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1. Message Routing Networks

1.1 Background

For message-passing concurrent computers with very few nodes, it is practical to
use a full interconnection scheme between nodes. A full interconnection of channels
quickly becomes impractical as the number of nodes increases since each node of
an N node machine must have N — 1 connections. A configuration used for larger
message-passing multicomputers such as the Caltech Cosmic Cube [Seitz 85| and
its commercial descendants is that of a binary n-cube (or hypercube) to connect
N = 2" nodes. Each node has n = log; N connections, and a message never has to
travel through more than n channels to reach its destination.

Figure 1: Full interconnection and hypercube channel configurations

Although the choice of the binary n-cube for the first generation multicomputers
is easily justified, the analyses presented by a 1986 Caltech PhD thesis by William
J. Dally [Dally 86] show that the use of lower dimension versions of a k-ary n-cube
[Seitz 84a] connecting N = k" nodes — eg, an n = 2 (2-D) torus or mesh — is optimal
for minimizing message latency under the assumptions of:

e constant wire bisection. |

e “wormhole” routing [Seitz 84b).

These 2-D (or optionally 3-D) networks also have the advantage that each node has
a fixed number of connections to its immediate neighbors, and if the nodes are also
arrayed in two or three dimensions, the projection of the connection plan into the
packaging medium has all short wires. Also, the number of nodes in a machine can
be increased at any time with a minimum amount of rewiring. The low dimension

-3-



k-ary n-cube greatly decreases the number of channels, so that with a fixed amount
of wire across the bisection, one may use wider channels of proportionately higher
bandwidth. This higher bandwidth, particularly with wormhole routing, can more

than compensate for the longer average path a message packet must travel to reach
its destination.

The time required for a packet to reach its destination in a synchronous router
is given by:

To = T.(pD + [L/W1])

where T is the cycle time, p is the number of pipeline stages in each node, D is the
number of channels that a packet must traverse to reach its destination, L is the
length of the packet, and W is the width of a flow control unit (fit).

As an example, let us assume we have N = 256 nodes, 512 wires crossing
the bisection for communication (neglecting overhead from synchronization wires),
a message length of 20 bytes, and an internal 2-stage pipeline. The bisection of a
binary hypercube has 128 channels in each direction, each with a width of 2 bits, and
an average of (log;N)/2 = 4 nodes must be traversed, so T, = (2 x 4 + 160 [2)T, =
88T,. The bisection of a 2-D (kxk) mesh, where k = 16, has 16 channels in each
direction, each with a width of 16 bits, and an average of (2k/3) ~ 11 nodes must
be traversed, so T, = (2 x 11+ 160/16)7, = 32T,. The binary hypercube network

in this example thus has over twice the average latency of the bidirectional mesh
network with the same wire bisection.

The Torus Routing Chip (TRC), designed at Caltech in 1985 [Dally & Seitz 86|,
used unidirectional channels between nodes connected in a torus:
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Figure 2: Torus network

The torus is shown here folded in its projection onto the plane in order to keep all
channels the same length. Deadlock was avoided by using the concept of virtual
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channels, by which a packet injected into a network travels along a spiral of virtual
channels, thus avoiding cyclic dependencies and the possibility of deadlock. The
TRC was self-timed to avoid the problem of delivering a global clock to a large
network. There were a total of 5 channels to deal with, channels to and from the
node, and 2 virtual channels each in £ and y. Thus the heart of the TRC involved
a 5 X 5 crossbar switch. Although the initial version had a slow critical path, the
revised version was expected to operate at 20MHz, with a latency from input to
output of 50ns. Since each channel had 8 data lines, the TRC achieves a data rate
of 20MB/s. A packet is made up of a header, consisting of 2 bytes containing the
relative xr and y address of the destination, any number of non-zero data bytes,
and a 0 data byte signifying a tail. Upon entering the router, each packet has the
address in its header decremented and tested for 0, and is passed out through the
proper output channel. The connection stays open for the rest of the message and
closes after the passage of the tail (wormhole routing). If the desired output channel
is unavailable, the message is blocked until the channel becomes available.

In the winter and spring of 1986, concurrently with the developments described
above, groups of students in the Caltech “VLSI Design Laboratory” project course
were put to work designing different parts of the Mosaic C element. This single-chip
node of a message-passing multicomputer was to contain a 16-bit processor, several
KBytes of on-chip dRAM, and some sort of routing circuitry for communication

with other chips. Each chip would form a complete node in a fine grain concurrent
computer.

After looking at a few possible implementations, including the TRC, the group
working on the routing section decided that a simple bidirectional 2-D mesh would
be used. The mesh had the advantage of keeping the length of wires between chips
down to less than 1 inch, which allowed the use of a synchronous protocol, since clock
skew could be made very small between chips. The mesh also allowed the channels
at the edge of the array to be reserved for communication with the outside world.
The group also decided to use a bit-serial protocol for packets, both to minimize
the number of pins on each chip and to minimize the number of connections needed
between them, but to organize the packets into sufficiently large flits that all of
the routing information could be contained in the first flit. As in the TRC this
first Mosaic C router used virtual channels to avoid the possibility of deadlock.
Each packet consisted of a 20 bit header with the relative z and y addresses of the
destination, and an arbitrary number of 20-bit flits consisting of a 16-bit data word
and 4 control bits. The router also used wormhole routing with one of the control
bits signifying a tail. Internally, flits were switched between input and output
channels using a time multiplexed bus. The control circuitry was kept as simple
as possible, and as a result did not know how to forward a packet by itself. Each
time the header of a packet came in, the processor would be interrupted {using
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a dual-context processor for fast interrupt handling) to determine which output
channel the packet should be connected to. This approach resulted in a latency
of several us per step in path formation, but allowed a lot of flexibility in routing
under software control. Acknowledgement packets would automatically be sent
and received between chips using the same channels to announce the availability of
buffers. With a 20MHz system clock (expected for 2um SCMOS technology) the
bandwidth would be about 2MB/s on each channel.

A layout was not finished for this first try at a routing circuit for the Mosaic
C, and I started working to complete it over the summer 1986. In retrospect, this
router consumed a large amount of silicon area to achieve fairly dismal performance.
However, two new ideas about packet routing appeared, both due principally to my

advisor, Chuck Seitz, and my project turned into one of designing routing circuits
of an entirely new type.

The first new idea was the use of prefix encoding to allow the packet header to
encode the relative address of the destination on several small successive flits. This
scheme was the key to getting around the problem of having to see a large amount
of header information before one could decide where to send the head of the packet.
This scheme is described in detail in section 1.2. This change simplified the routing
circuitry enough to allowed it to handle forwarding automatically without having
to disturb the processor. The deadlock-free routing method decided upon was to
send packets on the fixed route on a mesh of first z, then y, instead using of virtual
channels to avoid deadlock. Initial designs involved 5-bit flits (4 data, 1 control,
with an acknowledge wire in the reverse direction) to be sent in parallel on each
channel, and to be internally switched using a crossbar switch.

The second new idea goes under the general name of routing automata. Since
we first started making routers, it was realized that a crossbar switch, while very
general, had the disadvantage of taking up a space proportional to (nW)?, where n
is the number of inputs and outputs, and W is the number of bits being switched.
Now that we were back to a fixed routing scheme, the generality of a full crossbar
switch was no longer needed, and it was highly desirable to devise a scheme in
which the area would only increase linearly with nW, or as close to that as possible.
This scaling would make it much easier to modify the router for more dimensions or
wider flits without involving major layout changes, would decrease the path length
in the switch and hence increase its speed, and would hopefully decrease the overall
area for designs with wide flits and a large number of dimensions.

Each of these automata would be responsible for switching the packet streams
for 1 dimension of the router. An automaton’s input would consist of streams from
the + and — directions as well as from the previous dimension, and its output would
consist of streams to the + and — directions as well as to the next dimension. For n
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dimensions, n of these automata could be strung together in series, and if properly
constructed, their size would increase roughly linearly with increased width of the
flits, for a net increase in area proportional to nW.

PRy Pl iy

S el N

Figure 8: 8 Automata connected for x, y, and z routing

A more detailed description of these routing automata will be given in section
1.3. A synchronous automaton fitting this description was designed for the Mosaic
C, and it will be described in detail in Chapter 2.

Work was also begun on a self-timed version of routing automata of this type.
This version is intended to have each of its components be highly modular so that
they could be used not only to implement mesh routing, as in the Mosaic C, but
could also be fit together to implement unidirectional routers, routers for hyper-
cubes, or many other structures limited only by the desires of the designer. The
basic components included a FIFO for glue between stages and buffering, a switch
used both to divide and merge data streams, a decrementer for adjusting the relative
address of the destination as the packet passes through, and control structures for

all of the above. The implementation of these routing automata will be discussed
in Chapter 3.

1.2 Prefix Encoding

The prefix encoding scheme allows packets to travel through nodes at a constant
rate, with the first flit of the header generally containing enough information to
determine the output channel. The scheme involves the use of a leading zero flit that
can be used to limit how much of the relative address needs to be looked at before a
decision can be made or the address decremented. The following example uses 3-bit
flits (2 data, 1 control), which is the minimum width that allows the encoding of
the necessary "alphabet” of symbols, which are +,-,.,1,0,1,2,3. Each line represents
the packet as it leaves the node listed to the left, with "source” indicating the node
sending the packet and ”destination” indicating the node receiving the packet. Time
flow is towards the left. As header flits are no longer needed, they are stripped off.
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The diagram below follows the packet’s path through the 2-D network, as shown in
figure 4.

+ control, turn to + direction
- control, turn to - direction
. control, leading zero

T control, tail

0...3 radix-4 relative address

M data flit, one of the symbols 0...3

source TMMMM. 3 +12+
node 1 TMMMM.3+11
node 2 TMMMM.3+10
node 3 TMMMM. 3+ .3

node 4 TMMMM .3+, 2

node b TMMMM. 3+, 1 <--time
node 6 TMMMM. 3 + .

node 7 TMMMM . 2

node 8 TMMMM. 1

node © TMMMM.

destination MMMM
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O

OO0000000

Figure 4: Packet’s path through 2-D network

Originally the packet enters the network and takes the + direction in the first (=)
dimension. The leading flit is decremented while passing through each node until
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it reaches 0. During the decrement to 0 in node 2 the following flit is examined
to see if it is a digit. In this case it is, so the leading flit becomes 0. In node
3, the second flit needs to be decremented to 0, but since it is not followed by a
digit, it becomes a leading zero. This process continues until the relative address is
completely decremented to 0, at which point the leading zeroes are stripped off. The
next flit forces the packet to take the + direction in the second (y) dimension, and
once again the relative address in the header is decremented to 0. At this point the
packet has run out of dimensions to traverse, so it is passed into the receiving node.
The tail which makes up the end of the packet closes all of the channel connections
as it passes through the nodes, and is finally stripped off at the destination.

This encoding scheme allows the use of small flits to represent large offsets while
allowing decisions to be made based only on two flits of the header at once, which
helps minimize the latency of forwarding through a node. The simple decisions
involved also allow a simple controller to be used.

1.3 Routing Automata

As previously mentioned, the reduction of the routing circuitry to simple au-
tomata that control the switching through only one dimension greatly simplifies
the modification and expansion of a complete router. An individual automaton is
also much easier to design and lay out, due to the reduced number of inputs and
outputs, and independence from the routing occurring in other dimensions.

—J
N——> —N

1

Figure 5: 1-D automaton

The 1-D automaton:

has three inputs consisting of packets:
(1) traveling in the + direction,
(2) traveling in the — direction, and

(8) from the previous dimension.



Simple finite state machines can then process the input streams, decide on a switch
configuration that allows the largest number of packets to be forwarded, and then
connect the streams:

(1) to the + direction,
(2) to the — direction, and

(3) to the next dimension.

Now, here is a useful trick. Each of these automata can further be broken down
into a series of decision and merge operations performed on a subset of the data
streams. The following illustrates one possible conceptualization:

+ —
,~

N

+

+
N——3 N 6 N

N

¥

+ —

Figure 6: Sample internal structure of automata

The boxes in figure 6 represent decision elements that process their incoming data
streams and switch them onto their proper output stream. The circles represent
merge elements that take their input streams and arbitrate which of them to connect
to their output stream. Thus a packet coming from the previous dimension that is
to exit in the + direction would enter the leftmost decision element, be switched
onto its upper output stream, and merge into the stream exiting in the + direction.

Breaking down the internal structure of the automata in this way can further
simplify the design and layout, in the same manner as breaking up the router into
the 1-D automata. Even when parts cannot be directly reused, time can often
be saved by employing modifications. In the extreme case, each of the decision
and merge operations can be converted into binary form, where 3-way elements
are replaced by cascaded binary elements. In this case the elements become very
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homogeneous and the automata can be formed out of a minimal subset of very

simple elements. This approach is the one used in the self-timed routing automata
discussed in Chapter 3.

These automata can also be constructed for different channel configurations
using the same set of internal elements. For example they can be constructed for

unidirectional channels as used in a torus or a hypercube. Examples of the internal
structure of such automata are shown below:

+
N
+
N > N
N—
+
+

Figure 7: Unidirectional torus routing automata

N — N >\,\ N

+

+ o+

Figure 8: Hypercube routing automata
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2. The Mosaic Router

2.1 Overview

The Mosaic chip is a complete node of a fine-grain concurrent computer. It
contains all of the necessary elements including a 16-bit processor, several KBytes
of ROM and dRAM, and routing circuitry for communicating with neighboring
nodes in a mesh. All of these elements are tied to a common bus.

ROM [dRAM
/‘U‘ II\

)
i
A8

XM R+

Figure 9: Mosaic chip

Since the router must fit on a chip along with a processor and memory, the design
had to be simple and compact. Some inefficiencies that appeared in the design were
retained, however, because a functional router was needed before the Mosaic could
go into production, and this goal didn’t allow time for endless redesign.

The Packet Interface (PI) takes care of encoding the packet header, and trans-
ferring packet data to and from memory. A simple cycle-stealing form of Direct
Memory Access (DMA) is used to keep up with the high data rates supported by
the router. The PI also contains some memory mapped locations that are used

to specify the relative x and y addresses of the destination node, and an interrupt
control register.

The PI generates the appropriate direction control flits and multiplexes the
relative x and y addresses in its registers into the flit width required by the router.
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It does the same multiplexing for the packet’s data words, which come from an
output queue in dRAM. A tail flit is added when the output queue becomes empty.
These flits are injected into the previous dimension input of the automaton for the
first dimension. Any packets coming out of the last dimension simply have their tail
stripped off and the flits are demultiplexed into a 16-bit word, which is then stored
in an input queue in dRAM. The processor may be interrupted either when the

output queue becomes empty, or when a tail is received, or when the input queue
becomes full,

The Mosaic router, that is illustrated here, communicates with other nodes
using a 3-bit wide flit (2 data, 1 control) with an acknowledge wire in the reverse
direction. The flit can also be made wider to include more data bits. The first
”production” Mosaic chips will use a 5-bit flit. Any time an acknowledge is present,
flits are allowed to progress through the pipeline.

As a result of the bit-slice design used, it became more efficient in the data path
to combine the decision and merge operations slightly differently than in the sample
automata shown in Figure 6 of Chapter 1. The actual configuration is shown below:

+—
N
+
N N N
N
-—y .
/

Figure 10: Mosaic routing automata

The following sections will discuss the design and layout of key pieces of the

routing automaton in more detail. The last section in this chapter will discuss the
processor interface.

The completed layout of the Mosaic routing automata measures 760X x 1130\
for a minimum width flit (2 data, 1 control) At least one-third of this area is
control circuitry, so it is advantageous to use wider flits as far as layout efficiency
is concerned. It is expected to run at the same rate as the processor, which should
have at least a 20MHz clock with 2um SCMOS (10 MB/s with a 5-bit wide flit). A
complete automaton was packaged and sent out for fabrication in February, 1987.
It came back at the beginning of April, and was tested in early June.
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The test router correctly made connections, stripped or decremented portions
of headers, and closed the connection after the arrival of a tail. Problems were
encountered when a channel was required to block, however, so that garbage ap-
peared on the output and synchronization was lost. The cause of this problem was
eventually traced to a mistake in the layout of the acknowledge switch, resulting
in short circuits or floating inputs to logic blocks. The test sequences used to sim-
ulate the router were also found to be defective, and the two errors happened to
cancel, resulting in a "correct” simulation, but an incorrect chip. The layout and
test vectors have since been corrected. It wasn’t possible to perform speed tests on
the test router since taps were placed on a large number of internal nodes to help
track down errors, and the taps significantly loaded these nodes.

2.2 The Decision/Merge Switch

The decision and merge operations were lumped together into one switch matrix,
which handles both the multiplexing and demultiplexing of the data streams, with 4
minimally encoded control wires and their complements selecting one of the possible
switch configurations. There are several possible control combinations that result in
floating or random outputs, but, since this occurs only if a possible connection is not
used, these outputs cause no problems. A fair amount of work went into encoding
the control wires so as to minimize the number of switches and simplify the control
circuitry. The resulting layout is quite compact and, being a bidirectional switch,
can be used for both the forward connection for data and the reverse connection
for the acknowledge signal.

Figure 11: Stream switching element
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Although the combined switch approach probably minimized the overall size of
the router by homogenizing the data path layout for the different channels, it again
complicated the control circuitry. It would certainly not be a good approach for
wide data path slices, but for 1-bit slice paths it may have been the best approach.
It is difficult to say without having an alternate layout for comparison.

2.3 The Data Path

In an attempt to minimize the overhead of extending the width of a flit, the
Mosaic router uses an idea proposed by Wen-King Su of constructing the data
path out of 1-bit wide slices, with the +, —, and N paths for each bit being placed
immediately next to one another. This approach allows the same switching elements
to be used no matter how wide the flit is. Unfortunately, it also means that the
control signals for all three data paths had to be propagated through all of the
elements, and this led to a somewhat larger overhead in wiring than is necessary. It

also complicated the layout of the control circuitry since it had to fit in an effectively
smaller pitch.

The data path is made up of a number of elements:
(1) the input latch
(2) the input shift register
(3) the zero/tail detect circuitry
(4) the decrementer, or leading zero generator
(5) the stream switching element
(6) the output latch

(7) the output buffer/disabler

When connected sequentially in the order listed, these elements form a complete
data path for a Mosaic routing automaton. A bit-slice section of this path, for +,
—, and N, including signal wires passing through the slice, is shown below:
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Figure 12: Data path slice for Mosaic router

The direction of data flow in this path is from right to left. One of the most
obvious features are the large number of wires running through the center of the
path. These wires connect the various data bits in the flit to the control circuitry.
Each wire must appear 3 times, once each for the +, —, and N paths. If examined
closely, this triplication of control wires can also be seen running down the center of
each element in the data path. In addition to requiring more wiring space for this
triplication of control lines, the bit-slice approach also causes the bits at one end of
the data flit to be located a large distance from the control circuitry, so relatively
large drivers must be used for the control lines.

An embarrassment in the design is the location of the decrementers. Rather than
placing the decrementers on the input and output paths, I placed them on all three
input paths and used some extra logic to decrement only the first flit if the stream
was connected to an output path. This placement improved the symmetry of the
data paths, but adds more complexity to the control circuitry than is worthwhile.

2.4 The Controllers

Since the design of the automata started with the data path, the control circuitry
took up all of the slack for design inefficiencies. As a result, it is rather large
and ungainly. The small pitch of the control lines going into and out of the data
path necessitated a lot of extra wiring to route sets of signals to the corresponding
control circuitry, which could not be placed on the same pitch. In an attempt to
minimize this extra wiring, the control circuitry was split into a top half and a
bottom half, trying to exploit locality as much as possible. The sections of the top
control circuitry, from largest to smallest, are the channel contention and switch
control arbiters, the decrementer controllers and carry propagators, the tail detect
and propagation controllers, and a few gates to determine the current connectivity
state. The bottom half deals mainly with acknowledge propagation and the resulting
flow control, since the acknowledge bit happens to be at the bottom of the flit.
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One of the requirements for the synchronous routing automata that has been
glossed over before, as it depends on implementation, is the need for an acknowl-
edge signal to travel along the same connections as the data, but in the reverse
direction. The natural pipelining needed within routing automata complicates this
propagation, since the acknowledge bit has to be used for flow control at each stage
in the pipeline. Extra care has to be taken, especially when making or breaking a
connection, to properly synchronize the interaction of these two streams or glitches
will result which can affect the validity of the data stream, or cause the stream to
block irreversibly due to losing the acknowledge signal.

2.5 The Packet Interface

Using the minimum sized flit data width of 2 bits and the Mosaic word size of
16 bits, we see that the router can deliver one word every 8 cycles. The data rate
becomes even faster if wider flits are used. There is no way that the processor can
keep up with this data rate under software control. Therefore it was decided by the

Mosaic design group to use a simple form of cycle-stealing DMA to transfer packets
between the router and memory.

Four extra registers were added in the processor, and are used as address point-
ers and limit registers for the input and output channels. Each time the storage
bus is not being used by the processor (about once every 3 or 4 cycles for typical
code) the microcode PLA emits a bus release signal. A simple finite state machine
then arbitrates between bus requests from a refresh counter, the input channel, and
the output channel, and grants the bus cycle to one of them. If a channel is given
the cycle, it pulls on a line which causes the corresponding address pointer in the
processor to be placed on the address bus, and the channel then reads or writes
data from that location in the dRAM. The address pointer is then incremented and
compared with its limit register. If the two are equal, the DMA is disabled and the
processor is interrupted to process the I/O queues. If an interrupt occurs when an
output packet word is requested, a tail is sent following that packet.

A packet is sent by setting the output address pointer to the starting location
of the desired data in dRAM and setting the limit register to the location of the end
of that data. The processor then writes the relative addresses of the destination
node of the packet to memory mapped locations in the channel (using sign and
magnitude form). When the last location is written, the header is encoded and
sent, with the data following. Data is best received by setting the input channel
pointer to the starting location of a queue and setting the limit register to the end
of the queue. The processor can examine the value of the address pointer at any
time to see how many words are in the queue. Currently there is no provision for
marking a tail, so if explicit knowledge of the length of a data packet is required,
one of two methods must be used. The length of the packet can be encoded in the
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first word of the packet, which the processor can then examine, or the processor
can be interrupted when the tail of a packet arrives, and then the interrupt routine
examines the input address pointer register to determine the length of the packet.
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3. The Asynchronous Routing Automata

3.1 Overview

Much of what was learned from the Mosaic synchronous router can be applied
to an asynchronous routing automaton. An asynchronous router can be used in
physically larger systems, such as second generation ”cubes”, in which the intercon-
nections are not limited to being very short wires. The mesh routing chip (MRC)
described here is designed to meet the specifications for these second generation
"cubes”.

These routing automata are intended to be a separate chip, a part of a large
computing node. As in the Mosaic router, the 2-D MRC has 5 bidirectional chan-
nels, with channels in the +z, —=z, +y, —y directions, and a channel connecting it
to the packet interface.

+Y

=1

AN
XTI MRC Koo+X

—Y

Figure 18: Mesh routing chip

Data is represented on each of the channels using 9-bit wide flits (1 tail, 8 data)
as shown in figure 14, where the first bit is the tail bit. The 3rd bit in a header flit
is reserved for the future addition of broadcast support. The timing of the wires
carrying these flits, as well as the corresponding 2-cycle request and acknowledge
signals, is shown in figure 15.
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Figure 14: Packet format
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Figure 15: MRC signals and timing
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A relative offset of 6 bits allows for up to 64 nodes along a single dimension,
which should be sufficient for any 2nd generation machine with large nodes. A
9-bit flit together with the asynchronous request and acknowledge signals for each
channel require a total of 11 pins. Five bidirectional channels (+z, —z, +y, —y,
and the node) then require 110 pins, to be placed in a 132 pin PGA package. The

remaining pins are used for a reset and for multiple Vdd and GND pins to minimize
noise.

3.2 Pipelining

Pipelining is used in many synchronous systems to increase their throughput.
Each cycle, each stage of the pipeline accepts data from the previous stage, performs
some relatively simaple operation on the data, and passes the resulting data on to
the next stage. Data is passed between stages during each cycle by clocked registers.
A typical synchronous pipeline section is shown in figure 16.

CLOCK

s

A4

— = — =

Figure 16: Synchronous pipeline

The combinational logic in each stage has one clock period in which to produce valid
output data based on its input data. This time, T, is the same for all stages in the
pipeline, and the time required for data to flow through the pipeline is T, = T.p,
where p is the number of stages in the pipeline.

A similar arrangement can be used in an asynchronous system. Instead of a

global clock, the 4-cycle request and acknowledge signals [Mead & Conway 80] are
used to control data flow between stages, as shown in figure 17.
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Figure 17: Asynchronous pipeline

In an asynchronous pipeline, each stage processes data at its own rate, and passes
its output data to the next stage when it is finished. Each stage thus has its own
cycle time, £, which is the time it requires to complete its request and acknowledge
4-cycle. Each stage also has a characteristic fallthrough time, ¢ #» Which is the time
required from when an input request is received until the data is processed and an
output request is generated. The ratio of ¢,/t; determines across how many stages

a cycle (and an item of data being worked on) extends. By necessity, ty <t,, and
for most designs ¢, ~ 2t,.

Looking back at the automata shown in figure 3, it can be seen that data flows
in only one direction within an automaton, and the different paths are independent
(except for merge operations). It is thus an easy transition to think of routing
automata as being implemented using a pipeline structure, as in the MRC.

The transit time, from source to destination, of an unblocked packet in the
synchronous case is given by T,, = T, (pD+ L/W) (Chapter 1). For the asynchronous
case some of these terms are changed, because the head of a packet advances at the
fallthrough rate, which is less than the cycle time. The formula for network latency
can thus be expressed as follows:

where T} is the fallthrough time for a node. For relatively short packets, D is

comparable to L/W, so there is no strong motivation to reduce either Ty or T, at
the expense of the other. T, and T} can be expressed as:

T, ~2t, +t,
Tf th-i-tfp

where ¢, is the time required to drive the pads, p is the number of stages in the
internal pipeline, and t; and t, are the average fallthrough and cycle times for a
single stage of the pipeline, as described above. A pad, and the external components
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connected to it, are relatively difficult for a VLSI chip to drive, so t, > . >
ts. This means we can increase the number of stages in an asynchronous pipeline
without significantly increasing the overall delay. In the case of the MRC, increased
pipelining has a significant advantage in that having more pipeline stages provides
the network with more internal storage for packets, and consequently helps prevent
congestion of the network.

3.3 The Asynchronous FIFO

The asynchronous FIFQO structure being used is based on chained Muller C-
elements [Mead & Conway 80]. Its basic structure is shown below:

i
% —R,

SEN
SER

R

D
o/\

(O,

Figure 18: Asynchronous FIFO

Initially, all of the C-elements are reset to 0. Data is presented on the inputs,
and the request line (Ro) is pulled high. This causes the output of the first C-
element to be pulled high, causing the data to be latched. When this load control
line becomes high, the data is assumed to be latched, a request (R;) is passed to
the next stage, and the acknowledge line (A,) to the previous stage is pulled high.
When the next stage latches the data and an acknowledge (A;) is received from it
and the request line (Ro) goes low, the FIFO stage is reset to its initial condition.
In this manner, the data quickly falls through the chain of FIFOs, with the data
always spread across at least 2 stages. If the request time is significantly less than
the acknowledge time, then the flit will be spread across more than 2 stages while
it is falling through the pipeline.
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The second requirement of fast latches is usually easy to meet, since latches are
generally much faster than C-elements (and Schmitt triggers). The registers used
in these FIFOs consist of a closed loop of a strong and weak inverter, with the data
gated to the input node of the strong inverter. Thus the data is inverted at each
stage of the FIFO, and these stages should be used in multiples of two to preserve
the sense of the data. In order to save space, these register cells are flip-composed
vertically, for data path widths that are multiples of 2. In the MRC, the path width
is 10 bits, so there is an extra bit available for propagating information between
stages of the pipeline, if it becomes desirable to do so.

Figure 21: FIFO storage register

For 1.2um SCMOS, it is expected (from r-model calculations) that each FIFO
should have a t; (fallthrough time) of about 1ns. This follows the assumption of
ty < t, (pad driving time), which is about 5ns (more with a large load or long
connection line), so that extra stages of pipelining do not add significantly to the
latency of a packet passing through a node.

3.4 The Decision and Merge Elements

For simplicity and easy modularity, I decided to use binary decision and merge
elements in the asynchronous automata. With careful design, it was possible to use
basically the same switch for both elements, simply by flipping it sideways. Each
section of the switch consists of a simple 1-t0-2 multiplexer (or 2-to-1 demultiplexer),
and enough of these are connected along a diagonal to handle the width of a flit.
Because of the use of binary switches, the internal construction of the asynchronous
automata is as shown below, in which the boxes labeled ”D” are decrementers:
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Figure 22: Asynchronous automaton

3.5 The Decrementers

The decrementers are a simple asynchronous ripple borrow type, with a line
that is pulled low to indicate completion. Completion is defined by a stage that
receives a borrow in, and produces no borrow out because of having a 1 on its
data input. This completion signal is used to generate the request signal for the
next stage of the pipeline. As with the registers in the FIFO, it is assumed that
the forward propagation through the decrementer is less than the cycle time of a
C-element and Schmitt trigger combination.

3.6 The Complete Datapath

Two of the biggest problems of working the elements into a datapath was match-
ing the pitches of all the elements to be multiples of each other, and properly spacing
the wires in the switches so that they would compose properly under all orientations.
Both of these goals were necessary for easy modularity, so that for any automata
design a lot of design time would not have to be spent pushing wires and cells
around to make all the proper connections. A completed datapath is shown below,
and can be compared with the automata shown in Pigure 22, on which the topology
is based. The size of this complete datapath is 1200X x 1500X.
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Figure 28: Asynchronous automaton
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3.7 The Pad Interface

The internal automata use 4-cycle signaling for flow control, but, to increase
speed and conserve power, signals sent off chip must use a 2-cycle convention. A
small amount of conversion must therefore be done before driving the pads. This
conversion also adds a small amount of delay in the request/acknowledge path,
which helps ensure that the data is valid by the time a request is received, even
if the delays in the lines are slightly skewed. If the delays are skewed by a large

amount, a simple lumped RC delay can be added to the request line external to the
chip.
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