q E C'. 

The code obtained with this encoding procedure is 
ECU with minimum distance d. 



Example 2.3 Assume that we want to encode y_ = 
(1 0 0 1 1) as in Example 2.2 to obtain an ECU code 
with minimum distance 3, but this time using Con­
struction 2.3. The smallest m such that 25 = 32 < 
( r mf2l) is 7, so we have to encode y_ into a vector 

of length 7 and weight 3 (or 4). We can use lexico­
graphic order. The vector y_ taken as a binary number 
corresponds to 19. The 19th vector of length 7 and 
weie;ht 3 is ~ = (0 1 1 1 0 0 0). Now, we can use 
an lll, 7, 3] Hamming code, say, the one whose parity 
check matrix is 

H 

1 1 
0 0 
1 0 
0 1 

0 0 0 
1 1 0 
1 0 1 
0 1 0 

Vector y_ is then encoded into 

1 
1 
1 
1 

1 0 0 0 ) 0 1 0 0 
0 0 1 0 . 
0 0 0 1 

(0 11 1 0 0 0 0 1 0 1). 

As we can see, we need 6 redundant bits with Con­
struction 2.3. 

In order to obtain an ECU code with m1mmum 
distance d = 4 using Construction 2.2 or Construc­
tion 2.3, we simply add a parity bit to the a code with 
d = 3. When Construction 2.1 is used, sometimes 
codes with minimum distance 4 tie the redundancy of 
codes with minimum distance 3. 

Table 1 gives the total redundancy we have to add 
to k information bits (for some values of k) to obtain 
ECU codes with d = 3 and d = 4 using the different 
constructions. 

Table 2 gives the total redundancy we have to add 
to k information bits (for some values of k) to obtain 
ECU codes with d = 5, 6, 7, 8, 9 and 10 using Con­
struction 2.1. For the first 4 rows of the table, we used 
the tables given in [15, 16]. Fork= 128 and k = 256, 
since they are beyond the scope of the table, we used 
BCH codes [18]. 

In Table 3, we do the same thing with respect to 
Construction 2.3. Not surprisingly, the reader can ob­
serve that Construction 2.1 performs better than Con­
struction 2.3 for relatively small values of k and large 
values of d. 

In the next section, we deal with the issues of opti­
mality of ECU codes. 

3 Optimality of ECU Codes 
In this seCtion, we prove the optimality of Construc­

tion 2.1 for extended Hamming codes and for certain 
BCH codes in the following sense: the tail added to 
the error correcting code has minimal length, i.e., it 
is impossible to find a shorter tail making the code 
unordered. 

We begin by defining the concept of a chain of vec­
tors. 
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Definition 3.1 A set of binary vectors 
{ vl, v2, ... ' v m} is a chain of length m if any two vec­
tors in the set are ordered. 

The idea in proving the optimality of our construc­
tions is to exhibit a long enough chain of codewords in 
the error correcting code. The following lemma gives 
the key: 

Lemma 3.1 Let { C1, C2 , ... , Cm} be a chain of vec­
tors, each being a codeword in a given code C. Then 
the length of the a tail that we have to add to C to 
make it unordered is at least flog2 m l bits. 

Proof: Since all the codewords in the chain are or­
dered, we need to have a different tail for every one 
of them to make them unordered. Hence, we need at 
least m different tails. 0 

We prove the optimality of some of our construc­
tions by exhibiting chains of length fn/dl + 1 in an 
[n, k, d] code. First we prove the optimality of our 
construction for the extended Hamming code by ex­
hibiting a chain of 2m- 2 + 1 codewords in a code of 
length 2m. 

Proposition 3.1 The [2m, 2m - m - 1, 4] extended 
Hamming code contains a chain of 2m- 2+ 1 codewords. 

Proof: The columns of the parity check matrix of a 
(2m, 2m- m- 1, 4) extended Hamming code are: 

Note that we can arrange the columns in the parity 
check matrix in pairs such that the first m bits are 
complementary. Namely, column (v1, v2, ... , Vm, lf 
is paired with ( ii1, ii2, ... , Vm, 1 f. Hence, the sum of 
a pair of columns in this arrangement gives the vector 
(1, 1, ... , 1, Of and the sum of 2 pairs (4 columns) is 
the all-0 vector. We call this matrix Hm. For example, 

0 1 
0 1 
1 0 
1 1 

Consider the extended Hamming code that corre­
sponds to the matrix H m. It follows from the con­
struction of Hm that the following set of 2m- 2 + 1 
codewords is a chain: 

where si' s a binary vector, is a vector obtained 
by concatenating S i times. 0 



The second result is related to BCH codes. We 
prove that in many cases we can exhibit chains of 
codewords that show the optimality of our construc­
tion. The key to exhibiting long chains is the following 
lemma [6]: 

Lemma 3.2 Consider a binary t-error-correcting 
BCH code defined in a standard way, i.e., as a cyclic 
code of length 2m - 1. Let a and b be two integers such 
that 

a· b =2m- 1 

and 
a~ 2t + 1. 

Then the following b polynomials correspond to code­
words: 

zt(X) = 1 + xb + X 2b + ... + xCa-t)b 

and for 2 ~ i ~ b, 

Using this lemma we can prove the following: 

Proposition 3.2 Given a t-error correcting BCH 
code of length 2m -1 = a· b where a and b are integers, 
and a ~ 2t + 1, we can exhibit a chain of length b + 1. 

Proof: The proof follows from lemma 3.2. The chain 
consists of the all-0 vector and the set of b vectors 
that correspond to partial sums of the polynomials 
from Lemma 3.2 as follows: 

{ t z; : 1 ~ j ~ b} . 
•=1 

D 

Example 3.1 Consider the case t = 2, namely 2t + 
1 = 5. We can exhibit a chain of ((2m -1)/5)+1 code­
words in all the cases in which 2m - 1 = O(mod 5). 
For example, for m = 4 we can exhibit a chain of 
length 4. In general, we can exhibit a long chain when­
ever m = O(mod 4) (by Fermat's Theorem). Simi­
larly, for 2t + 1 = 7, we can exhibit a long chain for 
all all the cases in which m = O(mod 6). 

4 Application to Parallel 
Asynchronous Communications 

In this section, we give an application of ECU un­
ordered codes to parallel asynchronous communica­
tions. 

Consider a communication channel that consists 
of several sub-channels transmitting simultaneously. 
Namely, we would like to transmit a binary vector of 
length n using n parallel channels/wires. Every wire 
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can carry only one bit of information. Each wire rep­
resents a coordinate of the vector to be transmitted. 
The propagation delay in the wires varies. The prob­
lem is to find an efficient communication scheme that 
will be delay-insensitive. 

Since the signals do not arrive at the same time, a 
natural question is: how does the receiver know that 
the reception is complete? This problem is studied 
in [14]. There, the forgoing physical model is de­
scribed as a scheme in which the sender communi­
cates with the receiver via parallel tracks by rolling 
marbles (that correspond to a logical1) in the tracks. 
Although the marbles are sent in parallel, the chan­
nels are asynchronous. This means that marbles are 
received randomly and at different instants. 

Let us introduce some notation. The tracks are 
represented with the numbers 1, 2, ... , n. After them­
th marble has arrived, the receiver obtains a sequence 
Xm = Xt, x2, ... , Xm, where 1 ~X; ~ n, the number 
x; meaning that the i-th marble was received at the 
x;-th track. The set { Xt, x2, ... , Xm} is the support 
(i.e., the set of non-zero coordinates) of a vector and 
determines uniquely a binary vector. From now on, 
the sequence Xm = Xt, x2, ... , Xm will denote either 
the sequence as defined above, or a binary vector as 
defined by its support. Also, X may denote either a 
vector or its support. This abuse of notation should 
be clear from the context. 

For example, let a vector X = 0110 and a vector 
Y = 0100. In the language of sets we have X= {2, 3} 
and Y = {2}. Clearly, when the receiver gets a mar­
ble in track number 2, it is not clear whether he just 
received Y or he should wait to get a marble in track 
number 3 (this will correspond to receiving X). 

So, we have the following situation: assuming that 
a vector X is transmitted, once reception has been 
completed, the receiver acknowledges receipt of the 
message. The next message is sent by the sender only 
after the receipt of the acknowledgement. The prob­
lem is finding a code C whose elements are messages 
such that the receiver can identify when transmission 
has been completed. It is easy to see, as proved in [14], 
that the codes having the right property are unordered 
codes. 

One of the disadvantages of using the asynchronous 
type of communication is the fact that the channel is 
not fully utilized. Namely, there is at most one vector 
in the wires at any given time. This becomes very 
critical when the transmission rates are getting higher 
and lines are getting longer, so it is desirable to have 
a scheme that enables a pipelined utilization of the 
channel. In addition, our scheme has the important 
feature of not using a handshake (acknowledgement) 
mechanism. Hence, there is no need of communication 
between receiver and sender. 

We note that if one is ready to pay in performance, 
then a possible strategy, if acknowledgment of mes­
sages is not allowed, is that the sender will wait long 
enough between messages. So, if the sender sends a 
codeword X followed by a codeword Y, it will be very 
unlikely that a marble from Y will arrive before the 



reception of X has been completed. With this scheme, 
we can again use unordered codes as in [14]. 

So, we would like to study parallel asynchronous 
pipelined communication without acknowledgement. 
The main difficulty in this scheme is that a certain 
number of marbles from the second message might ar­
rive before reception of the current message has been 
completed, a condition that we call skew. 

It turns out that skew should be defined using two 
parameters. Assume that we transmit a vector X fol­
lowed by a vector Y. In general, since X is transmitted 
first, the marbles from X will tend to arrive before the 
marbles from Y. Also, if a marble in Y arrives before 
the transmission of X has been completed, it is very 
likely that few marbles remain in X. Let us call it the 
maximum number of marbles that may remain in X 
when a marble from Y arrives. Also, we do not expect 
too many marbles from Y to arrive before the trans­
mission of X has been completed. Let us call t 2 the 
maximum number of marbles from Y that may arrive 
before the completion of X. 

Our approach to dealing with skew is to use coding 
theory methodology and to try to identify the prop­
erties of a family of vectors (a code) that can han­
dle the skew. In some applications, we might merely 
want to detect that skew has occurred, and then in­
voke a protocol that will halt transmission and allow 
for retransmission. Codes detecting skew are called 
skew-detecting codes. Formally: 

Definition 4.1 We say that a code Cis (t1, t2)-skew­
detecting if, for any pair of codewords X, Y E C such 
that codeword X is transmitted followed by codeword 
Y, and the skew between X and Y is limited by the 
following two conditions: 

1. at most it marbles may still be missing from X 
when a marble from Y arrives; and 

2. at most t2 marbles from Y may arrive before all 
the marbles from X have arrived; 

then C will correctly decode X when there is no 
skew between X and Y, and will detect at a certain 
point the presence of skew provided it does not exceed 
the t 1 and t2 constraints. 

In other applications, we might want to go further 
and correct the skew, since this will allow for contin­
uous operation. Codes capable of correcting skew are 
called skew-tolerant codes. Formally, 

Definition 4.2 We say that a code C is (it, t2 )-skew­
tolerant if, for any pair of codewords X, Y E C such 
that codeword X is transmitted followed by codeword 
Y, and the skew between X and Y is limited by the 
following two conditions: 

1. at most t 1 marbles may still be missing from X 
when a marble from Y arrives; and 
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2. at most t 2 marbles from Y may arrive before all 
the marbles from X have arrived; 

then C will correctly decode X when the skew be­
tween X and Y does not exceed the t1 and t2 con­
straints. 

Before stating the necessary and sufficient condi­
tions for skew tolerant and skew detecting codes, we 
give some notation. Given two binary vectors X and 
Y of length n, we denote by N(X, Y) the number of 
coordinates in which X is 1 and Y is 0. For example, 
if X= 10110 andY = 00101, we have N(X, Y) = 2 
and N(Y, X) = 1. Notice that N(X, Y) + N(Y, X) = 
dH(X, Y), where dH denotes Hamming distance. 

The following theorem gives necessary and suf­
ficient conditions for a code to be (t1, t2)-skew­
detecting. 

Theorem 4.1 Let C be a code and, given two posi­
tive integers t 1 and t2 , let t = min{ t1, t 2} and T = 
max{it,t2}. Then, code Cis (t1,t2)-skew-detecting if 
and only if, for any pair of codewords X andY inC, 
at least one of the following two conditions occurs: 

(a) min{N(X, Y),N(Y,X)} 2: t + 1 

or 

(b) min{N(X, Y), N(Y, X)} 2: 1 and 
max{N(X, Y), N(Y, X)} 2: T + 1. 

The following corollary is clear from the necessary 
and sufficient conditions. 

Corollary 4.1 A code C is ( t, t~-skew-detecting if and 
only if, for any X, Y E C, min N(X, Y), N(Y, X)} 2: 
1 and max{N(X, Y), N(Y, X) 2: t + 1. 

The following theorem gives necessary and suffi­
cient conditions for a code to be (t1, t 2)-skew-tolerant. 

Theorem 4.2 Let C be a code, t1 and t2 two positive 
integers and t = min{t1, t2}. Then, code Cis (t1, t2)­
skew-tolerant if and only if, for any pair of codewords 
X and Y in C, at least one of the following two con­
ditions occurs: 

(a) min{N(X, Y), N(Y, X)} 2: t + 1 

or 

(b) min{N(X, Y), N(Y, X)} 2: 1 and 
max{N(X, Y), N(Y, X)} 2: t1 + t2 + 1. 

For a proof of Theorems 4.1 and 4.2 together with 
decoding algorithms, the reader is referred to [2]. 

The connection between ECU codes and (t1, t2)­
skew-detecting and tolerant codes is given by the fol­
lowing lemma: 

Lemma 4.1 Let t 1 and t2 be positive integers and 
t=min{t1,t2}. Then: 



1. Let C be an ECU with minimum distance> t1 + 
t2 + 1. Then C is (t1, t 2)-skew-detecting. -

2. Let C be an ECU with minimum distance > t1 + 
t2 + t + 1. Then C is (t1, t 2)-skew-tolerant.-

Proof: 

1. Lett = min{t1,t2} and T = max{t1,t2}. Let 
X, Y E C, and assume that condition (a) is vi­
olated, say, N(X, Y) :::; t. The codewords are 
unordered, and also, N(Y,X) = dH(X, Y) -
N(X, Y) ~ t1 +t2 + 1-t = T+ 1. Hence, X and 
Y satisfy condition (b), proving that the code is 
(t1, t2)-skew-detecting. 

2. Let X, Y E C, and assume that condition (a) 
is violated, say, N(X, Y) :::; t. The codewords 
are unordered, and also N(Y, X) = dH(X, Y) -
N(X, Y) ~ it + t2 + 1. Hence, X and Y sat1sfy 
condition (b), proving that the code is (it, t 2)­
skew-tolerant. 

0 

In the particular case in which t1 = t 2 = t, an ECU 
code with minimum distance 2t + 1 gives a (t, t)-skew­
detecting code, while an ECU with minimum distance 
3t + 1 gives a (t, t)-skew-tolerant code. 

We also notice that, given t1 and t2, t = min{ t1, t2}, 
a t-error correcting/all unidirectional error detecting 
(EC/ AUED) code [11] is (t1, t 2)-skew-detecting and 
(t 1, t2)-skew-tolerant, since it satisfies the first of the 
necessary and sufficient conditions in Theorems 4.1 
and 4.2. For efficient constructions of t-EC/ AUED 
codes, the reader is referred to [3, 4, 5, 13]. 

In general, constructions using ECU codes have 
less redundancy than constructions using EC/ AUED 
codes, unless there is a large imbalance between t1 and 
t2 [2]. 

Let us point out that some of the constructions of 
(t1, t2) skew-tolerant codes were improved in a recent 
paper [8]. 
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II Construction 2.1 II Construction 2.2 II Construction 2.3 I 

k II d = 3 I d = 4 II d = 3 1 d = 4 II d = 3 1 d = 4 1 
4 5 6 5 6 6 7 
5 6 7 5 6 6 7 
6 6 7 6 7 6 7 
7 6 7 6 7 7 8 
8 7 7 7 8 7 8 
9 7 7 7 8 8 9 
10 7 7 7 8 8 9 
11 7 8 8 9 8 9 
12 8 9 8 9 8 9 
13 8 9 8 9 8 9 
14 8 9 8 9 8 9 
15 8 9 8 9 8 9 
16 8 9 9 10 8 9 
22 9 9 9 10 8 9 
23 9 9 10 11 8 9 
26 9 10 10 11 9 10 
32 10 11 11 12 9 10 
64 12 13 13 14 11 12 
128 14 15 15 16 12 13 
256 16 17 17 18 14 15 

Table 1: Parameters of some codes using Constructions 2.1, 2.2 and 2.3 

I k II d = 5 I d = 6 I d = 1 I d = 8 I d = 9 I d = 1o I 
4 5 6 5 6 6 7 
10 11 12 13 14 19 20 
20 13 14 18 19 23 24 
32 15 15 20 21 27 28 
64 17 18 23 24 31 32 
128 20 21 29 30 37 38 
256 24 25 33 34 42 42 

Table 2: Parameters of some codes using Construction 2.1. 

I k II d = 5 I d = 6 I d = 1 1 d = 8 I d = 9 I d = 10 I 

4 5 6 5 6 6 7 
10 12 13 16 17 21 22 
20 13 14 19 20 24 25 
32 14 15 20 21 27 28 
64 17 18 23 24 32 33 
128 20 21 28 29 36 37 
256 23 24 32 33 41 42 

Table 3: Parameters of some codes using Construction 2.3. 
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