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Computational Methods for
Sparse Solution of Linear
Inverse Problems
In many engineering areas, such as signal processing, practical results can be

obtained by identifying approaches that yield the greatest quality improvement,

or by selecting the most suitable computation methods.

By Joel A. Tropp, Member IEEE, and Stephen J. Wright

ABSTRACT | The goal of the sparse approximation problem

is to approximate a target signal using a linear combination

of a few elementary signals drawn from a fixed collection.

This paper surveys the major practical algorithms for sparse

approximation. Specific attention is paid to computational

issues, to the circumstances in which individual methods tend

to perform well, and to the theoretical guarantees available.

Many fundamental questions in electrical engineering, statis-

tics, and applied mathematics can be posed as sparse

approximation problems, making these algorithms versatile

and relevant to a plethora of applications.

KEYWORDS | Compressed sensing; convex optimization; match-

ing pursuit; sparse approximation

I . INTRODUCTION

Linear inverse problems arise throughout engineering and

the mathematical sciences. In most applications, these

problems are ill-conditioned or underdetermined, so one

must apply additional regularizing constraints in order to

obtain interesting or useful solutions. Over the last two

decades, sparsity constraints have emerged as a fundamen-

tal type of regularizer. This approach seeks an approximate

solution to a linear system while requiring that the un-

known has few nonzero entries relative to its dimension

Find sparse x such that %x � u

where u is a target signal and % is a known matrix.

Generically, this formulation is referred to as sparse
approximation [1]. These problems arise in many areas,

including statistics, signal processing, machine learning,

coding theory, and approximation theory. Compressive
sampling refers to a specific type of sparse approximation

problem first studied in [2] and [3].

Tykhonov regularization, the classical device for

solving linear inverse problems, controls the energy (i.e.,

the Euclidean norm) of the unknown vector. This approach

leads to a linear least squares problem whose solution is

generally nonsparse. To obtain sparse solutions, we must

develop more sophisticated algorithms and often commit
more computational resources. The effort pays off. Recent

research has demonstrated that, in many cases of interest,

there are algorithms that can find good solutions to large

sparse approximation problems in reasonable time.

In this paper, we give an overview of algorithms for

sparse approximation, describing their computational

requirements and the relationships between them. We

also discuss the types of problems for which each method is
most effective in practice. Finally, we sketch the theoretical

results that justify the application of these algorithms.

Although low-rank regularization also falls within the

sparse approximation framework, the algorithms we

describe do not apply directly to this class of problems.

Section I-A describes Bideal[ formulations of sparse

approximation problems and some common features of
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algorithms that attempt to solve these problems. Section II
provides additional detail about greedy pursuit methods.

Section III presents formulations based on convex prog-

ramming and algorithms for solving these optimization

problems.

A. Formulations
Suppose that % 2 R

m�N is a real matrix whose columns

have unit Euclidean norm: kJjk2
¼ 1 for j ¼ 1; 2; . . . ;N.

(The normalization does not compromise generality.) This

matrix is often referred to as a dictionary. The columns of

the matrix are Bentries[ in the dictionary, and a column

submatrix is called a subdictionary.
The counting function k � k0 : RN ! R returns the

number of nonzero components in its argument. We say

that a vector x is s-sparse when kxk0 � s. When u ¼ %x,

we refer to x as a representation of the signal u with respect

to the dictionary.

In practice, signals tend to be compressible, rather than

sparse. Mathematically, a compressible signal has a repre-

sentation whose entries decay rapidly when sorted in order
of decreasing magnitude. Compressible signals are well

approximated by sparse signals, so the sparse approxi-

mation framework applies to this class. In practice, it is

usually more challenging to identify approximate repre-

sentations of compressible signals than of sparse signals.

The most basic problem we consider is to produce a

maximally sparse representation of an observed signal u

min
x
kxk0 subject to %x ¼ u: (1)

One natural variation is to relax the equality constraint to

allow some error tolerance " � 0, in case the observed

signal is contaminated with noise

min
x
kxk0 subject to k%x� uk2 � ": (2)

It is most common to measure the prediction–observation

discrepancy with the Euclidean norm, but other loss

functions may also be appropriate.

The elements of (2) can be combined in several ways to
obtain related problems. For example, we can seek the

minimal error possible at a given level of sparsity s � 1

min
x
k%x� uk2 subject to kxk0 � s: (3)

We can also use a parameter � > 0 to balance the twin

objectives of minimizing both error and sparsity

min
x

1

2
k%x� uk2

2 þ �kxk0: (4)

If there are no restrictions on the dictionary % and the
signal u, then sparse approximation is at least as hard as a

general constraint satisfaction problem. Indeed, for fixed

constants C, K � 1, it is NP-hard to produce a ðCsÞ-sparse

approximation whose error lies within a factor K of the

minimal s-term approximation error [4, Sec. 0.8.2].

Nevertheless, over the past decade, researchers have

identified many interesting classes of sparse approxima-

tion problems that submit to computationally tractable
algorithms. These striking results help to explain why

sparse approximation has been such an important and

popular topic of research in recent years.

In practice, sparse approximation algorithms tend to be

slow unless the dictionary % admits a fast matrix–vector

multiply. Let us mention two classes of sparse approxima-

tion problems where this property holds. First, many

naturally occurring signals are compressible with respect
to dictionaries constructed using principles of harmonic

analysis [5] (e.g., wavelet coefficients of natural images).

This type of structured dictionary often comes with a fast

transformation algorithm. Second, in compressive sam-

pling, we typically view % as the product of a random

observation matrix and a fixed orthogonal matrix that

determines a basis in which the signal is sparse. Again, fast

multiplication is possible when both the observation
matrix and sparsity basis are structured.

Recently, there have been substantial efforts to

incorporate more sophisticated signal constraints into

sparsity models. In particular, Baraniuk et al. have studied

model-based compressive sampling algorithms, which use

additional information such as the tree structure of wavelet

coefficients to guide reconstruction of signals [6].

B. Major Algorithmic Approaches
There are at least five major classes of computational

techniques for solving sparse approximation problems.

1) Greedy pursuit. Iteratively refine a sparse solu-

tion by successively identifying one or more

components that yield the greatest improvement

in quality [7].

2) Convex relaxation. Replace the combinatorial
problem with a convex optimization problem.

Solve the convex program with algorithms that

exploit the problem structure [1].

3) Bayesian framework. Assume a prior distribution

for the unknown coefficients that favors sparsity.

Develop a maximum a posteriori estimator that

incorporates the observation. Identify a region of

significant posterior mass [8] or average over
most-probable models [9].

4) Nonconvex optimization. Relax the ‘0 problem

to a related nonconvex problem and attempt to

identify a stationary point [10].

5) Brute force. Search through all possible support

sets, possibly using cutting-plane methods to re-

duce the number of possibilities [11, Sec. 3.7–3.8].
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This paper focuses on greedy pursuits and convex
optimization. These two approaches are computationally

practical and lead to provably correct solutions under well-

defined conditions. Bayesian methods and nonconvex

optimization are based on sound principles, but they do

not currently offer theoretical guarantees. Brute force is, of

course, algorithmically correct, but it remains plausible

only for small-scale problems.

Recently, we have also seen interest in heuristic algo-
rithms based on belief-propagation and message-passing

techniques developed in the graphical models and coding

theory communities [12], [13].

C. Verifying Correctness
Researchers have identified several tools that can be

used to prove that sparse approximation algorithms pro-

duce optimal solutions to sparse approximation problems.

These tools also provide insight into the efficiency of

computational algorithms, so the theoretical background

merits a summary.

The uniqueness of sparse representations is equivalent
to an algebraic condition on submatrices of %. Suppose a

signal u has two different s-sparse representations x1 and

x2. Clearly

u ¼ %x1 ¼ %x2 ¼) %ðx1 � x2Þ ¼ 0:

In other words, % maps a nontrivial ð2sÞ-sparse signal to

zero. It follows that each s-sparse representation is

unique if and only if each ð2sÞ-column submatrix of % is

injective.

To ensure that sparse approximation is computationally

tractable, we need stronger assumptions on %. Not only
should sparse signals be uniquely determined, but they

should be stably determined. Consider a signal perturba-

tion �u and an s-sparse coefficient perturbation �x,

related by �u ¼ %ð�xÞ. Stability requires that k�xk2

and k�uk2 are comparable.

This property is commonly imposed by fiat. We say that

the matrix % satisfies the restricted isometry property

(RIP) of order K with constant � ¼ �K G 1 if

kxk0 � K ) ð1� �Þkxk2
2 � k%xk2

2 � ð1þ �Þkxk
2
2: (5)

For sparse approximation, we hope (5) holds for large K.

This concept was introduced in the important paper [14];

some refinements appear in [15].

The RIP can be verified using the coherence statistic of

the matrix %, which is defined as

� ¼ max
j6¼k
hJj;Jki
��� ���:

An elementary argument [16] via Gershgorin’s circle
theorem establishes that the RIP constant �K � �ðK � 1Þ.
In signal processing applications, it is common that

� � m�1=2, so we have nontrivial RIP bounds for

K � ffiffiffiffi
m
p

. Unfortunately, no known deterministic matrix

yields a substantially better RIP. Early references for

coherence include [7] and [17].

Certain random matrices, however, satisfy much

stronger RIP bounds with high probability. For Gaussian
and Bernoulli matrices, RIP holds when K � m= logðN=mÞ.
For more structured matrices, such as a random section of a

discrete Fourier transform, RIP often holds when

K � m= logpðNÞ for a small integer p. This fact explains

the benefit of randomness in compressive sampling. Estab-

lishing the RIP for a random matrix requires techniques

more sophisticated than the simple coherence arguments;

see [14] for discussion.
Recently, researchers have observed that sparse matrices

may satisfy a related property, called RIP-1, even when they

do not satisfy (5). RIP-1 can also be used to analyze sparse

approximation algorithms. Details are given in [18].

D. Cross-Cutting Issues
Structural properties of the matrix % have a substantial

impact on the implementation of sparse approximation
algorithms. In most applications of interest, the large size or

lack of sparseness in % makes it impossible to store this

matrix (or any substantial submatrix) explicitly in computer

memory. Often, however, matrix–vector products involving

% and %� can be performed efficiently. For example, the

cost of these products is OðN log NÞ when % is constructed

from Fourier or wavelet bases. For algorithms that solve

least squares problems, a fast multiply is particularly impor-
tant because it allows us to use iterative methods such as

LSQR or conjugate gradient (CG). In fact, all the algorithms

discussed below can be implemented in a way that requires

access to % only through matrix–vector products.

Spectral properties of subdictionaries, such as those

encapsulated in (5), have additional implications for the

computational cost of sparse approximation algorithms.

Some methods exhibit fast linear asymptotic convergence
because the RIP ensures that the subdictionaries encoun-

tered during execution have superb conditioning. Other

approaches (for example, interior-point methods) are less

sensitive to spectral properties, so they become more

competitive when the RIP is less pronounced or the target

signal is not particularly sparse.

It is worth mentioning here that most algorithmic

papers in sparse reconstruction present computational re-
sults only on synthetic test problems. Test problem col-

lections representative of sparse approximation problems

encountered in practice are crucial to guiding further dev-

elopment of algorithms. A significant effort in this direc-

tion is Sparco [19], a Matlab environment for interfacing

algorithms and constructing test problems that also in-

cludes a variety of problems gathered from the literature.
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II . PURSUIT METHODS

A pursuit method for sparse approximation is a greedy

approach that iteratively refines the current estimate for
the coefficient vector x by modifying one or several

coefficients chosen to yield a substantial improvement in

approximating the signal. We begin by describing the

simplest effective greedy algorithm, orthogonal matching

pursuit (OMP), and summarizing its theoretical guaran-

tees. Afterward, we outline a more sophisticated class of

modern pursuit techniques that has shown promise for

compressive sampling problems. We briefly discuss
iterative thresholding methods, and conclude with some

general comments about the role of greedy algorithms in

sparse approximation.

A. Orthogonal Matching Pursuit
OMP is one of the earliest methods for sparse approxi-

mation. Basic references for this method in the signal pro-

cessing literature are [20] and [21], but the idea can be traced

to 1950s work on variable selection in regression [11].

Fig. 1 contains a mathematical description of OMP.

The symbol %� denotes the subdictionary indexed by a
subset � of f1; 2; . . . ;Ng.

In a typical implementation of OMP, the identification

step is the most expensive part of the computation. The

most direct approach computes the maximum inner pro-

duct via the matrix–vector multiplication %�rk�1, which

costs OðmNÞ for an unstructured dense matrix. Some au-

thors have proposed using nearest neighbor data structures

to perform the identification query more efficiently [22].
In certain applications, such as projection pursuit regres-

sion, the Bcolumns[ of % are indexed by a continuous

parameter, and identification can be posed as a low-
dimensional optimization problem [23].

The estimation step requires the solution of a least

squares problem. The most common technique is to main-

tain a QR factorization of %�k
, which has a marginal cost

of OðmkÞ in the kth iteration. The new residual rk is a by-

product of the least squares problem, so it requires no

extra computation.

There are several natural stopping criteria.
• Halt after a fixed number of iterations: k ¼ s.
• Halt when the residual has small magnitude:

krkk2 � ".

• Halt when no column explains a significant

amount of energy in the residual: k%�rk�1k1 � ".

These criteria can all be implemented at minimal cost.

Many related greedy pursuit algorithms have been

proposed in the literature; we cannot do them all justice
here. Some particularly noteworthy variants include

matching pursuit [7], the relaxed greedy algorithm [24],

and the ‘1-penalized greedy algorithm [25].

B. Guarantees for Simple Pursuits
OMP produces the residual rm ¼ 0 after m steps

(provided that the dictionary can represent the signal u
exactly), but this representation hardly qualifies as sparse.

Classical analyses of greedy pursuit focus instead on the

rate of convergence.

Greedy pursuits often converge linearly with a rate that

depends on how well the dictionary covers the sphere [7].

For example, OMP offers the estimate

krkk2 � ð1� %2Þk=2kuk2

where

% ¼ infkvk2¼1 supn hv;Jnij j:

(See [21, Sec. 3] for details.) Unfortunately, the covering

parameter % is typically Oðm�1=2Þ unless the number N of

atoms is huge, so this estimate has limited interest.

A second type of result demonstrates that the rate of
convergence depends on how well the dictionary expresses

the signal of interest [24, eq. (1.9)]. For example, OMP

offers the estimate

krkk2 � k�1=2kuk%

where

kuk% ¼ inf kxk1 : u ¼ %x
� �

:Fig. 1. Orthogonal matching pursuit.
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The dictionary norm k � k% is typically small when its
argument has a good sparse approximation. For further

improvements on this estimate, see [26]. This bound is

usually superior to the exponential rate estimate above, but

it can be disappointing for signals with excellent sparse

approximations.

Subsequent work established that greedy pursuit pro-

duces near-optimal sparse approximations with respect to in-
coherent dictionaries [22], [27]. For example, if 3�k � 1, then

krkk2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6k
p

u� a?k
�� ��

2

where a?k denotes the best ‘2 approximation of u as a linear

combination of k columns from %. See [28]–[30] for

refinements.

Finally, when % is sufficiently random, OMP provably

recovers s-sparse signals when s � m=ð2 log NÞ and the

parameters are sufficiently large [31], [32].

C. Contemporary Pursuit Methods
For many applications, OMP does not offer adequate

performance, so researchers have developed more sophis-

ticated pursuit methods that work better in practice and

yield essentially optimal theoretical guarantees. These
techniques depend on several enhancements to the basic

greedy framework:

1) selecting multiple columns per iteration;

2) pruning the set of active columns at each step;

3) solving the least squares problems iteratively;

4) theoretical analysis using the RIP bound (5).

Although modern pursuit methods were developed specif-

ically for compressive sampling problems, they also offer
attractive guarantees for sparse approximation.

There are many early algorithms that incorporate some

of these features. For example, stagewise orthogonal

matching pursuit (StOMP) [33] selects multiple columns

at each step. The regularized orthogonal matching pursuit

algorithm [34], [35] was the first greedy technique whose

analysis was supported by a RIP bound (5). For historical
details, we refer the reader to the discussion in [36, Sec. 7].

Compressive sampling matching pursuit (CoSaMP)

[36] was the first algorithm to assemble these ideas to

obtain essentially optimal performance guarantees. Dai

and Milenkovic describe a similar algorithm, called sub-

space pursuit, with equivalent guarantees [37]. Other

natural variants are described in [38, App. A.2]. Because of

space constraints, we focus on the CoSaMP approach.
Fig. 2 describes the basic CoSaMP procedure. The

notation ½x	r denotes the restriction of a vector x to the

r components largest in magnitude (ties broken lexico-

graphically), while suppðxÞ denotes the support of the

vector x, i.e., the set of nonzero components. The natural

value for the tuning parameter is � ¼ 1, but empirical

refinement may be valuable in applications [39].

Both the practical performance and theoretical analysis

of CoSaMP require the dictionary % to satisfy the RIP (5)

of order 2s with constant �2s 
 1. Of course, these

methods can be applied without the RIP, but the behavior

is unpredictable. A heuristic for identifying the maximum
sparsity level s is to require that s � m=ð2 logð1þ N=sÞÞ.

Under the RIP hypothesis, each iteration of CoSaMP

reduces the approximation error by a constant factor until

it approaches its minimal value. To be specific, suppose

that the signal u satisfies

u ¼ %x? þ e (6)

for unknown coefficient vector x? and noise term e. If we

run the algorithm for a sufficient number of iterations, the
output x satisfies

kx? � xk2 � Cs�1=2 x? � ½x?	s=2

��� ���
1
þ Ckek2 (7)

where C is a constant. The form of this error bound is

optimal [40].

Stopping criteria are tailored to the signals of interest.

For example, when the coefficient vector x? is compressible,

the algorithm requires only Oðlog NÞ iterations. Under the

RIP hypothesis, each iteration requires a constant number

of multiplications with % and %� to solve the least squares

Fig. 2. Compressive sampling matching pursuit.
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problem. Thus, the total running time is OðN log2 NÞ for
a structured dictionary and a compressible signal.

In practice, CoSaMP is faster and more effective than

OMP for compressive sampling problems, except perhaps

in the ultrasparse regime where the number of nonzeros

in the representation is very small. CoSaMP is faster but

usually less effective than algorithms based on convex

programming.

D. Iterative Thresholding
Modern pursuit methods are closely related to iterative

thresholding algorithms, which have been studied ex-

tensively over the last decade. (See [39] for a current

bibliography.) Section III-D describes additional connec-
tions with optimization-based approaches.

Among thresholding approaches, iterative hard thresh-

olding (IHT) is the simplest. It seeks an s-sparse

representation x? of a signal u via the iteration

x0 ¼ 0
rk ¼ u�%xk

xkþ1 ¼ ½xk þ%�rk	s; k � 0.

8<
:

Blumensath and Davies [41] have established that IHT

admits an error guarantee of the form (7) under a RIP
hypothesis of the form �2s 
 1. For related results on IHT,

see [42]. Garg and Khandekar [43] describe a similar

method, gradient descent with sparsification, and present

an elegant analysis, which is further simplified in [44].

There is empirical evidence that thresholding is

reasonably effective for solving sparse approximation

problems in practice; see, e.g., [45]. On the other hand,

some simulations indicate that simple thresholding tech-
niques behave poorly in the presence of noise [41, Sec. 8].

Very recently, Donoho and Maliki have proposed a

more elaborate method, called two-stage thresholding

(TST) [39]. They describe this approach as a hybrid of

CoSaMP and thresholding, modified with extra tuning

parameters. Their work includes extensive simulations

meant to identify optimal parameter settings for TST. By

construction, these optimally tuned algorithms dominate
related approaches with fewer parameters. The discussion

in [39] focuses on perfectly sparse, random signals, so the

applicability of the approach to signals that are compress-

ible, noisy, or deterministic is unclear.

E. Commentary
Greedy pursuit methods have often been considered

naive, in part because there are contrived examples where

the approach fails spectacularly; see [1, Sec. 2.3.2].

However, recent research has clarified that greedy pursuits

succeed empirically and theoretically in many situations

where convex relaxation works. In fact, the boundary

between greedy methods and convex relaxation methods is

somewhat blurry. The greedy selection technique is closely
related to dual coordinate-ascent algorithms, while certain

methods for convex relaxation, such as least-angle regres-

sion [46] and homotopy [47], use a type of greedy selection

at each iteration. We can make certain general observa-

tions, however. Greedy pursuits, thresholding, and related

methods (such as homotopy) can be quite fast, especially in

the ultrasparse regime. Convex relaxation algorithms are

more effective at solving sparse approximation problems in
a wider variety of settings, such as those in which the signal

is not very sparse and heavy observational noise is present.

Greedy techniques have several additional advantages

that are important to recognize. First, when the dictionary

contains a continuum of elements (as in projection pursuit

regression), convex relaxation may lead to an infinite-

dimensional primal problem, while the greedy approach

reduces sparse approximation to a sequence of simple 1-D
optimization problems. Second, greedy techniques can in-

corporate constraints that do not fit naturally into convex

programming formulations. For example, the data stream

community has proposed efficient greedy algorithms for

computing near-optimal histograms and wavelet-packet

approximations from compressive samples [4]. More

recently, it has been shown that CoSaMP can be modified

to enforce tree-like constraints on wavelet coefficients.
Extensions to simultaneous sparse approximation pro-

blems have also been developed [6]. This is an exciting and

important line of work.

At this point, it is not fully clear what role greedy

pursuit algorithms will ultimately play in practice. Never-

theless, this strand of research has led to new tools and

insights for analyzing other types of algorithms for sparse

approximation, including the iterative thresholding and
model-based approaches above.

III . OPTIMIZATION

Another fundamental approach to sparse approximation

replaces the combinatorial ‘0 function in the mathematical

programs from Section I-A with the ‘1-norm, yielding

convex optimization problems that admit tractable algo-

rithms. In a concrete sense [48], the ‘1-norm is the closest

convex function to the ‘0 function, so this Brelaxation[ is

quite natural.
The convex form of the equality-constrained problem

(1) is

min
x
kxk1 subject to %x ¼ u (8)

while the mixed formulation (4) becomes

min
x

1

2
k%x� uk2

2 þ �kxk1: (9)
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Here, � � 0 is a regularization parameter whose value
governs the sparsity of the solution: large values typically

produce sparser results. It may be difficult to select an

appropriate value for � in advance, since it controls the

sparsity indirectly. As a consequence, we often need to

solve (9) repeatedly for different choices of this parameter,

or to trace systematically the path of solutions as �
decreases toward zero. When � � k%�uk1, the solution

of (9) is x ¼ 0.
Another variant is the least absolute shrinkage and

selection operator formulation [49], which first arose in

the context of variable selection

min
x
k%x� uk2

2 subject to kxk1 � �: (10)

The LASSO is equivalent to (9) in the sense that the path
of solutions to (10) parameterized by positive � matches

the solution path for (9) as � varies. Finally, we note

another common formulation

min
x
kxk1 subject to k%x� uk2 � " (11)

that explicitly parameterizes the error norm.

A. Guarantees
It has been demonstrated that convex relaxation

methods produce optimal or near-optimal solutions to

sparse approximation problems in a variety of settings.

The earliest results [16], [17], [27] establish that the

equality-constrained problem (8) correctly recovers all

s-sparse signals from an incoherent dictionary provided
that 2�s � 1. In the best case, this bound applies at the

sparsity level s � ffiffiffiffi
m
p

. Subsequent work [29], [50], [51]

showed that the convex programs (9) and (11) can identify

noisy sparse signals in a similar parameter regime.

The results described above are sharp for deterministic

signals, but they can be extended significantly for random
signals that are sparse with respect to an incoherent

dictionary. The paper [52] proves that the equality-
constrained problem (8) can identify random signals,

even when the sparsity level s is approximately m= log m.

Most recently, the paper [53] observed that ideas from [51]

and [54] imply that the convex relaxation (9) can identify

noisy, random sparse signals in a similar parameter regime.

Results from [14] and [55] demonstrate that convex

relaxation succeeds well in the presence of the RIP.

Suppose that signal u and unknown coefficient vector x?

are related as in (6) and that the dictionary % has RIP

constant �2s 
 1. Then, the solution x to (11) verifies

kx� x?k2 � Cs�1=2kx? � ½x?	sk1 þ C"

for some constant C, provided that " � kek2. Compare this
bound with the error estimate (7) for CoSaMP and IHT.

An alternative approach for analyzing convex relaxa-

tion algorithms relies on geometric properties of the

kernel of the dictionary [40], [56]–[58]. Another geomet-

ric method, based on random projections of standard

polytopes, is studied in [59] and [60].

B. Active Set/Pivoting
Pivoting algorithms explicitly trace the path of

solutions as the scalar parameter in (10) ranges across an

interval. These methods exploit the piecewise linearity of

the solution as a function of �, a consequence of the fact

that the optimality Karush–Kuhn–Tucker (KKT) condi-
tions can be stated as a linear complementarity problem.

By referring to the KKT system, we can quickly identify the

next Bbreakpoint[ on the solution pathVthe nearest value

of � at which the derivative of the piecewise-linear

function changes.

The homotopy method of [47] follows this approach.

It starts with � ¼ 0, where the solution of (10) is x ¼ 0,

and it progressively locates the next largest value of �
where a component of x switches from a zero to a non-

zero, or vice versa. At each step, the method updates or

downdates a QR factorization of the submatrix of % that

corresponds to the nonzero components of x. A similar

method [46] is implemented as SolveLasso in the

SparseLab toolbox.1 Related approaches can be developed

for the formulation (9).

If we limit our attention to values of � for which x has
few nonzeros, the active-set/pivoting approach is efficient.

The homotopy method requires about 2s matrix–vector

multiplications by % or %�, to identify s nonzeros in x,

together with Oðms2Þ operations for updating the factor-

ization and performing other linear algebra operations.

This cost is comparable with OMP.

OMP and homotopy are quite similar in that the solu-

tion is altered by systematically adding nonzero compo-
nents to x and updating the solution of a reduced linear

least squares problem. In each case, the criterion for

selecting components involves the inner products between

inactive columns of % and the residual u�%x. One

notable difference is that homotopy occasionally allows for

nonzero components of x to return to zero status. See [46]

and [61] for other comparisons.

C. Interior-Point Methods
Interior-point methods were among the first ap-

proaches developed for solving sparse approximation prob-

lems by convex optimization. The early algorithms [1], [62]

apply a primal–dual interior-point framework where the

innermost subproblems are formulated as linear least
squares problems that can be solved with iterative

methods, thus allowing these methods to take advantage

1http://sparselab.stanford.edu.
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of fast matrix–vector multiplications involving % and %?.
An implementation is available as pdco and SolveBP in

the SparseLab toolbox.

Other interior-point methods have been proposed

expressly for compressive sampling problems. The paper

[63] describes a primal log-barrier approach for a quadratic

programming reformulation of (9):

min
x;z

1

2
k%x� uk2

2 þ �1Tz subject to � z � x � z:

The technique relies on a specialized preconditioner that

allows the internal Newton iterations to be completed

efficiently with CG. The method2 is implemented as the

code l1_ls. The ‘1-magic package3 [64] contains a
primal log-barrier code for the second-order cone formu-

lation (11), which includes the option of solving the

innermost linear system with CG.

In general, interior-point methods are not competitive

with the gradient methods of Section III-D on problems

with very sparse solutions. On the other hand, their per-

formance is insensitive to the sparsity of the solution or the

value of the regularization parameter. Interior-point
methods can be robust in the sense that there are not

many cases of very slow performance or outright failure,

which sometimes occurs with other approaches.

D. Gradient Methods
Gradient-descent methods, also known as first-order

methods, are iterative algorithms for solving (9) in which

the major operation at each iteration is to form the grad-

ient of the least squares term at the current iterate, viz.,

%�ð%xk � uÞ. Many of these methods compute the next

iterate xkþ1 using the rules

xþk :¼ arg min
z
ðz� xkÞ�%�ð%xk � uÞ

þ 1

2
�kkz� xkk2

2 þ �kzk1 (12a)

xkþ1 :¼ xk þ �k xþk � xk

� �
(12b)

for some choice of scalar parameters �k and �k. Alter-

natively, we can write subproblem (12a) as

xþk :¼ arg min
z

1

2
z� xk �

1

�k
%�ð%xk � uÞ

	 
����
����

2

2

þ �

�k
kzk1: (13)

Algorithms that compute steps of this type are known by

such labels as operator splitting [65], iterative splitting and

thresholding (IST) [66], fixed-point iteration [67], and

sparse reconstruction via separable approximation (SpaRSA)

[68]. Fig. 3 shows the framework for this class of methods.

Standard convergence results for these methods, e.g.,

[65, Th. 3.4], require that infk �k > k%�%k2=2, a tight

restriction that leads to slow convergence in practice. The
more practical variants described in [68] admit smaller

values of �k, provided that a sufficient decrease in the

objective in (9) occurs over a span of successive iterations.

Some variants use Barzilai–Borwein formulas that select

values of �k lying in the spectrum of %�%. When xþk fails

the acceptance test in Step 2, the parameter �k is increased

(repeatedly, as necessary) by a constant factor. Step

lengths �k � 1 are used in [67] and [68]. The iterated hard
shrinkage method of [69] sets �k � 0 in (12) and chooses

�k to do a conditional minimization along the search

direction.

Related approaches include TwIST [70], a variant of

IST that is significantly faster in practice, and which

deviates from the framework of Fig. 3 in that the previous

iterate xk�1 also enters into the step calculation (in the

manner of successive over-relaxation approaches for linear
equations). GPSR [71] is simply a gradient-projection

algorithm for the convex quadratic program obtained by

splitting x into positive and negative parts.

The approaches above tend to work well on sparse

signals when the dictionary % satisfies the RIP. Often, the

nonzero components of x are identified quickly, after

which the method reduces essentially to an iterative

method for the reduced linear least squares problem in
these components. Because of the RIP, the active sub-

matrix is well conditioned, so these final iterates converge

quickly. In fact, these steps are quite similar to the

estimation step of CoSaMP.

These methods benefit from warm starting, that is, the

work required to identify a solution can be reduced

dramatically when the initial estimate x0 in Step 1 is close

to the solution. This property can be used to ameliorate the

2www.stanford.edu/~boyd/l1_ls/.
3www.l1-magic.org.

Fig. 3. Gradient-descent framework.
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often poor performance of these methods on problems for
which (9) is not particularly sparse or the regularization

parameter � is small. Continuation strategies have been

proposed for such cases, in which we solve (9) for a de-

creasing sequence of values of � , using the approximate

solution for each value as the starting point for the next

subproblem. Continuation can be viewed as a coarse-

grained, approximate variant of the pivoting strategies of

Section III-B, which track individual changes in the active
components of x explicitly. Some continuation methods

are described in [67] and [68]. Though adaptive strategies

for choosing the decreasing sequence of � values have been

proposed, the design of a robust, practical, and theoret-

ically effective continuation algorithm remains an inter-

esting open question.

E. Extensions of Gradient Methods
Second-order information can be used to enhance grad-

ient projection approaches by taking approximate reduced

Newton steps in the subset of components of x that appears

to be nonzero. In some approaches [68], [71], this en-

hancement is made only after the first-order algorithm is

terminated as a means of removing the bias in the for-

mulation (9) introduced by the regularization term. Other

methods [72] apply this technique at intermediate steps of
the algorithm. (A similar approach was proposed for the

related problem of ‘1-regularized logistic regression in

[73].) Iterative methods such as conjugate gradient can be

used to find approximate solutions to the reduced linear

least squares problems. These subproblems are, of course,

closely related to the ones that arise in the greedy pursuit

algorithms of Section II.

The SPG method of [74, Sec. 4] applies a different type
of gradient projection to the formulation (10). This ap-

proach takes steps along the negative gradient of the least

squares objective in (10), with steplength chosen by a

Barzilai–Borwein formula (with backtracking to enforce

sufficient decrease over a reference function value), and

projects the resulting vector onto the constraint set

kxk1 � �. Since the ultimate goal in [74] is to solve (11)
for a given value of ", the approach above is embedded

into a scalar equation solver that identifies the value of �
for which the solution of (10) coincides with the solution

of (11).

An important recent line of work has involved applying

optimal gradient methods for convex minimization [75]–

[77] to the formulations (9) and (11). These methods have

many variants, but they share the goal of finding an ap-
proximate solution that is as close as possible to the opti-

mal set (as measured by norm-distance or by objective

value) in a given budget of iterations. (By contrast, most

iterative methods for optimization aim to make significant

progress during each individual iteration.) Optimal grad-

ient methods typically generate several concurrent se-

quences of iterates, and they have complex steplength rules

that depend on some prior knowledge, such as the Lipschitz
constant of the gradient. Specific works that apply optimal

gradient methods to sparse approximation include [78]–[80].

These methods may perform better than simple gradient

methods when applied to compressible signals.

We conclude this section by mentioning the dual

formulation of (9)

min
S

�

2
kSk2

2 � uTS subject to � 1 � %�S � 1:

(14)

Although this formulation has not been studied exten-

sively, an active-set method was proposed in [81]. This

method solves a sequence of subproblems where a subset
of the constraints (corresponding to a subdictionary) is

enforced. The dual of each subproblem can each be ex-

pressed as a least squares problem over the subdictionary,

where the subdictionaries differ by a single column from

one problem to the next. The connections between this

approach and greedy pursuits are evident. h
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