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Abstract—In this paper, we generalize the lossless coded side
information problem from the three-node network of Ahlswede
and Körner to more general network scenarios. We derive
inner and outer bounds on the achievable rate region in the
general network scenario and show that they are tight for some
families of networks. Our approach demonstrates how solutions
to canonical source coding problems can be used to derive bounds
for more complex networks and reveals an interesting connection
between networks with side information, successive refinement,
and network coding.

I. INTRODUCTION

We consider a lossless source coding problem over noiseless
links. Sources X and Y are available at distinct nodes in
the network. Only source X is required at one or more
sink nodes. The resulting family of coded side information
problems captures scenarios where the network capacity is
insufficient to describe a source X to its intended destinations;
in such scenarios, X can sometimes still be delivered without
loss provided sufficient capacity from a helper random variable
Y . We wish to characterize this family of scenarios. When
Y is independent of X , our coded side information problem
reduces to the multicast problem [1]. When X and Y are
dependent and Y is available only at a sink node from
which there are no outgoing edges, the problem reduces to
a multicast problem with side information [2]. When X and
Y are dependent and the network is the three-node network
with independent transmitters observing X and Y and a single
receiver reconstructing X , this is the original coded side
information problem [3]. While the rate region is solved for
each of the special cases above, the general problem remains
unsolved. Network models with more than two sources were
considered in [4] and [5], however, in these models each node
in the network is either a source or a sink, hence they do not
include the scenarios we consider here.

At the basis of key results in source coding for networks,
e.g. [1], [6] and [2], stands a cut-set argument, namely, a
partition of the network into two disjoint sets and the usage
of known results from source coding for a point-to-point link.
Yet, it is clear that even for small networks such an argument
can be loose, and the question that arises is how can we
harness solutions to canonical problems more complex than
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point-to-point in order to bound the rate region for large
networks.

In this paper, we derive inner and outer bounds on the
rate region for networks with side information when the side
information is available at a non-sink node. In particular,
we show how the solutions to source coding problems like
the coded side information problem of [3] or the partially
separated encoders problem of [7] can be used to bound
the rate region of large networks with dependent sources.
We describe sufficient conditions for the tightness of our
bounds and show their relation to the conditions for successive
refinability in lossy source coding [8].

The rest of the paper is organized as follows. Section II
includes a formal statement of the problem. In Section III, we
derive inner and outer bounds on the set of achievable rates.
In Section IV, we give sufficient conditions for the tightness
of our bounds and demonstrate a few network scenarios where
those conditions apply. Section V includes a few simple
examples.

II. PROBLEM STATEMENT

The following definitions are used throughout the paper. A
network is defined as a directed acyclic graph (V, E), where
V is the set of vertices (nodes) and E ⊆ V × V is the set of
edges (links). For each edge e = (a, b) ∈ E , we use o(e) = a
and d(e) = b to denote the origin and destination vertices,
respectively, of edge e. Associated with each edge e ∈ E is a
capacity c(e) ≥ 0. We assume noise-free links.

We specify a side information network (V, E , s, z, T ) as
follows. Let {(Xi, Yi)}∞i=1 be a sequence of independent and
identically distributed pairs of discrete random variables with
alphabet X ×Y . Source {Xi} is available at node s ∈ V , side
information {Yi} is available at node z ∈ V \ {s}, and source
{Xi} is demanded losslessly at the sink nodes T ⊆ V \{s, z}.
We assume that nodes s and z have no incoming edges and
that each sink node in T has no outgoing edges.

Let EXY ⊆ E denote the set of edges for which there is a
directed path from s to o(e) with a strictly positive capacity,
and denote by EY the set E \EXY . Given any non-intersecting
sets A,B ⊂ V , a cut VA;B is a subset of vertices which
includes A but is disjoint from B, that is, A ⊆ VA;B and
VA;B∩B = ∅. Let C(VA;B) be the set of edges e ∈ E for which
o(e) ∈ VA;B and d(e) 6∈ VA;B and V∗A;B describe the cut for
which

∑
e∈C(VA;B) c(e) is minimal among all cuts VA;B . For

example, Vs,z;t describes a cut that separates source nodes
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{s, z} from receiver t ∈ T , C(Vs,z;t) is the set of edges that
traverse that cut, and V∗s,z;t is the min-cut between {s, z} and
{t}. (We omit the brackets from {s, z} and {t} for notational
concision.)

For any vector of rates (Re)e∈E , a ((2nRe)e∈E , n) source
code comprises the following mappings

gn
e : Xn 7→ {1, . . . , 2nRe} e ∈ E , o(e) = s

gn
e : Yn 7→ {1, . . . , 2nRe} e ∈ E , o(e) = z

gn
e : Πe′:d(e′)=o(e){1, . . . , 2nRe′}

7→ {1, . . . , 2nRe} e ∈ E , o(e) 6∈ {s, z}
hn

t : Πe:d(e)=t{1, . . . , 2nRe} 7→ Xn t ∈ T.

For each t ∈ T , we use X̂n
t to denote the reproduction of

Xn found by decoder hn
t . We are interested in the set of

possible values (c(e))e∈E for which for any ε > 0 there exists a
sufficiently large n and a ((2nRe)e∈E , n) code with Re ≤ c(e)
for all e ∈ E , such that Pr(X̂n

t = Xn) ≥ 1 − ε for all sinks
t ∈ T . That is, X can be reproduced at the terminals t ∈ T
with a negligible error probability. We call the closure of this
set of rate vectors the set of achievable rates, which we denote
by R(V, E , s, z, T ). In the rest of the paper, we derive general
inner and outer bounds on this set and investigate the scenarios
in which these bounds are tight.

III. OUTER AND INNER BOUNDS ON THE SET OF
ACHIEVABLE RATES

In this section, we derive inner and outer bounds on the
set of achievable rates for side information networks. The fol-
lowing outer bound on the set of achievable rates generalizes
the cut-set bound [9, Theorem 14.10.1] to give a necessary
condition for lossless reconstruction of X at the terminal nodes
given side information Y at any other node in the network.

Theorem 1. Given a side information network (V, E , s, z, T ),
if (c(e) : e ∈ E) ∈ R(V, E , s, z, T ), then for each t ∈ T and
each cut Vs,z;t there exists a random variable U ∈ U such
that U ↔ Y ↔ X , |U| ≤ |Y|, and

∑

e∈EXY ∩C(Vs,z;t)

c(e) ≥ H(X|U)

∑

e∈EY ∩C(Vs,z;t)

c(e) ≥ I(Y ; U).

In Section IV we give sufficient conditions on the network
for which Theorem 1 is tight. While the region is not tight in
general, it is always at least as strong as the cut-set bound.
To see this, note that for any cut Vs,z;t, the cut-set bound is∑

e∈C(Vs,z;t)
c(e) ≥ H(X) while Theorem 1 gives

∑

e∈C(Vs,z;t)

c(e) ≥ H(X|U) + I(Y ;U).

Since H(X|U) + I(Y ; U) ≥ H(X) for all U ↔ Y ↔ X , the
second bound is at least as good as the first. On the other hand,
for any cut Vs;z,t, the cut-set bound is

∑
e∈C(Vs;z,t)

c(e) ≥
H(X|Y ) while taking Ṽs,z;t = Vs;z,t ∪ {z} and using Theo-
rem 1 and the observation that all edges leaving node z lie in

Fig. 1. Coded side information with Y known at the X encoder.

EY rather than EXY gives
∑

e∈C(Vs;z,t)

c(e) ≥
∑

e∈EXY ∩C(Ṽs,z;t)

c(e) ≥ H(X|U),

which is again at least as tight as the cut-set bound.
Before proving Theorem 1, we describe the rate region for

the network shown in Figure 1. While the network differs from
the coded side information problem in that side information
Y is available to the encoder of X , the rate region is the same
as the rate region for the coded side information problem by a
converse similar to the one in [3], which we omit for brevity.
The proof that |U| ≤ |Y| follows from [10, Theorem 1].

Proposition 2. Consider the source coding problem given in
Figure 1. Rate vector (R1, R2) is achievable if and only if
there exists a random variable U ∈ U such that U ↔ Y ↔ X ,
|U| ≤ |Y|, and

R1 ≥ H(X|U); R2 ≥ I(Y ; U).

Theorem 1 Proof: Let {((gn
e )e∈E , (hn

t )t∈T )}∞n=1 be a
sequence of ((2nc(e))e∈E , n) codes for which Pr(X̂n

t =
Xn) → 1 as n →∞ for all t ∈ T . Given any receiver t ∈ T
and any cut Vs,z;t, let fn

e (Xn, Y n) denote the message carried
along edge e for each e ∈ EXY ∩C(Vs,z;t) and gn

e (Y n) denote
the message carried along edge e for each e ∈ EY ∩C(Vs,z;t).
Further, define the vectors

fn(Xn, Y n) = (fn
e (Xn, Y n))e∈EXY ∩C(Vs,z;t)

gn(Y n) = (gn
e (Y n))e∈EY ∩C(Vs,z;t)

Then (fn, gn, hn
t ) can be viewed as a code of rate

(
∑

e∈EXY ∩C(Vs,z;t)
c(e),

∑
e∈EY ∩C(Vs,z;t)

c(e)) for the network
in Figure 1, giving the desired result by Proposition 2.

We now derive an inner bound on the set of achievable rates
for networks with one source, one destination, and one side
information node.

Lemma 3. Let (V, E , s, z, {t}) be a side information network.
If there exists a vertex v ∈ V and a random variable U ∈ U
such that U ↔ Y ↔ X , |U| ≤ |Y|, and

∑

e∈C(V∗s;v)

c(e) ≥ H(X|U) (1)

∑

e∈C(V∗z;v)

c(e) ≥ I(Y ; U) (2)

∑

e∈C(V∗s,z;v)

c(e) ≥ H(X|U) + I(Y ;U) (3)

∑

e∈C(V∗v;t)

c(e) ≥ H(X), (4)
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Fig. 2. A simple 4-node network.

then (c(e))e∈E ∈ R(V, E , s, z, {t}).
Lemma 3 is proved in [11]. The essence of the proof is

the fact that at the rate given in Lemma 3 a simple multiple-
unicast code can send the required descriptions of X to v,
reconstruct it and forward the reconstruction to t. Figure 2
includes a simple example for which the bound in Lemma 3
improves on the achievability result from [2, Theorem 3].

Both Theorem 1 and Lemma 3 demonstrate the power of
small, canonical problems, in the solution of large networks.
Any outer bound for a canonical problem yields a correspond-
ing outer bound for general networks of the corresponding
structure. Any known solution to such a problem yields
an achievable region. Moreover, additional properties of the
codes, such as error exponents, are likewise inherited. For
example, it is clear from the proof of Lemma 3 that linear
encoding and decoding can be used at all nodes but z and v.
Finally, the result in Lemma 3 can be generalized to the cases
where the intermediate node v, destination t, or both have
additional side information available, using the generalization
of [3] given in [12].

IV. SUFFICIENT CONDITIONS FOR THE TIGHTNESS OF
THEOREM 1

In this section, we derive sufficient conditions under which
the inner and outer bounds of Section III are tight. Corollary 4
treats networks where the only node with directed paths from
both the source and side information nodes is the sink.

Corollary 4. Let (V, E , s, z, {t}) be a side information net-
work. If t is the only vertex in V for which there are directed
paths from both s and z, then Theorem 1 is tight and we
can rewrite the achievable rate region as (c(e) : e ∈ E) ∈
R(V, E , s, z, {t}) if and only if there exists a random variable
U ∈ U such that U ↔ Y ↔ X , |U| ≤ |Y|, and

∑

e∈C(V∗s;t)
c(e) ≥ H(X|U)

∑

e∈C(V∗z;t)

c(e) ≥ I(Y ; U).

Proof: We prove the achievability of Theorem 1 using
Lemma 3. Note first that any cut Vs,z;t can be written as
a union of cuts Vs;t and Vz;t for which C(Vs,z;t ∩ EXY ) =
C(Vs;t) and C(Vs,z;t ∩ EY ) = C(Vz;t), which gives the
rate region characterization above. This gives us (1) and (2)
immediately. Condition (4) is also trivially satisfied. It remains

Fig. 3. A network with k demands, direct links from Y .

Fig. 4. A network with two demands, arbitrary Y network.

to check condition (3). For any cut Vs,z;t,
∑

e∈C(Vs,z;t)

c(e) ≥
∑

e∈C(V∗s;t)
c(e) +

∑

e∈C(V∗z;t)

c(e) (5)

≥ H(X|U) + I(Y ;U)

where (5) follows since C(V∗s;t) ∩ C(V∗z;t) = ∅.
We next consider networks with k sinks (T = {t1, . . . , tk}).

Theorem 5 treats the case where EY = {(z, t) : t ∈ T}; that
is, there is a direct link from z to ti and that is the only path
from z to ti for each ti ∈ T , as shown in Figure 3. Clearly,
Theorem 5 will continue to hold if each of the links in EY is
replaced with a separate network of equal capacity. The details
are omitted.

Theorem 5. Let (V, E , s, z, {t1, . . . , tk}) be a side information
network with EY = {(z, ti)}k

i=1. Then Theorem 1 is tight, and
we can rewrite the resulting rate region as (c(e) : e ∈ E) ∈
R(V, E , s, z, {t1, . . . , tk}) if and only if there exist random
variables Ui ∈ Ui, i = 1, . . . , k such that for each i, Ui ↔
Y ↔ X , |Ui| ≤ |Y|, and

∑

e∈C(V∗s;ti
)

c(e) ≥ H(X|Ui) (6)

c((z, ti)) ≥ I(Y ;Ui) (7)

Proof sketch: By [3] and [10, Theorem 1], the existence
of Ui, i = 1, . . . , k, satisfying the given conditions implies
that for any i = 1, . . . , k, ε, δ > 0 and n sufficiently large
there exist encoding functions fn

i : Yn 7→ {1, . . . , 2nRi
Y }

and gn
i : Xn 7→ {1, . . . , 2nRi

X} and decoding function
hn

i : {1, . . . , 2nRi
Y } × {1, . . . , 2nRi

X} 7→ Xn satisfying

Pr(X̂n
ti

= Xn) ≥ 1− ε

Ri
X ≤ H(X|Ui) + δ

Ri
Y ≤ I(Y ;Ui) + δ.
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Hence, by (7), the rates on links (z, ti) , i = 1, . . . , k, suffice
for the transmission of the fn

i (Y n) values.
As for the gn

i (Xn) values, note that for general functions
gn

i (·) of cardinality 2nH(X|Ui), satisfying (6) alone does not
suffice to communicate these values to their corresponding
destinations. However, since the gn

i functions can be imple-
mented using random binning, the following scheme can be
used. Randomly bin the xn sequences to 2nH(X|Ui∗ ) bins,
where i∗ maximizes H(X|Ui). Use a linear broadcast code,
in the sense of [13, Definition 2.9], to send the H(X|Ui∗)
bits that represent the bin index of the received xn sequence
across the X network. That is, each terminal ti receives mti

independent equations on the H(X|Ui∗) bits, where mti =
min{∑e∈C(V∗s;ti

) c(e),H(X|Ui∗)} ([13, Corollary 2.23]). The
null-space dimension of a terminal ti is thus H(X|Ui∗)−mti ,
resulting in an effective random bin of size 2nH(X|Ui) which
includes the true xn. This, together with fn

i (yn), suffices for
the reconstruction of xn.

Theorem 6 treats networks with an arbitrary set of con-
nections between the side information node and the sinks
T = {t1, t2} as shown in Figure 4 when X and Y are
uniformly distributed binary random variables related through
a binary symmetric channel (BSC).

Theorem 6. Consider a side information network
(V, E , s, z, {t1, t2}) where both the source and the side
information are binary symmetric random variables. If the
only vertices v ∈ V for which there is a directed path from
both s and z are t1 and t2 (see Figure 4), then Theorem 1
is tight, and we can rewrite the resulting rate region as
(c(e) : e ∈ E) ∈ R(V, E , s, z, {t1, t2}) if and only if there
exist random variables U1 ∈ U1 and U2 ∈ U2 such that
U1 ↔ Y ↔ X , U2 ↔ Y ↔ X , |U1| ≤ |Y|, |U2| ≤ |Y|, and

∑

e∈C(V∗s;t1 )

c(e) ≥ H(X|U1) (8)

∑

e∈C(V∗z;t1
)

c(e) ≥ I(Y ; U1) (9)

∑

e∈C(V∗s;t2 )

c(e) ≥ H(X|U2) (10)

∑

e∈C(V∗z;t2
)

c(e) ≥ I(Y ; U2) (11)

Proof sketch: The proof of Theorem 5 shows that
conditions (8) and (10) suffice in order to multicast the X
descriptions to the sinks. We next show that conditions (9)
and (11) suffice in order to multicast the Y descriptions to the
sinks when X and Y are binary symmetric random variables
related through a BSC.

In [10], the authors have analyzed the problem of source
coding with coded side information for binary sources, and
have shown that the optimal auxiliary random variable U is
also binary, and related to Y through a BSC. Since any two
memoryless symmetric binary sources can be described as
related through a BSC, for any two auxiliary binary random

variables U1 and U2 we can construct Ũ1 and Ũ2 that have the
same conditional distributions as U1 and U2 yet also satisfy
Ũ2 ↔ Ũ1 ↔ Y ↔ X or Ũ1 ↔ Ũ2 ↔ Y ↔ X (the details
are in [11]). Without loss of generality, we assume the former,
and supress the tilde notation in the reminder of the proof.

To complete the proof we need to show a construction of the
Y descriptions at rates I(Y ; U2) and I(Y ; U1) = I(Y ; U2) +
I(Y ;U1|U2), such that the latter is a refined description of the
former. If such a nested structure of descriptions is achieved,
by [14, Corollary 2] the two descriptions can be communicated
to the sinks if the associated min-cut bounds are satisfied,
which in turn holds by conditions (9) and (11).

The description at rate I(Y ; U2) is similar to the original
coded side information problem. Simply generate 2nI(Y ;U2)

sequences, {Un
2 (s)}, at random according to Πn

i=1pU2(u2).
The coarse description is the index s of a Un

2 (s) such that
(Y n, Un

2 (s)) ∈ A
(n)
ε (Y, U2), where A

(n)
ε (Y,U2) is the set of

(yn, un
2 ) sequences that are jointly typical. As for the refined

description, for each un
2 (s), generate 2nI(Y ;U1|U2) sequences,

{Un
1 (s, k)}, at random according to Πn

i=1pU1|U2(u1|u2,i(s)).
The refinement description is the index k of a Un

1 (s, k) such
that (Y n, Un

1 (s, k)) ∈ A
(n)
ε (Y, U1). Due to space limitations,

the detailed error analysis is omitted.

Remark 1. Note that Theorem 6 holds for any X and Y
for which the desired auxiliary random variables U1 and U2

satisfy U2 ↔ U1 ↔ Y ↔ X (or can be constructed this way).
The key here is that the description of X is always successively
refinable, but the successive refinement property need not hold
for all descriptions of Y since these descriptions are lossy.

Remark 2. A key finding in [1], [6] and [2] is the ability to
analyze the rate region of multicast networks (with indepen-
dent and dependent sources) only through the values of the
min-cuts between sources and destinations. The results given
in Corollary 4, Theorem 5, and Theorem 6 extend the range of
network scenarios where this min-cut analysis holds, yet using
a generalization of the cut-set bound [9, Theorem 14.10.1].

While Theorem 1 gives an outer bound for any network
with side information, considering any node with a path from
a source as having complete information about that source
leads to a loose bound for some networks. In [11] we harness
the results of [7] on partially separated encoders to give a
result tighter than Theorem 1 for some networks. For example,
consider the network in Figure 5. Due to the links from the X
network to the Y network, Theorem 6 does not apply. Yet, the
following Lemma gives a tighter outer bound than Theorem 1.

Lemma 7. Let (V, E , s, z, T ) be a side information network.
If (c(e) : e ∈ E) ∈ R(V, E , s, z, T ), then for any partition of
V into three disjoint sets S,Z and D satisfying the conditions

1) S includes the source node s and has no incoming links;
2) Z includes the side information node z and has incom-

ing links only from S;
3) T ⊆ D;
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Fig. 5. A network with two demands, arbitrary Y network, and links from
the X network to the Y network.

the following holds: There exist random variables W ∈ W ,
V ∈ V , U ∈ U of bounded alphabet size and a function f
such that W ↔ X ↔ Y , U ↔ (Y, W ) ↔ (X, W ) ↔ V ,
H(X|f(U, V,W )) ≤ ε for any ε > 0 and

∑

e∈C(VS,Z∪D):d(e)∈Z

c(e) ≥ I(X;W |Y )

∑

e∈C(VS,Z∪D):d(e)∈D

c(e) ≥ I(X;V |U,W )

∑

e∈C(VZ,D∪S)

c(e) ≥ I(Y ; U |V, W )

∑

e∈C(VS∪Z,D)

≥ I(X,Y ;U, V, W ).

V. EXAMPLES

In this section, we illustrate our main results through three
simple examples.

(a) Example 1

(b) Example 2

(c) Example 3

Fig. 6. Network examples.

Example 1. Consider the network in Figure 6(a). By
Theorem 5, (R1, . . . , R6) ∈ R(V, E , s, z, {t1, t2}) if and only
if there exist random variables U1 ∈ U1 and U2 ∈ U2 such

that for i ∈ {1, 2}, Ui ↔ Y ↔ X , |Ui| ≤ |Y|, and

R1 + min(R2, R3) ≥ H(X|U1); R5 ≥ I(Y ; U1)
min(R2, R4) ≥ H(X|U2); R6 ≥ I(Y ; U2).

Example 2. Consider the network in Figure 6(b). By
Theorem 1, if (R1, . . . , R5) ∈ R(V, E , s, z, {t1, t2}), then
there exist random variables U1 ∈ U1 and U2 ∈ U2 such that
U1 ↔ Y ↔ X , U2 ↔ Y ↔ X , |U1| ≤ |Y|, |U2| ≤ |Y|, and

R1 ≥ H(X|U1); R3 ≥ I(Y ;U1)
R2 + R4 ≥ H(X|U2); R5 ≥ I(Y ;U2).

While the inner bound in Lemma 3 does not apply here,
it is not hard to see that if these conditions are satisfied,
(R1, . . . , R5) ∈ R(V, E , s, z, {t1, t2}).

Example 3. Consider the network in Figure 6(c). While
the set of rates R1 = H(X|U), R2 = 0, R3 = I(Y ;U) and
R4 = I(X;U) with U ↔ Y ↔ X satisfies the conditions in
Theorem 1, it is clear that these rates are not achievable. This
example illustrates why partitioning the network into only two
subsets of nodes in the outer bound fails for certain cases, as
assuming the ENC/DEC node has X is too restrictive.
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