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Abstract: Motivated by considerations of shape chang- 
ing propulsion of underwater robotic vehicles, this paper 
analyses the mechanics of deformable bodies operating 
in an ideal fluid. The application of methods from ge- 
ometric mechanics results in a compact and insightful 
formulation of the problem. W e  develop an explicit for- 
mula for the fluid mechanical connection, in terms of the 
fluid potential function, for this class of systems. The 
connection can be used to analyze many assues in mo- 
tion planning and control. The theory is illustrated by 
application to an amoeba-like device. 

1 Introduction 

This paper considers the problem of self-propulsion of 
deformable bodies in an idealized inviscid and irrota- 
tional fluid. We are primarily motivated by an inter- 
est in robotic underwater vehicles that propel and steer 
themselves by changes in shape [l, 21. Aquatic animals 
propel themselves using a variety of fluid dynamic ef- 
fects [3]. The analysis presented in this paper is most 
suited to studying systems whose propulsive movements 
are analogous to the movements of amoeba. That is, 
our “robot amoeba” would swim through a fluid by us- 
ing deformations of its surface. We want to know how 
a swimmer of this kind should move in order to propel 
itself, and how effective this kind of swimming would be. 

Within the fluid mechanics community, there is a sig- 
nificant prior literature related to this topic, which has 
largely been motivated by the study of deformable bub- 
bles in a fluid [4, 5, 6, 71. The study of the propulsive 
movements of aquatic organisms by biologists and fluid 
mechanicians also has a long history. For example, see 
[3, 81 and references therein. There has been consider- 
able prior effort to design and control propeller driven 
underwater vehicles. However, only recently have seri- 
ous efforts emerged to study, build, and control under- 
water vehicles that move and steer by changes of shape, 
and not by propellers [l, 21. A key issue that has not 
been addressed in all of these prior works is a rigorous 
foundation for the design of trajectory generation and 
feedback control laws that can select patterns of body 
deformations that produce accurate motion. This paper 

addresses this problem for a limited class of swimmers. 

This paper has the following goals and contributions. 
First, we take a fresh approach to the fluid mechanics 
of this problem, employing recently developed ideas of 
symmetry and Lagrangian reduction to develop a new 
and compact formulation of the relevant equations of 
motion. In particular, we show that the relationship 
between shape deformation and body velocity can be 
described by a connection, for which we give an exact 
formula in terms of the fluid potential function. The 
connection allows one to answer questions relevant to 
control and motion planning. The spirit of this work is 
close in nature to that of Shapere and Wilczek [9], who 
studied some analogous problems for the case of Stokes 
flow. Next we develop a novel expression for the net 
body displacement that results from one cycle of shape 
deformation. A direct result of this analysis is a formula 
that measures the “effectiveness” of a given propulsor. 
Finally, we show how to use our formulation to develop 
trajectory planning schemes for such systems. 

This work fits nicely into a series of recent efforts to 
understand robot locomotion using methods of geomet- 
ric mechanics and geometric nonlinear control theory. In 
particular, prior efforts [lo, 11, 121 have shown that prin- 
cipal fiber bundles and their associated connections, as 
well as methods of Lagrangian reduction, are powerful 
ideas for unifying the study of locomotory systems. This 
paper gives further evidence that these ideas are useful 
for fluid locomotion as well. 

As an illustrative example we consider the motion of 
a planar robot “amoeba” with three modes of deforma- 
tion. Chen et al. [13] have recently constructed an actual 
mechanical amoeba which moves very much like the ex- 
ample system studied here. Our analysis indicates that 
macroscopic amoebae of this type will be relatively slow 
swimmers. However, we are interested in this system 
more as a test of the theory than as a practical applica- 
tion. More importantly, the results presented in Section 
4 are quite general, and do not depend upon the amoeba- 
like shape of the example. 
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Figure 1: Schematic of deformable swimming body 

2 Background 
Real amoebae are microscopically small. They operate 
a t  a very low Reynolds number and the relevant fluid 
equations are those of creeping flow [9]. However, if we 
were to build a macroscopic "robot amoeba" and expect 
it to swim through water, the Reynolds number of its 
ambient flow would be much higher and inertial forces 
will dominate instead of viscous ones. We thus make 
the reasonable idealization that the amoeba is a con- 
nected deformable body swimming through an inviscid 
and incompressible fluid. We also assume that the fluid 
is irrotational everywhere, and that the amoeba cannot 
generate vorticity in the fluid. Unless the amoeba grows 
sharp fins, this too is a reasonable assumption. 

Any "amoeba" robot which we might actually construct 
would have a finite number of actuators. Indeed, we 
would like to use as few actuators as possible. There- 
fore, rather than allow the boundary of the amoeba to 
be infinitely variable, we assume that its shape can be 
described by a finite number, n3, of shape variables, s. 
The space of all possible shapes, denoted by S, is a finite- 
dimensional manifold. 
We fix a frame, FB, to the body of the swimmer and let 
3w denote a fixed reference frame. (See Figure 1.) The 
location of the 3 B  is given by g(t) E S E ( d ) ,  d = 2,3. 
In coordinates, elements of S E ( d )  can be represented by 
homogeneous matrices, g, whose form is given in Eq. 
(1). The matrix R E S O ( d )  describes the orientation of 
3 B  with respect to 3w, while p'E Rd is the position of 
3 ~ ' s  origin. The velocity of the moving reference frame, 
as seen by an observer in 3 B ,  is g-lg: 

where b is a d x d skew symmetric matrix and <E Rd. 
The quantity g-lg is an element of the Lie algebra of 
S E ( d ) ,  se(d).  We shall denote by "V" the identification 
of se(d) with R v :  (g - ' j ) "  = [tT wTIT, where e and 
w are the linear and angular body velocities. 

The swimmer's smooth surface, C, is parameterized by 
a coordinate chart that is a function of ( d  - 1) parame- 
ters 01,. . . , or by an atlas of (d - 1)-dimensional 
charts. The surface parameters themselves are functions 
of the shape variables, SI, .  . , sna. 

Given the assumptions described above, the fluid mo- 
tion around the swimmer is described by potential flow, 
and its domain, V, is assumed to be unbounded. In 
the most general case, the ambient fluid undergoes non- 
uniform motion. We will assume that the ambient flow 
is quiescent. The Kirchoff principle for potential flow 
around a rigid body [14] can be extended to show that 
the general fluid potential, 4, for the fluid surrounding 
a deformable body will take the form: 

3 

i=l j=1 

The terms {@} are the standard Kirchoff potentials for 
a rigid body-in this case, for the deformable body at  a 
fixed shape, s. The term 4" terms represent the contri- 
bution to  the total potential due to body deformations. 
Let F(3,s )  denote the location of a surface point with 
respect to  a body fixed frame. The normal vector to 
the surface a t  that  point is denoted n(3,s). Then the 
instantaneous velocity, in th: body frame, of the surface 
point parameterized by 3 is <+Gx F(3 ,  s)+&F(3, s)&. 
At the body surface, the fluid velocity and surface veloc- 
ity in the normal direction must match, leading to the 
following boundary conditions. 

04; * G(3,s) = ni(3,s)  i = 1 ,2 ,3  
04; - f i ( a ' , ~ )  = (F(a' ,s)  x f i ( 3 , ~ ) ) ~  i = 4 ,5 ,6  

(3) 
d -04; . n(3, s) = -F(a', s) * n(3, s) vsi 

8s; 

These form separate Neumann problems for the Laplace 
equation (V24 = 0) for each term 4: or 4:. A unique 
solution (up to a constant) exists for each term [15]. 
The total kinetic energy of the constant density fluid and 
deformable body system is: 

Ttotal = Tbody + Tfluid = i i T A ( q ) i  + !?!! / Ilv#'l12 d V  
2 v  

where po is the fluid density, and A ( q )  is the kinetic en- 
ergy metric (or mass matrix) of the deformable body 
(in the absence of surrounding fluid). Because the po- 
tentials take the form of Equation (2) the total kinetic 
energy can be put in the form 

For the moment we will ignore any additional potential 
forces acting on the deformable body, and hence the sys- 
tem's Lagrangian is equivalent to Ttot,r. One could next 
derive the governing mechanics from the Euler-Lagrange 
equations. Instead we take a more abstract approach. 
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3 Ideas from Geometric Mechanics 
New insight can be obtained by applying methods of 
geometric mechanics to the system described in the pre- 
vious section. In particular we wish to find symmetries 
that lead to reduction. This section provides a brief sum- 
mary of relevant ideas. More extensive background can 
be found in [16, 171. In the interest of brevity, certain 
technicalities are omitted. 

3.1 Principal Fiber Bundles 

Let Q denote the configuration space of the deformable 
swimmer, which consists of its position, g E SE(d) ,  and 
its shape, s E S. Hence, the configuration space is 
SE(d)  x M ,  and a configuration q E Q can be given lo- 
cal coordinates q = (9, s ) .  This configuration space has 
a surprisingly rich structure due to the fact that S E ( d )  
is a Lie group. Recall that every Lie group, G, has an 
associated Lie algebra, denoted g. In our context, the 
Lie algebra of SE(d), denoted by se(d),  consists of the 
velocities of 3~3 relative to 3 ~ ,  as seen by a body k e d  
observer. Elements of se(d)  can be represented by ma- 
trices of the form g- lg ,  as seen in Eq. (1). 

If the swimmer’s initial body fixed frame position is h E 
G, and it is displaced by an amount g, then its final 
position is gh. This left translation can be thought of 
as a map L, : G + G given by L,(h) = gh. The left 
translation induces a left action of G on Q.  A left action 
is a smooth mapping Q : G x Q + Q such that: (1) 

for all g, h E G and q E Q. Omitting some technicalities, 
the configuration space Q endowed with such an action 
is a principal fiber bundle. Q is called the total space, 
S the base space (or shape space), and G the structure 
group. The canonical projection T : Q + M = Q/G 
is a differentiable projection onto the second coordinate 
factor: ~ ( q )  = T ( g , s )  = s. The sets T-’(s) c Q for 
r E S are the fibers, and Q is the union over S of its 
fibers. The usefulness of this structure will become more 
apparant in Section 3.3. 

3.2 Symmetries 
In Lagrangian mechanics, symmetries result in conser- 
vation laws. By a symmetry, we mean an invariance of 
the Lagrangian with respect to some operation. 

Q e ( q )  = q for all q E Q; and (2) @ , ( h ( q ) )  = @ L , h ( q )  

Definition 1 The lifted action is the map T Q ,  : TqQ + 
(Qg(q),TqOg(v)) f o r  all g E G and 

q E Q .  I.e., TqO, i s  the Jacobian of the group action. 
For left translation on  G, T O ,  has the coordinate form: 

: (q,v) 

( 5 )  

Based on the group action and lifted action, we can intro- 
duce the following notions of symmetry, or invariance. 

Definition 2 A Lagrangian function, L :  T Q  + R, is 
said to be G-invariant i f  i t  is invariant with respect to 
the lifted action, i.e., i f  

L (4, vq ) = L( h (q) 7 Tq @hug 

for  all h E G and all vq E TqQ.  

3.3 Connections 
To analyze and control propulsion of a deformable body, 
one would like to systematically derive an expression 
that answers the question: “If I wiggle the body’s sur- 
face, how does the body move?” The relationship be- 
tween shape and position changes can be formalized in 
terms of a connection, an intrinsic mathematical struc- 
ture that is associated with a principal fiber bundle. We 
begin with some necessary technical definitions. 

Definition 3 If 
.$Q and given by 

E g, the vector field on  Q denoted b y  

(6) 
d 

cQ(q) = Z@exp(fE) ( q ) I t = O  

is called the infinitesimal generator of the action corre- 
sponding to E .  The vertical space, VqQ c TqQ,  is defined 
as 

VqQ = Icer(T,./r) = { V I  v = <&(q) V E g}. 

Definition 4 The connection one-form, l?(q): TqQ + 
g, is a Lie-algebra valued one-form having the following 
properties: 

(i) r(q) is linear in its action on  T q Q .  

(ii) r(q)<Q = 5 for  

(iii) l?(q)q is equivariant, i.e. it transforms as 

The horizontal space is the kernel of the connection one- 
form, HqQ = { z  I l?(q)z = 0 } ,  and is complementary to 
VqQ. It can be shown that the connection one-form can 
be expressed in local coordinates q = (9, s )  as follows: 

E g. 

( h (q )  ) Tq h (q) 4 = Adh r (q) 4. 

I’(q)q = Ad,(A(s)B + g- lg ) .  (7) 

where A: TS  + g is termed the ‘‘local” fo rm of the con- 
nection. Hence, any q = ( g , B )  which lies in HqQ must 
satisfy a constraint of the following form: 

g- lg  = -A(s)B.  (8) 
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Note that the local connection plays a central role in the 
ensuing analysis. 
For Lagrangian systems with symmetries, such as the 
one studied here, the conservation laws that arise from 
symmetries constrain the overall system motion. This 
constraint can be expressed as a connection, called the 
mechanical connection [16]. It can be shown that the 
mechanical connection is given by the expression 

r(4)%, = I - l ( d J ( % ) *  (9) 
where the momentum map, J : TQ + g*, satisfies: 

(J(vq); <> = ((2)q, SQ)), 

for all ( E g and zlq E T,Q. The expression ((-, .)) denotes 
inner produce with respect to the kinetic energy metric. 
The locked inertia tensor is the map, I (q )  : g + g* which 
satisfies: 

(I(q)J; V) = ( ( ( ~ ~ 7 7 ~ ) )  for all C , V  E g 

4 The Dynamics Revisited 
We now revisit the mechanics of the deformable swimmer 
in light of the ideas presented in the last section. We first 
show that a Lagrangian that is invariant with respect to 
a group action induces a reduced Lagrangian. This 
is a general result that is independent of the particular 
fluid mechanical model that is studied in this paper. 

Proposition 4.1 [18] If L(q,q)  is a G-invariant La- 
grangian, i.e. i t  satisfies Definition 2, then the reduced 
Lagrangian, I: TQ/G + R, can be expressed as: 

. . .  

(10) 
where ( = g - l g  E g ,  9 E T,S, I ( s )  i s  the locked iner- 
tia matrix, and A ( s )  i s  the local f o r m  of the mechanical 
connection. 

To apply Prop. 4.1 to our particular fluid mechanical 
problem, we must show that the fluid mechanical La- 
grangian is invariant with respect to a group action. As 
seen in Section 2, the Lagrangian is a function of 4 and 
04. Hence, invariance is based on the invariance of 4 
and V4. Note that the potential, 4, is defined with re- 
spect to 38. Straightforward calculations based on this 
fact and an analysis of the boundary conditions can be 
used to prove the following fact. 

Proposition 4.2 In the case of quiescent ambient flow, 
the potential, 4, defined by Equation (2) and subject to 
boundary conditions (3) is S E ( d )  -invariant. Similarly, 
V4 is SE(d)-invariant. 

This proposition can not in general be extended to the 
case of a non-quiescent ambient flow. The following is a 
direct consequence of Prop. 4.2. 

Proposition 4.3 The fluid’s kinetic energy, considered 
as the Lagrangian Tfluid: TQ + R and given b y  

is invariant with respect to a left SE(d)-action. 

As a corollary to Prop. 4.1 and Prop. 4.3, we can state 
that the kinetic energy of a deformable swimmer in an in- 
viscid irrotational fluid takes the following special form. 

Proposition 4.4 The kinetic energy of the deformable 
swimmer, Equation (4), assumes the reduced form: 

where Id is the 6 x 6 Yocked added inertia” matrix, with 
entries: 

(Id)ij = A:!(.) - / (4:(v# * n,) + #$(vf,b: * n))  d S  
2 c  

(12) 

where ASS(,) is the locked inertia matrix of the de- 
formable body system (considered in the absence of the 
fluid) and the second term is the classical added f l u i d  
mass/inertia. Meanwhile &Ad is a (6  x n,) matrix with 
entries: 

(IdAd)ij = A:;(s) - / (~:(V#J; * n) + 45(v&: * n))  d S  
2 z  

(13) 

Hence, the extremely useful local f o r m  of th,e fluid me- 
chanical connection, Ad, can be computed as: 

Ad( s) = 1;’ (s) (IdAd) (s) (14) 

When the symmetry principles are taken into account, 
the governing equations of motion that one derives from 
the Euler-Lagrange mechanical equations reduce to this 
form: 

where p is the system’s momentum, in body coordinates. 
The variable 7 represents the “shape forces.” The first 
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Figure 2: The variables s l ( t ) ,  s z ( t ) ,  s3(t) correspond to 
3 deformation modes. The lBt and 2TLd modes together 
yield motion in the z-direction. The lSt and lYt modes 
together yield motion in the y-direction. 

equation is the connection, modified to include the pos- 
sibility that the swimmer starts with non-zero momen- 
tum. The second equation describes the evolution of 
the momentum, as seen in body coordinates. In spa- 
tial coordinates, this momentum is constant since it is a 
conserved quantity. We will hereafter assume that the 
swimmer starts with zero momentum, thereby eliminat- 
ing the second equation and simplifying the first to the 
form of Eq. (8). The third equation is known as the 
"shape" dynamics and is only a function of the shape 
varibles. For the purposes of control analysis and trajec- 
tory generation, we need only focus on the connection. 

5 Planar Amoeba Example 
As an example, we consider the propulsive movements 
of a roughly circular device whose boundary shape is 
modulated by a "small" amount. Bearing in mind that 
a practical robot amoeba should have as few actua- 
tors as possible, we restrict the possible deformations of 
its boundary to a set parameterized by three variables 
sl(t), s z ( t ) ,  s3(t) as follows. Fix a frame in the body of 
the amoeba, and let the shape of the amoeba be de- 
scribed in polar coordinates in the body frame by the 
equation (see Figure 2): 

F(u,  s) = ro[l + e(s1 cos(2cr) + s2 cos(3a) + sg sin(3u))] 

(Note that the centroid C of the deformed amoeba is 
not, in general, located at  the origin of the body frame; 
we will return to this point later.) The perfectly ir- 
rotational fluid surrounding the amoeba has density p .  
The potential d, is determined by the surface boundary 
conditions, by the requirement that U = Vd, go to zero 
as r approaches infinity, and by the requirement that 
there be no circulation around the amoeba. The surface 
boundary condition in polar coordinates is: 

( V ~ . Z ) ~ Z  = [ i c o s u + y s i n a  - i s i n u + ~ c o s u ]  T .ii 
T + er0 [il cos(2a) + i z  cos(3u) + i 3  sin(3u) 01 . ii 

Solving Laplace's equation by separation of variables: 

where, using the notation .(U) = cos(u), s ( u )  = sin(u), 

From d, we can readily find the rightmost terms of equa- 
tions (12) and (13); it remains to find ASS and Ag". 

To compute ASS and Ag", we must make some assump- 
tions regarding the amoeba's internal structure. For 
this example we assume that the amoeba is homoge- 
neous (which implies that the center of mass is located 
a t  the centroid) and has the kinetic energy of an instan- 
taneously rigid body of mass M with the same center-of- 
mass velocity and angular velocity. The velocity of the 
centroid is given by 
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Figure 3: Computer animation of a planar amoeba 
whose density equals that of the surrounding fluid. 
There are roughly 15.3 oscillations between snapshots. 

so the matrices ASS and ASs are given to order E’ by 

0 

Using formulas (12) and (13), to find Id and &Ad, we 
end with a local connection form Ad = (Id)-’(&&). 

0 

2 T r g z  pa2  
0 

-2 ~ r 0 ’  p sa 
M 

(18) 

where p = (27rrip)/(M + “r ip ) .  After using the con- 
nection to derive the motion of the frame, we may easily 
derive the velocity of the centroid: 

As seen above, the abstract approach espoused in this 
paper leads to a surprisingly succint description of the 
essential governing equations. 

6 Displacement by Periodic Motion 
Recall that the infinitesimal relationship between shape 
changes and body velocity is described by the local form 
of the connection: 

g = -gA(s) i  = -gA;(s ) i i ,  (19) 

where the index i implies summation. We would like to 
find a solution for this equation that will aid in designing 
or evaluating motions that arise from shape variations. 
Because SE(d) is a Lie group, the solution to Eq. (19) 
will generally have the form 

g ( t )  = g(0)ez(t)  

where I E se(d). An expansion for the Lie algebra valued 
function z ( t )  has been given by Magnus [19]. 

where [., a ]  is the Jacobi-Lie bracket on g. 

To obtain useful results, examine the group displacement 
resulting from a periodic path a : [0, T] + M such that 
a(0) = a(T). Taylor expand Ai about a(0) and then 
judiciously regroup, simplify, apply integration by parts, 
and use the fact that the path is cyclic [20]. 

(20) 
,. 

where 

is termed the curvature of the connection, the notation 
“ j”  indicates differentiation with respect to sj, and the 
following short-hand notation is used 

Summation over indices is implied. The connection, A, 
and its curvature, F ,  are evaluated a t  a(0) so that the 
coefficients of the integrals are constants. For a complete 
discussion of this series, see [20]. 
Thus, our geometric analysis shows that for small bound- 
ary deformations, the displacement of the body over one 
period of shape deformation is proportional to the cur- 
vature of the connection. The curvature is an excellent 
measure of the effectiveness of the swimmer. This result 
further bolsters the central role of the fluid mechanical 
connection in the analysis of deformable swimmers. 

For proportionally small deformations, the displacement 
experienced during one deformation cycle is: 

The term - 3 F;j dsi dsj  is Lie-algebra valued, 
and therefore it will take the form of g-lg in Eq. (1). 
The exponential of such a matrix is: 
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Example (continued): Consider the case of our ideal- 
ized planar amoeba. Since the curvature F of the con- 
nection is a skew symmetric quantity, there are only 
three independent non-zero curvature terms, F12, F13, 

and F23. Let us assume that the first deformation mode 
is forced periodically by input s1 = cos(Rt), while the 
second mode is periodically forced by input s2 = sin(Ot). 
For the chosen input forcing functions, the integral terms 
associated with the F13 and F23 terms are zero. From 
Eq.s (18) and (21) we see that 

L A 

Therefore, the displacement over one period of forcing is 

= exp ( -xFi 2 (0)) (27) 

If we discard the high-order terms in F12 and exponen- 
tiate only the curvature proportional to c2, we find 

Thus, to c3(c2), each oscillation results in a displacement 
of (-2ac2ro&) along the z-axis. The simplicity 
with which this result can be obtained is a direct result 
of the geometric approach outlined in Sections 3, 4. 

7 Rectilinear Motion Planning 
The series expansion outlined in Section 6 can be used 
as a basis for developing motion planning algorithms, as 
it directly relates control inputs to net displacement. In- 
terested readers are referred to Ref. [20] for more details. 
Here we take a simplified approach to our example. 

Consider the two-degree-of-freedom problem where we 
do not wish the amoeba to rotate, but wish the cen- 
troid to follow a path in the plane. Suppose that we 
choose sinusoidal inputs with time-varying amplitude, 

as follows: s l ( t )  = cos(Ot), s 2 ( t )  = -a(t)sin(Ot), 
s g ( t )  = -b( t )  sin(Rt). Then 

Thus, moving the centroid of the amoeba along a given 
curve in the plane is remarkably easy. (By contrast, 
moving the body frame origin along a given curve, using 
this form of input, would be more complicated, since 
the velocity of the body frame origin depends on the 
derivatives u ( t )  and b( t )  to leading order.) At any point 
along the curve, we make the velocity of the centroid 
tangent to the curve by appropriate choice of a and b 
( b / a  is the slope of the curve). As long as the curve is 
smooth, a and h are smooth functions of time. 

This method steers the centroid along a path in the 
plane, but not necessarily a t  a desired speed at  any given 
instant. In particular, the velocity of the centroid will 
periodically vanish (when sin2 (Ot )  vanishes). Figure 3 
shows snapshosts of a computer simulation of this model 
as it tracks a straight line with unit slope. 

We must also note that the average velocity of the cen- 
troid is disappointingly low, on the order of c2roR (which 
is the norm of the connection's curvature!). Each shape 
change cycle moves the amoeba a distance on the or- 
der of c2ro .  Thus if E = 0.1, then 100 oscillations are 
required to move the amoeba one body radius. Mechan- 
ically feasible amoeba will be relatively slow swimmers. 

8 Optimal Control Analysis 
We now demonstrate that the sinusoidal inputs used in 
the last two sections are "optimal" inputs, according to 
one natural measure of performance. First we restrict 
ourselves to motion along the z-axis. Therefore we have 
one base variable C, and two shape variables, s1 and s2 

(we can neglect s3) .  Assume that our control inputs are 
u1 = s'l and u2 = i2, so C, = ~ ~ r g p u ~ s 2 .  Suppose we 
choose a minimum-control-effort performance index: 

J ( 0 )  = - uTu d t  = - (U: + U : )  d t  (29) :: I' :: I' 
Assume that C,(O) = 0 and for simplicity s2(0) = 0. At 
time T we require a final state s l ( T )  = s1(0), sz(T) = 
s2(0), and C,(O) = d. The Hamiltonian and costate 
equations for this optimal control problem are 

1 
2 

H = - ( U ;  +U;) + XlUl + A2112 + A3c2ropUls2 
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From this we see that A1 and A3 are constants, while [4] P.G. Saf€man. The self-propulsion of a deformable body 
in a perfect fluid. J .  Fluid Mechanics, 28285-289, 1967. 

The stationarity condition is 

A solution to these equations is 

s1 = UCOS(NTt/T) 
sg = usin(Nrt /T)  

,N7r t sin((2NnlT)t) c, = -2ropa -[-- T 2 
(4N7rIT) -1 

where U = sI(0) and N = - c 2 a l r o p T .  2d 

To summarize, optimal inputs for s l ( t )  and s g ( t )  are 
sinusoidal functions of time, 90 degrees out of phase. 
“Optimal” inputs are those which cause the amoeba to 
swim a given distance along the z-axis in a given time, 
while minimizing control effort as defined in (29). By 
symmetry, sinusoids 90 degrees out of phase in s1 ( t )  and 
s g ( t )  will cause optimal motion along the y-axis. Fur- 
ther, by making s g ( t )  and s3(t)  each oscillate 90 degrees 
out of phase with s1 ( t ) ,  we can drive the amoeba in any 
direction in the plane, 

9 Conclusion 

seen in Section 7. 

We have shown how the tools of geometric mechanics can 
be used to analyze a general class of smooth deformable 
swimming robots. We have shown how to derive the con- 
nection form which relates the shape of the robot to its 
propulsion through the fluid, and how the curvature of 
the connection relates to the efficiency of the propulsion. 
We have examined an example “amoeba” robot with a 
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